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Introduction

The second edition of Mathematical Methods for Physics and Engineering carried

more than twice as many exercises, based on its various chapters, as did the first.

In the Preface we discussed the general question of how such exercises should

be treated but, in the end, decided to provide hints and outline answers to all

problems, as in the first edition. This decision was an uneasy one as, on the one

hand, it did not allow the exercises to be set as totally unaided homework that

could be used for assessment purposes but, on the other, it did not give a full

explanation of how to tackle a problem when a student needed explicit guidance

or a model answer.

In order to allow both of these educationally desirable goals to be achieved we

have, in the third edition, completely changed the way this matter is handled.

All of the exercises from the second edition, plus a number of additional ones

testing the newly-added material, have been included in penultimate subsections

of the appropriate, sometimes reorganised, chapters. Hints and outline answers

are given, as previously, in the final subsections, but only to the odd-numbered

exercises. This leaves all even-numbered exercises free to be set as unaided

homework, as described below.

For the four hundred plus odd-numbered exercises, complete solutions are avail-

able, to both students and their teachers, in the form of a separate manual, K. F.

Riley and M. P. Hobson, Student Solutions Manual for Mathematical Methods for

Physics and Engineering, 3rd edn. (Cambridge: CUP, 2006). These full solutions

are additional to the hints and outline answers given in the main text. For each

exercise, the original question is reproduced and then followed by a fully-worked

solution. For those exercises that make internal reference to the main text or to

other (even-numbered) exercises not included in the manual, the questions have

been reworded, usually by including additional information, so that the questions

can stand alone.

xix



INTRODUCTION

The remaining four hundred or so even-numbered exercises have no hints or

answers, outlined or detailed, available for general access. They can therefore be

used by instructors as a basis for setting unaided homework. Full solutions to

these exercises, in the same general format as those appearing in the manual

(though they may contain cross-references to the main text or to other exercises),

form the body of the material on this website.

In many cases, in the manual as well as here, the solution given is even fuller than

one that might be expected of a good student who has understood the material.

This is because we have aimed to make the solutions instructional as well as

utilitarian. To this end, we have included comments that are intended to show

how the plan for the solution is fomulated and have given the justifications for

particular intermediate steps (something not always done, even by the best of

students). We have also tried to write each individual substituted formula in the

form that best indicates how it was obtained, before simplifying it at the next

or a subsequent stage. Where several lines of algebraic manipulation or calculus

are needed to obtain a final result they are normally included in full; this should

enable the instructor to determine whether a student’s incorrect answer is due to

a misunderstanding of principles or to a technical error.

In all new publications, on paper or on a website, errors and typographical

mistakes are virtually unavoidable and we would be grateful to any instructor

who brings instances to our attention.

Ken Riley, kfr1000@cam.ac.uk,

Michael Hobson, mph@mrao.cam.ac.uk,

Cambridge, 2006

xx



1

Preliminary algebra

Polynomial equations

1.2 Determine how the number of real roots of the equation

g(x) = 4x3 − 17x2 + 10x+ k = 0

depends upon k. Are there any cases for which the equation has exactly two distinct

real roots?

We first determine the positions of the turning points (if any) of g(x) by equating

its derivative g′(x) = 12x2 − 34x + 10 to zero. The roots of g′(x) = 0 are given,

either by factorising g′(x), or by the standard formula,

α1,2 =
34 ±

√
1156 − 480

24
,

as 5
2

and 1
3
.

We now determine the values of g(x) at these turning points; they are g( 5
2
) =

− 75
4

+ k and g( 1
3
) = 43

27
+ k. These will remain of opposite signs, as is required for

three real roots, provided k remains in the range − 43
27
< k < 75

4
. If k is equal to

one of these two extreme values, a graph of g(x) just touches the x-axis and two

of the roots become coincident, resulting in only two distinct real roots.

1.4 Given that x = 2 is one root of

g(x) = 2x4 + 4x3 − 9x2 − 11x− 6 = 0,

use factorisation to determine how many real roots it has.

1



PRELIMINARY ALGEBRA

Given that x = 2 is one root of g(x) = 0, we write g(x) = (x − 2)h(x) or, more

explicitly,

2x4 + 4x3 − 9x2 − 11x− 6 = (x− 2)(b3x
3 + b2x

2 + b1x+ b0).

Equating the coefficients of successive (decreasing) powers of x, we obtain

b3 = 2, b2 − 2b3 = 4, b1 − 2b2 = −9, b0 − 2b1 = −11, −2b0 = −6.

These five equations have the consistent solution for the four unknowns bi of

b3 = 2, b2 = 8, b1 = 7 and b0 = 3. Thus h(x) = 2x3 + 8x2 + 7x+ 3.

Clearly, since all of its coefficients are positive, h(x) can have no zeros for positive

values of x. A few tests with negative integer values of x (with the initial intention

of making a rough sketch) reveal that h(−3) = 0, implying that (x+3) is a factor

of h(x). We therefore write

2x3 + 8x2 + 7x+ 3 = (x+ 3)(c2x
2 + c1x+ c0),

and, proceeding as previously, obtain c2 = 2, c1 + 3c2 = 8, c0 + 3c1 = 7 and

3c0 = 3, with corresponding solution c2 = 2, c1 = 2 and c0 = 1.

We now have that g(x) = (x− 2)(x+ 3)(2x2 + 2x+ 1). If we now try to determine

the zeros of the quadratic term using the standard form (1.4) we find that, since

22 − (4 × 2 × 1), i.e. −4, is negative, its zeros are complex. In summary, the only

real roots of g(x) = 0 are x = 2 and x = −3.

1.6 Use the results of (i) equation (1.13), (ii) equation (1.12) and (iii) equation

(1.14) to prove that if the roots of 3x3 − x2 − 10x+ 8 = 0 are α1, α2 and α3 then

(a) α−1
1 + α−1

2 + α−1
3 = 5/4,

(b) α2
1 + α2

2 + α2
3 = 61/9,

(c) α3
1 + α3

2 + α3
3 = −125/27.

(d) Convince yourself that eliminating (say) α2 and α3 from (i), (ii) and (iii)

does not give a simple explicit way of finding α1.

If the roots of 3x3 − x2 − 10x+ 8 = 0 are α1, α2 and α3, then:

(i) from equation (1.13), α1 + α2 + α3 = −−1

3
=

1

3
;

(ii) from equation (1.12), α1α2α3 = (−1)3
8

3
= −8

3
;

(iii) from equation (1.14), α1α2 + α2α3 + α3α1 =
−10

3
= −10

3
.

2



PRELIMINARY ALGEBRA

We now use these results in various combinations to obtain expressions for the

given quantities:

(a)
1

α1
+

1

α2
+

1

α3
=
α2α3 + α1α3 + α2α1

α1α2α3
=

−(10/3)

−(8/3)
=

5

4
;

(b) α2
1 + α2

2 + α2
3 = (α1 + α2 + α3)

2 − 2(α1α2 + α2α3 + α3α1)

=
(

1
3

)2 − 2
(
− 10

3

)
= 61

9
;

(c) α3
1 + α3

2 + α3
3 =

(α1 + α2 + α3)
3 − 3(α1 + α2 + α3)(α1α2 + α2α3 + α3α1) + 3α1α2α3

= (1
3
)3 − 3( 1

3
)(− 10

3
) + 3(− 8

3
) = − 125

27
.

(d) No answer is given as it cannot be done. All manipulation is complicated

and, at best, leads back to the original equation. Unfortunately, the ‘convincing’

will have to come from frustration, rather than from a proof by contradiction!

Trigonometric identities

1.8 The following exercises are based on the half-angle formulae.

(a) Use the fact that sin(π/6) = 1/2 to prove that tan(π/12) = 2 −
√

3.

(b) Use the result of (a) to show further that tan(π/24) = q(2 − q), where

q2 = 2 +
√

3.

(a) Writing tan(π/12) as t and using (1.32), we have

1

2
= sin

π

6
=

2t

1 + t2
,

from which it follows that t2 − 4t+ 1 = 0.

The quadratic solution (1.6) then shows that t = 2 ±
√

22 − 1 = 2 ±
√

3; there are

two solutions because sin(5π/6) is also equal to 1/2. To resolve the ambiguity,

we note that, since π/12 < π/4 and tan(π/4) = 1, we must have t < 1; hence, the

negative sign is the appropriate choice.

(b) Writing tan(π/24) as u and using (1.34) and the result of part (a), we have

2 −
√

3 =
2u

1 − u2
.

Multiplying both sides by q2 = 2 +
√

3, and then using (2 +
√

3)(2 −
√

3) = 1,

gives

1 − u2 = 2q2u.

3



PRELIMINARY ALGEBRA

This quadratic equation has the (positive) solution

u = −q2 +
√
q4 + 1

= −q2 +

√
4 + 4

√
3 + 3 + 1

= −q2 + 2

√
2 +

√
3

= −q2 + 2q = q(2 − q),

as stated in the question.

1.10 If s = sin(π/8), prove that

8s4 − 8s2 + 1 = 0,

and hence show that s = [(2 −
√

2)/4]1/2.

With s = sin(π/8), using (1.29) gives

sin
π

4
= 2s(1 − s2)1/2.

Squaring both sides, and then using sin(π/4) = 1/
√

2, leads to

1

2
= 4s2(1 − s2),

i.e. 8s4 − 8s2 + 1 = 0. This is a quadratic equation in u = s2, with solutions

s2 = u =
8 ±

√
64 − 32

16
=

2 ±
√

2

4
.

Since π/8 < π/4 and sin(π/4) = 1/
√

2 =
√

2/4, it is clear that the minus sign is

the appropriate one. Taking the square root of both sides then yields the stated

answer.

Coordinate geometry

1.12 Obtain in the form (1.38), the equations that describe the following:

(a) a circle of radius 5 with its centre at (1,−1);

(b) the line 2x+ 3y + 4 = 0 and the line orthogonal to it which passes through

(1, 1);

(c) an ellipse of eccentricity 0.6 with centre (1, 1) and its major axis of length

10 parallel to the y-axis.

4



PRELIMINARY ALGEBRA

(a) Using (1.42) gives (x− 1)2 + (y + 1)2 = 52, i.e. x2 + y2 − 2x+ 2y − 23 = 0.

(b) From (1.24), a line orthogonal to 2x + 3y + 4 = 0 must have the form

3x− 2y + c = 0, and, if it is to pass through (1, 1), then c = −1. Expressed in the

form (1.38), the pair of lines takes the form

0 = (2x+ 3y + 4)(3x− 2y − 1) = 6x2 − 6y2 + 5xy + 10x− 11y − 4.

(c) As the major semi-axis has length 5 and the eccentricity is 0.6, the minor

semi-axis has length 5[1 − (0.6)2]1/2 = 4. The equation of the ellipse is therefore

(x− 1)2

42
+

(y − 1)2

52
= 1,

which can be written as 25x2 + 16y2 − 50x− 32y − 359 = 0.

1.14 For the ellipse

x2

a2
+
y2

b2
= 1

with eccentricity e, the two points (−ae, 0) and (ae, 0) are known as its foci. Show

that the sum of the distances from any point on the ellipse to the foci is 2a.

[ The constancy of the sum of the distances from two fixed points can be used as

an alternative defining property of an ellipse. ]

Let the sum of the distances be s. Then, for a point (x, y) on the ellipse,

s = [ (x+ ae)2 + y2 ]1/2 + [ (x− ae)2 + y2 ]1/2,

where the positive square roots are to be taken.

Now, y2 = b2[1 − (x/a)2], with b2 = a2(1 − e2). Thus, y2 = (1 − e2)(a2 − x2) and

s = (x2 + 2aex+ a2e2 + a2 − a2e2 − x2 + e2x2)1/2

+ (x2 − 2aex+ a2e2 + a2 − a2e2 − x2 + e2x2)1/2

= (a+ ex) + (a− ex) = 2a.

This result is independent of x and hence holds for any point on the ellipse.

Partial fractions

1.16 Express the following in partial fraction form:

(a)
2x3 − 5x+ 1

x2 − 2x− 8
, (b)

x2 + x− 1

x2 + x− 2
.

5



PRELIMINARY ALGEBRA

(a) For

f(x) =
2x3 − 5x+ 1

x2 − 2x− 8
,

we note that the degree of the numerator is higher than that of the denominator,

and so we must first divide through by the latter. Write

2x3 − 5x+ 1 = (2x+ s0)(x
2 − 2x− 8) + (r1x+ r0).

Equating the coefficients of the powers of x: 0 = s0 − 4, −5 = −16 − 2s0 + r1, and

1 = −8s0 + r0, giving s0 = 4, r1 = 19, and r0 = 33. Thus,

f(x) = 2x+ 4 +
19x+ 33

x2 − 2x− 8
.

The denominator in the final term factorises as (x − 4)(x + 2), and so we write

the term as
A

x− 4
+

B

x+ 2
.

Using the third method given in section 1.4:

A =
19(4) + 33

4 + 2
and B =

19(−2) + 33

−2 − 4
.

Thus,

f(x) = 2x+ 4 +
109

6(x− 4)
+

5

6(x+ 2)
.

(b) Since the highest powers of x in the denominator and numerator are equal,

the partial–fraction expansion takes the form

f(x) =
x2 + x− 1

x2 + x− 2
= 1 +

1

x2 + x− 2
= 1 +

A

x+ 2
+

B

x− 1
.

Using the same method as above, we have

A =
1

−2 − 1
; B =

1

1 + 2
.

Thus,

f(x) = 1 − 1

3(x+ 2)
+

1

3(x− 1)
.

1.18 Resolve the following into partial fractions in such a way that x does not

appear in any numerator:

(a)
2x2 + x+ 1

(x− 1)2(x+ 3)
, (b)

x2 − 2

x3 + 8x2 + 16x
, (c)

x3 − x− 1

(x+ 3)3(x+ 1)
.

6



PRELIMINARY ALGEBRA

Since no factor x may appear in a numerator, all repeated factors appearing in

the denominator give rise to as many terms in the partial fraction expansion as

the power to which that factor is raised in the denominator.

(a) The denominator is already factorised but contains the repeated factor (x−1)2.

Thus the expansion will contain a term of the form (x − 1)−1, as well as one of

the form (x− 1)−2. So,

2x2 + x+ 1

(x− 1)2(x+ 3)
=

A

x+ 3
+

B

(x− 1)2
+

C

x− 1
.

We can evaluate A and B using the third method given in section 1.4:

A =
2(−3)2 − 3 + 1

(−3 − 1)2
= 1 and B =

2(1)2 + 1 + 1

1 + 3
= 1.

We now evaluate C by setting x = 0 (say):

1

(−1)23
=

1

3
+

1

(−1)2
+

C

−1
,

giving C = 1 and the full expansion as

2x2 + x+ 1

(x− 1)2(x+ 3)
=

1

x+ 3
+

1

(x− 1)2
+

1

x− 1
.

(b) Here the denominator needs factorising, but this is elementary,

x2 − 2

x3 + 8x2 + 16x
=

x2 − 2

x(x+ 4)2
=
A

x
+

B

(x+ 4)2
+

C

x+ 4
.

Now, using the same method as in part (a):

A =
0 − 2

(0 + 4)2
= −1

8
and B =

(−4)2 − 2

−4
= −7

2
.

Setting x = 1 (say) determines C through

−1

25
= − 1

8(1)
− 7

2(5)2
+
C

5
.

Thus C = 9/8, and the full expression is

x2 − 2

x3 + 8x2 + 16x
= − 1

8x
− 7

2(x+ 4)2
+

9

8(x+ 4)
.

(c)

x3 − x− 1

(x+ 3)3(x+ 1)
=

A

x+ 1
+

B

(x+ 3)3
+

C

(x+ 3)2
+

D

x+ 3
.

As in parts (a) and (b), the third method in section 1.4 gives A and B as

A =
(−1)3 − (−1) − 1

(−1 + 3)3
= −1

8
and B =

(−3)3 − (−3) − 1

−3 + 1
=

25

2
.

7
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Setting x = 0 requires that

−1

27
= −1

8
+

25

54
+
C

9
+
D

3
i.e. C + 3D = −27

8
.

Setting x = 1 gives the additional requirement that

−1

128
= − 1

16
+

25

128
+
C

16
+
D

4
i.e. C + 4D = −18

8
.

Solving these two equations for C and D now yields D = 9/8 and C = −54/8.

Thus,

x3 − x− 1

(x+ 3)3(x+ 1)
= − 1

8(x+ 1)
+

1

8

[
100

(x+ 3)3
− 54

(x+ 3)2
+

9

x+ 3

]
.

If necessary, that the expansion is valid for all x (and not just for 0 and 1) can

be checked by writing all of its terms so as to have the common denominator

(x+ 3)3(x+ 1).

Binomial expansion

1.20 Use a binomial expansion to evaluate 1/
√

4.2 to five places of decimals,

and compare it with the accurate answer obtained using a calculator.

To use the binomial expansion, we need to express the inverse square root in the

form (1 + a)−1/2 with |a| < 1. We do this as follows.

1√
4.2

=
1

(4 + 0.2)1/2
=

1

2(1 + 0.05)1/2

=
1

2

[
1 − 1

2
(0.05) +

3

8
(0.05)2 − 15

48
(0.05)3 + · · ·

]
= 0.487949218.

This four-term sum and the accurate value differ by about 8 × 10−7.

Proof by induction and contradiction

1.22 Prove by induction that

1 + r + r2 + · · · + rk + · · · + rn =
1 − rn+1

1 − r
.

8
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To prove that
n∑
k=0

rk =
1 − rn+1

1 − r
,

assume that the result is valid for n = N, and consider the corresponding sum

for n = N + 1, which is the original sum plus one additional term:

N+1∑
k=0

rk =

N∑
k=0

rk + rN+1

=
1 − rN+1

1 − r
+ rN+1, using the assumption,

=
1 − rN+1 + rN+1 − rN+2

1 − r

=
1 − rN+2

1 − r
.

This is the same form as in the assumption, except that N has been replaced by

N + 1, and shows that the result is valid for n = N + 1 if it is valid for n = N.

But, since (1 − r)/(1 − r) = 1, the result is trivially valid for n = 0. It therefore

follows that it is valid for all n.

1.24 If a sequence of terms un satisfies the recurrence relation un+1 = (1 −
x)un + nx, with u1 = 0, then show by induction that, for n ≥ 1,

un =
1

x
[nx− 1 + (1 − x)n].

Assume that the stated result is valid for n = N, and consider the expression for

the next term in the sequence:

uN+1 = (1 − x)uN +Nx

=
1 − x

x

[
Nx− 1 + (1 − x)N

]
+Nx, using the assumption,

=
1

x

[
Nx−Nx2 − 1 + x+ (1 − x)N+1 +Nx2

]
=

1

x

[
(N + 1)x− 1 + (1 − x)N+1

]
.

This has the same form as in the assumption, except that N has been replaced

by N + 1, and shows that the result is valid for n = N + 1 if it is valid for n = N.

The assumed result gives u1 as x−1(x−1+1−x) = 0 (i.e. as stated in the question),

and so is valid for n = 1. It now follows, from the result proved earlier, that the

given expression is valid for all n ≥ 1.

9
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1.26 The quantities ai in this exercise are all positive real numbers.

(a) Show that

a1a2 ≤
(
a1 + a2

2

)2

.

(b) Hence, prove by induction on m that

a1a2 · · · ap ≤
(
a1 + a2 + · · · + ap

p

)p
,

where p = 2m with m a positive integer. Note that each increase of m by

unity doubles the number of factors in the product.

(a) Consider (a1 − a2)
2 which is always non-negative:

(a1 − a2)
2 ≥ 0,

a2
1 − 2a1a2 + a2

2 ≥ 0,

a2
1 + 2a1a2 + a2

2 ≥ 4a1a2,

(a1 + a2)
2 ≥ 4a1a2,(

a1 + a2

2

)2

≥ a1a2.

(b) With p = 2m, assume that

a1a2 · · · ap ≤
(
a1 + a2 + · · · + ap

p

)p
is valid for some m = M. Write P = 2M , P ′ = 2P , b1 = a1 + a2 + · · · + aP and

b2 = aP+1 + aP+2 + · · · + aP ′ . Note that both b1 and b2 consist of P terms.

Now consider the multiple product u = a1a2 · · · aP aP+1aP+2 · · · aP ′ .

u ≤
(
a1 + a2 + · · · + aP

P

)P (
aP+1 + aP+2 + · · · + aP ′

P

)P
=

(
b1b2

P 2

)P
,

where the assumed result has been applied twice, once to a set consisting of the

first P numbers, and then for a second time to the remaining set of P numbers,

aP+1, aP+2, . . . , aP ′ . We have also used the fact that, for positive real numbers, if

q ≤ r and s ≤ t then qs ≤ rt.

But, from part (a),

b1b2 ≤
(
b1 + b2

2

)2

.

10
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Thus,

a1a2 · · · aP aP+1aP+2 · · · aP ′ ≤
(

1

P 2

)P (
b1 + b2

2

)2P

=
(b1 + b2)

P ′

(2P )2P

=

(
b1 + b2

P ′

)P ′

.

This shows that the result is valid for P ′ = 2M+1 if it is valid for P = 2M . But

for m = M = 1 the postulated inequality is simply result (a), which was shown

directly. Thus the inequality holds for all positive integer values of m.

1.28 An arithmetic progression of integers an is one in which an = a0 + nd,

where a0 and d are integers and n takes successive values 0, 1, 2, . . . .

(a) Show that if any one term of the progression is the cube of an integer, then

so are infinitely many others.

(b) Show that no cube of an integer can be expressed as 7n+5 for some positive

integer n.

(a) We proceed by the method of contradiction. Suppose d > 0. Assume that there

is a finite, but non-zero, number of natural cubes in the arithmetic progression.

Then there must be a largest cube. Let it be aN = a0 + Nd, and write it as

aN = a0 +Nd = m3. Now consider (m+ d)3:

(m+ d)3 = m3 + 3dm2 + 3d2m+ d3

= a0 +Nd+ d(3m2 + 3dm+ d2)

= a0 + dN1,

where N1 = N + 3m2 + 3dm + d2 is necessarily an integer, since N, m and d all

are. Further, N1 > N. Thus aN1
= a0 +N1d is also the cube of a natural number

and is greater than aN; this contradicts the assumption that it is possible to select

a largest cube in the series and establishes the result that, if there is one such

cube, then there are infinitely many of them. A similar argument (considering the

smallest term in the series) can be carried through if d < 0.

We note that the result is also formally true in the case in which d = 0; if a0 is a

natural cube, then so is every term, since they are all equal to a0.

(b) Again, we proceed by the method of contradiction. Suppose that 7N+5 = m3

11
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for some pair of positive integers N and m. Consider the quantity

(m− 7)3 = m3 − 21m2 + 147m− 343

= 7N + 5 − 7(3m2 − 21m+ 49)

= 7N1 + 5,

where N1 = N−3m2 +21m−49 is an integer smaller than N. From this, it follows

that if m3 can be expressed in the form 7N+5 then so can (m−7)3, (m−14)3, etc.

Further, for some finite integer p, (m − 7p) must lie in the range 0 ≤ m− 7p ≤ 6

and will have the property (m− 7p)3 = 7Np + 5.

However, explicit calculation shows that, when expressed in the form 7n+ q, the

cubes of the integers 0, 1, 2, · · · , 6 have respective values of q of 0, 1, 1, 6, 1,

6, 6; none of these is equal to 5. This contradicts the conclusion that followed

from our initial supposition and subsequent argument. It was therefore wrong to

assume that there is a natural cube that can be expressed in the form 7N + 5.

[ Note that it is not sufficient to carry out the above explicit calculations and then

rely on the construct from part (a), as this does not guarantee to generate every

cube. ]

Necessary and sufficient conditions

1.30 Prove that the equation ax2 + bx + c = 0, in which a, b and c are real

and a > 0, has two real distinct solutions IFF b2 > 4ac.

As is usual for IFF proofs, this answer will consist of two parts.

Firstly, assume that b2 > 4ac. We can then write the equation as

a

(
x2 +

b

a
x+

c

a

)
= 0,

a

(
x+

b

2a

)2

− b2

4a
+ c = 0,

a

(
x+

b

2a

)2

=
b2 − 4ac

4a
= λ2.

Since b2 > 4ac and a > 0, λ is real, positive and non-zero. So, taking the square

roots of both sides of the final equation gives

x = − b

2a
± λ√

a
,

i.e. both roots are real and they are distinct; thus, the ‘if ’ part of the proposition

is established.

12
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Now assume that both roots are real, α and β say, with α �= β. Then,

aα2 + bα+ c = 0,

aβ2 + bβ + c = 0.

Subtraction of the two equations gives

a(α2 − β2) + b(α− β) = 0 ⇒ b = −(α+ β)a, since α− β �= 0.

Multiplying the first displayed equation by β and the second by α and then

subtracting, gives

a(α2β − β2α) + c(β − α) = 0 ⇒ c = αβa, since α− β �= 0.

Now, recalling that α �= β and that a > 0, consider the inequality

0 < (α− β)2 = α2 − 2αβ + β2

= (α+ β)2 − 4αβ

=
b2

a2
− 4

c

a
=
b2 − 4ac

a2
.

This inequality shows that b2 is necessarily greater than 4ac, and so establishes

the ‘only if’ part of the proof.

1.32 Given that at least one of a and b, and at least one of c and d, are

non-zero, show that ad = bc is both a necessary and sufficient condition for the

equations

ax+ by = 0,

cx+ dy = 0,

to have a solution in which at least one of x and y is non-zero.

First, suppose that ad = bc with at least one of a and b, and at least one of c and

d, non-zero. Assume, for definiteness, that a and c are non-zero; if this is not the

case, then the following proof is modified in an obvious way by interchanging the

roles of a and b and/or of c and d, as necessary:

ax+ by = 0 ⇒ x = −b

a
y,

cx+ dy = 0 ⇒ x = −d

c
y.

Now

ad = bc ⇒ d =
bc

a
⇒ d

c
=
b

a
,

13
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where we have used, in turn, that a �= 0 and c �= 0. Thus the two solutions for x

in terms of y are the same. Any non-zero value for y may be chosen, but that

for x is then determined (and may be zero). This establishes that the condition is

sufficient.

To show that it is a necessary condition, suppose that there is a non-trivial

solution to the original equations and that, say, x �= 0. Multiply the first equation

by d and the second by b to obtain

dax+ dby = 0,

bcx+ bdy = 0.

Subtracting these equations gives (ad− bc)x = 0 and, since x �= 0, it follows that

ad = bc.

If x = 0 then y �= 0, and multiplying the first of the original equations by c and

the second by a leads to the same conclusion.

This completes the proof that the condition is both necessary and sufficient.

14
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Preliminary calculus

2.2 Find from first principles the first derivative of (x+ 3)2 and compare your

answer with that obtained using the chain rule.

Using the definition of a derivative, we consider the difference between (x+∆x+3)2

and (x+ 3)2, and determine the following limit (if it exists):

f′(x) = lim
∆x→0

(x+ ∆x+ 3)2 − (x+ 3)2

∆x

= lim
∆x→0

[(x+ 3)2 + 2(x+ 3)∆x+ (∆x)2] − (x+ 3)2

∆x

= lim
∆x→0

(2(x+ 3)∆x+ (∆x)2

∆x

= 2x+ 6.

The limit does exist, and so the derivative is 2x+ 6.

Rewriting the function as f(x) = u2, where u(x) = x+3, and using the chain rule:

f′(x) = 2u× du

dx
= 2u× 1 = 2u = 2x+ 6,

i.e. the same, as expected.

2.4 Find the first derivatives of

(a) x/(a+ x)2, (b) x/(1 − x)1/2, (c) tanx, as sin x/ cosx,

(d) (3x2 + 2x+ 1)/(8x2 − 4x+ 2).

15
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In each case, using (2.13) for a quotient:

(a) f′(x) =
[ (a+ x)2 × 1 ] − [ x× 2(a+ x) ]

(a+ x)4
=
a2 − x2

(a+ x)4
=

a− x

(a+ x)3
;

(b) f′(x) =
[ (1 − x)1/2 × 1 ] − [ x× − 1

2
(1 − x)−1/2 ]

1 − x
=

1 − 1
2
x

(1 − x)3/2
;

(c) f′(x) =
[ cosx× cosx ] − [ sinx× (− sinx) ]

cos2 x
=

1

cos2 x
= sec2 x;

(d) f′(x) =
[(8x2 − 4x+ 2) × (6x+ 2)] − [(3x2 + 2x+ 1) × (16x− 4)]

(8x2 − 4x+ 2)2

=
x3(48 − 48) + x2(16 − 24 + 12 − 32) + · · ·

(8x2 − 4x+ 2)2

· · · + x(−8 + 12 + 8 − 16) + (4 + 4)

(8x2 − 4x+ 2)2

=
−28x2 − 4x+ 8

(8x2 − 4x+ 2)2
=

−7x2 − x+ 2

(4x2 − 2x+ 1)2
.

2.6 Show that the function y(x) = exp(−|x|) defined as

exp x for x < 0,

1 for x = 0,

exp(−x) for x > 0,

is not differentiable at x = 0. Consider the limiting process for both ∆x > 0 and

∆x < 0.

For x > 0, let ∆x = η. Then,

y′(x > 0) = lim
η→0

e−0−η − 1

η

= lim
η→0

1 − η + 1
2!
η2 · · · − 1

η
= −1.

For x < 0, let ∆x = −η. Then,

y′(x > 0) = lim
η→0

e0−η − 1

−η

= lim
η→0

1 − η + 1
2!
η2 · · · − 1

−η = 1.

The two limits are not equal, and so y(x) is not differentiable at x = 0.
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2.8 If 2y + sin y + 5 = x4 + 4x3 + 2π, show that dy/dx = 16 when x = 1.

For this equation neither x nor y can be made the subject of the equation, i.e

neither can be written explicitly as a function of the other, and so we are forced

to use implicit differentiation. Starting from

2y + sin y + 5 = x4 + 4x3 + 2π

implicit differentiation, and the use of the chain rule when differentiating sin y

with respect to x, gives

2
dy

dx
+ cos y

dy

dx
= 4x3 + 12x2.

When x = 1 the original equation reduces to 2y + sin y = 2π with the obvious

(and unique, as can be verified from a simple sketch) solution y = π. Thus, with

x = 1 and y = π,

dy

dx

∣∣∣∣
x=1

=
4 + 12

2 + cosπ
= 16.

2.10 The function y(x) is defined by y(x) = (1 + xm)n.

(a) Use the chain rule to show that the first derivative of y is nmxm−1(1+xm)n−1.

(b) The binomial expansion (see section 1.5) of (1 + z)n is

(1 + z)n = 1 + nz +
n(n− 1)

2!
z2 + · · · + n(n− 1) · · · (n− r + 1)

r!
zr + · · · .

Keeping only the terms of zeroth and first order in dx, apply this result twice

to derive result (a) from first principles.

(c) Expand y in a series of powers of x before differentiating term by term.

Show that the result is the series obtained by expanding the answer given

for dy/dx in part (a).

(a) Writing 1 + xm as u, y(x) = un, and so dy/du = nun−1, whilst du/dx = mxm−1.

Thus, from the chain rule,

dy

dx
= nun−1 × mxm−1 = nmxm−1(1 + xm)n−1.

17
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(b) From the defining process for a derivative,

y′(x) = lim
∆x→0

[1 + (x+ ∆x)m]n − (1 + xm)n

∆x

= lim
∆x→0

[1 + xm(1 + ∆x
x

)m]n − (1 + xm)n

∆x

= lim
∆x→0

[1 + xm(1 + m∆x
x

+ · · · )]n − (1 + xm)n

∆x

= lim
∆x→0

(1 + xm + mxm−1∆x+ · · · )n − (1 + xm)n

∆x

= lim
∆x→0

[
(1 + xm)

(
1 + mxm−1∆x

1+xm
+ · · ·

)]n
− (1 + xm)n

∆x

= lim
∆x→0

(1 + xm)n
(
1 + mnxm−1∆x

1+xm
+ · · ·

)
− (1 + xm)n

∆x

= lim
∆x→0

mn(1 + xm)n−1xm−1∆x+ · · ·
∆x

= nmxm−1(1 + xm)n−1,

i.e. the same as the result in part (a).

(c) Expanding in a power series before differentiating:

y(x) = 1 + nxm +
n(n− 1)

2!
x2m + · · ·

+
n(n− 1) · · · (n− r + 1)

r!
xrm + · · · ,

y′(x) = mnxm−1 +
2mn(n− 1)

2!
x2m−1 + · · ·

+
rm n(n− 1) · · · (n− r + 1)

r!
xrm−1 + · · · .

Now, expanding the result given in part (a) gives

y′(x) = nmxm−1(1 + xm)n−1

= nmxm−1

(
1 + · · · + (n− 1)(n− 2) · · · (n− s)

s!
xms + · · ·

)
= nmxm−1 + · · · + mn(n− 1)(n− 2) · · · (n− s)

s!
xms+m−1 + · · · .

This is the same as the previous expansion of y′(x) if, in the general term, the

index is moved by one, i.e. s = r − 1.
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2.12 Find the positions and natures of the stationary points of the following

functions:

(a) x3 − 3x+ 3; (b) x3 − 3x2 + 3x; (c) x3 + 3x+ 3;

(d) sin ax with a �= 0; (e) x5 + x3; (f) x5 − x3.

In each case, we need to determine the first and second derivatives of the function.

The zeros of the 1st derivative give the positions of the stationary points, and the

values of the 2nd derivatives at those points determine their natures.

(a) y = x3−3x+3; y′ = 3x2−3; y′′ = 6x.

y′ = 0 has roots at x = ±1, where the values of y′′ are ±6. Therefore, there is a

minimum at x = 1 and a maximum at x = −1.

(b) y = x3−3x2+3x; y′ = 3x2−6x+3; y′′ = 6x−6.

y′ = 0 has a double root at x = 1, where the value of y′′ is 0. Therefore, there

is a point of inflection at x = 1, but no other stationary points. At the point of

inflection, the tangent to the curve y = y(x) is horizontal.

(c) y = x3+3x+3; y′ = 3x2+3; y′′ = 6x.

y′ = 0 has no real roots, and so there are no stationary points.

(d) y = sin ax; y′ = a cos ax; y′′ = −a2 sin ax.

y′ = 0 has roots at x = (n+ 1
2
)π/a for integer n. The corresponding values of y′′

are ∓a2, depending on whether n is even or odd. Therefore, there is a maximum

for even n and a minimum where n is odd.

(e) y = x5+x3; y′ = 5x4+3x2; y′′ = 20x3+6x.

y′ = 0 has, as its only real root, a double root at x = 0, where the value of y′′ is 0.

Thus, there is a (horizontal) point of inflection at x = 0, but no other stationary

point.

(f) y = x5−x3; y′ = 5x4−3x2; y′′ = 20x3−6x.

y′ = 0 has a double root at x = 0 and simple roots at x = ±( 3
5
)1/2, where the

respective values of y′′ are 0 and ±6( 3
5
)1/2. Therefore, there is a point of inflection

at x = 0, a maximum at x = −( 3
5
)1/2 and a minimum at x = (3

5
)1/2.
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Figure 2.1 The solutions to exercise 2.14.

2.14 By finding their stationary points and examining their general forms,

determine the range of values that each of the following functions y(x) can take.

In each case make a sketch-graph incorporating the features you have identified.

(a) y(x) = (x− 1)/(x2 + 2x+ 6).

(b) y(x) = 1/(4 + 3x− x2).

(c) y(x) = (8 sin x)/(15 + 8 tan2 x).

See figure 2.1 (a)–(c).

(a) Some simple points to calculate for

y =
x− 1

x2 + 2x+ 6

are y(0) = − 1
6
, y(1) = 0 and y(±∞) = 0, and, since the denominator has no real

roots (22 < 4 × 1 × 6), there are no infinities. Its 1st derivative is

y′ =
−x2 + 2x+ 8

(x2 + 2x+ 6)2
=

−(x+ 2)(x− 4)

(x2 + 2x+ 6)2
.

Thus there are turning points only at x = −2, with y(−2) = − 1
2
, and at x = 4,

with y(4) = 1
10

. The former must be a minimum and the latter a maximum. The

range in which y(x) lies is − 1
2

≤ y ≤ 1
10

.
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(b) Some simple points to calculate for

y =
1

4 + 3x− x2
.

are y(0) = 1
4

and y(±∞) = 0, approached from negative values. Since the

denominator can be written as (4−x)(1+x), the function has infinities at x = −1

and x = 4 and is positive in the range of x between them.

The 1st derivative is

y′ =
2x− 3

(4 + 3x− x2)2
.

Thus there is only one turning point; this is at x = 3
2
, with corresponding

y( 3
2
) = 4

25
. Since 3

2
lies in the range −1 < x < 4, at the ends of which the function

→ +∞, the stationary point must be a minimum. This sets a lower limit on the

positive values of y(x) and so the ranges in which it lies are y < 0 and y ≥ 4
25

.

(c) The function

y =
8 sinx

15 + 8 tan2 x

is clearly periodic with period 2π.

Since sinx and tan2 x are both symmetric about x = 1
2
π, so is the function. Also,

since sinx is antisymmetric about x = π whilst tan2 x is symmetric, the function

is antisymmetric about x = π.

Some simple points to calculate are y(nπ) = 0 for all integers n. Further, since

tan(n+ 1
2
)π = ∞, y((n+ 1

2
)π) = 0. As the denominator has no real roots there are

no infinities.

Setting the derivative of y(x) ≡ 8u(x)/v(x) equal to zero, i.e. writing vu′ = uv′,

and expressing all terms as powers of cosx gives (using tan2 z = sec2 z − 1 and

sin2 z = 1 − cos2 z)

(15 + 8 tan2 x) cosx = 16 sinx tanx sec2 x,

15 +
8

cos2 x
− 8 =

16(1 − cos2 x)

cos4 x
,

7 cos4 x+ 24 cos2 x− 16 = 0.

This quadratic equation for cos2 x has roots of 4
7

and −4. Only the first of these

gives real values for cosx of ± 2√
7
. The corresponding turning values of y(x) are

± 8

7
√

21
. The value of y always lies between these two limits.
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2.16 The curve 4y3 = a2(x + 3y) can be parameterised as x = a cos 3θ,

y = a cos θ.

(a) Obtain expressions for dy/dx (i) by implicit differentiation and (ii) in param-

eterised form. Verify that they are equivalent.

(b) Show that the only point of inflection occurs at the origin. Is it a stationary

point of inflection?

(c) Use the information gained in (a) and (b) to sketch the curve, paying par-

ticular attention to its shape near the points (−a, a/2) and (a,−a/2) and to

its slope at the ‘end points’ (a, a) and (−a,−a).

(a) (i) Differentiating the equation of the curve implicitly:

12y2 dy

dx
= a2 + 3a2 dy

dx
, ⇒ dy

dx
=

a2

12y2 − 3a2
.

(ii) In parameterised form:

dy

dθ
= −a sin θ,

dx

dθ
= −3a sin 3θ, ⇒ dy

dx
=

−a sin θ

−3a sin 3θ
.

But, using the results from section 1.2, we have that

sin 3θ = sin(2θ + θ)

= sin 2θ cos θ + cos 2θ sin θ

= 2 sin θ cos2 θ + (2 cos2 θ − 1) sin θ

= sin θ(4 cos2 θ − 1),

thus giving dy/dx as

dy

dx
=

1

12 cos2 θ − 3
=

a2

12a2 cos2 θ − 3a2
,

with a cos θ = y, i.e. as in (i).

(b) At a point of inflection y′′ = 0. For the given function,

d2y

dx2
=

d

dy

(
dy

dx

)
× dy

dx
= − a2

(12y2 − 3a2)2
× 24y × a2

12y2 − 3a2
.

This can only equal zero at y = 0, when x = 0 also. But, when y = 0 it follows

from (a)(i) that dy/dx = 1/(−3) = − 1
3
. As this is non-zero the point of inflection

is not a stationary point.

(c) See figure 2.2. Note in particular that the curve has vertical tangents when

y = ±a/2 and that dy/dx = 1
9

at y = ±a, i.e. the tangents at the end points of

the ‘S’-shaped curve are not horizontal.
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x = a cos 3θ

y = a cos θ

a

a−a

−a

Figure 2.2 The parametric curve described in exercise 2.16.

2.18 Show that the maximum curvature on the catenary y(x) = a cosh(x/a)

is 1/a. You will need some of the results about hyperbolic functions stated in

subsection 3.7.6.

The general expression for the curvature, ρ−1, of the curve y = y(x) is

1

ρ
=

y′′

(1 + y′2)3/2
,

and so we begin by calculating the first two derivatives of y. Starting from

y = a cosh(x/a), we obtain

y′ = a
1

a
sinh

x

a
,

y′′ =
1

a
cosh

x

a
.

Therefore the curvature of the catenary at the point (x, y) is given by

1

ρ
=

1

a
cosh

x

a[
1 + sinh2 x

a

]3/2 =
1

a

cosh
x

a

cosh3 x

a

=
a

y2
.

To obtain this result we have used the identity cosh2 z = 1 + sinh2 z. We see that

the curvature is maximal when y is minimal; this occurs when x = 0 and y = a.

The maximum curvature is therefore 1/a.
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O

C

P

Q

ρ

ρ

r

r + ∆r

c

p
p+ ∆p

Figure 2.3 The coordinate system described in exercise 2.20.

2.20 A two-dimensional coordinate system useful for orbit problems is the

tangential-polar coordinate system (figure 2.3). In this system a curve is defined

by r, the distance from a fixed point O to a general point P of the curve, and p,

the perpendicular distance from O to the tangent to the curve at P . By proceeding

as indicated below, show that the radius of curvature at P can be written in the

form ρ = r dr/dp.

Consider two neighbouring points P and Q on the curve. The normals to the curve

through those points meet at C , with (in the limit Q → P) CP = CQ = ρ. Apply

the cosine rule to triangles OPC and OQC to obtain two expressions for c2, one

in terms of r and p and the other in terms of r+∆r and p+∆p. By equating them

and letting Q → P deduce the stated result.

We first note that cos OPC is equal to the sine of the angle between OP and the

tangent at P , and that this in turn has the value p/r. Now, applying the cosine

rule to the triangles OCP and OCQ, we have

c2 = r2 + ρ2 − 2rρ cosOPC = r2 + ρ2 − 2ρp

c2 = (r + ∆r)2 + ρ2 − 2(r + ∆r)ρ cosOQC

= (r + ∆r)2 + ρ2 − 2ρ(p+ ∆p).

Subtracting and rearranging then yields

ρ =
r∆r + 1

2
(∆r)2

∆p
,

or, in the limit Q → P , that ρ = r(dr/dp).
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2.22 If y = exp(−x2), show that dy/dx = −2xy and hence, by applying Leibnitz’

theorem, prove that for n ≥ 1

y(n+1) + 2xy(n) + 2ny(n−1) = 0.

With y(x) = exp(−x2),

dy

dx
= −2x exp(−x2) = −2xy.

We now take the nth derivatives of both sides and use Leibnitz’ theorem to find

that of the product xy, noting that all derivatives of x beyond the first are zero:

y(n+1) = −2[ (y(n))(x) + n(y(n−1))(1) + 0 ].

i.e.

y(n+1) + 2xy(n) + 2ny(n−1) = 0,

as stated in the question.

2.24 Determine what can be learned from applying Rolle’s theorem to the

following functions f(x): (a)ex; (b)x2 + 6x; (c)2x2 + 3x + 1; (d)2x2 + 3x + 2;

(e)2x3 − 21x2 + 60x + k. (f)If k = −45 in (e), show that x = 3 is one root of

f(x) = 0, find the other roots, and verify that the conclusions from (e) are satisfied.

(a) Since the derivative of f(x) = ex is f′(x) = ex, Rolle’s theorem states that

between any two consecutive roots of f(x) = ex = 0 there must be a root

of f′(x) = ex = 0, i.e. another root of the same equation. This is clearly a

contradiction and it is wrong to suppose that there is more than one root of

ex = 0. In fact, there are no finite roots of the equation and the only zero of ex

lies formally at x = −∞.

(b) Since f(x) = x(x+ 6), it has zeros at x = −6 and x = 0. Therefore the (only)

root of f′(x) = 2x + 6 = 0 must lie between these values; it clearly does, as

−6 < −3 < 0.

(c) With f(x) = 2x2 + 3x + 1 and hence f′(x) = 4x + 3, any roots of f(x) = 0

(actually −1 and − 1
2
) must lie on either side of the root of f′(x) = 0, i.e. x = − 3

4
.

They clearly do.

(d) This is as in (c), but there are no real roots. However, it can be more generally

stated that if there are two values of x that give 2x2 + 3x + k equal values then

they lie one on each side of x = − 3
4
.
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(e) With f(x) = 2x3 − 21x2 + 60x+ k,

f′(x) = 6x2 − 42x+ 60 = 6(x− 5)(x− 2)

and f′(x) = 0 has roots 2 and 5. Therefore, if f(x) = 0 has three real roots αi
with α1 < α2 < α3, then α1 < 2 < α2 < 5 < α3.

(f) When k = −45, f(3) = 54 − 189 + 180 − 45 = 0 and so x = 3 is a root of

f(x) = 0 and (x − 3) is a factor of f(x). Writing f(x) = 2x3 − 21x2 + 60x − 45

as (x − 3)(a2x
2 + a1x + a0) and equating coefficients gives a2 = 2, a1 = −15 and

a0 = 15. The other two roots are therefore

15 ±
√

225 − 120

4
=

1

4
(15 ±

√
105) = 1.19 or 6.31.

Result (e) is verified in this case since 1.19 < 2 < 3 < 5 < 6.31.

2.26 Use the mean value theorem to establish bounds

(a) for − ln(1 − y), by considering ln x in the range 0 < 1 − y < x < 1,

(b) for ey − 1, by considering ex − 1 in the range 0 < x < y.

(a) The mean value theorem applied to ln x within limits 1 − y and 1 gives

ln(1) − ln(1 − y)

1 − (1 − y)
=

d

dx
(lnx) =

1

x
(∗)

for some x in the range 1 − y < x < 1. Now, since 1 − y < x < 1 it follows that
1

1 − y
>

1

x
> 1,

⇒ 1

1 − y
>

− ln(1 − y)

y
> 1,

⇒ y

1 − y
> − ln(1 − y) > y.

The second line was obtained by substitution from (∗).

(b) The mean value theorem applied to ex − 1 within limits 0 and y gives

ey − 1 − 0

y − 0
= ex for some x in the range 0 < x < y.

Now, since 0 < x < y it follows that

1 < ex < ey ,

⇒ 1 <
ey − 1

y
< ey ,

⇒ y < ey − 1 < yey .
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Again, the second line was obtained by substitution for x from the mean value

theorem result.

2.28 Use Rolle’s theorem to deduce that if the equation f(x) = 0 has a repeated

root x1 then x1 is also a root of the equation f′(x) = 0.

(a) Apply this result to the ‘standard’ quadratic equation ax2 + bx + c = 0, to

show that a necessary condition for equal roots is b2 = 4ac.

(b) Find all the roots of f(x) = x3 + 4x2 − 3x− 18 = 0, given that one of them

is a repeated root.

(c) The equation f(x) = x4 + 4x3 + 7x2 + 6x + 2 = 0 has a repeated integer

root. How many real roots does it have altogether?

If two roots of f(x) = 0 are x1 and x2, i.e. f(x1) = f(x2) = 0, then it follows

from Rolle’s theorem that there is some x3 in the range x1 ≤ x3 ≤ x2 for which

f′(x3) = 0. Now let x2 → x1 to form the repeated root; x3 must also tend to the

limit x1, i.e. x1 is a root of f′(x) = 0 as well as of f(x) = 0.

(a) A quadratic equation f(x) = ax2 + bx + c = 0 only has two roots and so if

they are equal the common root α must also be a root of f′(x) = 2ax+ b = 0, i.e.

α = −b/2a. Thus

a
b2

4a2
+ b

−b
2a

+ c = 0.

It then follows that c− (b2/4a) = 0 and that b2 = 4ac.

(b) With f(x) = x3 + 4x2 − 3x− 18, the repeated root must satisfy

f′(x) = 3x2 + 8x− 3 = (3x− 1)(x+ 3) = 0 i.e. x =
1

3
or x = −3.

Trying the two possibilities: f( 1
3
) �= 0 but f(−3) = −27 + 36 + 9 − 18 = 0. Thus

f(x) must factorise as (x + 3)2(x − b), and comparing the constant terms in the

two expressions for f(x) immediately gives b = 2. Hence, x = 2 is the third root.

(c) Here f(x) = x4 + 4x3 + 7x2 + 6x + 2. As previously, we examine f′(x) = 0,

i.e. f′(x) = 4x3 + 12x2 + 14x + 6 = 0. This has to have an integer solution and,

by inspection, this is x = −1. We can therefore factorise f(x) as the product

(x + 1)2(a2x
2 + a1x + a0). Comparison of the coefficients gives immediately that

a2 = 1 and a0 = 2. From the coefficients of x3 we have 2a2 + a1 = 4; hence

a1 = 2. Thus f(x) can be written

f(x) = (x+ 1)2(x2 + 2x+ 2) = (x+ 1)2[ (x+ 1)2 + 1 ].
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The second factor, containing only positive terms, can have no real zeros and

hence f(x) = 0 has only two real roots (coincident at x = −1).

2.30 Find the following indefinite integrals:

(a)
∫

(4 + x2)−1 dx; (b)
∫

(8 + 2x− x2)−1/2 dx for 2 ≤ x ≤ 4;

(c)
∫

(1 + sin θ)−1 dθ; (d)
∫

(x
√

1 − x)−1 dx for 0 < x ≤ 1.

We make reference to the 12 standard forms given in subsection 2.2.3 and, where

relevant, select the appropriate model.

(a) Using model 9, ∫
1

4 + x2
dx =

1

2
tan−1 x

2
+ c.

(b) We rearrange the integrand in the form of model 12:∫
1√

8 + 2x− x2
dx =

∫
1√

8 + 1 − (x− 1)2
dx = sin−1 x− 1

3
+ c.

(c) See equation (2.35) and the subsequent text.∫
1

1 + sin θ
dθ =

∫
1

1 +
2t

1 + t2

2

1 + t2
dt

=

∫
2

(1 + t)2
dt

= − 2

1 + t
+ c

= − 2

1 + tan
θ

2

+ c.

(d) To remove the square root, set u2 = 1 − x; then 2u du = −dx and∫
1

x
√

1 − x
dx =

∫
1

(1 − u2)u
× −2u du

=

∫ −2

1 − u2
du

=

∫ ( −1

1 − u
+

−1

1 + u

)
du

= ln(1 − u) − ln(1 + u) + c

= ln
1 −

√
1 − x

1 +
√

1 − x
+ c.
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2.32 Express x2(ax + b)−1 as the sum of powers of x and another integrable

term, and hence evaluate ∫ b/a

0

x2

ax+ b
dx.

We need to write the numerator in such a way that every term in it that involves

x contains a factor ax+ b. Therefore, write x2 as

x2 =
x

a
(ax+ b) − b

a2
(ax+ b) +

b2

a2
.

Then, ∫ b/a

0

x2

ax+ b
dx =

∫ b/a

0

(
x

a
− b

a2
+

b2

a2(ax+ b)

)
dx

=

[
x2

2a
− bx

a2
+
b2

a3
ln(ax+ b)

]b/a
0

=
b2

a3

(
ln 2 − 1

2

)
.

An alternative approach, consistent with the wording of the question, is to use

the binomial theorem to write the integrand as

x2

ax+ b
=
x2

b

(
1 +

ax

b

)−1

=
x2

b

∞∑
n=0

(
−ax

b

)n
.

Then the integral is∫ b/a

0

x2

ax+ b
dx =

1

b

∫ b/a

0

∞∑
n=0

(−1)n
(a
b

)n
xn+2 dx

=
1

b

∞∑
n=0

(−1)n
(a
b

)n 1

n+ 3

(
b

a

)n+3

=
b2

a3

∞∑
n=0

(−1)n

n+ 3
.

That these two solutions are the same can be seen by writing ln 2 − 1
2

as

ln 2 − 1

2
=

(
1 − 1

2
+

1

3
− 1

4
+

1

5
− · · ·

)
− 1

2

=
1

3
− 1

4
+

1

5
− · · · =

∞∑
n=0

(−1)n

n+ 3
.
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2.34 Use logarithmic integration to find the indefinite integrals J of the follow-

ing:

(a) sin 2x/(1 + 4 sin2 x);

(b) ex/(ex − e−x);

(c) (1 + x lnx)/(x ln x);

(d) [x(xn + an)]−1.

To use logarithmic integration each integrand needs to be arranged as a fraction

that has the derivative of the denominator appearing in the numerator.

(a) Either by noting that sin 2x = 2 sinx cosx and so is proportional to the

derivative of sin2 x or by recognising that sin2 x can be written in terms of cos 2x

and constants and that sin 2x is then its derivative, we have

J =

∫
sin 2x

1 + 4 sin2 x
dx

=

∫
2 sinx cosx

1 + 4 sin2 x
dx =

1

4
ln(1 + 4 sin2 x) + c,

or

J =

∫
sin 2x

1 + 2(1 − cos 2x)
dx =

1

4
ln(3 − 2 cos 2x) + c.

These two answers are equivalent since 3 − 2 cos 2x = 3 − 2(1 − 2 sin2 x) =

1 + 4 sin2 x.

(b) This is straightforward if it is noticed that multiplying both numerator and

denominator by ex produces the required form:

J =

∫
ex

ex − e−x dx =

∫
e2x

e2x − 1
dx =

1

2
ln(e2x − 1) + c.

An alternative, but longer, method is to write the numerator as coshx + sinhx

and the denominator as 2 sinhx. This leads to J = 1
2
(x+ ln sinhx), which can be

re-written as

J = 1
2
(ln ex + ln sinhx) = 1

2
ln(ex sinhx) = 1

2
ln(e2x − 1) + 1

2
ln 1

2
.

The 1
2
ln 1

2
forms part of c.

(c) Here we must first divide the numerator by the denominator to produce two

separate terms, and then twice apply the result that 1/z is the derivative of ln z:

J =

∫
1 + x lnx

x lnx
dx =

∫ (
1

x lnx
+ 1

)
dx = ln(lnx) + x+ c.

(d) To put the integrand in a form suitable for logaritmic integration, we must
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first multiply both numerator and denominator by nxn−1 and then use partial

fractions so that each denominator contains x only in the form xm, of which

mxm−1 is the derivative.

J =

∫
dx

x(xn + an)
=

∫
nxn−1

nxn(xn + an)
dx

=
1

nan

∫ (
nxn−1

xn
− nxn−1

xn + an

)
dx

=
1

nan
[ n lnx− ln(xn + an) ] + c

=
1

nan
ln

(
xn

xn + an

)
+ c.

2.36 Find the indefinite integrals J of the following functions involving sinusoids:

(a) cos5 x− cos3 x;

(b) (1 − cosx)/(1 + cosx);

(c) cosx sinx/(1 + cosx);

(d) sec2 x/(1 − tan2 x).

(a) As the integrand contains only odd powers of cosx, take cosx out as a

common factor and express the remainder in terms of sin x, of which cosx is the

derivative:

cos5 x− cos3 x = [ (1 − sin2 x)2 − (1 − sin2 x) ] cosx

= (sin4 x− sin2 x) cosx.

Hence,

J =

∫
(sin4 x− sin2 x) cosx dx =

1

5
sin5 x− 1

3
sin3 x+ c.

A more formal way of expressing this approach is to say ‘set sinx = u with

cosx dx = du.’

(b) This integral can be found either by writing the numerator and denominator

in terms of sinusoidal functions of x/2 or by making the substitution t = tan(x/2).

Using first the half-angle identities, we have

J =

∫
1 − cosx

1 + cosx
dx =

∫
2 sin2 x

2

2 cos2 x
2

=

∫
tan2 x

2
dx =

∫ (
sec2 x

2
− 1
)
dx = 2 tan

x

2
− x+ c.
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The second approach (see subsection 2.2.7) is

J =

∫ 1 − 1 − t2

1 + t2

1 +
1 − t2

1 + t2

2 dt

1 + t2

=

∫
2t2

1 + t2
dt

=

∫
2 dt−

∫
2

1 + t2
dt

= 2t− 2 tan−1 t+ c = 2 tan
x

2
− x+ c.

(c) This integrand, containing only sinusoidal functions, can be converted to an

algebraic one by writing t = tan(x/2) and expressing the functions appearing in

the integrand in terms of it,

cosx sinx

1 + cosx
dx =

1 − t2

1 + t2
2t

1 + t2
2

1 + t2

1 +
1 − t2

1 + t2

dt

=
2t(1 − t2)

(1 + t2)2
dt

= 2t

[
A

(1 + t2)2
+

B

1 + t2

]
dt,

with A+ B(1 + t2) = 1 − t2, implying that B = −1 and A = 2.

And so, recalling that 1 + t2 = sec2(x/2) = 1/[cos2(x/2)],

J =

∫ (
4t

(1 + t2)2
− 2t

1 + t2

)
dt

= − 2

1 + t2
− ln(1 + t2) + c

= −2 cos2
x

2
+ ln(cos2 x

2
) + c.

(d) We can either set tan x = u or show that the integrand is sec 2x and then use

the result of exercise 2.35; here we use the latter method.∫
sec2 x

1 − tan2 x
dx =

∫
1

cos2 x− sin2 x
dx =

∫
sec 2x dx.

It then follows from the earlier result that J = 1
2
ln(sec 2x+ tan 2x) + c. This can

also be written as 1
2
ln[(1 + tanx)/(1 − tan x)] + c.
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2.38 Determine whether the following integrals exist and, where they do, evaluate

them:

(a)

∫ ∞

0

exp(−λx) dx; (b)

∫ ∞

−∞

x

(x2 + a2)2
dx;

(c)

∫ ∞

1

1

x+ 1
dx; (d)

∫ 1

0

1

x2
dx;

(e)

∫ π/2

0

cot θ dθ; (f)

∫ 1

0

x

(1 − x2)1/2
dx.

(a) This is an infinite integral and so we must examine the result of letting the

range of a finite integral go to infinity:∫ ∞

0

e−λx dx = lim
R→∞

[
e−λx

−λ

]R
0

= lim
R→∞

[
1

λ
− e−λR

λ

]
.

The limit as R → ∞ does exist if λ > 0 and is then equal to λ−1.

(b) This is also an infinite integral. However, because of the antisymmetry of the

integrand, the integral is zero for all finite values of R. It therefore has a limit as

R → ∞ of zero, which is consequently the value of the integral.∫ ∞

−∞

x

(x2 + a2)2
dx = lim

R→∞

[
−1

2(x2 + a2)

]R
−R

= lim
R→∞

[0] = 0.

(c) The integral is elementary over any finite range (1, R) and so we must examine

its behaviour as R → ∞:∫ ∞

1

1

x+ 1
dx = lim

R→∞
[ln(1 + x)]R1 = lim

R→∞
ln

1 + R

2
= ∞.

The limit is not finite and so the integral does not exist.

(d) The integrand, 1/x2 is undefined at x = 0 and so we must examine the

behaviour of the integral with lower limit ε as ε → 0.∫ 1

0

1

x2
dx = lim

ε→0

[
− 1

x

]1

ε

= lim
ε→0

(
−1 +

1

ε

)
= ∞.

As the limit is not finite the integral does not exist.

(e) Again, a infinite quantity (cot 0) appears in the integrand and the limit test

has to be applied.∫ π/2

0

cot θ dθ =

∫ π/2

0

cos θ

sin θ
dθ

= lim
ε→0

[ ln(sin θ) ]π/2ε = lim
ε→0

[ 0 − ln(sin ε) ] = −(−∞).

The limit is not finite and so the integral does not exist.
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(f) Yet again, the integrand has an infinity (at x = 1) and the limit test has to be

applied ∫ 1

0

x

(1 − x2)1/2
dx = lim

z→1

[
−(1 − x2)1/2

]z
0

= 0 + 1 = 1.

This time the limit does exist; the integral is defined and has value 1.

2.40 Show, using the following methods, that the indefinite integral of x3/(x+

1)1/2 is

J = 2
35

(5x3 − 6x2 + 8x− 16)(x+ 1)1/2 + c.

(a) Repeated integration by parts.

(b) Setting x+ 1 = u2 and determining dJ/du as (dJ/dx)(dx/du).

(a) Evaluating the successive integrals produced by the repeated integration by

parts: ∫
x3

(x+ 1)1/2
dx = 2x3

√
x+ 1 −

∫
3x2 2

√
x+ 1 dx,∫

x2
√
x+ 1 dx =

2

3
x2(x+ 1)3/2 −

∫
2x

2

3
(x+ 1)3/2 dx,∫

x(x+ 1)3/2 dx =
2

5
x(x+ 1)5/2 −

∫
2

5
(x+ 1)5/2 dx,∫

(x+ 1)5/2 dx =
2

7
(x+ 1)7/2.

And so, remembering to carry forward the multiplicative factors generated at

each stage, we have

J =
√
x+ 1

[
2x3 − 4x2(x+ 1) +

16

5
x(x+ 1)2 − 32

35
(x+ 1)3

]
+ c

=
2
√
x+ 1

35

[
5x3 − 6x2 + 8x− 16

]
+ c.

(b) Set x+ 1 = u2, giving dx = 2u du, to obtain

J =

∫
(u2 − 1)3

u
2u du

= 2

∫
(u6 − 3u4 + 3u2 − 1) du.
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This integral is now easily evaluated to give

J = 2

(
1

7
u7 − 3

5
u5 + u3 − u

)
+ c

=
2u

35
(5u6 − 21u4 + 35u2 − 35) + c

=
2u

35
[ 5(x3 + 3x2 + 3x+ 1) − 21(x2 + 2x+ 1) + 35(x+ 1) − 35 ] + c

=
2
√
x+ 1

35
[ 5x3 − 6x2 + 8x− 16 ] + c.

i.e. the same final result as for method (a).

2.42 Define J(m, n), for non-negative integers m and n, by the integral

J(m, n) =

∫ π/2

0

cosm θ sinn θ dθ.

(a) Evaluate J(0, 0), J(0, 1), J(1, 0), J(1, 1), J(m, 1), J(1, n).

(b) Using integration by parts prove that, for m and n both > 1,

J(m, n) =
m− 1

m+ n
J(m− 2, n) and J(m, n) =

n− 1

m+ n
J(m, n− 2).

(c) Evaluate (i) J(5, 3), (ii) J(6, 5), (iii) J(4, 8).

(a) For these special values of m and/or n the integrals are all elementary, as

follows.

J(0, 0) =

∫ π/2

0

1 dθ =
π

2
,

J(0, 1) =

∫ π/2

0

sin θ dθ = 1,

J(1, 0) =

∫ π/2

0

cos θ dθ = 1,

J(1, 1) =

∫ π/2

0

cos θ sin θ dθ =

[
sin2 θ

2

]π/2
0

=
1

2
,

J(m, 1) =

∫ π/2

0

cosm θ sin θ dθ =
1

m+ 1
,

J(1, n) =

∫ π/2

0

cos θ sinn θ dθ =
1

n+ 1
.

(b) In order to obtain a reduction formula, we ‘sacrifice’ one of the cosine factors
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so that it can act as the derivative of a sine function, so allowing sinn θ to be

integrated. The two extra powers of sin θ generated by the integration by parts

are then removed by writing them as 1 − cos2 θ.

J(m, n) =

∫ π/2

0

cosm−1 θ sinn θ cos θ dθ

=

[
cosm−1 θ sinn+1 θ

n+ 1

]π/2
0

−
∫ π/2

0

(m− 1) cosm−2 θ(− sin θ) sinn+1 θ

n+ 1
dθ

= 0 +
m− 1

n+ 1

∫ π/2

0

cosm−2 θ(1 − cos2 θ) sinn θ dθ

=
m− 1

n+ 1
J(m− 2, n) − m− 1

n+ 1
J(m, n).

J(m, n) =
m− 1

m+ n
J(m− 2, n).

Similarly, by ‘sacrificing’ a sine term to act as the derivative of a cosine term,

J(m, n) =
n− 1

m+ n
J(m, n− 2).

(c) For these specific cases we apply the reduction formulae in (b) to reduce them

to one of the forms evaluated in (a).

(i) J(5, 3) =
2

8
J(5, 1) =

2

8

1

6
=

1

24
,

(ii) J(6, 5) =
4

11

2

9
J(6, 1) =

4

11

2

9

1

7
=

8

693
,

(iii) J(4, 8) =
3

12

1

10
J(0, 8) =

3

12

1

10

7

8

5

6

3

4

1

2

π

2
=

7π

2048
.

2.44 Evaluate the following definite integrals:

(a)
∫ ∞

0
xe−x dx; (b)

∫ 1

0

[
(x3 + 1)/(x4 + 4x+ 1)

]
dx;

(c)
∫ π/2

0 [a+ (a− 1) cos θ]−1 dθ with a > 1
2
; (d)

∫ ∞
−∞(x2 + 6x+ 18)−1 dx.

(a) Integrating by parts:∫ ∞

0

xe−x dx =
[
−xe−x]∞

0
−
∫ ∞

0

−e−x dx = 0 +
[
−e−x]∞

0
= 1.
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(b) This is a logarithmic integration:∫ 1

0

x3 + 1

x4 + 4x+ 1
dx =

1

4

∫ 1

0

4x3 + 4

x4 + 4x+ 1
=

1

4

[
ln(x4 + 4x+ 1)

]1
0

=
1

4
ln 6.

(c) Writing t = tan(θ/2):∫ π/2

0

1

a+ (a− 1) cos θ
dθ =

∫ 1

0

1

a+ (a− 1)

(
1 − t2

1 + t2

) 2 dt

1 + t2

=

∫ 1

0

2

2a− 1 + t2
dt

=
2√

2a− 1

[
tan−1 t√

2a− 1

]1

0

=
2√

2a− 1
tan−1 1√

2a− 1
.

(d) The denominator has no real zeros (62 < 4 × 1 × 18) and so, completing the

square, we have: ∫ ∞

−∞

1

x2 + 6x+ 18
dx =

∫ ∞

−∞

1

(x+ 3)2 + 9
dx

=
1

3

[
tan−1

(
x+ 3

3

)]∞

−∞

=
1

3

[π
2

−
(

−π

2

)]
=
π

3
.

2.46 Find positive constants a, b such that ax ≤ sinx ≤ bx for 0 ≤ x ≤ π/2.

Use this inequality to find (to two significant figures) upper and lower bounds for

the integral

I =

∫ π/2

0

(1 + sinx)1/2 dx.

Use the substitution t = tan(x/2) to evaluate I exactly.

Consider f(x) = (sinx)/x. Its derivative is

f′(x) =
x cosx− sinx

x2
=
x− tan x

x2
cosx,

which is everwhere negative (or zero) in the given range. This shows that f(x) is

a monotonically decreasing function in that range and reaches its lowest value at

the end of the range. This value must therefore be sin(π/2)/(π/2), i.e. 2/π.
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From the standard Maclaurin series for sinx (subsection 4.6.3)

f(x) =
sinx

x
= 1 − x2

3!
+
x4

5!
− · · · ,

and the limit of f(x) as x → 0 is 1. In summary,

2

π
≤ sinx

x
≤ 1 for 0 ≤ x ≤ π

2
.

It then follows that∫ π/2

0

(1 +
2

π
x)1/2 dx ≤

∫ π/2

0

(1 + sin x)1/2 dx ≤
∫ π/2

0

(1 + x)1/2 dx,

[
π

2

2

3
(1 +

2

π
x)3/2

]π/2
0

≤ I ≤
[
2

3
(1 + x)3/2

]π/2
0

,

π

3

[
(2)3/2 − 1

]
≤ I ≤ 2

3

[
(1 +

π

2
)3/2 − 1

]
,

1.91 ≤ I ≤ 2.08.

For an exact evaluation we use the standard half-angle formulae:

t = tan
x

2
, sinx =

2t

1 + t2
, dx =

2

1 + t2
dt.

Substitution of these gives∫ π/2

0

(1 + sinx)1/2 dx =

∫ 1

0

(
1 +

2t

1 + t2

)1/2
2

1 + t2
dt

=

∫ 1

0

2 + 2t

(1 + t2)3/2
dt

=

∫ 1

0

2

(1 + t2)3/2
dt+ 2

[
− 1

(1 + t2)1/2

]1

0

.

To evaluate the first integral we turn it back into one involving sinusoidal

functions and write t = tan θ with dt = sec2 θ dθ. Then the original integral

becomes ∫ π/2

0

(1 + sin x)1/2 dx =

∫ π/4

0

2 sec2 θ

sec3 θ
dθ + 2

[
1 − 1√

2

]
=

∫ π/4

0

2 cos θ dθ + 2 −
√

2

= 2[ sin θ ]
π/4
0 + 2 −

√
2

=
√

2 − 0 + 2 −
√

2 = 2.
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An alternative evaluation can be made by setting x = (π/2) − y and then writing

1 + cos y in the form 2 cos2(y/2). This gives the final value of 2 more directly.

Whichever method is used in (b), we note that, as it must (or at least should!)

the exact value of the integral lies between our calculated bounds.

2.48 Show that the total length of the astroid x2/3 + y2/3 = a2/3, which can be

parameterised as x = a cos3 θ, y = a sin3 θ, is 6a.

We first check that x2/3 + y2/3 = a2/3 can be parameterised as x = a cos3 θ and

y = a sin3 θ. This is so, since a2/3 cos2 θ + a2/3 sin2 θ = a2/3 is an identity.

Now the element of length of the curve ds is given by ds2 = dx2 + dy2 or, using

the parameterisation,

ds =

[(
dx

dθ

)2

+

(
dy

dθ

)2
]1/2

dθ

=
[(

−3a cos2 θ sin θ
)2

+
(
3a sin2 θ cos θ

)2]1/2
dθ

= 3a cos θ sin θ dθ.

The total length of the asteroid curve is four times its length in the first quadrant

and therefore given by

s = 4 × 3a

∫ π/2

0

cos θ sin θ dθ = 12a

[
sin2 θ

2

]π/2
0

= 6a.

2.50 The equation of a cardioid in plane polar coordinates is

ρ = a(1 − sinφ).

Sketch the curve and find (i) its area, (ii) its total length, (iii) the surface area of

the solid formed by rotating the cardioid about its axis of symmetry and (iv) the

volume of the same solid.

For a sketch of the ‘heart-shaped’ (actually more apple-shaped) curve see figure

2.4.

To avoid any possible double counting, integrals will be taken from φ = π/2 to

φ = 3π/2 and symmetry used for scaling up.
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a

2a

ρ φ

Figure 2.4 The cardioid discussed in exercise 2.50.

(i) Area. In plane polar coordinates this is straightforward.∫
1

2
ρ2 dφ = 2

∫ 3π/2

π/2

1

2
a2(1 − sinφ)2 dφ

= a2

∫ 3π/2

π/2

(1 − 2 sinφ+ sin2 φ) dφ

= a2(π − 0 + 1
2
π)

=
3πa2

2
.

The third term in the integral was evaluated using the standard result that the

average value of the square of a sinusoid over a whole number of quarter cycles

is 1
2
.

(ii) Length. Since ds2 = dρ2 + ρ2dφ2, the total length is

L = 2

∫ 3π/2

π/2

[(
dρ

dφ

)2

+ ρ2

]1/2

dφ

= 2

∫ 3π/2

π/2

(a2 cos2 φ+ a2 − 2a2 sinφ+ a2 sin2 φ)1/2 dφ

= 2a
√

2

∫ 3π/2

π/2

(1 − sinφ)1/2 dφ

= 2a
√

2

∫ −π

0

(1 − cosφ′)1/2(−dφ′) where φ =
1

2
π − φ′.
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Using the trigonometric half-angle formula 1 − cos θ = 2 sin2(θ/2), this integral

is easily evaluated to give

L = 2a
√

2

∫ 0

−π

√
2 sin

φ′

2
dφ′

= 4a

[
−2 cos

φ′

2

]0

−π
= −8a.

The negative sign is irrelevant and merely reflects the (inappropriate) choice of

taking the positive square root of sin2(φ′/2). The total length of the curve is thus

8a.

(iii) Surface area of the solid of rotation.

The elemental circular strip at any given value of ρ and φ has a total length of

2πρ cosφ and a width ds (on the surface) given by (ds)2 = (dρ)2 + (ρdφ)2. This

strip contributes an elemental surface area 2πρ cosφds and so the total surface

area S of the solid is given by

S =

∫ 3π/2

π/2

2πρ cosφ

[(
dρ

dφ

)2

+ ρ2

]1/2

dφ

= 2
√

2πa2

∫ 3π/2

π/2

(1 − sinφ)3/2 cosφdφ [ using the result from (ii) ]

= 2
√

2πa2

[
−2

5
(1 − sinφ)5/2

]3π/2

π/2

= −32πa2

5
.

Again, the minus sign is irrelevant and arises because, in the range of φ used, the

elemental strip radius is actually −ρ cosφ.

(iv) Volume of the solid of rotation.

The height above the origin of any point is ρ sinφ and so, for π/2 ≤ φ ≤ 3π/2,

the thickness of any elemental disc is −d(ρ sinφ) whilst its area is πρ2 cos2 φ.

It should be noted that this formulation allows correctly for the ‘missing’ part of

the body of revolution – as it were, for the air that surrounds the ‘stalk of the

apple’. Whilst φ is in the range π/2 ≤ φ ≤ 5π/6 (the upper limit being found

by maximising y = ρ sinφ = a(1 − sinφ) sinφ), negative volume is being added

to the solid, representing ‘the air’. For 5π/6 ≤ φ ≤ π the solid acquires volume

as if there were no air core. For the rest of the range, π ≤ φ ≤ 3π/2, such

considerations do not arise.
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The required volume is therefore given by the single integral

V = −
∫ 3π/2

π/2

πρ2 cos2 φd(ρ sinφ)

= −
∫ 3π/2

π/2

πa2(1 − sinφ)2 cos2 φ a(cosφ− 2 sinφ cosφ) dφ

= −πa3

∫ 3π/2

π/2

(1 − 2 sinφ+ sin2 φ)(1 − 2 sinφ) cos3 φdφ

= −πa3

∫ 3π/2

π/2

(1 − 4 sinφ+ 5 sin2 φ− 2 sin3 φ)(1 − sin2 φ) cosφdφ

= −πa3

∫ 3π/2

π/2

(1 − 4 sinφ+ 4 sin2 φ+ 2 sin3 φ− · · ·

· · · − 5 sin4 φ+ 2 sin5 φ) cosφdφ

= πa3(2 − 0 +
8

3
+ 0 − 2 + 0) =

8

3
πa3.
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Complex numbers and
hyperbolic functions

3.2 By considering the real and imaginary parts of the product eiθeiφ prove the

standard formulae for cos(θ + φ) and sin(θ + φ).

We apply Euler’s equation, eiθ = cos θ + i sin θ, separately to the two sides of the

identity

ei(θ+φ) = eiθeiφ

and obtain

cos(θ + φ) + i sin(θ + φ) = (cos θ + i sin θ)(cosφ+ i sinφ)

= (cos θ cosφ− sin θ sinφ)

+i(cos θ sinφ+ sin θ cosφ).

Equating the real and imaginary parts gives the standard results:

cos(θ + φ) = cos θ cosφ− sin θ sinφ,

sin(θ + φ) = cos θ sinφ+ sin θ cosφ.

It is worth noting the relationship between this method of proof and the purely

geometrical one given in subsection 1.2.2. In the Argand diagram, eiθ is represented

by a unit vector making an angle θ (A in figure 1.2) with the x-axis. Multiplying

by eiφ corresponds to turning the vector through a further angle φ (B in the

figure), without any change in length, thus giving the point (P in the figure) that

is represented by ei(θ+φ).
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3.4 Find the locus in the complex z-plane of points that satisfy the following

equations.

(a) z − c = ρ

(
1 + it

1 − it

)
, where c is complex, ρ is real and t is a real parameter

that varies in the range −∞ < t < ∞.

(b) z = a+ bt+ ct2, in which t is a real parameter and a, b, and c are complex

numbers with b/c real.

(a) We start by rationalising the complex fraction so that it is easier to see what

it represents:

z − c = ρ

(
1 + it

1 − it

)
− ∞ < t < ∞

= ρ
1 + it

1 − it

1 + it

1 + it

= ρ
(1 − t2) + 2it

1 + t2
.

The real and imaginary parts of the RHS now have the forms of cosine and

sine functions, respectively, as expressed by the tan(x/2) formulae (see subsection

2.2.7). The equation can therefore be written as

z − c = ρ(cos 2θ + i sin 2θ) = ρe2iθ,

where θ = tan−1 t. Since −∞ < t < ∞, θ must lie in the range −π/2 < θ < π/2

and −π < 2θ < π. Thus the locus of z is a circle centred on z = c and of radius

ρ.

(b) If we write a = ar + iai, etc. then, since t is real, x+ iy = z = a+ bt+ ct2 gives

x = ar + brt+ crt
2,

y = ai + bit+ cit
2.

Multiplying these equations by ci and cr , respectively, and subtracting eliminates

the t2 term and gives

cix− cry = arci − aicr + t(cibr − crbi).

Now, since the ratio b/c is real the phases of b and c are equal or differ by π.

Either way, bicr = cibr with the consequence that the term in parentheses in the

above equation vanishes and

y =
ci

cr
x+ ai − ciar

cr
,
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i.e. the locus is a straight line of slope tan(arg c) [ or, equivalently, tan(arg b) ].

The same conclusion can be reached by eliminating the t term.

3.6 Find the equations in terms of x and y of the sets of points in the Argand

diagram that satisfy the following:

(a) Re z2 = Im z2;

(b) (Im z2)/z2 = −i;
(c) arg[z/(z − 1)] = π/2.

(a) Straightforward substitution of z = x+ iy gives

Re z2 = Im z2,

Re (x2 − y2 + 2ixy) = Im (x2 − y2 + 2ixy),

x2 − y2 = 2xy,

y2 + 2xy − x2 = 0,

y = (−1 ±
√

2)x.

This is a pair of straight lines through the origin. Since the product of their

slopes, (−1 +
√

2)(−1 −
√

2), is equal to −1, the lines are orthogonal.

Geometrically, it is clear that the condition is equivalent to z2 lying on the line of

positive slope π/4. Thus z must lie on one of the two lines with slopes π/8 and

−3π/8; that the tangents of these angles are
√

2 − 1 and −
√

2 − 1 confirms this

conclusion.

(b) Since Im z2 is necessarily real, z2 will have to be purely imaginary. Proceeding

as in part (a):

Im z2 = −iz2,

2xy = −i(x2 − y2 + 2ixy),

0 = x2 − y2,

y = ±x.

This is the pair of orthogonal lines that bisects the angles between the x- and

y-axes.

We note that the imposed condition can only be satified non-trivially because of

the particular constants involved; had the equation been, say, (Im z2)/z2 = −3i,

the real parts of the equality would not have cancelled and there would have

been no solution; for the form (Im z2) = −3iz2, the only solution would have

been z = 0.
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(c) Rearranging the given condition,

arg
z

z − 1
=
π

2
,

we obtain

z = (z − 1)λeiπ/2 = λ(z − 1)i with λ > 0,

x+ iy = iλ(x− 1) − λy.

Thus x = −λy and y = λ(x− 1), and so

x(x− 1) = −y2

(x− 1
2
)2 + y2 = 1

4
.

This is a circle of radius 1
2

centred on ( 1
2
, 0). Since λ > 0 and the circle lies

entirely in 0 ≤ x ≤ 1, both expressions for y, namely −λ−1x and λ(x−1), must be

negative. Hence the locus is the part of the circle that lies in y < 0. Plotting the

points 0, 1 and z in the complex plane shows the relationship of this result to the

classical geometric result about the ‘angle in a semi-circle being a right angle’.

3.8 The two sets of points z = a, z = b, z = c, and z = A, z = B, z = C are

the corners of two similar triangles in the Argand diagram. Express in terms of

a, b, . . . , C

(a) the equalities of corresponding angles, and

(b) the constant ratio of corresponding sides,

in the two triangles.

By noting that any complex quantity can be expressed as

z = |z| exp(i arg z),

deduce that

a(B − C) + b(C − A) + c(A− B) = 0.

(a) The angle α between the two sides of the triangle that meet at z = a is the

difference between the arguments of b− a and c− a. This, in turn, is equal to the

argument of their ratio, i.e.

α = arg
b− a

c− a
.

Thus the equality of corresponding angles in the similar triangles is expressed by

arg
b− a

c− a
= arg

B − A

C − A
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and similar relations.

(b) The constant ratio of corresponding sides is expressed by∣∣∣∣ b− a

c− a

∣∣∣∣ = ∣∣∣∣ B − A

C − A

∣∣∣∣ .
Now, using the fact that z = | z| exp(i arg z), we can write

b− a

c− a
=

∣∣∣∣ b− a

c− a

∣∣∣∣ exp

(
i arg

b− a

c− a

)
=

∣∣∣∣ B − A

C − A

∣∣∣∣ exp

(
i arg

B − A

C − A

)
=
B − A

C − A
,

where the two results obtained previously have been used to justify the second

equality. Hence,

(C − A)b− (C − A)a = (B − A)c− (B − A)a.

Cancelling the term aA that appears on both sides of the equality and then

rearranging gives

b(C − A) − aC + c(A− B) + aB = 0,

⇒ b(C − A) + a(B − C) + c(A− B) = 0,

as stated in the question.

3.10 The most general type of transformation between one Argand diagram, in

the z-plane, and another, in the Z-plane, that gives one and only one value of Z for

each value of z (and conversely) is known as the general bilinear transformation

and takes the form

z =
aZ + b

cZ + d
.

(a) Confirm that the transformation from the Z-plane to the z-plane is also a

general bilinear transformation.

(b) Recalling that the equation of a circle can be written in the form∣∣∣∣z − z1

z − z2

∣∣∣∣ = λ, λ �= 1,

show that the general bilinear transformation transforms circles into circles

(or straight lines). What is the condition that z1, z2 and λ must satisfy if

the transformed circle is to be a straight line?
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(a) To test whether this is so, we must make Z the subject of the transformation

equation. Starting from the original form and rearranging:

z =
aZ + b

cZ + d
,

czZ + zd = aZ + b,

Z(cz − a) = −dz + b,

Z =
−dz + b

cz − a
(∗),

i.e. another general bilinear transformation, though with different, but related,

parameters.

(b) Given the circle ∣∣∣∣ z − z1

z − z2

∣∣∣∣ = λ, λ �= 1,

in the z-plane, it transforms into the curve given in the Z-plane by∣∣∣∣∣∣∣
aZ + b

cZ + d
− z1

aZ + b

cZ + d
− z2

∣∣∣∣∣∣∣ = λ,

This equation can be manipulated to make the multipliers of Z unity, as follows:∣∣∣∣ (a− z1c)Z + b− z1d

(a− z2c)Z + b− z2d

∣∣∣∣ = λ,

|cz1 − a|
|cz2 − a|

∣∣∣∣∣∣∣∣
−Z +

b− z1d

cz1 − a

−Z +
b− z2d

cz2 − a

∣∣∣∣∣∣∣∣ = λ,

∣∣∣∣ Z − Z1

Z − Z2

∣∣∣∣ = ∣∣∣∣ cz2 − a

cz1 − a

∣∣∣∣ λ = µ.

Thus, the transformed curve is also a circle (or a straight line). It is a straight line

if Z is always equidistant from Z1 and Z2, i.e. if µ = 1. The condition for this is

|a− cz1| = λ|a− cz2|.

We note, from (∗), that Z1 and Z2 are the points into which z1 and z2 are carried

by the transformation.
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3.12 Denote the nth roots of unity by 1, ωn, ω
2
n , . . . , ω

n−1
n .

(a) Prove that

rm (i)

n−1∑
r=0

ωr
n = 0, (ii)

n−1∏
r=0

ωr
n = (−1)n+1.

(b) Express x2 + y2 + z2 − yz − zx − xy as the product of two factors, each

linear in x, y and z, with coefficients dependent on the third roots of unity

(and those of the x terms arbitrarily taken as real).

(a) In order to establish properties of the sums and products of the nth roots

of unity we need to express their common defining property as a polynomial

equation; this is ωn − 1 = 0. Now writing the polynomial as the product of

factors typified by (ω − ωr
n) we have

ωn − 1 = (ω − 1)(ω − ωn)(ω − ω2
n) · · · (ω − ωn−1

n )

= ωn − ωn−1
n−1∑
r=0

ωr
n + · · · + (−1)n

n−1∏
r=0

ωr
n.

Equating coefficients of

(i) ωn−1, 0 =

n−1∑
r=0

ωr
n,

(ii) constants, −1 = (−1)n
n−1∏
r=0

ωr
n.

Hence the stated results.

(b) Writing the given expression f in the required form with the x-coefficients

both taken as +1, we have

f = x2 + y2 + z2 − yz − zx− xy

= (x+ αy + βz)(x+ γy + δz), say,

= x2 + αγy2 + βδz2 + (α+ γ)xy + (β + δ)xz + (αδ + βγ)yz.

The cube roots of unity have the explicit properties:

1 + ω3 + ω2
3 = 0,

1 × ω3 × ω2
3 = 1.

So, if we choose α = ω3 then, from the coefficient of y2 we must have γ = ω2
3 .

This also makes α+ γ, the coefficient of the xy term, equal to −1 as required.

Turning now to the choices for β and δ, we cannot take β = ω3 since the
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coefficient of z2 would then imply that δ = ω2
3; this makes the coefficient of yz

wrong (2 rather than −1). Therefore, take β = ω2
3 leading to the result δ = ω3.

This choice makes the coefficients of both z2 and yz correct and leads to a

factorisation of the form

x2 + y2 + z2 − yz − zx− xy = (x+ ω3y + ω2
3z)(x+ ω2

3y + ω3z).

We note that the factors can be made to have the coefficents of y (say) equal to

unity by multiplying the first by ω2
3 and the second by ω3; the net effect is to

multiply by ω3
3 , i.e. by unity, and so the LHS is unaffected.

3.14 The complex position vectors of two parallel interacting equal fluid vortices

moving with their axes of rotation always perpendicular to the z-plane are z1 and

z2. The equations governing their motions are

dz∗
1

dt
= − i

z1 − z2
,

dz∗
2

dt
= − i

z2 − z1
.

Deduce that (a) z1 + z2, (b) |z1 − z2| and (c) |z1|2 + |z2|2 are all constant in time,

and hence describe the motion geometrically.

(a) To obtain the time derivative of z1 + z2 we add the two equations and take

the complex conjugate of the result.

d(z1 + z2)

dt
=

[
d(z∗

1 + z∗
2)

dt

]∗

=

(
− i

z1 − z2
− i

z2 − z1

)∗

= 0 i.e. z1 + z2 is constant.

(b) It is easier to consider the time derivative of the square of |z1 − z2|, expressed

as (z1 − z2)(z
∗
1 − z∗

2):

d(|z1 − z2|2)
dt

=
d

dt

[
(z1 − z2)(z

∗
1 − z∗

2)
]

= (z1 − z2)

(
dz∗

1

dt
− dz∗

2

dt

)
+ (z∗

1 − z∗
2)

(
dz1

dt
− dz2

dt

)
= (z1 − z2)

(
− i

z1 − z2
+

i

z2 − z1

)
+ (z∗

1 − z∗
2)

(
i

z∗
1 − z∗

2

− i

z∗
2 − z∗

1

)
= −2i+ 2i = 0,

i.e. |z1 − z2|2 is constant, and so, therefore, is |z1 − z2|.
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(c) We write 2|z1|2 +2|z2|2 as |z1 +z2|2 + |z1 −z2|2. Since both the latter terms have

been shown to be constants of the motion, |z1|2 + |z2|2 must also be constant in

time.

Since the geometrical centre of the pair of vertices is fixed [result (a)], as is their

distance apart [result (b)], they must move in circular motion about a fixed point

with the vortices at the opposite ends of a diameter.

3.16 The polynomial f(z) is defined by

f(z) = z5 − 6z4 + 15z3 − 34z2 + 36z − 48.

(a) Show that the equation f(z) = 0 has roots of the form z = λi where λ is

real, and hence factorize f(z).

(b) Show further that the cubic factor of f(z) can be written in the form (z +

a)3 + b, where a and b are real, and hence solve the equation f(z) = 0

completely.

(a) Substitute z = λi in

f(z) = z5 − 6z4 + 15z3 − 34z2 + 36z − 48,

to obtain

f(λi) = i(λ5 − 15λ3 + 36λ) + (−6λ4 + 34λ2 − 48).

For λ to be a root, both parts of f(λi) must be zero, i.e.

λ = 0 or λ2 =
15 ±

√
225 − 144

2
= 12 or 3,

and

3λ4 − 17λ2 + 24 = 0 i.e. λ2 =
17 ±

√
289 − 288

6
= 3 or

16

6
.

Only λ2 = 3 satisfies both. Thus two of the (five) roots are z = ±
√

3i and

(z − i
√

3)(z + i
√

3) are factors of f(z).

By eye (or by equating coefficients or by long division),

f(z) = (z2 + 3)(z3 − 6z2 + 12z − 16).

(b) If

z3 − 6z2 + 12z − 16 = (z + a)3 + b

= z3 + 3az2 + 3a2z + a3 + b,
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then a = −2 and b = −8 provides a consistent solution. Thus, the three remaining

roots are given by (z − 2)3 − 8 = 0, yielding

z = 2 + 2 = 4; z = 2 + 2e2πi/3 = 1 + i
√

3; z = 2 + 2e4πi/3 = 1 − i
√

3.

These, together with z = ±
√

3i, are the five roots of the original equation.

3.18 By considering (1 + exp iθ)n, prove that

n∑
r=0

nCr cos rθ = 2n cosn(θ/2) cos(nθ/2),

n∑
r=0

nCr sin rθ = 2n cosn(θ/2) sin(nθ/2),

where nCr = n!/[r!(n− r)!].

To express 1 + exp iθ in terms of its real and imaginary parts, we first use Euler’s

equation and then the half-angle formulae:

1 + eiθ = 1 + cos θ + i sin θ = 2 cos2 θ

2
+ i2 sin

θ

2
cos

θ

2
.

Thus, (
1 + eiθ

)n
=

(
2 cos2 θ

2
+ i2 sin

θ

2
cos

θ

2

)n
= 2n

(
cos

θ

2

)n (
eiθ/2
)n
.

But, we also have from the binomial expansion that

(1 + eiθ)n = 1 + neiθ + · · · + nCre
irθ + · · · + einθ.

Equating the real parts of the two equal expressions yields the result

n∑
r=0

nCr cos rθ = 1 + n cos θ + · · · + nCr cos rθ + · · · + cos nθ

= 2n
(

cos
θ

2

)n
cos

nθ

2
.

Similarly, by equating the imaginary parts, we obtain

n∑
r=0

nCr sin rθ = n sin θ + · · · + nCr sin rθ + · · · + sin nθ

= 2n
(

cos
θ

2

)n
sin

nθ

2
.
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3.20 Express sin4 θ entirely in terms of the trigonometric functions of multiple

angles and deduce that its average value over a complete cycle is 3
8
.

We first express sin θ in terms of complex exponentials and then compute its

fourth power using a binomial expansion:

sin4 θ =

(
eiθ − e−iθ

2i

)4

=
1

24

(
ei4θ − 4ei2θ + 6 − 4e−i2θ + e−i4θ) .

We now collect together the terms containing eimθ and e−imθ and write them in

terms of sinusoids:

sin4 θ = 1
16

(2 cos 4θ − 8 cos 2θ + 6)

= 1
8
cos 4θ − 1

2
cos 2θ + 3

8
.

Clearly, the average values of the first two terms over a complete cycle are both

zero; so that of sin4 θ is 3
8
.

Strictly speaking, the two final lines of equations are not necessary once it is

noted that eimθ has zero average value for all m except m = 0. The reader

may like to show that the average value of sin2p θ, with p a positive integer, is

(2p)!/[ 22p(p!)2 ].

3.22 Prove the following results involving hyperbolic functions.

(a) That

coshx− cosh y = 2 sinh

(
x+ y

2

)
sinh

(
x− y

2

)
.

(b) That, if y = sinh−1 x,

(x2 + 1)
d2y

dx2
+ x

dy

dx
= 0.

(a) When trying to prove equalities, it is generally better to start with the more

complicated explicit expression and try to simplify it, than to start with a simpler

explicit expression and have to guess how best to write it in a more complicated
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way. We therefore start with RHS of the putative equality:

f(x, y) = 2 sinh

(
x+ y

2

)
sinh

(x− y

2

)
= 2 1

2

(
e(x+y)/2 − e−(x+y)/2

)
1
2

(
e(x−y)/2 − e−(x−y)/2)

= 1
2

(
e2x/2 − e2y/2 − e−2y/2 + e−2x/2

)
= 1

2

(
ex + e−x − ey − e−y)

= coshx− cosh y,

thus establishing the stated result.

(b) To establish the unknown derivative of this inverse function, we first convert

it into a function for which we do know the derivative. With y = sinh−1 x, we

have x = sinh y and consequently that dx/dy = cosh y. Thus

dy

dx
=

1

cosh y
=

1

(1 + x2)1/2
,

d2y

dx2
= − x

(1 + x2)3/2
.

For the second equality in the first line we have used the identity cosh2 z =

1 + sinh2 z.

Hence

(x2 + 1)
d2y

dx2
+ x

dy

dx
= − x

(1 + x2)1/2
+

x

(1 + x2)1/2
= 0,

as stated.

3.24 Use the definitions and properties of hyperbolic functions to do the fol-

lowing:

(a) Solve coshx = sinhx+ 2 sech x.

(b) Show that the real solution x of tanhx = cosech x can be written in the

form x = ln(u+
√
u). Find an explicit value for u.

(c) Evaluate tanh x when x is the real solution of cosh 2x = 2 coshx.

(a) Expressing each term of

coshx = sinhx+ 2 sechx
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in exponential form:

1
2
(ex + e−x) = 1

2
(ex − e−x) +

4

ex + e−x ,

e−x =
4

ex + e−x ,

1 + e−2x = 4.

Taking logarithms of this, after simplification, yields

x = 1
2
(− ln 3) = − ln

√
3 = −0.5493.

(b) Expressing the defining equality in terms of sinh and cosh functions,

tanhx = cosechx ⇒ sinh2 x = coshx.

Writing coshx as u, this equation can be put in the form u2 − 1 = u. It follows

from substituting this into the standard logarithmic expression for an inverse

hyperbolic cosine that

x = cosh−1 u = ln(
√
u2 − 1 + u) = ln(

√
u+ u).

Since u2 − u− 1 = 0, we also have that

u =
1 ±

√
5

2
, (i.e. the golden mean and minus its reciprocal!)

with the positive sign being taken to make coshx > 0, as is required if x is to be

real.

(c) Using a double angle formula for hyperbolic functions to replace cosh 2x in

cosh 2x = 2 coshx,

we have

2 cosh2 x− 1 = 2 coshx,

coshx =
1 ±

√
3

2
,

with the positive sign needed for x to be real. It then follows that

sinhx = ±
(

1 + 2
√

3 + 3

4
− 1

)1/2

= ±
(√

3

2

)1/2

,

⇒ tanh x =
±2
(√

3
2

)1/2

1 +
√

3
= ± (12)1/4

1 +
√

3
.
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3.26 In the theory of special relativity, the relationship between the position

and time coordinates of an event as measured in two frames of reference that have

parallel x-axes can be expressed in terms of hyperbolic functions. If the coordinates

are x and t in one frame and x′ and t′ in the other then the relationship take the

form

x′ = x coshφ− ct sinhφ,

ct′ = −x sinhφ+ ct coshφ.

Express x and ct in terms of x′, ct′ and φ and show that

x2 − (ct)2 = (x′)2 − (ct′)2.

We need to solve

x′ = x coshφ− ct sinhφ,

ct′ = −x sinhφ+ ct coshφ.

for x and ct in turn.

Multiplying the first equation by coshφ and the second by sinhφ and adding

yields

x′ coshφ+ ct′ sinhφ = x cosh2 φ− x sinh2 φ = x.

Multiplying the first equation by sinhφ and the second by coshφ and adding

yields

x′ sinhφ+ ct′ coshφ = −ct sinh2 φ+ ct cosh2 φ = ct.

Thus the inverse expressions are the same as the original ones except that φ is

replaced by −φ.

To show the stated equality in the two frames of (the Lorentz invariant) x2 − (ct)2,

we simply resubstitute for x and ct:

x2 − (ct)2 = (x′ coshφ+ ct′ sinhφ)2 − (x′ sinhφ+ ct′ coshφ)2

= x′2(cosh2 φ− sinh2 φ) + (ct′)2(sinh2 φ− cosh2 φ)

= x′2 + (ct′)2(−1) = x′2 − (ct′)2.

Thus, this form, ‘x2 − (ct)2’ has a value that is independent of φ and so has the

same value in all frames of reference; it is called a scalar invariant.
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3.28 The principal value of the logarithmic function of a complex variable is

defined to have its argument in the range −π < arg z ≤ π. By writing z = tanw

in terms of exponentials show that

tan−1 z =
1

2i
ln

(
1 + iz

1 − iz

)
.

Use this result to evaluate

tan−1

(
2
√

3 − 3i

7

)
.

We express tanw in terms of exponential functions by first writing it as sinw/ cosw:

z = tanw =
−i(eiw − e−iw)

eiw + e−iw ,

z(eiw + e−iw) = −ieiw + ie−iw,

(z + i)e2iw = −z + i,

e2iw =
1 + iz

1 − iz
,

tan−1 z = w =
1

2i
ln

1 + iz

1 − iz
.

Now setting z = (2
√

3 − 3i)/7 and recalling that ln z = ln |z| + i arg z gives

tan−1 2
√

3 − 3i

7
=

1

2i
ln

7 + i2
√

3 + 3

7 − i2
√

3 − 3

=
1

2i
ln

(
10 + i2

√
3

4 − i2
√

3

4 + i2
√

3

4 + i2
√

3

)

=
1

2i
ln

28 + i28
√

3

16 + 12

=
1

2i
ln(1 + i

√
3)

=
1

2i

(
ln 2 + i

π

3

)
=
π

6
− i ln

√
2.
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4

Series and limits

4.2 If you invest £1000 on the first day of each year, and interest is paid at

5% on your balance at the end of each year, how much money do you have after

25 years?

An investment A (= £1000 ) made at the start of the pth year is worth Ar26−p at

the end of the 25th year, where r = 1.05. The total value of the investment at the

end of 25 years is therefore

p=25∑
p=1

Ar26−p = Ar

q=24∑
q=0

rq =
Ar(r25 − 1)

r − 1
,

where we have set 25 − p = q and used the formula for the sum of a finite

geometric series. Inserting numerical values yields £50 113 as the total value.

4.4 Show that for testing the convergence of the series

x+ y + x2 + y2 + x3 + y3 + · · · ,

where 0 < x < y < 1, the D’Alembert ratio test fails but the Cauchy root test is

successful.

The ratio of successive terms has one of the two forms

xm+1

ym
= x

(
x

y

)m
→ 0 as m → ∞,

or
ym

xm
=
(y
x

)m
→ ∞ as m → ∞.
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Since the ratio does not tend to a unique limit, the D’Alembert test fails.

However, since x < y, the nth term un of the series (whether x(n+1)/2 or yn/2) is

≤ yn/2. Thus (un)
1/n ≤ (yn/2)1/n = y1/2 < 1, and the Cauchy root test proves the

convergence of the series.

That the series does converge is clear, as it is the sum, x/(1 − x) + y/(1 − y), of

two (absolutely) convergent series; but that is not the point of the question!

4.6 By grouping and rearranging terms of the absolutely convergent series

S =

∞∑
n=1

1

n2
,

show that

So =

∞∑
n odd

1

n2
=

3S

4
.

From the given result we pick out the terms making up the wanted series and

note that what remains (the sum of the inverse squares of the even integers) is a

multiple of the originally given series.

S =
1

12
+

1

22
+

1

32
+

1

42
+

1

52
+

1

62
+ · · ·

=
1

12
+

1

32
+

1

52
+ · · · + 1

22

(
1

12
+

1

22
+

1

32
+ · · ·

)
= So + 1

4
S,

and hence the stated result.

4.8 The N + 1 complex numbers ωm are given by ωm = exp(2πim/N) for

m = 0, 1, 2, . . . , N.

(a) Evaluate the following:

(i)

N∑
m=0

ωm, (ii)

N∑
m=0

ω2
m, (iii)

N∑
m=0

ωmx
m.

(b) Use these results to evaluate

(i)

N∑
m=0

[
cos

(
2πm

N

)
− cos

(
4πm

N

)]
, (ii)

3∑
m=0

2m sin

(
2πm

3

)
.
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(a)(i) This sum is a geometric series with common ratio e2πi/N . Thus,

N∑
m=0

ωm = e2πi0/N
1 − e2πi(N+1)/N

1 − e2πi/N
= 1

1 − e2πi/N

1 − e2πi/N
= 1.

However, if N = 1 then the common ratio is unity and direct computation is

needed:

1∑
m=0

ωm = e0 + e2πi = 2.

(a)(ii) By a similar calculation to that in (i),

N∑
m=0

ω2
m = e4πi0/N

1 − e4πi(N+1)/N

1 − e4πi/N
,

i.e. is unity unless N = 1 or N = 2, when the common ratio is unity.

For N = 1 there are two terms each equal to 1 and the sum equals 2.

For N = 2 there are three terms each equal to 1 and the sum equals 3.

(a)(iii) If x = 1 then the calculation is as in (i); we assume that x �= 1. This sum

is then a geometric series with common ratio xe2πi/N . Thus,

N∑
m=0

ωmx
m = x0e2πi0/N

1 − xN+1e2πi(N+1)/N

1 − xe2πi/N
=

1 − xN+1e2πi/N

1 − xe2πi/N
.

If N = 1 then this reduces to (1 − x2)/(1 − x), i.e. to 1 + x.

(b)(i) We recognise cos(2πm/N) as the real part of ωm and, by squaring the

definition of ωm, recognise cos(4πm/N) as the real part of ω2
m. And so

N∑
m=0

[
cos

(
2πm

N

)
− cos

(
4πm

N

)]
= Re

N∑
m=0

(ωm − ω2
m).

From the previous results, this has the value 2 − 2 = 0 for N = 1, 1 − 3 = −2 for

N = 2 and 1 − 1 = 0 for all N ≥ 3.
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(b)(ii) Taking N = 3

3∑
m=0

2m sin

(
2πm

3

)
= Im

3∑
m=0

ωm2m

= Im
1 − 24e2πi/3

1 − 2e2πi/3

= Im
1 + 8 − i8

√
3

1 + 1 − i
√

3

= Im
(9 − i8

√
3)(2 + i

√
3)

7

=
−16

√
3 + 9

√
3

7

= −
√

3.

In the second line we used the result from part (a)(iii).

4.10 Determine whether the following series converge (θ and p are positive real

numbers):

(a)

∞∑
n=1

2 sin nθ

n(n+ 1)
, (b)

∞∑
n=1

2

n2
, (c)

∞∑
n=1

1

2n1/2
,

(d)

∞∑
n=2

(−1)n(n2 + 1)1/2

n ln n
, (e)

∞∑
n=1

np

n!
.

(a) As shown in the text, the series
∑N

n=1

1

n(n+ 1)
has a partial sum of

N

N + 1
.

This tends to the limit 1 as N → ∞. Thus the series is (absolutely) convergent.

The nth term of the given series is ≤ 1

n(n+ 1)
in magnitude. Thus, the given series

is absolutely convergent and therefore also convergent.

(b) If, in the quotient test, we take un =
1

n(n+ 1)
and vn =

2

n2
then ρ = 1

2
. Since

this is finite but non-zero and
∑
un converges, so must

∑
vn.

(c) We have already shown that
∑
n−1 diverges. Every term of the series un = n−1/2

is not smaller than the corresponding term in
∑
n−1. It follows that

∑
n−1/2 must

also diverge.

(d) As n → ∞ the terms decrease to zero (albeit slowly) as 1/ ln n. This together

with the alternating sign of consecutive terms in enough to establish convergence

using the alternating series test.
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(e) The ratio of successive terms is

(n+ 1)p

(n+ 1)!

n!

np
=

(
1 + 1

n

)p
n+ 1

→ 0 for all p > 0.

Thus, by d’Alembert’s ratio test, the series converges.

4.12 Determine whether the following series are convergent:

(a)

∞∑
n=1

n1/2

(n+ 1)1/2
, (b)

∞∑
n=1

n2

n!
, (c)

∞∑
n=1

(ln n)n

nn/2
, (d)

∞∑
n=1

nn

n!
.

(a) The individual terms tend to unity, rather than zero, as n → ∞ and so the

series must diverge.

(b) The succesive term ratio is

(n+ 1)2

(n+ 1)!

n!

n2
=

1

n+ 1

(
1 +

1

n

)2

→ 0 as n → ∞.

Thus the series is convergent.

(c) The nth root of un is (ln n)/n1/2 which → 0 as n → ∞. Thus the series is

convergent by the Cauchy root test.

(d) The succesive term ratio is

(n+ 1)n+1

(n+ 1)!

n!

nn
=
nn+1

(
1 + 1

n

)n+1

(n+ 1) nn
=

(
1 +

1

n

)n
→ e as n → ∞.

This ratio is > 1 and so the series diverges.

4.14 Obtain the positive values of x for which the following series converges:

∞∑
n=1

xn/2e−n

n
.

Using the Cauchy root test:

ρ = lim
n→∞

(un)
1/n = lim

n→∞

(
xn/2e−n

n

)1/n

=
x1/2

e
.

For convergence ρ < 1 and this requires x < e2. Direct substitution shows that

that the series diverges at the limit x = e2.
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4.16 An extension to the proof of the integral test (subsection 4.3.2) shows

that, if f(x) is positive, continuous and monotonically decreasing, for x ≥ 1, and

the series f(1) + f(2) + · · · is convergent, then its sum does not exceed f(1) + L,

where L is the integral ∫ ∞

1

f(x) dx.

Use this result to show that the sum ζ(p) of the Riemann zeta series
∑
n−p, with

p > 1, is not greater than p/(p− 1).

The function f(x) appropriate to the Riemann zeta series is f(x) = x−p.∫ ∞

1

1

xp
dx =

[
− 1

p− 1

1

xp−1

]∞

1

=
1

p− 1
.

This implies that

∞∑
n=1

1

np
≤ 1

1p
+

1

p− 1
=

p

p− 1
.

4.18 Illustrate result (iv) of section 4.4 concerning Cauchy products by consid-

ering the double summation

S =

∞∑
n=1

n∑
r=1

1

r2(n+ 1 − r)3
.

By examining the points in the nr-plane over which the double summation is to be

carried out, show that S can be written as

S =

∞∑
n=r

∞∑
r=1

1

r2(n+ 1 − r)3
.

Deduce that S ≤ 3.

As shown in figure 4.1, the original summation runs along lines (shown solid)

parallel to the r-axis. The same mesh of points can be covered by lines running

parallel to the n-axis; these are shown broken in the figure. Thus we have

S =

∞∑
n=1

n∑
r=1

1

r2(n+ 1 − r)3
=

∞∑
n=r

∞∑
r=1

1

r2(n+ 1 − r)3
.

63



SERIES AND LIMITS

n = rn

r

1

1

Figure 4.1 The summation points used in exercise 4.18.

If we now set n+ 1 − r equal to s, the double summation becomes

S =

∞∑
s=1

∞∑
r=1

1

r2s3
= ζ(2)ζ(3).

In view of the result of exercise 4.16, ζ(2) ≤ 2 and ζ(3) ≤ 3/2. Consequently

S ≤ 3.

4.20 Identify the series
∞∑
n=1

(−1)n+1x2n

(2n− 1)!
,

and then by integration and differentiation deduce the values S of the following

series:

(a)

∞∑
n=1

(−1)n+1n2

(2n)!
; (b)

∞∑
n=1

(−1)n+1n

(2n+ 1)!
;

(c)

∞∑
n=1

(−1)n+1nπ2n

4n(2n− 1)!
; (d)

∞∑
n=0

(−1)n(n+ 1)

(2n)!
.

Writing out the first few terms of the given series,

∞∑
n=1

(−1)n+1x2n

(2n− 1)!
= x2 − x4

3!
+
x6

5!
+ · · ·

= x

(
x− x3

3!
+
x5

5!
+ · · ·

)
= x sinx, (∗)
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allows ready identification of the series.

(a) Differentiate both sides of (∗):

sinx+ x cosx =

∞∑
n=1

(−1)n+12nx2n−1

(2n− 1)!
=

∞∑
n=1

(−1)n+14n2x2n−1

(2n)!
.

Now set x = 1 to obtain

∞∑
n=1

(−1)n+1n2

(2n)!
= 1

4
(sin 1 + cos 1) = 0.345.

(b) Integrate both sides of (∗):∫ x

x sinx dx =

∞∑
n=1

(−1)n+1x2n+1

(2n+ 1)(2n− 1)!
=

∞∑
n=1

(−1)n+12nx2n+1

(2n+ 1)!
.

Now, the LHS can be explicitly integrated by parts to yield sin x−x cosx. Setting

x = 1 in both this and the derived series then gives

∞∑
n=1

(−1)n+1n

(2n+ 1)!
= 1

2
(sin 1 − cos 1) = 0.151.

(c) This is clearly similar to the RHS of the equation obtained in (a) if both its

denominator and numerator are divided by 2n and x is set to π/2. If this is done

then the equation in (a) reads

sin 1
2
π + 1

2
π cos 1

2
π =

∞∑
n=1

(−1)n+12n π2n−1

(2n− 1)! 22n−1
.

After multiplying both sides by 1
2
π and noting that cos 1

2
π = 0, this can be

rearranged as
∞∑
n=1

(−1)n+1nπ2n

4n(2n− 1)!
= 1

2
× 1 × 1

2
π = 1

4
π.

(d) It is not obvious how to obtain this sum, but the lowered starting value for

the summation index suggests a redefinition of it with n → n− 1. To achieve this

result the equation in (a) needs to be differentiated again:

2 cosx− x sinx =

∞∑
n=1

(−1)n+12n(2n− 1)x2n−2

(2n− 1)!

=

∞∑
n=1

(−1)n+12n x2n−2

(2n− 2)!

=

∞∑
s=0

(−1)s2(s+ 1)x2s

(2s)!
,
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where in the last line we have defined s as n − 1. Finally, setting x = 1 and

rearranging gives

∞∑
n=0

(−1)n(n+ 1)

(2n)!
= 1

2
(2 cos 1 − sin 1) = 0.120.

4.22 Find the Maclaurin series for

(a) ln

(
1 + x

1 − x

)
, (b) (x2 + 4)−1, (c) sin2 x.

(a) Using the Maclaurin series for ln(1 + x),

ln

(
1 + x

1 − x

)
= ln(1 + x) − ln(1 − x)

=

(
x− x2

2
+
x3

3
+ · · ·

)
−
(

−x− x2

2
− x3

3
− · · ·

)
= 2x+ 2

x3

3
+ · · ·

= 2
∑
nodd

xn

n
.

This series is convergent only for −1 < x < 1.

(b) Here the binomial expansion can be employed directly. This saves the trouble

of having to find the expansion coefficients by differentiation.

(x2 + 4)−1 =
1

4

(
1 +

x2

4

)−1

=
1

4

∞∑
n=0

(−1)nx2n

4n

=
1

4

∞∑
n=0

(−1)n
(x

2

)2n

.

66



SERIES AND LIMITS

(c) We calculate the derivatives of sin2 x at x = 0.

y = sin2 x,

y′ = 2 sinx cosx = sin 2x,

y′′ = 2 cos 2x,

y′′′ = −4 sin 2x,

... =
...

y(2m) = (−1)m+122m−1 cos 2x,

y(2m+1) = (−1)m22m sin 2x.

At x = 0 all odd derivatives vanish and cos 2x = 1 in the even ones. So the

Maclaurin expansion is

sin2 x =

∞∑
m=0

(−1)m+122m−1x2m

(2m)!
=

∞∑
n=0

(−1)n+1(2x)2n

2(2n)!
.

This result could also have been obtained by writing sin2 x = 1
2
(1 − cos 2x) and

using the known Maclaurin series for a cosine function.

4.24 Find the first three non-zero terms in the Maclaurin series for the following

functions:

(a) (x2 + 9)−1/2, (b) ln[(2 + x)3], (c) exp(sinx),

(d) ln(cosx), (e) exp[−(x− a)−2], (f) tan−1 x.

(a) We use the binomial expansion directly to avoid the need to find derivatives,

but must first get the term inside the parentheses into the form 1 + αx2.

(x2 + 9)−1/2 =
1

3

(
1 +

x2

9

)−1/2

=
1

3

[
1 − x2

18
+

(− 1
2
)(− 3

2
)

2!

x4

81
+ · · ·

]

=
1

3
− x2

54
+

x4

648
+ · · · .

(b) This function needs a small amount of manipulation before the expansion of

ln(1 + δ) is invoked.

ln[(2 + x)3] = 3 ln
[
2
(
1 +

x

2

)]
= 3 ln 2 + 3

[
x

2
− 1

2

(x
2

)2

+ · · ·
]

= ln 8 +
3x

2
− 3x2

8
+ · · · .
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(c) Write f(x) = exp(sin x). Then

f(0) = 1

f′ = cosx esin x, f′(0) = 1,

f′′ = − sinx esinx + cos2 x esinx, f′′(0) = 1

Hence, by the normal Taylor expansion about x = 0,

f(x) = 1 + x+
x2

2!
+ · · · .

(d) Here the calculation of the derivatives needed for the Taylor expansion

rapidly becomes complicated. Further, as three non-vanishing terms are needed,

quite high derivatives are involved.

y = ln(cosx), y(0) = 0,

y′ = − sinx

cosx
= − tanx, y′(0) = 0,

y′′ = − sec2 x, y′′(0) = −1,

y′′′ = −2 sec2 x tanx, y′′′(0) = 0,

y(4) = −4 sec2 x tan2 x− 2 sec4 x, y(4)(0) = −2,

y(5) = −8 sec2 x tan3 x− 16 sec4 x tanx, y(5)(0) = 0.

Calculating y(6) is complicated but the only term that does not vanish at x = 0

comes from differentiating the tanx factor in the final product in y(5) . This term

will be −16 sec6 x which makes the value of y(6)(0) equal to −16. Hence, finally,

y(x) = −x2

2!
− 2

x4

4!
− 16

x6

6!
+ · · · = −x2

2
− x4

12
− x6

45
+ · · · .

(e) Write f(x) = exp[−(x− a)−2].

f(x) = exp[−(x− a)−2], f(0) = exp(−a−2),

f′ =
2f

(x− a)3
, f′(0) = − 2

a3
exp(−a−2),

f′′ =
2f′

(x− a)3
− 6f

(x− a)4
, f′′(0) =

(
4

a6
− 6

a4

)
exp(−a−2).

Thus, from the Taylor expansion, the Maclaurin series is

f(x) = exp(−a−2)

[
1 − 2x

a3
− 3a2 − 2

a6
x2 + · · ·

]
.

(f) If f(x) = tan−1 x then

f′ =
1

1 + x2
, f′′ = − 2x

(1 + x2)2
, f′′′ =

6x2 − 2

(1 + x2)3
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f(4) =
24x− 24x3

(1 + x2)4
, f(5) =

24 − · · ·
(1 + x2)5

.

At x = 0 only the odd derivatives are non-zero (as they must be since tan−1 x is

an odd function of x) and

tan−1 x = x− 2
x3

3!
+ 24

x5

5!
+ · · ·

= x− x3

3
+
x5

5
+ · · · .

4.26 Determine whether the following functions f(x) are (i) continuous, and (ii)

differentiable at x = 0:

(a) f(x) = exp(−|x|);
(b) f(x) = (1 − cosx)/x2 for x �= 0, f(0) = 1

2
;

(c) f(x) = x sin(1/x) for x �= 0, f(0) = 0;

(d) f(x) = [4 − x2], where [y] denotes the integer part of y.

(a) Taking ∆ > 0

exp(−|∆|) = 1 − ∆ +
∆2

2!
− · · · ,

whilst for ∆ < 0

exp(−|∆|) = 1 + ∆ +
∆2

2!
+ · · · .

In the limit ∆ → 0 both series tend to the common limit 1. Thus the function is

continuous at x = 0.

However, the derivative at x = 0 when ∆ > 0 is given by

lim
∆→0

1 − ∆ + ∆2

2!
− · · · − 1

∆
,

whilst that for ∆ < 0 is

lim
∆→0

1 + ∆ + ∆2

2!
+ · · · − 1

∆
.

The former limit has value −1 whilst the latter is +1. These are not equal and so

exp(−|x|) is not differentiable at x = 0.
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(b) Whether x is positive or negative,

1 − cosx

x2
=

1 −
(
1 − x2

2!
+ x4

4!
− · · ·

)
x2

=
1

2
− x2

4!
+ · · · .

As x → 0 from either positive or negative values this expression tends to the

value 1
2
. As this is the defined value of the function at x = 0, the function is

continuous.

Proceeding as in (a), the first derivative of f(x) is given for any ∆ by

lim
∆→0

1
2

− ∆2

4!
+ · · · − 1

2

∆
.

This has the value zero, whether ∆ is positive or negative. Thus, the function is

differentiable at x = 0.

(c) Consider the modulus of x sin(1/x). This is ≤ |x| for all x and, as the latter → 0

as x → 0, |x sin(1/x)| must also → 0 as x → 0. Thus the function is continuous

at x = 0.

However,

f(x) − f(0)

x− 0
=
x sin(1/x) − 0

x
= sin

(
1

x

)
.

This oscillates (increasingly rapidly) as x → 0 between ±1 and does not tend to

a limit. Therefore the function is not differentiable at x = 0.

(d) For |x| ≤ 1 the function [4−x2] has the (constant) value 3. However, at x = 0

it has the value 4. Thus the fuction is not continuous at x = 0. It also follows

that it cannot be differentiable there.

4.28 Evaluate the following limits:

(a) lim
x→0

sin 3x

sinhx
, (b) lim

x→0

tan x− tanhx

sinhx− x
,

(c) lim
x→0

tan x− x

cosx− 1
, (d) lim

x→0

(
cosecx

x3
− sinhx

x5

)
.

Using L’Hôpital’s rule whenever both the numerator and denominator of a

fraction become zero in the limit, we have for cases (a)-(c):

(a) lim
x→0

sin 3x

sinhx
= lim

x→0

3 cos 3x

coshx
= 3.
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(b) L = lim
x→0

tan x− tanhx

sinhx− x

= lim
x→0

sec2 x− sech2x

coshx− 1

= lim
x→0

2 sec2 x tanx+ 2 sech2x tanhx

sinhx

= lim
x→0

2(tan x+ tan3 x+ tanhx− tanh3 x)

sinhx

= lim
x→0

2(sec2 x+ 3 tan2 x sec2 x+ sech2x− 3 tanh2 x sech2x)

coshx

= 4.

(c) lim
x→0

tan x− x

cosx− 1
= lim

x→0

sec2 x− 1

− sinx
= lim

x→0

2 sec2 x tanx

− cosx
= 0.

(d) In order to avoid undetermined combinations such as x cosecx, we arrange

the function so that all terms in it tend to 0 or a finite quantity as x → 0. For

this particular case this also allows us to use known McLaurin expansions of the

factors involved.

[ Inspection of the function shows that both fractions behave as x−4 as x → 0,

but that their difference will be less divergent. Finding the limit (if it is finite)

using L’Hôpital’s rule will take up to six differentiations; hence our preference

for Maclaurin expansions. ]

L =
cosecx

x3
− sinhx

x5

=
x2 − sin x sinhx

x5 sin x

=
x2 −

(
x− x3

3!
+ x5

5!
− · · ·

)(
x+ x3

3!
+ x5

5!
+ · · ·

)
x5
(
x− x3

3!
+ x5

5!
− · · ·

)
=

1 −
(
1 − x2

3!
+ x4

5!
− · · ·

)(
1 + x2

3!
+ x4

5!
+ · · ·

)
x4
(
1 − x2

3!
+ x4

5!
− · · ·

)
=

(1 − 1) + x2
(

1
3!

− 1
3!

)
+ x4

(
− 1

5!
− 1

5!
+ 1

(3!)2

)
+ · · ·

x4
(
1 − x2

3!
+ x4

5!
− · · ·

) ,

which has as its limit, when x → 0, the value

1

(3!)2
− 2

5!
=

20 − 12

720
=

1

90
.
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4.30 Use Taylor expansions to three terms to find approximations to (a) 4
√

17,

and (b) 3
√

26.

(a) For f(x) = x1/4,

f′(x) =
1

4

1

x3/4
and f′′(x) = − 3

16

1

x7/4
.

Thus, writing 17 as 16 + 1,

(17)1/4 = (16)1/4 + 1
1

4

1

(16)3/4
− 1

2
12 3

16

1

(16)7/4
+ · · ·

= 2 +
1

32
− 3

2 × 16 × 16 × 8
+ · · ·

= 2.030 518.

The more accurate answer is 2.030 543.

(b) For f(x) = x1/3,

f′(x) =
1

3

1

x2/3
and f′′(x) = −2

9

1

x5/3
.

Thus, writing 26 as 27 + (−1),

(26)1/3 = (27)1/3 + (−1)
1

3

1

(27)2/3
− 1

2
(−1)2

2

9

1

(27)5/3
+ · · ·

= 3 − 1

27
− 1

9 × 27 × 9
+ · · ·

= 2.962 506.

The more accurate answer is 2.962 496.

4.32 Evaluate

lim
x→0

[
1

x3

(
cosecx− 1

x
− x

6

)]
.

In order to evaluate the limit L, we avoid ill-defined products by multiplying both
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numerator and denominator by x sinx. (See also part (d) of exercise 4.28)

L = lim
x→0

1

x3

(
cosecx− 1

x
− x

6

)
= lim

x→0

1

x4 sinx

(
x− sinx− x2

6
sinx

)
= lim

x→0

1

x4 sinx

[
x−

(
x− x3

3!
+
x5

5!
− · · ·

)
− x2

6

(
x− x3

3!
+
x5

5!
− · · ·

)]
= lim

x→0

1

x4 sinx

[
x(1 − 1) + x3

(
1

3!
− 1

6

)
+ x5

(
− 1

5!
+

1

6 × 3!

)
+ · · ·

]
= lim

x→0

(
x

sinx

−6 + 20

720
+ · · ·

)
=

7

360
.

4.34 In a very simple model of a crystal, point-like atomic ions are regularly

spaced along an infinite one-dimensional row with spacing R. Alternate ions carry

equal and opposite charges ±e. The potential energy of the ith ion in the electric

field due to the jth ion is
qiqj

4πε0rij
,

where qi, qj are the charges on the ions and rij is the distance between them.

Write down a series giving the total contribution Vi of the ith ion to the overall

potential energy. Show that the series converges, and, if Vi is written as

Vi =
αe2

4πε0R
,

find a closed-form expression for α, the Madelung constant for this (unrealistic)

lattice.

The ion that is nR distant from the ith ion has charge (−1)nqi and contributes

(−1)nqi

4πε0 (nR)

to the potential at the ith ion. The infinite sum of terms of this form converges

by the alternating sign test and the total potential energy of the ith ion is

qi

−1∑
n=−∞

(−1)nqi
4πε0 |n|R + qi

∞∑
n=1

(−1)nqi
4πε0 nR

=
2q2

i

4πε0R

∞∑
n=1

(−1)n

n
=

2e2 ln 2

4πε0R
.

The value of α is thus −2 ln 2.
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4.36 In quantum theory a certain method (the Born approximation) gives the

(so-called) amplitude f(θ) for the scattering of a particle of mass m through an

angle θ by a uniform potential well of depth V0 and radius b (i.e. the potential

energy of the particle is −V0 within a sphere of radius b and zero elsewhere) as

f(θ) =
2mV0

�2K3
(sinKb−Kb cosKb).

Here � is the Planck constant divided by 2π, the energy of the particle is �
2k2/(2m)

and K is 2k sin(θ/2).

Use l’Hôpital’s rule to evaluate the amplitude at low energies, i.e. when k and hence

K tend to zero, and so determine the low-energy total cross-section.

[ Note: the differential cross-section is given by |f(θ)|2 and the total cross-section

by the integral of this over all solid angles, i.e. 2π
∫ π

0 |f(θ)|2 sin θ dθ. ]

We need to determine the value L given by

L = lim
K→0

sinKb−Kb cosKb

K3

= lim
K→0

(
Kb− (Kb)3

3!
+ · · ·

)
−Kb

(
1 − (Kb)2

2!
+

(Kb)4

4!
− · · ·

)
K3

= lim
K→0

(Kb)3
(

− 1

3!
+

1

2!
+ O(K2b2)

)
K3

= 1
3
b3.

Thus f(θ) = 2mV0b
3/(3�)2. This result is real and independent of θ (indicating

that the scattering is isotropic). Consequently, the total cross-section is simply 4π

times the square of f(θ), i.e. 4π[2mV0b
3/(3�)2]2.
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Partial differentiation

5.2 Determine which of the following are exact differentials:

(a) (3x+ 2)y dx+ x(x+ 1) dy;

(b) y tan x dx+ x tan y dy;

(c) y2(ln x+ 1) dx+ 2xy lnx dy;

(d) y2(ln x+ 1) dy + 2xy lnx dx;

(e) [x/(x2 + y2)] dy − [y/(x2 + y2)] dx.

If df = Adx + B dy then a necessary and sufficient condition that df is exact is

that
∂A

∂y
=
∂B

∂x
. We apply this test in each case.

(a)
∂[(3x+ 2)y]

∂y
= 3x+ 2,

∂[x(x+ 1)]

∂x
= 2x+ 1, unequal ⇒ not exact.

(b)
∂(y tan x)

∂y
= tanx,

∂(x tan y)

∂x
= tan y, unequal ⇒ not exact.

(c)
∂[y2(ln x+ 1)]

∂y
= 2y(ln x+ 1),

∂(2xy ln x)

∂x
= 2y lnx+ 2xy

1

x
= 2y(ln x+ 1), equal ⇒ exact.

(d)
∂[y2(ln x+ 1)]

∂x
=
y2

x
,
∂(2xy ln x)

∂y
= 2x lnx, unequal ⇒ not exact.

(e)
∂

∂x

(
x

x2 + y2

)
=

y2 − x2

(x2 + y2)2
,

∂

∂y

(
−y

x2 + y2

)
=

y2 − x2

(x2 + y2)2
,
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as was shown in exercise 5.1(c). The equality of these two expressions shows that

the differential is exact.

5.4 Show that

df = y(1 + x− x2) dx+ x(x+ 1) dy

is not an exact differential.

Find the differential equation that a function g(x) must satisfy if dφ = g(x)df is

to be an exact differential. Verify that g(x) = e−x is a solution of this equation

and deduce the form of φ(x, y).

If df = Adx+ B dy then a necessary and sufficient condition that df is exact is

that
∂A

∂y
=
∂B

∂x
. We apply this test.

∂[y(1 + x− x2)]

∂y
= 1 + x− x2,

∂[x(x+ 1)]

∂x
= 2x+ 1.

These are not equal and so the differential is not exact.

If g(x)df is to be exact we must have

∂[gy(1 + x− x2)]

∂y
=
∂[gx(x+ 1)]

∂x
,

g(1 + x− x2) = g′x(x+ 1) + g(2x+ 1),

g(−x− x2) = g′x(x+ 1),

−g = g′.

Clearly g(x) = e−x, with g′(x) = −e−x, satisfies this equation. The more general

solution g(x) = Ae−x would do just as well from the point of view of making dφ

an exact differential.

Accepting the stated form (with A = 1), we must now have that

x(x+ 1)e−x =
∂φ

∂y
, ⇒ φ(x, y) = xy(x+ 1)e−x + h(x).

y(1 + x− x2)e−x =
∂φ

∂x
= −xy(x+ 1)e−x + (2x+ 1)ye−x + h′(x).

The terms involving e−x all cancel and thus h′(x) = 0, implying h(x) = k (a

constant) and φ(x, y) = xy(x+ 1)e−x + k.
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5.6 A possible equation of state for a gas takes the form

pV = RT exp
(

− α

VRT

)
,

in which α and R are constants. Calculate expressions for(
∂p

∂V

)
T

,

(
∂V

∂T

)
p

,

(
∂T

∂p

)
V

,

and show that their product is −1, as stated in section 5.4.

The required differentiations are most easily carried out after taking the loga-

rithms of both sides of the original equation (for typographical convenience we

use P instead of p):

lnP + lnV − lnR − lnT = − α

VRT
. (∗)

First, differentiating (∗) with respect to V with T held fixed:

1

P

(
∂P

∂V

)
T

+
1

V
=

α

V 2RT
,(

∂P

∂V

)
T

=

(
α

V 2RT
− 1

V

)
P

=
P (α− VRT )

V 2RT
.

Next, differentiating (∗) with respect to T with P held fixed:

1

V

(
∂V

∂T

)
P

− 1

T
=

α

VRT 2
+

α

V 2RT

(
∂V

∂T

)
P

,

(
∂V

∂T

)
P

=

α

VRT 2
+

1

T
1

V
− α

V 2RT

=
V (α+ VRT )

T (VRT − α)
.

Finally, differentiating (∗) with respect to P with V held fixed.

1

P
− 1

T

(
∂T

∂P

)
V

=
α

VRT 2

(
∂T

∂P

)
V

,(
∂T

∂P

)
V

=
1

P

(
α

VRT 2
+

1

T

)

=
VRT 2

P (α+ VRT )
.
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These are the three partial derivatives and their product,(
∂P

∂V

)
T

(
∂V

∂T

)
P

(
∂T

∂P

)
V

,

is

P (α− VRT )

V 2RT

V (α+ VRT )

T (VRT − α)

VRT 2

P (α+ VRT )
= −1,

as expected.

5.8 In the xy-plane, new coordinates s and t are defined by

s = 1
2
(x+ y), t = 1

2
(x− y).

Transform the equation

∂2φ

∂x2
− ∂2φ

∂y2
= 0

into the new coordinates and deduce that its general solution can be written

φ(x, y) = f(x+ y) + g(x− y),

where f(u) and g(v) are arbitrary functions of u and v respectively.

To make the transformation we need the partial derivatives

∂s

∂x
=

1

2
,

∂s

∂y
=

1

2
,

∂t

∂x
=

1

2
,

∂t

∂y
= −1

2
.

Now, using the chain rule, we obtain for the partial differential operators

∂

∂x
=

∂

∂s

∂s

∂x
+
∂

∂t

∂t

∂x
=

1

2

∂

∂s
+

1

2

∂

∂t
,

∂

∂y
=

∂

∂s

∂s

∂y
+
∂

∂t

∂t

∂y
=

1

2

∂

∂s
− 1

2

∂

∂t
.

Thus, we have

∂2

∂x2
=

1

4

(
∂

∂s
+
∂

∂t

)(
∂

∂s
+
∂

∂t

)
=

1

4

(
∂2

∂s2
+ 2

∂2

∂t∂s
+
∂2

∂t2

)
,

∂2

∂y2
=

1

4

(
∂

∂s
− ∂

∂t

)(
∂

∂s
− ∂

∂t

)
=

1

4

(
∂2

∂s2
− 2

∂2

∂t∂s
+
∂2

∂t2

)
,
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and so, by subtraction of these two operators,

∂2

∂x2
− ∂2

∂y2
=

∂2

∂t∂s
.

On writing φ(x, y) as ψ(s, t), the original equation becomes

∂2ψ

∂t∂s
= 0,

with a first integral (with respect to t) of

∂ψ

∂s
= f1(s),

where f1(s) is any arbitrary function of s (but not of t). A second integration,

with respect to s, gives

ψ =

∫ s

f1(u) du+ f2(t),

where f2(t) is any arbitrary function of t (but not of s).

Thus φ(x, y) = ψ(s, t) can be written as the sum of two arbitrary functions, one

of s and the other of t, or, equivalently, of two (slightly different, because of the

factors of 1
2
) arbitrary functions of x+ y and x− y, respectively.

5.10 If x = eu cos θ and y = eu sin θ, show that

∂2φ

∂u2
+
∂2φ

∂θ2
= (x2 + y2)

(
∂2f

∂x2
+
∂2f

∂y2

)
,

where f(x, y) = φ(u, θ).

The four partial derivatives needed to make the change of variables are:

∂x

∂u
= eu cos θ = x,

∂x

∂θ
= −eu sin θ = −y,

∂y

∂u
= eu sin θ = y,

∂y

∂θ
= eu cos θ = x,

giving (using the chain rule) the connections between the differential operators in

the two sets of coordinates as

∂

∂u
= x

∂

∂x
+ y

∂

∂y
,

∂

∂θ
= −y ∂

∂x
+ x

∂

∂y
.
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Now,

∂2

∂u2
=

(
x
∂

∂x
+ y

∂

∂y

)(
x
∂

∂x
+ y

∂

∂y

)
= x2 ∂

2

∂x2
+ x

∂

∂x
+ yx

∂2

∂y∂x
+ xy

∂2

∂x∂y
+ y2 ∂

2

∂y2
+ y

∂

∂y
.

∂2

∂θ2
=

(
−y ∂

∂x
+ x

∂

∂y

)(
−y ∂

∂x
+ x

∂

∂y

)
= y2 ∂

2

∂x2
− x

∂

∂x
− xy

∂2

∂y∂x
− yx

∂2

∂x∂y
+ x2 ∂

2

∂y2
− y

∂

∂y
.

Adding these two operators:

∂2

∂u2
+

∂2

∂θ2
= (x2 + y2)

(
∂2

∂x2
+

∂2

∂y2

)
+ xy

(
2
∂2

∂x∂y
− 2

∂2

∂x∂y

)
.

Thus,

∂2φ

∂u2
+
∂2φ

∂θ2
= (x2 + y2)

(
∂2f

∂x2
+
∂2f

∂y2

)
,

where f(x, y) = φ(u, θ).

5.12 Show that

f(x, y) = x3 − 12xy + 48x+ by2, b �= 0,

has two, one, or zero stationary points according to whether | b | is less than, equal

to, or greater than 3.

At a stationary point, the total differential df must be zero whatever values the

infinitesimal changes dx and dy take. This condition requires that

0 =
∂f

∂x
= 3x2 − 12y + 48,

0 =
∂f

∂y
= −12x+ 2by.

From the second of these y = 6x/b (with b �= 0), and the first equation can be

written as

x2 − 24

b
x+ 16 = 0.

This is a quadratic equation for x and has two, one or zero real roots according
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to whether(
24

b

)2

is greater than, or equal to, or less than 4 × 1 × 16,

i.e.

∣∣∣∣24

b

∣∣∣∣ is greater than, or equal to, or less than 8,

i.e. | b | is less than, or equal to, or greater than 3.

5.14 Find the stationary points of the function

f(x, y) = x3 + xy2 − 12x− y2

and identify their nature.

As explained in the solution to exercise 5.12, stationary points occur when df is

zero whatever values the infinitesimal changes dx and dy take. For the present

question this implies that

0 =
∂f

∂x
= 3x2 + y2 − 12,

0 =
∂f

∂y
= 2xy − 2y.

From the second equation, either y = 0 or x = 1 and, correspondingly, from the

first x = ±2 or y = ±3.

To determine the nature of the stationary points, we must calculate the second

derivatives. The required derivatives are

∂2f

∂x2
= 6x,

∂2f

∂x∂y
= 2y,

∂2f

∂y2
= 2(x− 1).

At (2, 0),
∂2f

∂x2
= 12,

∂2f

∂x∂y
= 0 and

∂2f

∂y2
= 2. Since both unmixed second deriva-

tives are positive and 2 × 12 > 0 this is a minimum with value −16.

At (−2, 0),
∂2f

∂x2
= −12,

∂2f

∂x∂y
= 0 and

∂2f

∂y2
= −6. Since both unmixed second

derivatives are negative and −6 × −12 > 0 this is a maximum with value 16.

81



PARTIAL DIFFERENTIATION

At (1,±3),
∂2f

∂x2
= 6,

∂2f

∂x∂y
= ±6 and

∂2f

∂y2
= 0. Since 0 × 6 �> 36 these are saddle

points with the common value −11.

5.16 The temperature of a point (x, y, z) on the unit sphere is given by

T (x, y, z) = 1 + xy + yz.

By using the method of Lagrange multipliers find the temperature of the hottest

point on the sphere.

It is clear that the larger the absolute values that x, y and z can take, the

larger the maximum temperature can be; the hottest point(s) of the sphere will

therefore occur on its surface, i.e. the coordinates of the hottest point must satisfy

x2 + y2 + z2 − 1 = 0.

We incorporate this constraint using a Lagrange multiplier and consider

f(x, y, z) = T (x, y, z) + λ(x2 + y2 + z2 − 1) = 1 + xy + yz + λ(x2 + y2 + z2 − 1).

Its stationary values are given by

0 =
∂f

∂x
= y + 2λx,

0 =
∂f

∂y
= x+ z + 2λy,

0 =
∂f

∂z
= y + 2λz.

From symmetry x = z, leading to

0 = y + 2λx and 0 = 2x+ 2λy.

Elimination of λ between these two equations gives y2 = 2x2, and then substitution

for y and z in x2 + y2 + z2 = 1 yields x2 = 1
4

and x(= z) = ± 1
2
.

The four possible hottest spots are therefore ( 1
2
,± 1√

2
, 1

2
) and (− 1

2
,± 1√

2
,− 1

2
). Direct

substitution shows that a maximum of T = 1 + 1√
2

occurs at ±( 1
2
, 1√

2
, 1

2
). [ The

two other stationary points give temperature minima. ]

5.18 Two horizontal corridors, 0 ≤ x ≤ a with y ≥ 0, and 0 ≤ y ≤ b with

x ≥ 0, meet at right angles. Find the length L of the longest ladder (considered

as a stick) that may be carried horizontally around the corner.
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Let the ends of the ladder touch the outside walls of the corner at the points

(a+ ξ, 0) and (0, b+ η). Then the square of the length of the ladder is

L2 = (a+ ξ)2 + (b+ η)2.

The longest ladder will touch the inside corner at (a, b) and simple geometry then

requires that

η

a
=
b

ξ
.

Thus we need to maximise L (or L2) subject to ηξ = ab. We therefore consider

f(ξ, η) = (a+ ξ)2 + (b+ η)2 + ληξ.

Its stationary values occur when

0 =
∂f

∂ξ
= 2(a+ ξ) + λη,

0 =
∂f

∂η
= 2(b+ η) + λξ.

Thus 2ξ(a+ ξ) − 2η(b+ η) = 0; together with ηξ = ab, this gives as an equation

for ξ,

2ξa+ 2ξ2 − 2ab

ξ

(
b+

ab

ξ

)
= 0,

⇒ (ξ3 − ab2)(ξ + a) = 0.

The only physical solution to this is ξ = (ab2)1/3; the corresponding value of η is

ab/ξ = a2/3b1/3. Then

L2 =
(
a+ a1/3b2/3

)2

+
(
b+ a2/3b1/3

)2

= a2 + 3a4/3b2/3 + 3a2/3b4/3 + b2

=
(
a2/3 + b2/3

)3

.

Thus the longest ladder that may be carried horizontally round the corner is of

length
(
a2/3 + b2/3

)3/2
.

5.20 Show that the envelope of all concentric ellipses that have their axes along

the x- and y-coordinate axes and that have the sum of their semi-axes equal to a

constant L is the same curve (an astroid) as that found in the worked example in

section 5.10.
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The equation of a typical ellipse with semi-axis a in the x-direction is

f(x, y, a) =
x2

a2
+

y2

(L− a)2
− 1 = 0. (∗)

To find the envelope of all the ellipses we set ∂f/∂a = 0. This gives

∂f

∂a
= −2x2

a3
+

2y2

(L− a)3
= 0.

Re-arranging this equation so as to provide expressions that can be used to

eliminate a from (∗) we obtain

x2

y2
=

a3

(L− a)3
⇒ a

L− a
=
x2/3

y2/3
,

yielding

a =
x2/3

x2/3 + y2/3
L and L− a =

y2/3

x2/3 + y2/3
L.

Substituting these values into f(x, y, a) = 0 gives the equation of the envelope as

x2(x2/3 + y2/3)2

x4/3L2
+
y2(x2/3 + y2/3)2

y4/3L2
= 1,

(x2/3 + y2/3)2(x2/3 + y2/3) = L2,

x2/3 + y2/3 = L2/3,

i.e. an astroid.

5.22 Prove that the envelope of the circles whose diameters are those chords of

a given circle that pass through a fixed point on its circumference, is the cardioid

r = a(1 + cos θ).

Here a is the radius of the given circle and (r, θ) are the polar coordinates of the

envelope. Take as the system parameter the angle φ between a chord and the polar

axis from which θ is measured.

The fixed circle, shown in figure 5.1, has diameter OD. Its chord OQ is a diameter

of a typical member of the family of circles generated as Q is varied.

Since OQ is a diameter of the typical circle with parameter φ the angle OPQ

is a right angle. The radial polar coordinate of P is therefore r = c cos(θ − φ).

Similarly, since angle OQD is also a right angle, c = 2a cosφ.

Thus the equation of a typical circle is

f(r, θ, φ) = r − 2a cosφ cos(θ − φ) = 0.
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O

P

Q

D

r

c
θ

2a

φ

Figure 5.1 The fixed circle in exercise 5.22 has diameter OD and a general

chord OQ. A typical member of the family of circles passes through O and

has OQ as a diameter. The family is generated as Q is varied.

The envelope to this family of circles, in which φ is a parameter that is fixed for

each circle, is given by ∂f/∂φ = 0, i.e.

2a sinφ cos(θ − φ) − 2a cosφ sin(θ − φ) = 0.

Using the compound-angle formula for sin(A+ B), this can be simplified to

sin(φ− (θ − φ)) = 0,

and thus θ = 2φ. This gives the point on the circle with parameter φ at which the

envelope touches it. The formal second solution, θ = 2φ − π, leads to a negative

value for r and can be discarded.

The equation of the envelope itself is therefore obtained by eliminating φ between

this condition and the equation of the circle:

r = 2a cos 1
2
θ cos(θ − 1

2
θ)

= 2a cos2 1
2
θ

= a(1 + cos θ).

This curve is a cardioid, and a sketch of one is shown in figure 2.4, as part of the

answer to exercise 2.50.
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5.24 In order to make a focussing mirror that concentrates parallel axial rays

to one spot (or conversely forms a parallel beam from a point source) a parabolic

shape should be adopted. If a mirror that is part of a circular cylinder or sphere

were used, the light would be spread out along a curve. This curve is known as a

caustic and is the envelope of the rays reflected from the mirror. Denoting by θ

the angle which a typical incident axial ray makes with the normal to the mirror

at the place where it is reflected, the geometry of reflection (the angle of incidence

equals the angle of reflection) is shown in figure 5.2.

Show that a parametric specification of the caustic is

x = R cos θ
(

1
2

+ sin2 θ
)
, y = R sin3 θ,

where R is the radius of curvature of the mirror. The curve is, in fact, part of an

epicycloid.

Denoting the points where the ray strikes the mirror and later crosses the axis by

P and Q respectively, we see, by applying the sine rule to the triangle OPQ, that

OQ

sin θ
=

R

sin 2θ
.

Thus, taking O as the origin, the equation of the reflected ray is

y = tan 2θ

(
x− R sin θ

sin 2θ

)
.

Putting this into the standard form f(x, y, θ) = 0, setting ∂f/∂θ equal to zero, and

then eliminating y from the two resulting equations gives

0 = f(x, y, θ) = y cos 2θ − x sin 2θ + R sin θ,

0 =
∂f

∂θ
= −2y sin 2θ − 2x cos 2θ + R cos θ,

0 = −x(sin2 2θ + cos2 2θ) + R sin θ sin 2θ + 1
2
R cos θ cos 2θ.

From the last of these

x = R cos θ
[
2 sin2 θ + 1

2
(1 − 2 sin2 θ)

]
= R cos θ( 1

2
+ sin2 θ),

and re-substitution in f(x, y, θ) = 0 then yields

y cos 2θ = R cos θ( 1
2

+ sin2 θ) sin 2θ − R sin θ

= R cos2 θ sin θ + 2R cos2 θ sin3 θ − R sin θ

= R sin3 θ(2 cos2 θ − 1).

⇒ y = R sin3 θ.

These expressions for x and y are the stated parametric specification of the

caustic.
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O

R

x

y

θ

θ

2θ

Figure 5.2 The reflecting mirror discussed in exercise 5.24.

5.26 Functions P (V ,T ), U(V ,T ) and S(V ,T ) are related by

TdS = dU + PdV ,

where the symbols have the same meaning as in the previous question. P is known

from experiment to have the form

P =
T 4

3
+
T

V
,

in appropriate units. If

U = αVT 4 + βT ,

where α, β, are constants (or at least do not depend on T , V), deduce that α must

have a specific value but β may have any value. Find the corresponding form of S .

Writing all the other quantities as functions of T and V , we express the total

differential dS as

dS =

(
∂S

∂V

)
T

dV +

(
∂S

∂T

)
V

dT

and similarly for dU.

The given relationship then becomes

T

(
∂S

∂V

)
T

dV + T

(
∂S

∂T

)
V

dT =

(
∂U

∂V

)
T

dV +

(
∂U

∂T

)
V

dT + PdV ,

from which we can deduce that

T

(
∂S

∂V

)
T

=

(
∂U

∂V

)
T

+ P and T

(
∂S

∂T

)
V

=

(
∂U

∂T

)
V

.
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These two equations give us explicit expressions for

(
∂S

∂V

)
T

and

(
∂S

∂T

)
V

.

Differentiating them again, the first with respect to T and the second with respect

to V , and then using the fact that ∂2S/∂T∂V and ∂2S/∂V∂T must be equal,

allows us to write

(
∂

∂T

[
1

T

(
∂U

∂V

)
T

+
P

T

])
V

=

(
∂

∂V

[
1

T

(
∂U

∂T

)
V

])
T

,(
∂

∂T

[
αT 3 +

T 3

3
+

1

V

])
V

=

(
∂

∂V

[
4αVT 2 +

β

T

])
T

,

i.e.

3αT 2 + T 2 = 4αT 2.

This necessary equality implies that we must have α = 1, but it imposes no

constraint on β.

Having now found explicit expressions for the two partial derivatives of S ,

integrating them will give two forms for S(V ,T ). The two forms must be made

to be mutually compatible, if they are not already so, by appropriate choices for

the arbitrary functions of the non-integrated variable (f(V ) and g(T ), below) that

are introduced by the integrations:

(
∂S

∂T

)
V

=
1

T

(
∂U

∂T

)
V

= 4VT 2 +
β

T
,

⇒ S(V ,T ) = 4
3
VT 3 + β lnT + f(V ).

and (
∂S

∂V

)
T

=
1

T

(
∂U

∂V

)
T

+
P

T
= T 3 +

T 3

3
+

1

V
,

⇒ S(V ,T ) = 4
3
VT 3 + lnV + g(T ).

Clearly, f(V ) must be identified with lnV and g(T ) with β lnT to give as the full

expression for S

S(V ,T ) = 4
3
VT 3 + β lnT + lnV + c,

where c is a constant and, as shown earlier, β is arbitrary.
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5.28 The entropy S(H,T ), the magnetisation M(H,T ) and the internal energy

U(H,T ) of a magnetic salt placed in a magnetic field of strength H at temperature

T are connected by the equation

TdS = dU −HdM.

By considering d(U − TS −HM) prove that(
∂M

∂T

)
H

=

(
∂S

∂H

)
T

.

For a particular salt

M(H,T ) = M0[1 − exp(−αH/T )].

Show that, at a fixed temperature, if the applied field is increased from zero to

a strength such that the magnetization of the salt is 3
4
M0 then the salt’s entropy

decreases by an amount

M0

4α
(3 − ln 4).

Given that TdS = dU −HdM, consider dF where F = U − TS −HM.

dF = d(U − TS −HM)

= dU − TdS − SdT −HdM −MdH

= −SdT −MdH.

It follows that (
∂F

∂T

)
H

= −S and

(
∂F

∂H

)
T

= −M.

Differentiating the first equation with respect to H and the second with respect

to T yields

−
(
∂S

∂H

)
T

=
∂2F

∂H∂T
=

∂2F

∂T∂H
= −

(
∂M

∂T

)
H

,

thus establishing the equality stated in the question.

With

M(H,T ) = M0

(
1 − e−αH/T

)
,(

∂S

∂H

)
T

=

(
∂M

∂T

)
H

= −M0αH

T 2
e−αH/T .

If the final field strength is H1 then e−αH1/T = 1
4
, or H1 = α−1T ln 4. The change
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in entropy ∆S = S(H,T ) − S(0, T ) is given by

∆S =

∫ H1

0

−M0αH

T 2
e−αH/T dH

= −M0α

T 2

{[
−HT

α
e−αH/T

]H1

0

+

∫ H1

0

T

α
e−αH/T dH

}

= −M0α

T 2

[
− T 2

4α2
ln 4 +

(
T

α

)2
3

4

]

= −M0

4α
(3 − ln 4),

i.e. the salt’s entropy decreases by the stated amount.

5.30 The integral ∫ ∞

−∞
e−αx2

dx

has the value (π/α)1/2. Use this result to evaluate

J(n) =

∫ ∞

−∞
x2ne−x2

dx,

where n is a positive integer. Express your answer in terms of factorials.

We first observe that differentiating the given result with respect to α will introduce

a factor of −x2 into the integrand; doing so repeatedly will enable a factor of

(−1)nx2n to be generated. We therefore define a function I(n, α) by

I(n, α) =

∫ ∞

−∞
x2ne−αx2

dx,

with I(0, α) =
√
π/α. The required J(n) will be equal to I(n, 1).

We now carry out the n differentiations on the explicitly stated form of I(0, α) to

generate an explicit form for I(n, α).

I(n, α) = (−1)n
dnI(0, α)

dαn

= (−1)n
dn(

√
πα−1/2)

dαn

= (−1)n
(

−1

2

) (
−3

2

)
· · ·
(

−2n− 1

2

) √
π

αn+1/2

=
(2n)!

2n 2n n!

√
π

αn+1/2
.
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Now, setting α = 1, we obtain

J(n) = I(n, 1) =
(2n)!

√
π

4n n!
.

5.32 The functions f(x, t) and F(x) are defined by

f(x, t) = e−xt,

F(x) =

∫ x

0

f(x, t) dt.

Verify by explicit calculation that

dF

dx
= f(x, x) +

∫ x

0

∂f(x, t)

∂x
dt.

For the LHS

F(x) =

∫ x

0

e−xt dt =

[
−e−xt

x

]x
0

=
1 − e−x2

x
,

and hence

dF

dx
= 2e−x2 − 1 − e−x2

x2
.

For the RHS, we start from

∂f(x, t)

∂x
= −te−xt,

and so obtain ∫ x

0

∂f(x, t)

∂x
dt = −

∫ x

0

te−xt dt

= −
[

− te−xt

x

]x
0

−
∫ x

0

e−xt

x
dt

=
xe−x2

x
− 0 −

[
−e−xt

x2

]x
0

= e−x2 − 1 − e−x2

x2
.

Further f(x, x) = e−x2

, and so

f(x, x) +

∫ x

0

∂f(x, t)

∂x
dt = 2e−x2 − 1 − e−x2

x2
=
dF

dx
,

as stated.
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5.34 Find the derivative with respect to x of the integral

I(x) =

∫ 3x

x

expxt dt.

Using the extension to Leibnitz’ rule, we have

I(x) =

∫ 3x

x

ext dt,

dI

dx
=

∫ 3x

x

text dt+ 3 e3x
2 − ex

2

=

[
text

x

]3x

x

−
∫ 3x

x

ext

x
dt+ 3 e3x

2 − ex
2

= 3 e3x
2 − ex

2 −
[
ext

x2

]3x

x

+ 3 e3x
2 − ex

2

= 6 e3x
2 − 2ex

2 − 1

x2
(e3x

2 − ex
2

).
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Multiple integrals

6.2 Evaluate the volume integral of x2 + y2 + z2 over the rectangular paral-

lelepiped bounded by the six surfaces x = ±a, y = ±b, z = ±c.

This is a straightforward triple integral; the order of performing the integrations

is arbitrary and for this integrand no particular one offers any special advantage.

I =

∫ a

−a
dx

∫ b

−b
dy

∫ c

−c
(x2 + y2 + z2) dz

= 2

∫ a

−a
dx

∫ b

−b
(cx2 + cy2 + 1

3
c3) dy

= 4

∫ a

−a

(
bcx2 + 1

3
b3c+ 1

3
bc3
)
dx

= 8
(

1
3
a3bc+ 1

3
ab3c+ 1

3
abc3

)
= 8

3
abc(a2 + b2 + c2).

As would be expected, the result is symmetric in a, b and c.

6.4 Evaluate the surface integral of f(x, y) over the rectangle 0 ≤ x ≤ a,

0 ≤ y ≤ b for the functions

(a) f(x, y) =
x

x2 + y2
, (b) f(x, y) = (b− y + x)−3/2.

(a) It is not clear which order of integration is to be preferred; integrating first
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with respect to x will produce a logarithmic function whilst doing so with respect

to y will generate an inverse tangent. We arbitrarily choose the former.

I =

∫ b

0

dy

∫ a

0

x

x2 + y2
dx

=

∫ b

0

[
1
2
ln(x2 + y2)

]a
0
dy

=
1

2

∫ b

0

ln

(
a2 + y2

y2

)
dy.

In order to carry out the y integration we use the device of introducing an

additional factor ‘1’ into the integrand and then integrate by parts. By choosing

this ‘1’ as the term to be integrated, we obtain

I =
1

2

[
y ln

(
a2 + y2

y2

)]b
0

− 1

2

∫ b

0

y

(
2y

a2 + y2
− 2y

y2

)
dy

=
b

2
ln

(
a2 + b2

b2

)
+

∫ b

0

a2

a2 + y2
dy

=
b

2
ln

(
a2 + b2

b2

)
+ a tan−1

(
b

a

)
.

Not surprisingly, the inverse tangent we avoided initially by our choice of inte-

gration order has popped up again!

(b) This integrand could be made to look more symmetric by writing z = b− y,

but it is no more difficult to integrate it as it stands. We arbitrarily choose to

perform the x-integration first.

∫ b

0

dy

∫ a

0

1

(b− y + x)3/2
dx =

∫ b

0

[
−2

(b− y + x)1/2

]x=a
x=0

dy

= 2

∫ b

0

[
− 1

(b+ a− y)1/2
+

1

(b− y)1/2

]
dy

= 2
[
2(b+ a− y)1/2 − 2(b− y)1/2

]b
0

= 4
[
a1/2 − (b+ a)1/2 + b1/2

]
.

In view of the opening comment, the symmetry of the answer with respect to a

and b was to be expected.
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6.6 The function

Ψ(r) = A

(
2 − Zr

a

)
e−Zr/2a

gives the form of the quantum mechanical wavefunction representing the electron in

a hydrogen-like atom of atomic number Z when the electron is in its first allowed

spherically symmetric excited state. Here r is the usual spherical polar coordinate,

but, because of the spherical symmetry, the coordinates θ and φ do not appear

explicitly in Ψ. Determine the value that A (assumed real) must have if the wave-

function is to be correctly normalised, i.e. the volume integral of |Ψ|2 over all space

is equal to unity.

To evaluate the integral of |Ψ|2 over all space we use spherical polar coordinates

and, in this spherically symmetrical case, a volume element of 4πr2 dr.∫
|Ψ|2 dV = A2

∫ ∞

0

4πr2
(

2 − Zr

a

)2

e−Zr/a dr

= 4πA2

∫ ∞

0

(
4r2 − 4Zr3

a
+
Z2r4

a2

)
e−Zr/a dr

= 4πA2

(
4
2! a3

Z3
− 4

3!Za4

aZ4
+

4!Z2a5

a2Z5

)
=

32πA2a3

Z3
.

Thus if the wavefunction is to be correctly normalised A must be taken as

A = ± Z3/2

√
32π a3/2

.

6.8 A planar figure is formed from uniform wire and consists of two semicircular

arcs, each with its own closing diameter, joined so as to form a letter ‘B’. The figure

is freely suspended from its top left-hand corner. Show that the straight edge of

the figure makes an angle θ with the vertical given by tan θ = (2 + π)−1.

For each semi-circle, denote its radius by a, the linear density of the wire by ρ

and the distance of its centre of gravity from its straight edge by d. Further, let

the distance of the centre of gravity of the whole figure from its straight edge be

x̄. Then, since rotating a semi-circle about its straight edge produces a sphere, by

Pappus’ second theorem,

4πa2 = 2πd× πa, ⇒ d =
2a

π
.
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Then, for the centre of gravity of the letter ‘B’,

x̄ =

(
2πaρ× 2a

π

)
+ (4aρ× 0)

2πaρ+ 4aρ
=

4a

2π + 4
.

When the wire letter is supended its centre of gravity will lie below the suspension

point and the straight edge will make an angle θ with the vertical given by

tan θ = x̄/2a. Thus θ = tan−1[ 1/(π + 2) ].

6.10 A thin uniform circular disc has mass M and radius a.

(a) Prove that its moment of inertia about an axis perpendicular to its plane

and passing through its centre is 1
2
Ma2.

(b) Prove that the moment of inertia of the same disc about a diameter is 1
4
Ma2.

This is an example of the general result for planar bodies that the moment of

inertia of the body about an axis perpendicular to the plane is equal to the sum

of the moments of inertia about two perpendicular axes lying in the plane: in an

obvious notation

Iz =

∫
r2 dm =

∫
(x2 + y2) dm =

∫
x2 dm+

∫
y2 dm = Iy + Ix.

Denote the mass per unit area of the disc by σ. Then, using plane polar coordi-

nates (ρ, φ) or Cartesian coordinates (x, y), as appropriate, we find the moments

of inertia of the disc about axes (a) perpendicular to its plane, and (b) about the

y-axis as follows.

(a) I⊥ =

∫ a

0

σρ2 2πρ dρ =
2πσa4

4
= 1

2
Ma2.

(b) I‖ =

∫ a

−a
σx2 2(a2 − x2)1/2 dx

= 4σ

∫ a

0

x2(a2 − x2)1/2 dx

= 4σ

∫ 0

π/2

a2 cos2 φ a sinφ (−a sinφdφ)

= σa4

∫ π/2

0

sin2 2φ dφ = σa4 1
2
π
2

= 1
4
Ma2.

In the third line we set x equal to a cosφ.
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6.12 The shape of an axially symmetric hard-boiled egg, of uniform density ρ0,

is given in spherical polar coordinates by r = a(2 − cos θ), where θ is measured

from the axis of symmetry.

(a) Prove that the mass M of the egg is M = 40
3
πρ0a

3.

(b) Prove that the egg’s moment of inertia about its axis of symmetry is 342
175
Ma2.

(a) We need to consider slices of the egg perpendicular to the polar axis, the

thickness of a typical slice being dz where z = r cos θ and consequently

dz = d(r cos θ)

= d(2a cos θ − a cos2 θ)

= 2a sin θ(cos θ − 1) dθ

Writing cos θ as c in places to save space, the element of mass lying between z

and z + dz is

dm = πρ0(r sin θ)2 dz

= πρ0 a
2 sin2 θ (2 − c)2 2a sin θ(c− 1) dθ

= 2πρ0a
3 (1 − c2)(2 − c)2(1 − c) dc.

This now has to be integrated between c = 1 and c = −1. Only those terms in the

integrand which are even powers of c will give a non-zero contribution. Omitting

the multiplicative constants, the integrand is

(1 − c− c2 + c3)(4 − 4c+ c2) = 4 + c2 − 5c4 + odd powers of c.

Consequently, the value of the volume integral is

M = 2πρ0a
3 2

(
4 +

1

3
− 5

5

)
=

40

3
πρ0a

3.

(b) The moment of inertia of a single slice of mass dm about the axis of symmetry

is 1
2
(r sin θ)2 dm and again this has to be integrated between θ = 0 and θ = π.

dI = 1
2
(r sin θ)2 dm

= 1
2
a2(2 − c)2(1 − c2) 2πρ0a

3(1 − c2)(2 − c)2(1 − c) dc

= πρ0a
5 (1 − c2)2(2 − c)4(1 − c) dc
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The c-dependent terms in this integrand are

f(c) = (1 − c2)2(2 − c)4(1 − c)

= (1 − c)(1 − 2c2 + c4)(16 − 32c+ 24c2 − 8c3 + c4)

= (1 − c− 2c2 + 2c3 + c4 − c5)(16 − 32c+ 24c2 − 8c3 + c4)

= 16 + c2(24 + 32 − 32) + c4(1 + 8 − 48 − 64 + 16)

+c6(−2 − 16 + 24 + 32) + c8(1 + 8) + odd powers of c.

As previously, this has to be integrated with respect to c between −1 and +1

with the odd powers of c contributing nothing. Thus the total moment of inertia

is

I = πρ0a
5 2

(
16 +

24

3
− 87

5
+

38

7
+

9

9

)

=
912

35
πρ0a

5

=
342

175
Ma2.

6.14 By expressing both the integrand and the surface element in spherical

polar coordinates, show that the surface integral∫
x2

x2 + y2
dS

over the surface x2 + y2 = z2, 0 ≤ z ≤ 1, has the value π/
√

2.

The surface S is an inverted cone of unit height and half angle π/4. Since a cone

is a coordinate surface (θ = constant) in spherical polar coordinates, we change

to that system.

In these coordinates the surface is given by 0 ≤ r ≤
√

2, θ = π/4 and 0 ≤ φ ≤ 2π.

The integrand is [r2 sin2(π/4) cos2 φ]/[r2 sin2(π/4)] whilst the surface element is

dS = r sin(π/4) dφ dr. Thus the integral I is given by

I =

∫ 2π

0

cos2 φdφ

∫ √
2

0

r√
2
dr

=
2π

2

[
r2

2
√

2

]√
2

0

=
π√
2
.
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x

y

u = 0.5

u = 1

u = 2

v = 0.5

v = 1

v = 2

Figure 6.1 The parabolic coordinate curves discussed in exercise 6.16.

6.16 Sketch the two families of curves

y2 = 4u(u− x), y2 = 4v(v + x),

where u and v are parameters.

By transforming to the uv-plane, evaluate the integral of y/(x2 + y2)1/2 over that

part of the quadrant x > 0, y > 0 bounded by the lines x = 0, y = 0 and the

curve y2 = 4a(a− x).

Sketches of typical curves are shown in figure 6.1. Each family is a set of non-

intersecting parabolas with the x-axis as the axis of symmetry. However, each

u-curve meets each v-curve in two places and vice versa.

The area over which the integral is to be taken has the points (0, 0), (a, 0) and

(0, 2a) as its ‘corners’ and is shown shaded in the figure for the case a = 2. We

transform to the uv-plane where:

(i) The boundary x = 0, y > 0 becomes 4u2 = y2 = 4v2, i.e. u = v.

(ii) The boundary x > 0, y = 0 becomes v = 0.

(iii) The boundary y2 = 4a(a− x) becomes u = a.

99



MULTIPLE INTEGRALS

In this plane the integration region is thus a right-angled triangle with vertices at

(0, 0), (a, 0) and (a, a).

The equations of the transformation can be rewritten as x = u− v and y = 2
√
uv,

making the Jacobian

∂(x, y)

∂(u, v)
=

∣∣∣∣∣∣∣∣∣
1

√
v

u

−1

√
u

v

∣∣∣∣∣∣∣∣∣
=

√
u

v
+

√
v

u
.

The integral can therefore be transformed to one over the triangular region and

evaluated as follows.

I =

∫
S

y

x2 + y2
dx dy

=

∫ a

0

du

∫ u

0

2
√
uv

(u2 − 2uv + v2 + 4uv)1/2

(√
u

v
+

√
v

u

)
dv

=

∫ a

0

du

∫ u

0

2(u+ v)

u+ v
dv

=

∫ a

0

2u du

= 2

[
u2

2

]a
0

= a2.

6.18 Sketch the domain of integration for the integral

I =

∫ 1

0

∫ 1/y

x=y

y3

x
exp[y2(x2 + x−2)] dx dy

and characterise its boundaries in terms of new variables u = xy and v = y/x.

Show that the Jacobian for the change from (x, y) to (u, v) is equal to (2v)−1, and

hence evaluate I .

The integration area is shown shaded in figure 6.2. In terms of the new variables,

u = xy and v = y/x, the original variables are x = (u/v)1/2 and y = (uv)1/2.

(i) The boundary y = 0, 0 < x < ∞ becomes both u = 0 and v = 0.

(ii) The boundary y = x becomes v = 1.

(iii) The boundary x = 1/y becomes u = 1.

The Jacobian of the transformation is

∂(x, y)

∂(u, v)
=
∂x

∂u

∂y

∂v
− ∂x

∂v

∂y

∂u
=

1

2(uv)1/2
u1/2

2v1/2
− (−1)u1/2

2v3/2
v1/2

2u1/2
=

1

2v
.
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x

y

u = 1 v = 1

u = 0 and v = 01

1

Figure 6.2 The integration area for exercise 6.18 is shown shaded.

Making the change of variables and then integrating gives

I =

∫ 1

0

∫ x=1/y

x=y

y3

x
exp
[
y2(x2 + x−2)

]
dx dy

=

∫ 1

0

∫ 1

0

(uv)3/2
( v
u

)1/2

exp
[
uv
(u
v

+
v

u

)] 1

2v
du dv

=

∫ 1

0

∫ 1

0

uv

2
exp(u2 + v2) du dv

=
1

2

∫ 1

0

u exp(u2) du

∫ 1

0

v exp(v2) dv

= 1
8

[
exp(u2)

]1
0

[
exp(v2)

]1
0

= 1
8
(e− 1)2.

6.20 Define a coordinate system u, v whose origin coincides with that of the usual

x, y system and whose u-axis coincides with the x-axis, whilst the v-axis makes

an angle α with it. By considering the integral I =
∫

exp(−r2) dA, where r is the

radial distance from the origin, over the area defined by 0 ≤ u < ∞, 0 ≤ v < ∞,

prove that ∫ ∞

0

∫ ∞

0

exp(−u2 − v2 − 2uv cos α) du dv =
α

2 sin α
.

As can be seen from figure 6.3, the coordinates of a general point P that lies in
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x, u

y

v

v

u

r

α

P

Figure 6.3 The coordinate system for exercise 6.20.

the area defined by positive values for u and v are related in the two systems by

x = v cos α+ u and y = v sin α.

The Jacobian of a coordinate transformation between the two systems is therefore

∂(x, y)

∂(u, v)
=

∣∣∣∣ 1 0

cos α sin α

∣∣∣∣ = sin α.

We note that this value for the Jacobian does not depend upon the actual position

of P .

Now, because of azimuthal symmetry, the integral of exp(−r2) over the region of

positive u and v (shown shaded in the figure) is α/2π of the same integral taken

over the whole of the xy-space. This latter is

∫
e−r2 dA =

∫ ∫
e−(x2+y2) dx dy =

∫ ∞

−∞
e−x2

dx

∫ ∞

−∞
e−y2

dy = (
√
π)2.

Expressed in terms of u and v, r2 = x2 +y2 = u2 + v2 +2uv cos α. As shown above,

dx dy = sin α du dv and so the integral over the shaded region takes the form

∫ ∞

0

∫ ∞

0

exp(−u2 − v2 − 2uv cos α) sin α du dv.

This integral therefore has the value (α/2π) × π and the stated result about the

integral in the question follows when both the itegral and its value are divided

by the constant sin α.
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6.22 The distances of the variable point P , which has coordinates x, y, z, from

the fixed points (0, 0, 1) and (0, 0,−1) are denoted by u and v respectively. New

variables ξ, η, φ are defined by

ξ = 1
2
(u+ v), η = 1

2
(u− v),

and φ is the angle between the plane y = 0 and the plane containing the three

points. Prove that the Jacobian ∂(ξ, η, φ)/∂(x, y, z) has the value (ξ2 − η2)−1 and

that ∫ ∫ ∫
all space

(u− v)2

uv
exp

(
−u+ v

2

)
dx dy dz =

16π

3e
.

From straightforward algebraic geometry, u and v are given by the positive square

roots of

u2 = x2 + y2 + (z − 1)2 and v2 = x2 + y2 + (z + 1)2.

The new variables and their ranges are

ξ = 1
2
(u+ v) over 1 ≤ ξ < ∞,

η = 1
2
(u− v) over − 1 ≤ η < 1,

φ = tan−1 y

x
over 0 ≤ φ < 2π.

We start by calculating

∂ξ

∂x
=

1

2

(
∂u

∂x
+
∂v

∂x

)
=

1

2

(x
u

+
x

v

)
=
xξ

uv
.

Similarly for ∂ξ/∂y, ∂η/∂x and ∂η/∂y.

The other required derivatives are

∂ξ

∂z
=

1

2

(
z − 1

u
+
z + 1

v

)
=
zξ + η

uv
,

∂η

∂z
=

1

2

(
z − 1

u
− z + 1

v

)
=

−zη − ξ

uv
,

∂φ

∂x
=

−y
x2

1

1 + y2

x2

= − y

x2 + y2
,

∂φ

∂y
=

1

x

1

1 + y2

x2

=
x

x2 + y2
.
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Collecting these together gives the Jacobian as

∂(ξ, η, φ)

∂(x, y, z)
=

∣∣∣∣∣∣∣∣∣∣∣∣

xξ

uv
−xη

uv
− y

x2 + y2

yξ

uv
−yη

uv

x

x2 + y2

zξ + η

uv
−zη + ξ

uv
0

∣∣∣∣∣∣∣∣∣∣∣∣
=

−1

(uv)2
1

x2 + y2

∣∣∣∣∣∣
xξ xη −y
yξ yη x

zξ + η zη + ξ 0

∣∣∣∣∣∣

=
−1

(uv)2
1

x2 + y2

∣∣∣∣∣∣∣∣
0 xη −y
0 yη x

η2 − ξ2

η
zη + ξ 0

∣∣∣∣∣∣∣∣
=

−(η2 − ξ2)(x2 + y2)

(uv)2(x2 + y2)
=
ξ2 − η2

(uv)2
.

But uv = ξ2 − η2 and so the Jacobian has the value (ξ2 − η2)−1. To obtain the

third line of the above evaluation of the Jacobian we subtracted ξ/η times the

2nd column from the 1st column.

We now express the given integral in terms of ξ and η:

I =

∫ ∫ ∫
all space

(u− v)2

uv
exp

(
−u+ v

2

)
dx dy dz

=

∫ 2π

0

dφ

∫ ∞

1

dξ

∫ 1

−1

4η2

ξ2 − η2
e−ξ 1

(ξ2 − η2)−1
dη

= 8π

∫ ∞

1

e−ξ dξ

∫ 1

−1

η2 dη

= 8π e−1 2

3
=

16π

3e
,

as stated in the question.
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7.2 A unit cell of diamond is a cube of side A with carbon atoms at each corner,

at the centre of each face and, in addition, at positions displaced by 1
4
A(i + j + k)

from each of those already mentioned; i, j, k are unit vectors along the cube axes.

One corner of the cube is taken as the origin of coordinates. What are the vectors

joining the atom at 1
4
A(i + j + k) to its four nearest neighbours? Determine the

angle between the carbon bonds in diamond.

The four nearest neighbours are positioned at

A(0, 0, 0), A( 1
2
, 1

2
, 0), A(0, 1

2
, 1

2
) and A( 1

2
, 0, 1

2
).

The corresponding vectors joining them to the atom at A( 1
4
, 1

4
, 1

4
) are

A

4
(−1,−1,−1),

A

4
(1, 1,−1),

A

4
(−1, 1, 1),

A

4
(1,−1, 1).

The length of each vector is
√

3A/4 and so the angle between any two bonds (say

the first and second) is

θ = cos−1
A2

16
(−1 − 1 + 1)(√

3A
4

)2
= cos−1

(
−1

3

)
= 109.5 ◦.

7.4 Find the angle between the position vectors to the points (3,−4, 0) and

(−2, 1, 0) and find the direction cosines of a vector perpendicular to both.

If θ is the angle between the vectors a = (3,−4, 0) and b = (−2, 1, 0) then its

cosine is given by

cos θ =
a · b
a b

=
−6 − 4 + 0

5
√

5
=

−2√
5
,
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giving θ = 153.4◦.

A vector perpendicular to both a and b is their cross product

a × b = (0 − 0, 0 − 0, 3 − 8) = (0, 0,−5).

The normalised cross product is (0, 0,−1) whose components therefore are the

required direction cosines. Clearly (0, 0, 1) is an equally valid vector perpendicular

to both a and b.

7.6 Use vector methods to prove that the lines joining the mid-points of the

opposite edges of a tetrahedron OABC meet at a point and that this point bisects

each of the lines.

Let the vertices of the tetrahedron have vector positions 0, a, b and c. The

mid-points of the pair of opposite sides OA and BC are 1
2
(0 + a) and 1

2
(b + c),

respectively. The mid-point of the line joining these two points is, similarly,
1
2
[ 1
2
(0 + a) + 1

2
(b + c)] = 1

4
(a + b + c).

From the symmetry of this expression it is clear that the same result would be

obtained by considering the pair of sides OB and AC , or the pair of sides OC

and AB. Thus the lines joining the mid-points of all pairs of opposite edges meet

at this one point, which bisects each of them.

7.8 Prove, by writing it out in component form, that

(a × b) × c = (a · c)b − (b · c)a,

and deduce the result, stated in (7.25), that the operation of forming the vector

product is non-associative.

We compute only the x-component of each side of the equation. The correspond-

ing results for other components can be obtained by cyclic permutation of x, y

and z.

a × b = (aybz − azby, azbx − axbz, axby − aybx)

[(a × b) × c]x = (azbx − axbz)cz − (axby − aybx)cy

= bx(azcz + aycy) − ax(bzcz + bycy)

= bx(azcz + aycy + axcx) − ax(bxcx + bzcz + bycy)

= [(a · c)b − (b · c)a]x .

To obtain the penultimate line we both added and subtracted axbxcx on the
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RHS. This establishes the result for the x-component and hence for all three

components.

We have shown that

(a × b) × c = (a · c)b − (b · c)a.

Now consider

a × (b × c) = −(b × c) × a = −(b · a)c + (c · a)b = (a · c)b − (b · a)c.

The last terms on the RHSs of the two equations are not equal, showing that

(a × b) × c �= a × (b × c).

7.10 For four arbitrary vectors a, b, c and d, evaluate

(a × b) × (c × d)

in two different ways and so prove that

a [ b, c, d ] − b [ c, d, a ] + c [ d, a, b ] − d [ a, b, c ] = 0.

Show that this reduces to the normal Cartesian representation of the vector d, i.e.

dxi + dyj + dzk, if a, b and c are taken as i, j and k, the Cartesian base vectors.

Firstly, treating the given expression as the triple vector product of a, b and c × d,

(a × b) × (c × d) = b [ a · (c × d)] − a [ b · (c × d)]

= b [ c, d, a ] − a [ b, c, d ] .

Secondly, treating the given expression as the triple vector product of a × b, c,

and d,

(a × b) × (c × d) = c [ d · (a × b)] − d [ c · (a × b)]

= c [ d, a, b ] − d [ a, b, c ]

Now, equating these two expressions gives the stated result; explicitly,

a [ b, c, d ] − b [ c, d, a ] + c [ d, a, b ] − d [ a, b, c ] = 0.

Setting a = i, b = j and c = k reduces the above equation to

i [ j, k, d ] − j [ k, d, i ] + k [ d, i, j ] − d [ i, j, k ] = 0,

which, since [ i, j, k ] = 1, reduces to

d = i dx − j (−dy) + k dz = dx i + dy j + dz k.
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7.12 The plane P1 contains the points A, B and C , which have position vectors

a = −3i + 2j, b = 7i + 2j and c = 2i + 3j + 2k respectively. Plane P2 passes

through A and is orthogonal to the line BC , whilst plane P3 passes through B and

is orthogonal to the line AC . Find the coordinates of r, the point of intersection

of the three planes.

Since both b − a and c − a lie in P1, a normal to that plane is in the direction of

(b − a) × (c − a) = (10, 0, 0) × (5, 1, 2) = (0,−20, 10).

The equation of P1 is therefore of the form −2y + z = c and, since A lies on it,

c = −4.

The specification for P2 takes the form

(r − a) · (b − c) = 0 or r · (b − c) = a · (b − c).

Thus

(x, y, z) · (5,−1,−2) = (−3, 2, 0) · (5,−1,−2) = −17 or 5x− y − 2z = −17.

For P3

(r − b) · (c − a) = 0 or r · (c − a) = b · (c − a),

leading to

(x, y, z) · (5, 1, 2) = (7, 2, 0) · (5, 1, 2) = 37 or 5x+ y + 2z = 37.

Solving the three equations for P1, P2 and P3 simultaneously gives the coordinates

of the point of intersection. By adding the equations for P2 and P3 we obtain

x = 2. Then using either of these equations and that for P1 yields y = 7 and

z = 10.

7.14 Two fixed points, A and B, in three-dimensional space have position vectors

a and b. Identify the plane P given by

(a − b) · r = 1
2
(a2 − b2),

where a and b are the magnitudes of a and b.

Show also that the equation

(a − r) · (b − r) = 0

describes a sphere S of radius |a − b|/2. Deduce that the intersection of P and

S is also the intersection of two spheres, centred on A and B and each of radius

|a − b|/
√

2.
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The normal to the plane P is clearly in the direction a − b and furthermore the

point r = 1
2
(a + b) satisfies

(a − b) · 1
2
(a + b) = 1

2
(a2 − b2),

and so lies in the plane. The plane must therefore be orthogonal to the line

joining A to B and pass through its mid-point.

From the given equation

(a − r) · (b − r) = 0,

r · r − (a + b) · r + a · b = 0,[
r − 1

2
(a + b)

]2
= −a · b + [1

2
(a + b)]2

= [ 1
2
(a − b)]2.

Thus the equation describes a sphere S of radius 1
2
|a − b| centred on the point

1
2
(a + b). It has AB as a diameter.

Now consider the (circular) intersection of P and S , given by solving their

equations simultaneously:

a · r − b · r = 1
2
(a2 − b2),

r2 + a · b − a · r − b · r = 0.

Subtracting them gives

r2 + a · b − 2a · r = 1
2
(b2 − a2),

(r − a)2 = 1
2
(b2 − a2) − a · b + a2

= 1
2
(b2 + a2) − a · b

= 1
2
(b − a)2.

Adding them gives

r2 + a · b − 2b · r = 1
2
(a2 − b2),

(r − b)2 = 1
2
(a2 − b2) − a · b + b2

= 1
2
(b2 + a2) − a · b

= 1
2
(a − b)2.

The two deduced equations satisfied by the points that lie on the intersection of

P and S are those of spheres of equal radius |a−b|/
√

2, one centred on A and the

other on B. Thus the intersection of the plane and sphere is also the intersection

of two equal (larger) spheres whose centres are A and B.
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7.16 The vectors a, b and c are coplanar and related by

λa + µb + νc = 0,

where λ, µ, ν are not all zero. Show that the condition for the points with position

vectors αa, βb and γc to be collinear is

λ

α
+
µ

β
+
ν

γ
= 0.

We assume that a, b and c are not simply multiples of each other.

For collinearity of the three points we must have

γc = θαa + (1 − θ)βb

for some θ. Thus

λa + µb +
θαν

γ
a +

(1 − θ)βν

γ
b = 0,

implying that

λ+
θαν

γ
= 0 and µ+

(1 − θ)βν

γ
= 0.

Eliminating θ and then dividing through by βγ gives

γµ+ βν − βν

(
−λγ
αν

)
= 0 ⇒ µ

β
+
ν

γ
+
λ

α
= 0,

which is therefore a necessary condition for the collinearity of the three points.

7.18 Four points Xi, i = 1, 2, 3, 4, taken for simplicity as all lying within the

octant x, y, z ≥ 0, have position vectors xi. Convince yourself that the direction

of vector xn lies within the sector of space defined by the directions of the other

three vectors if

min
over j

[
xi · xj
|xi||xj |

]
,

considered for i = 1, 2, 3, 4 in turn, takes its maximum value for i = n, i.e. n equals

that value of i for which the largest of the set of angles which xi makes with the

other vectors is found to be the lowest. Determine whether any of the four points

with coordinates

X1 = (3, 2, 2), X2 = (2, 3, 1), X3 = (2, 1, 3), X4 = (3, 0, 3)

lies within the tetrahedron defined by the origin and the other three points.
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Suppose that, for some n, xn lies within the sector defined by the other three

vectors. Then each of the other three vectors must make a larger angle with at

least one of the other remaining two than it does with xn. Since a larger angle

between unit vectors corresponds to a smaller value of their scalar product, sij ,

this requirement can be expressed as in the question. Clearly, at most one of the

vectors can satisfy the geometrical condition; if none of the vectors does so then

the same scalar product will appear as the minimum for two different values of i

and be the largest such minimum.

For the given points the table of scalar products is as follows.

sij X1 X2 X3 X4 Minimum

X1 1 0.907 0.907 0.857 0.857

X2 0.907 1 0.714 0.567 0.567

X3 0.907 0.714 1 0.945 0.714

X4 0.857 0.567 0.945 1 0.567

The largest minimum occurs uniquely in the line corresponding to X1 whose

direction is therefore contained in the sector defined by the directions of X2, X3

and X4.

To establish whether X1 lies inside the tetrahedron defined by the origin, X2, X3

and X4, we need to determine whether or not it lies on the same side of the plane

P , defined by X2, X3 and X4, as the origin.

The normal to P is given by

(X3 − X2) × (X4 − X2) = (0,−2, 2) × (1,−3, 2) = (2, 2, 2) =
2√
3
(1, 1, 1)

and therefore, since it contains X2, the equation of the plane is

f(x, y, z) = x+ y + z − 6 = 0.

At the origin the value of f(x, y, z) is −6 < 0, whilst at X1 it is f(3, 2, 2) = 7−6 > 0;

therefore the origin and X1 are on opposite sides of P and it follows that X1 does

not lie inside the tetrahedron.

7.20 Three non-coplanar vectors a, b and c, have as their respective reciprocal

vectors the set a′, b′ and c′. Show that the normal to the plane containing the

points k−1a, l−1b and m−1c is in the direction of the vector ka′ + lb′ + mc′.

The plane containing k−1a, l−1b and m−1c is r = αk−1a + βl−1b + γm−1c, where

the scalar quantities α, β and γ satisfy the relationship α+ β + γ = 1.
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The normal to this plane is in the direction

n = (l−1b − k−1a) × (m−1c − k−1a)

= (lm)−1(b × c) − (km)−1(a × c) − (lk)−1(b × a)

=
[ a, b, c ]

klm
(ka′ + lb′ + mc′).

To obtain the last line we used the definitions of the reciprocal vectors a′, b′ and

c′, as given in section 7.9.

7.22 In subsection 7.6.2 we showed how the moment or torque of a force about

an axis could be represented by a vector in the direction of the axis. The magnitude

of the vector gives the size of the moment and the sign of the vector gives the sense.

Similar representations can be used for angular velocities and angular momenta.

(a) The magnitude of the angular momentum about the origin of a particle of

mass m moving with velocity v on a path that is a perpendicular distance d

from the origin is given by m|v|d. Show that if r is the position of the particle

then the vector J = r × mv represents the angular momentum.

(a) Now consider a rigid collection of particles (or a solid body) rotating about

an axis through the origin, the angular velocity of the collection being rep-

resented by ω.

(i) Show that the velocity of the ith particle is

vi = ω × ri

and that the total angular momentum J is

J =
∑
i

mi[r
2
i ω − (ri · ω)ri].

(ii) Show further that the component of J along the axis of rotation can

be written as Iω, where I , the moment of inertia of the collection

about the axis or rotation, is given by

I =
∑
i

miρ
2
i .

Interpret ρi geometrically.

(iii) Prove that the total kinetic energy of the particles is 1
2
Iω2.

(a) The magnitude of the angular momentum is m|v|d (see figure 7.1(a)) and, as

drawn in the figure, its sense is downwards. Now consider J = r × mv. This also

has magnitude J = m|v|r sin θ = m|v|d, and, as shown in the figure, is directed

downwards; it is therefore a vector expression for the angular momentum.
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O

O

md
θ

θi

(a) (b)

vr

J

r × v

ω

ri

di mi

Figure 7.1 The vectors discussed in exercise 7.22. (a) The vector represen-

tation of angular momentum, J = r × mv. (b) The linear velocity of the ith

particle in a rotating rigid body is given by ω×ri.

(b)(i) As can be seen from figure (b), the velocity of the ith particle has magnitude

ωdi and is directed into the plane of the paper. Its velocity is therefore represented

vectorially by vi =ω×ri, since di = ri sin θi.

Its angular momentum about the axis of ω is, from part (a), given by

Ji = ri × mivi = ri × mi(ω × ri).

The total angular momentum of the whole collection is consequently

J =
∑
i

Ji

=
∑
i

mi[ri × (ω × ri)]

=
∑
i

mi
[
ωr2i − (ri · ω)ri

]
. (see exercise 7.8)

(b)(ii) The component of J along the direction of ω is

J · ω

ω
=

1

ω

∑
i

mi
[
r2i ω

2 − (ri · ω)2
]

= ω
∑
i

mi

[
r2i −

( ri · ω

ω

)2
]
.

This is of the form Iω, where

I =
∑
i

mi

[
r2i −

( ri · ω

ω

)2
]

=
∑
i

miρ
2
i .
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Here ρi, which is independent of the magnitude of ω, is given by

ρ2
i = r2i −

( ri · ω

ω

)2

= r2i − r2i cos2 θi

= r2i sin2 θi,

i.e. ρi is the distance of the ith particle from the axis of rotation [ denoted by di
in figure (b) ].

(b)(iii) The total kinetic energy of the particles is the sum of their individual

kinetic energies, and so

T =
∑
i

1
2
miv

2
i

=
1

2

∑
i

mi(ω × ri) · (ω × ri)

=
1

2

∑
i

mi
[
r2i ω

2 − (ri · ω)2
]

=
1

2
Iω2.

To obtain the penultimate line we used the result of exercise 7.9.

7.24 Without carrying out any further integration, use the results of the previous

exercise (the parallel axis theorem), the worked example in subsection 6.3.4 and

exercise 6.10 to prove that the moment of inertia of a uniform rectangular lamina,

of mass M and sides a and b, about an axis perpendicular to its plane and passing

through the point (αa/2, βb/2), with −1 ≤ α, β ≤ 1, is

M

12
[a2(1 + 3α2) + b2(1 + 3β2)].

In the worked example the moment of inertia (MI) about a side of length b was

found to be 1
3
Ma2.

By the parallel axis theorem the MI about a parallel axis through the centre of

gravity, O, of the lamina is 1
3
Ma2 −M( 1

2
a)2 = 1

12
Ma2.

By symmetry, the MI about an an axis passing through O and parallel to a side

of length a will have the corresponding value 1
12
Mb2.

By the perpendicular axes theorem established in exercise 6.10, the MI about an

axis normal to the lamina and passing through O is equal to 1
12

(a2 + b2).
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A second use of the parallel axis theorem then gives the MI about an axis

perpendicular to the lamina and passing through (αa/2, βb/2) as

1

12
M(a2 + b2) +M

[(αa
2

)2

+

(
βb

2

)2
]

=
M

12

[
a2(1 + 3α2) + b2(1 + 3β2)

]
.

7.26 Systems that can be modelled as damped harmonic oscillators are wide-

spread; pendulum clocks, car shock absorbers, tuning circuits in television sets

and radios, and collective electron motions in plasmas and metals are just a few

examples.

In all these cases, one or more variables describing the system obey(s) an equation

of the form

ẍ+ 2γẋ+ ω2
0x = P cos ωt,

where ẋ = dx/dt, etc. and the inclusion of the factor 2 is conventional. In the

steady state (i.e. after the effects of any initial displacement or velocity have been

damped out) the solution of the equation takes the form

x(t) = A cos(ωt+ φ).

By expressing each term in the form B cos(ω t+ ε) and representing it by a vector

of magnitude B making an angle ε with the x-axis, draw a closed vector diagram,

at t = 0, say, that is equivalent to the equation.

(a) Convince yourself that whatever the value of ω (> 0) φ must be negative

(−π < φ ≤ 0) and that

φ = tan−1

(
−2γω

ω2
0 − ω2

)
.

(b) Obtain an expression for A in terms of P , ω0 and ω.

Substituting x(t) = A cos(ωt+ φ) into the differential equation:

P cos ωt = ẍ+ 2γẋ+ ω2
0x,

P cosωt = −ω2A cos(ωt+ φ) − 2γωA sin(ωt+ φ) + ω2
0A cos(ωt+ φ),

P cosωt = ω2A cos(ωt+ φ+ π) + 2γωA cos(ωt+ φ+ 1
2
π)

+ω2
0A cos(ωt+ φ).

Now, set t = 0 and represent each term as a vector with magnitude and phase as

shown in figure 7.2.
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φ2

φ1

2γωA

2γωA

ω2A

ω2A

ω2
0A

ω2
0A

P

Figure 7.2 The vector diagram for the equation in exercise 7.26.

(a) For the last of these equations to be valid the three vectors representing the

terms on the RHS must have a resultant equal to that representing P on the

LHS, i.e. the resultant must be real and positive. As can be seen, with φ > 0

(illustrated by φ = φ1 in the figure), no matter what value ω takes, the possible

resultants (broken arrows) can never equal P .

(b) However, with φ < 0 (illustrated by φ = φ2), the three vectors from the RHS

can have a resultant corresponding to P . When this happens, from the geometry

of the quadrilateral, it can be seen that

| tanφ2| =
2γωA

ω2
0A− ω2A

⇒ φ = tan−1

(
−2γω

ω2
0 − ω2

)
,

and, from the geometry of a right-angled triangle, that

P 2 = (2γωA)2 + (ω2
0A− ω2A)2,

⇒ A =
P

[(ω2
0 − ω2)2 + 4γ2ω2]1/2

.

This is the amplitude of the response of the system when that of the sinusoidal

input is P .
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8.2 Evaluate the determinants

(a)

∣∣∣∣∣∣
a h g

h b f

g f c

∣∣∣∣∣∣ , (b)

∣∣∣∣∣∣∣∣
1 0 2 3

0 1 −2 1

3 −3 4 −2

−2 1 −2 1

∣∣∣∣∣∣∣∣
and

(c)

∣∣∣∣∣∣∣∣
gc ge a+ ge gb+ ge

0 b b b

c e e b+ e

a b b+ f b+ d

∣∣∣∣∣∣∣∣ .

(a) Using the elements and cofactors of the first row in a straightforward Laplace

expansion, we have∣∣∣∣∣∣
a h g

h b f

g f c

∣∣∣∣∣∣ = a(bc− f) + h(fg − hc) + g(hf − gb)

= abc+ 2fgh− af2 − bg2 − ch2.

(b) At each stage we subtract a suitable multiple of the first column from each

other column so as to make the first entry in each of the other columns zero;

then we use a Laplace expansion with a single term. Here this reduction is carried
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out three times.∣∣∣∣∣∣∣∣
1 0 2 3

0 1 −2 1

3 −3 4 −2

−2 1 −2 1

∣∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣∣

1 0 0 0

0 1 −2 1

3 −3 −2 −11

−2 1 2 7

∣∣∣∣∣∣∣∣
= 1

∣∣∣∣∣∣
1 −2 1

−3 −2 −11

1 2 7

∣∣∣∣∣∣ =
∣∣∣∣∣∣

1 0 0

−3 −8 −8

1 4 6

∣∣∣∣∣∣
= 1

∣∣∣∣ −8 −8

4 6

∣∣∣∣ = 1

∣∣∣∣ −8 0

4 2

∣∣∣∣ = −8|2| = −16.

(c) In making this reduction we (i) subtract g times the third row from the first

row, (ii) subtract the second row from the fourth, (iii) use the Laplace expansion,

(iv) subtract the second column from the third, and (v) use a Laplace expansion

followed by direct evaluation.∣∣∣∣∣∣∣∣
gc ge a+ ge gb+ ge

0 b b b

c e e b+ e

a b b+ f b+ d

∣∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣∣

0 0 a 0

0 b b b

c e e b+ e

a b b+ f b+ d

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣

0 0 a 0

0 b b b

c e e b+ e

a 0 f d

∣∣∣∣∣∣∣∣ = a

∣∣∣∣∣∣
0 b b

c e b+ e

a 0 d

∣∣∣∣∣∣
= a

∣∣∣∣∣∣
0 b 0

c e b

a 0 d

∣∣∣∣∣∣ = −ab
∣∣∣∣ c b

a d

∣∣∣∣
= ab(ab− cd).

8.4 Consider the matrices

(a) B =

 0 −i i

i 0 −i
−i i 0

 , (b) C =
1√
8


√

3 −
√

2 −
√

3

1
√

6 −1

2 0 2

 .
Are they (i) real, (ii) diagonal, (iii) symmetric, (iv) antisymmetric, (v) singular, (vi)

orthogonal, (vii) Hermitian, (viii) anti-Hermitian, (ix) unitary, (x) normal?
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(a) For matrix B:

Clearly, (i)-(iii) are not true whilst (iv) is.

(v) |B | = −i(i2 − 0) + i(i2) = 0 and so B is singular.

(vi) From (v) it follows that B has no inverse. In particular, its transpose cannot

be its inverse, i.e. B is not orthogonal.

(vii)

(B∗)T =

 0 i −i
−i 0 i

i −i 0

T

=

 0 −i i

i 0 −i
−i i 0

 = B,

i.e. B is Hermitian.

(viii) In view of (vii), B cannot be anti-Hermitian.

(ix) As in (vi), B cannot be unitary.

(x) Since B is Hermitian, it commutes with its Hermitian conjugate (itself) and is

therefore normal.

(b) For matrix C:

C is clearly real, i.e. satisfies (i), and, equally clearly, satisfies none of (ii)-(iv).

(v)

|C| =

(
1√
8

)3

∣∣∣∣∣∣
√

3 −
√

2 −
√

3

1
√

6 −1

2 0 2

∣∣∣∣∣∣ =
(

1√
8

)3

∣∣∣∣∣∣
√

3 −
√

2 0

1
√

6 0

2 0 4

∣∣∣∣∣∣
=

1√
32

(
√

18 +
√

2)

= 1
4
(3 + 1) = 1 �= 0.

Thus C is not singular.

(vi) Consider CTC, which is given by

1

8


√

3 1 2

−
√

2
√

6 0

−
√

3 −1 2

 
√

3 −
√

2 −
√

3

1
√

6 −1

2 0 2

 =

 1 0 0

0 1 0

0 0 1

 = I3.

Thus C is orthogonal.

(vii) & (viii) In view of (i), (iii) and (iv), C cannot be either Hermitian or anti-

Hermitian.

(ix) In view of (i) and (vi), C is unitary.

(x) In view of (i) and (vi), C†C = CTC = I = CCT = CC†. Hence C is normal.
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8.6 This exercise considers a crystal whose unit cell has base vectors that are

not necessarily mutually orthogonal.

(a) The basis vectors of the unit cell of a crystal, with the origin O at one corner,

are denoted by e1, e2, e3. The matrix G has elements Gij , where Gij = ei · ej
and Hij are the elements of the matrix H ≡ G−1. Show that the vectors

fi =
∑

j Hij ej are the reciprocal vectors and that Hij = fi · fj .
(b) If the vectors u and v are given by

u =
∑
i

uiei, v =
∑
i

vifi,

obtain expressions for |u|, |v|, and u · v.
(c) If the basis vectors are each of length a and the angle between each pair is

π/3, write down G and hence obtain H.

(d) Calculate (i) the length of the normal from O onto the plane containing the

points p−1e1, q
−1e2, r

−1e3, and (ii) the angle between this normal and e1.

(a) With fi defined by fi =
∑

j Hij ej , consider

fi · ek =
∑
j

Hij ej · ek =
∑
j

(
G−1
)
ij
Gjk =

(
G−1G

)
ik

= δik.

Thus the fi are the reciprocal vectors of the cell’s base vectors.

Now consider

fi · fj =
∑
k

Hikek
∑
m

Hjmem =
∑
k,m

HikHjmGkm

=
∑
m

Hjm

∑
k

HikGkm =
∑
m

Hjmδim = Hji = Hij .

(b) With u =
∑

i ui ei,

|u|2 =
∑
i

ui ei
∑
j

uj ej =
∑
i,j

ui Gij uj ⇒ |u| =

∑
i,j

ui Gij uj

1/2

.

Similarly,

|v| =

∑
i,j

vi Hij vj

1/2

.

For the scalar product of u and v,

u · v =
∑
i

ui ei
∑
j

vj fj =
∑
i,j

ui vj δij =
∑
i

ui vi.
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(c) For i = j, ei · ej = a2 whilst, for i �= j, ei · ej = a2 cos(π/3) = 1
2
a2. Thus

G = 1
2
a2

 2 1 1

1 2 1

1 1 2

 .
The matrix 2G/a2 has determinant 4 and all of its co-factors are either 3 or ±1.

The matrix H, computed using this data, is found to be

H ≡ G−1 =
1

2a2

 3 −1 −1

−1 3 −1

−1 −1 3

 .
(d)(i) The normal to the plane is in the direction

(q−1e2 − p−1e1) × (r−1e3 − p−1e1) ∝
[
(qr)−1f1 + (pr)−1f2 + (qp)−1f3

]
i.e. in the direction f = p f1 + q f2 + r f3.

A unit vector in this direction is

n̂ =
p f1 + q f2 + r f3

(f · f )1/2

and the distance from the origin to the plane is the scalar product of this unit

vector and the position vector of any one of the three points (necessarily, they

all give the same answer). Using p−1e1 and denoting (p, q, r) by vi, we have the

distance d as

d = n̂ · p−1e1 =
p−1p+ 0 + 0

(f · f )1/2

=
1

(
∑

i vifi
∑

j vjfj)
1/2

=
1

(
∑

i,j viHijvj)1/2
=

1

M
,

where M2 = (2a2)−1[3(p2 + q2 + r2) − 2(qr + rp+ pq)].

(d)(ii) The angle θ between n̂ and e1 is given by

θ = cos−1 n̂ · e1

|e1| = cos−1 p d

a
= cos−1 p

aM
.
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8.8 A and B are real non-zero 3 × 3 matrices and satisfy the equation

(AB)T + B−1A = 0.

(a) Prove that if B is orthogonal then A is antisymmetric.

(b) Without assuming that B is orthogonal, prove that A is singular.

We have that (AB)T = −B−1A.

(a) Given BTB = I (i.e. B is orthogonal),

BTAT = −B−1A ⇒ BBTAT = −BB−1A ⇒ AT = −A,

i.e. A is antisymmetric.

(b) Since B−1 is defined, |B| �= 0.

BTAT = −B−1A

BBTAT = −A

|B | |BT| |AT| = | − A |
|B |2 |A | = (−1)3|A |, since |BT| = |B|.

In the last line the factor (−1)3 arises because A is a 3 × 3 matrix. The two sides

of the last equation have opposite (contradictory) signs unless |A| = 0, i.e. unless

A is singular.

8.10 The four matrices Sx, Sy , Sz and I are defined by

Sx =

(
0 1

1 0

)
, Sy =

(
0 −i
i 0

)
,

Sz =

(
1 0

0 −1

)
, I =

(
1 0

0 1

)
,

where i2 = −1. Show that S2
x = I and SxSy = iSz , and obtain similar results

by permutting x, y and z. Given that v is a vector with Cartesian components

(vx, vy, vz), the matrix S(v) is defined as

S(v) = vxSx + vySy + vzSz.

Prove that, for general non-zero vectors a and b,

S(a)S(b) = a · b I + i S(a × b).

Without further calculation, deduce that S(a) and S(b) commute if and only if a

and b are parallel vectors.
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As we have only the definitions to work with, these basic products must be found

by explicit matrix multiplication:

S2
x =

(
0 1

1 0

)(
0 1

1 0

)
=

(
1 0

0 1

)
= I.

SxSy =

(
0 1

1 0

)(
0 −i
i 0

)
=

(
i 0

0 −i

)
= iSz.

SySz =

(
0 −i
i 0

)(
1 0

0 −1

)
=

(
0 i

i 0

)
= iSx.

Similarly S2
y = S2

z = I and SzSx = iSy . We also note that

SySx =

(
0 −i
i 0

)(
0 1

1 0

)
=

(
−i 0

0 i

)
= −iSz,

i.e. that Sx and Sy anticommute. This applies to any pair of the matrices (excluding

I of course).

We first note that if 0 is the zero vector then S(0) = O, the zero matrix; conversely,

if S(v) = O then v = 0. Now consider the product of the two matrices S(a) and

S(b).

S(a)S(b) = (axSx + aySy + azSz)(bxSx + bySy + bzSz)

= (axbx + ayby + azbz)I + axby(iSz) + aybx(−iSz) + · · ·
= (axbx + ayby + azbz)I + i(a × b)zSz + · · ·
= (a · b)I + iS(a × b), as stated in the question.

Interchanging a and b gives S(b)S(a) = (b · a)I + iS(b × a). It then follows that

S(a)S(b) − S(b)S(a) = 2iS(a × b).

The matrix on the RHS is the zero matrix if and only if a × b = 0, i.e. a and b

are parallel vectors.

8.12 Given a matrix

A =

 1 α 0

β 1 0

0 0 1

 ,
where α and β are non-zero complex numbers, find its eigenvalues and eigenvec-

tors. Find the respective conditions for (a) the eigenvalues to be real and (b) the

eigenvectors to be orthogonal. Show that the conditions are jointly satisfied if and

only if A is Hermitian.
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The eigenvalues λ of A are the roots of∣∣∣∣∣∣
1 − λ α 0

β 1 − λ 0

0 0 1 − λ

∣∣∣∣∣∣ = 0,

i.e. the values of λ that satisfy

(1 − λ)
[
(1 − λ)2 − αβ

]
= 0.

This means that either λ = 1 or that

λ2 − 2λ+ 1 − αβ = 0,

⇒ λ = 1 ± (αβ)1/2.

For λ = 1 the corresponding eigenvector is obviously e1 = (0, 0, 1)T.

For λ = 1 ± (αβ)1/2, we have for eigenvector (x, y, z)T that

∓(αβ)1/2x+ αy = 0,

∓(αβ)1/2z = 0.

Thus e 2, 3 =
(√
α, ±

√
β, 0

)T
.

(a) For all the eigenvalues to be real, we need the product αβ to be real and

positive.

(b) For the eigenvectors to be mutually orthogonal we need (recall that α and β

can be complex)

0 = (e2)† · e3 = (α∗)1/2α1/2 − (β∗)1/2β1/2 ⇒ |α| = |β|.

The orthogonality of e3 to the other two is trivially obvious.

(i) If both conditions are satisfied and we write α = ceiθ , then the first condition

requires that the argument of β is −θ whilst the second requires its magnitude to

be c. Thus β = ce−iθ and β = α∗, making A Hermitian.

(ii) If A is Hermitian, β = α∗ and so αβ is real and positive. The eigenvalues are

then 1, 1 + |α| and 1 − |α|, i.e. all real.

The corresponding eigenvectors have the forms (0, 0, 1)T,
(√

α,
√
α∗, 0

)T

and(√
α, −

√
α∗, 0

)T

, and are clearly mutually orthogonal.

Thus, the two conditions are jointly satisfied if and only if A is Hermitian.
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8.14 If a unitary matrix U is written as A + iB, where A and B are Hermitian

with non-degenerate eigenvalues, show the following:

(a) A and B commute;

(b) A2 + B2 = I;

(c) The eigenvectors of A are also eigenvectors of B;

(d) The eigenvalues of U have unit modulus (as is necessary for any unitary

matrix).

Given that U = A + iB, with A† = A, B† = B and U†U = I, consider

I = U†U = (A† − iB†)(A + iB)

= (A − iB)(A + iB)

= A2 + B2 + i(AB − BA).

and I = UU† = (A + iB)(A† − iB†)

= (A + iB)(A − iB)

= A2 + B2 + i(BA − AB).

Comparison of the two results implies

(a) BA − AB = O, i.e. A and B commute, and, consequently, (b) A2 + B2 = I.

(c) Let x be an eigenvector of A with eigenvalue λ, i.e. Ax = λx. Then

ABx = BAx = Bλx = λBx,

where we have used result (a) to justify the first equality.

Now, the above result shows that y = Bx is an eigenvector of A with eigenvalue

λ.

But the eigenvalues of A are non-degenerate and so y must be a multiple of x,

i.e. Bx = µx for some µ.

However, this is the statement that x is an eigenvector of B (as well as of A).

Hence each eigenvector of A is also an eigenvector of B.

(d) Let x be an eigenvector of U with (complex) eigenvalue λ. We then have

(A + iB)x = λx, take the hermitian conjugate,

x†(A† − iB†) = λ∗x†,

x†(A2 + B2)x = x†|λ|2x,
x† I x = x†|λ|2x,

|x|2 = |λ|2|x|2.

To obtain the third equation we multiplied the two LHS and the two RHS of the
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first two equations together. Finally, since x is a non-zero vector it follows from

the last equation that |λ| = 1.

8.16 Find the eigenvalues and a set of eigenvectors of the matrix 1 3 −1

3 4 −2

−1 −2 2

 .
Verify that its eigenvectors are mutually orthogonal.

The eigenvalues must be the roots of∣∣∣∣∣∣
1 − λ 3 −1

3 4 − λ −2

−1 −2 2 − λ

∣∣∣∣∣∣ = 0.

Evaluating the determinant gives

(1 − λ)(λ2 − 6λ+ 4) + 3(−4 + 3λ) − 1(−2 − λ) = 0,

(1 − λ)(λ2 − 6λ+ 4) − 10 + 10λ = 0,

(1 − λ)(λ2 − 6λ− 6) = 0.

Thus λ = 1 or λ = 3 ±
√

15.

Writing an eigenvector as e = (x, y, z)T:

For λ = 1, 0x+ 3y − z = 0 and 3x+ 3y − 2z = 0 which imply

e1 = (1, 1, 3)T .

For λ = 3 ±
√

15,

(−2 ∓
√

15)x+ 3y − z = 0,

3x+ (1 ∓
√

15)y − 2z = 0.

We now eliminate z and obtain

(−7 ∓ 2
√

15)x+ (5 ±
√

15)y = 0.

Taking e =
(
5 ±

√
15, 7 ± 2

√
15, z

)T

, the first equation gives

z = (−2 ∓
√

15)(5 ±
√

15) + 3(7 ± 2
√

15)

= −4 ∓
√

15.
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Thus the three eigenvectors are

e1 = (1, 1, 3)T ,

e2 =
(
5 +

√
15, 7 + 2

√
15, −4 −

√
15
)T

,

e3 =
(
5 −

√
15, 7 − 2

√
15, −4 +

√
15
)T

.

Their mutual orthogonality is established by considering the following scalar

products.

e1 · e2 = (5 + 7 − 12) + (1 + 2 − 3)
√

15 = 0,

e1 · e3 = (5 + 7 − 12) + (−1 − 2 + 3)
√

15 = 0,

e2 · e3 = (25 − 15) + (49 − 60) + (16 − 15) = 0,

i.e. they are mutually orthogonal. We note that, formally, the first factor in each

scalar product should be the hermitian conjugate of the eigenvector; here this

makes no difference as all components are real.

8.18 Use the results of the first worked example in section 8.14 to evaluate,

without repeated matrix multiplication, the expression A6x, where x = (2 4 −
1)T and A is the matrix given in the example.

A set of three (un-normalised, but that does not matter here) independent

eigenvectors of A, and their corresponding eigenvalues, are, as given in section

8.14,

x1 = (1, 1, 0)T for λ = 2,

x2 = (1, −1, 1)T for λ = 3,

x3 = (1, −1, −2)T for λ = 2.

We first express the given vector x in terms of the eigenvectors as 2

4

−1

 = 3

 1

1

0

−

 1

−1

1

+ 0

 1

−1

−2

 = 3x1 − x2.

We now use the fact that, for an eigenvector, Anx = λnx. This gives

A6x = 3 26x1 − 36x2 =
(
3 26(1) − 36(1), 3 26(1) − 36(−1), 3 26(0) − 36(1)

)T
= (−537, 921, −729)T .
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8.20 Demonstrate that the matrix

A =

 2 0 0

−6 4 4

3 −1 0

 ,
is defective, i.e. does not have three linearly independent eigenvectors, by showing

the following:

(a) its eigenvalues are degenerate and, in fact, all equal;

(b) any eigenvector has the form (µ (3µ− 2ν) ν)T;

(c) if two pairs of values, µ1, ν1 and µ2, ν2, define two independent eigenvectors

v1 and v2 then any third similarly defined eigenvector v3 can be written as

a linear combination of v1 and v2, i.e.

v3 = av1 + bv2

where

a =
µ3ν2 − µ2ν3

µ1ν2 − µ2ν1
and b =

µ1ν3 − µ3ν1

µ1ν2 − µ2ν1
.

Illustrate (c) using the example (µ1, ν1) = (1, 1), (µ2, ν2) = (1, 2) and (µ3, ν3) =

(0, 1).

Show further that any matrix of the form 2 0 0

6n− 6 4 − 2n 4 − 4n

3 − 3n n− 1 2n


is defective, with the same eigenvalues and eigenvectors as A.

(a) The eigenvalues of A are given by∣∣∣∣∣∣
2 − λ 0 0

−6 4 − λ 4

3 −1 −λ

∣∣∣∣∣∣ = (2 − λ)(−4λ+ λ2 + 4) = (2 − λ)3 = 0.

Thus A has three equal eigenvalues λ = 2.

(b) Using this value for λ, an eigenvector (x, y, z)T must satisfy

0x+ 0y + 0z = 0,

−6x+ 2y + 4z = 0,

3x− y − 2z = 0,

leading to the conclusion that v = (µ, 3µ− 2ν, ν)T, with µ and ν arbitrary, will
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be an eigenvector. Clearly any two components of a vector of this form can be

chosen arbitrarily, but the third one is then determined.

(c) Given two eigenvectors

v1 = (µ1, 3µ1 − 2ν1, ν1)
T and v2 = (µ2, 3µ2 − 2ν2, ν2)

T ,

any third vector v3 of the same form with parameters µ3 and ν3 can be written

as a linear combination of v1 and v2, as is shown by the following argument.

Define the vector v and the numbers a and b by

v = av1 + bv2 ≡ µ3ν2 − µ2ν3

µ1ν2 − µ2ν1
v1 +

µ1ν3 − µ3ν1

µ1ν2 − µ2ν1
v2.

Now consider the first component, say, of the vector on the RHS

µ3ν2 − µ2ν3

µ1ν2 − µ2ν1
µ1 +

µ1ν3 − µ3ν1

µ1ν2 − µ2ν1
µ2 =

µ1µ3ν2 − µ2µ3ν1

µ1ν2 − µ2ν1
= µ3.

Similarly, the second component is 3µ3 −2ν3 and the third one ν3. In other words,

v = v3 and v3 has been expressed explicitly as a linear combination of v1 and v2.

This establishes that A does not have three linearly independent eigenvectors, i.e.

it is defective.

(d) With

(µ1, ν1) = (1, 1) and v1 = (1, 1, 1)T ,

(µ2, ν2) = (1, 2) and v2 = (1, −1, 2)T ,

(µ3, ν3) = (0, 1) and v3 = (0, −2, 1)T ,

a =
(0 × 2) − (1 × 1)

(1 × 2) − (1 × 1)
= −1 and b =

(1 × 1) − (0 × 1)

(1 × 2) − (1 × 1)
= 1.

Thus

v = −1

 1

1

1

+ 1

 1

−1

2

 =

 0

−2

1

 = v3,

as expected.

The eigenvalues of this more general matrix, A(n) say, are given by

0 =

∣∣∣∣∣∣
2 − λ 0 0

6n− 6 4 − 2n− λ 4 − 4n

3 − 3n n− 1 2n− λ

∣∣∣∣∣∣
= (2 − λ)[(4 − 2n− λ)(2n− λ) − (n− 1)(4 − 4n)]

= (2 − λ)(8n− 4λ− 4n2 + 2nλ− 2nλ+ λ2 − 4n+ 4 + 4n2 − 4n)

= (2 − λ)(2 − λ)2.

This shows that the eigenvalues of A(n) are the same as those of A.
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The equations to be satisfied by the components of an eigenvector of A(n),

v = (x, y, z)T, are

0x+ 0y + 0z = 0,

(6n− 6)x+ (2 − 2n)y + (4 − 4n)z = 0,

(3 − 3n)x+ (n− 1)y + (2n− 2)z = 0.

When the common factor (n−1) has been cancelled from the second and third of

these, the equations remaining are identical to those satisfied by the components

of the eigenvectors of A. The eigenvectors will therefore be identical to those of

A; it also follows that A(n) is defective.

8.22 Use the stationary properties of quadratic forms to determine the maximum

and minimum values taken by the expression

Q = 5x2 + 4y2 + 4z2 + 2xz + 2xy

on the unit sphere, x2 + y2 + z2 = 1. For what values of x, y and z do they occur?

Since all vectors on the unit sphere have unit modulus the maximum and minimum

values of Q will be equal to the largest and smallest of the eigenvalues of the

associated symmetric matrix. These we find by considering∣∣∣∣∣∣
5 − λ 1 1

1 4 − λ 0

1 0 4 − λ

∣∣∣∣∣∣ = 0,

(5 − λ)(16 − 8λ+ λ2) − 4 + λ− 4 + λ = 0,

λ3 − 13λ2 + 54λ− 72 = 0.

There is no concise automatic way to solve this cubic equation, but by inspection

it is clear that if λ = 3 the top row of the determinant is equal to the sum of

the other two, implying that λ = 3 is one root. The polynomial equation is now

easily factorised as

(λ− 3)(λ− 4)(λ− 6) = 0,

showing that the maximum and minimum values of Q are 6 and 3.

The corresponding values of (x, y, z)T are given by the associated (normalised)

eigenvectors:

For λ = 6 (the maximum),

−x+ y + z = 0, x− 2y = 0, x− 2z = 0 ⇒ xmax = ±(6)−1/2 (2, 1, 1)T .
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For λ = 3 (the minimum),

2x+ y + z = 0, x+ y = 0, x+ z = 0 ⇒ xmin = ±(3)−1/2 (1, −1, −1)T .

8.24 Find the lengths of the semi-axes of the ellipse

73x2 + 72xy + 52y2 = 100,

and determine its orientation.

This is a quadric surface with no z-dependence (an elliptical cylinder) and if

its semi-axes are a and b then a−2 and b−2 are given by the eigenvalues of the

associated matrix after the RHS has been made unity. The eigenvalues therefore

satisfy

0 =

∣∣∣∣ 0.73 − λ 0.36

0.36 0.52 − λ

∣∣∣∣
= 0.3796 − 1.25λ+ λ2 − 0.1296

= λ2 − 1.25λ+ 0.25

= (λ− 1)(λ− 0.25).

Thus λ = a−2 = 1, giving a = 1, and λ = b−2 = 0.25 yielding b = 2.

The eigenvector (x, y)T corresponding to the major semi-axis (b = 2) has (0.73 −
0.25)x+ 0.36y = 0, i.e. makes an angle tan−1(−4/3) with the x-axis.

8.26 Show that the quadratic surface

5x2 + 11y2 + 5z2 − 10yz + 2xz − 10xy = 4

is an ellipsoid with semi-axes of lengths 2, 1 and 0.5. Find the direction of its

longest axis.

As previously, we need to solve the characteristic equation of the matrix associated

with the quadric:

0 =

∣∣∣∣∣∣
5 − λ −5 1

−5 11 − λ −5

1 −5 5 − λ

∣∣∣∣∣∣
= (5 − λ)(55 − 16λ+ λ2 − 25) − 5(−5 + 25 − 5λ) + 1(25 − 11 + λ)

= −λ3 + 21λ2 − 85λ+ 64.
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Clearly, λ = 1 is one root of this equation, which can be written

−(λ− 1)(λ2 − 20λ+ 64) = −(λ− 1)(λ− 4)(λ− 16) = 0.

The eigenvalues are all positive and so the quadratic surface is an ellipsoid with

semi-axes (1/4)−1/2, (4/4)−1/2 and (16/4)−1/2, i.e. 2, 1 and 0.5. The longest axis

corresponds to the smallest eigenvalue, λ = 1, and its direction (x, y, z)T satisfies

(5 − 1)x− 5y + z = 0,

−5x+ (11 − 1)y − 5z = 0.

The unit vector in this direction is (3)−1/2 (1, 1, 1)T.

8.28 Find the eigenvalues, and sufficient of the eigenvectors, of the following

matrices to be able to describe the quadratic surfaces associated with them.

(a)

 5 1 −1

1 5 1

−1 1 5

 , (b)

 1 2 2

2 1 2

2 2 1

 , (c)

 1 2 1

2 4 2

1 2 1

 .

In each case the eigenvalues and then the eigenvectors of the matrices can be

found by the methods employed in the previous four exercises and the details will

not be given here. The results and their interpretations are:

(a) The eigenvalues are 6, 6 and 3. Since they are all positive and two are

equal, the surface is an ellipsoid with a circular cross-section perpendicular to the

direction (1,−1, 1)/
√

3, which is the eigenvector corresponding to eigenvalue 3. If

the maximimum radius of the circular cross-section is r, say, (when the section

includes the origin) then the semi-axis of the ellipsoid in the direction of the axis

of symmetery is of length
√

2r.

(b) The eigenvalues are 5, −1 and −1. Since two are negative and equal, the

surface is a hyperboloid of revolution about an axis in the direction (1, 1, 1)/
√

3

(the direction of the eigenvector corresponding to the non-repeated eigenvalue).

In tranformed coordinates the equation of the surface will take the form

y2
1

(1/
√

5)2
− y2

2

12
− y2

3

12
= a

from this it can be seen that the two halves of the hyperboloid are asymptotic to

a cone of semi-angle tan−1
√

5 that passes through the origin and has the same

symmetry axis as the hyperboloid.

(c) The eigenvalues are 6, 0 and 0. A zero eigenvalue formally implies an infinitely

long semi-axis; in other words, the surface is a cylinder (not necessarily circular)
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with the correponding eigenvector as the cylinder’s axis. Here, there are two such

eigenvalues and we have ‘infinite cylinders in two directions’, i.e the notional

ellipsoid has degenerated into a pair of parallel planes. They are equidistant from

the origin and have their normals in the direction of the eigenvector, (1, 2, 1),

corresponding to the only non-zero eigenvalue. The equation of the ‘surface’ in

transformed coordinates becomes simply

y2
1

(1/
√

6)2
+ 0y2

2 + 0y2
3 = a,

which describes the two planes y1 = ±
√
a/6.

8.30 Find an orthogonal transformation that takes the quadratic form

Q ≡ −x2
1 − 2x2

2 − x2
3 + 8x2x3 + 6x1x3 + 8x1x2

into the form

µ1y
2
1 + µ2y

2
2 − 4y2

3 ,

and determine µ1 and µ2 (see section 8.17).

Expressing Q as xTAx, the required transformation has the normalised eigen-

vectors ei of A as its columns. So, we need to determine the eigenvalues and

eigenvectors of A. Following the normal method:

0 =

∣∣∣∣∣∣
−1 − λ 4 3

4 −2 − λ 4

3 4 −1 − λ

∣∣∣∣∣∣
= −(1 + λ)(λ2 + 3λ− 14) + 4(16 + 4λ) + 3(22 + 3λ)

= −λ3 − 4λ2 + 36λ+ 144

= −(λ+ 4)(λ2 − 36)

= −(λ+ 4)(λ− 6)(λ+ 6).

We were guided by the given answer when writing λ + 4 as a factor of the

characteristic polynomial. The values of µ1 and µ2 are determined as 6 and −6.

We now need to find the three normalised eigenvectors (x, y, z)T.

For λ = −4:

3x+ 4y + 3z = 0, 4x+ 2y + 4z = 0, ⇒ e3 =
1√
2

(1, 0, −1)T .

For λ = 6:

−7x+ 4y + 3z = 0, 4x− 8y + 4z = 0, ⇒ e1 =
1√
3

(1, 1, 1)T .

133



MATRICES AND VECTOR SPACES

For λ = −6:

5x+ 4y + 3z = 0, 4x+ 4y + 4z = 0, ⇒ e2 =
1√
6

(1, −2, 1)T .

Thus, the required new coordinates are:

y1 =
1√
3
(x1 + x2 + x3), y2 =

1√
6
(x1 − 2x2 + x3), y3 =

1√
2
(x1 − x3).

The labelling of the yi is, of course, arbitrary.

8.32 Do the following sets of equations have non-zero solutions? If so, find

them.

(a) 3x+ 2y + z = 0, x− 3y + 2z = 0, 2x+ y + 3z = 0.

(b) 2x = b(y + z), x = 2a(y − z), x = (6a− b)y − (6a+ b)z.

(a) For the equations, written in the form

Ax =

 3 2 1

1 −3 2

2 1 3

 x

y

z

 =

 0

0

0

 ,
to have a non-zero solution we must have | A | = 0. But

| A | =

∣∣∣∣∣∣
3 2 1

1 −3 2

2 1 3

∣∣∣∣∣∣ = 3(−11) + 2(1) + 1(7) = −24 �= 0,

and so the equations have no non-trivial solutions.

(b) Rearranged in standard form, the equations read

Ax =

 2 −b −b
1 −2a 2a

1 b− 6a 6a+ b

 x

y

z

 =

 0

0

0

 .
Either by direct calculation or by observing that the sum of the first and third

rows is equal to three time the second row, we conclude that | A | = 0 and that a

non-trivial solution is possible.
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Arbitrarily taking x = 1, we require that

2 − by − bz = 0,

1 − 2ay + 2az = 0,

4a+ b− 2aby − 2aby = 0,

⇒ y =
4a+ b

4ab
,

⇒ z =
2

b
− y =

4a− b

4ab
.

Thus the solution is any multiple of (4ab, 4a+ b, 4a− b)T.

8.34 Solve the following simultaneous equations for x1, x2 and x3, using matrix

methods:

x1 + 2x2 + 3x3 = 1,

3x1 + 4x2 + 5x3 = 2,

x1 + 3x2 + 4x3 = 3.

We need to invert the matrix

A =

 1 2 3

3 4 5

1 3 4

 ,
whose determinant is 1(1) + 2(−7) + 3(5) = 2. This is non-zero and so A has an

inverse. The matrix of cofactors is

C =

 1 −7 5

1 1 −1

−2 4 −2

 ,
from which it follows that A−1 = (1/|A|)CT is given by

A−1 =
1

2

 1 1 −2

−7 1 4

5 −1 −2

 .
Finally, rewriting the given equation Ax = y as x = A−1y, we have x1

x2

x3

 =
1

2

 1 1 −2

−7 1 4

5 −1 −2

 1

2

3

 =
1

2

 −3

7

−3

 .
Thus x1 = − 3

2
, x2 = 7

2
and x3 = − 3

2
.
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8.36 Find the condition(s) on α such that the simultaneous equations

x1 + αx2 = 1,

x1 − x2 + 3x3 = −1,

2x1 − 2x2 + αx3 = −2

have (a) exactly one solution, (b) no solutions, or (c) an infinite number of solu-

tions; give all solutions where they exist.

As usual, and in the normal notation, we start by examining

| A | = 1(6 − α) + α(6 − α) = (1 + α)(6 − α).

(a) For exactly one solution we need |A| �= 0, i.e. α �= −1 and α �= 6. Then

A−1 =
1

(1 + α)(6 − α)

 6 − α −α2 3α

6 − α α −3

0 2 + 2α −1 − α


and  x1

x2

x3

 =
1

(1 + α)(6 − α)

 6 − α −α2 3α

6 − α α −3

0 2 + 2α −1 − α

 1

−1

−2


=

1

(1 + α)(6 − α)

 6 − α+ α2 − 6α

6 − α− α+ 6

−2 − 2α+ 2 + 2α


=

(
1 − α

1 + α
,

2

1 + α
, 0

)T

.

(b) and (c). For no or infinitely many solutions the matrix must have rank 2 or

less, which requires that either α = −1 or α = 6.

With α = −1 the equations become

x1 − x2 = 1,

x1 − x2 + 3x3 = −1,

2x1 − 2x2 − x3 = −2.

Substituting from the first equation for x1 − x2 leaves two equations for x3 which

are contradictory; this is case (b) of no solution.
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With α = 6 the equations become

x1 + 6x2 = 1,

x1 − x2 + 3x3 = −1,

2x1 − 2x2 + 6x3 = −2.

The last two equations are multiples of each other, but not of the first. Therefore

there are infinitely many solutions containing one free parameter. Taking this as

x2 = β, the general solution is

(x1, x2, x3)
T =

(
1 − 6β, β, 1

3
(7β − 2)

)T
.

This solution is that for case (c) and corresponds to figure 8.1(a) in the main text;

case (b) corresponds to figure 8.1(b).

8.38 Make an LU decomposition of the matrix

A =


2 −3 1 3

1 4 −3 −3

5 3 −1 −1

3 −6 −3 1

 .
Hence solve Ax = b for (i) b = (−4 1 8 − 5)T, and

(ii) b = (−10 0 −3 −24)T. Deduce that det A = −160 and confirm this by

direct calculation.

To avoid a lot of subscripts we will use single lower-case letters as the elements of

the upper- and lower-diagonal matrices. We also make the immediately-apparent

entries in U.

We need
1 0 0 0

a 1 0 0

b c 1 0

d e f 1




2 −3 1 3

0 g h j

0 0 k l

0 0 0 m

 =


2 −3 1 3

1 4 −3 −3

5 3 −1 −1

3 −6 −3 1

 .
From the 1st column of A:

a = 1
2
, b = 5

2
and d = 3

2
.

Then, from the 2nd row:

−3a+ g = 4 ⇒ g = 11
2
,

a+ h = −3 ⇒ h = − 7
2
,

3a+ j = −3 ⇒ j = − 9
2
.
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From the 2nd column:

−3b+ gc = 3 ⇒ c = 21
11
,

−3d+ ge = −6 ⇒ e = − 3
11
.

From the 3rd row:

b+ ch+ k = −1 ⇒ k = −1 + 92
22

= 35
11
,

3b+ cj + l = −1 ⇒ l = −1 + 24
22

= 1
11
.

From the 3rd column:

d+ he+ fk = −3 ⇒ f = (−120
20

)/( 35
11

) = − 12
7
.

Finally, from the 4th row:

3d+ je+ fl + m = 1 ⇒ m = 1 − 9
2

− 27
22

+ 12
77

= − 32
7
.

(i) We first solve Ly = b as follows:
1 0 0 0
1
2

1 0 0
5
2

21
11

1 0
3
2

− 3
11

− 12
7

1



y1

y2

y3

y4

 =


−4

1

8

−5

 .

That y1 = −4 and y2 = 3 are immediately apparent. The third row gives

y3 = 8 + 10 − 63
11

= 135
11

, whilst the fourth yields y4 = −5 + 6 + 9
11

+ 12
7

135
11

= 160
7

.

The solution vector x is now deduced from Ux = y:
2 −3 1 3

0 11
2

− 7
2

− 9
2

0 0 25
11

1
11

0 0 0 − 32
7



x1

x2

x3

x4

 =


−4

3
135
11
160
7

 .

That x4 = −5 is obvious. The third row gives x3 = 11
35

( 135
11

+ 5
11

) = 4, whilst

the second yields x2 = 2
11

(3 + 14 − 45
2
) = −1. Finally, the top row gives x1 =

1
2
(−4 − 3 − 4 + 15) = 2.

(ii) This calculation proceeds just as in (i). The intermediate vector y is found to

be (−10 5 137
11

96
7
)T and the solution vector x = (−1 1 4 − 3)T.

The determinant of A is given by the product of the diagonal entries of the matrix

U, i.e. |A| = 2 × 11
2

× 35
11

× (− 32
7
) = −160.
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Confirming this by direct calculation:∣∣∣∣∣∣∣∣
2 −3 1 3

1 4 −3 −3

5 3 −1 −1

3 −6 −3 1

∣∣∣∣∣∣∣∣ =


0 0 1 0

7 −5 −3 6

7 0 −1 2

9 −15 −3 10



= 1

∣∣∣∣∣∣
7 −5 6

7 0 2

9 −15 10

∣∣∣∣∣∣
= 7(30) − 5(−52) + 6(−105) = −160.

At the first step, an appropriate multiple of the 3rd column was subtracted from

each of the other columns.

8.40 Find the equation satisfied by the squares of the singular values of the

matrix associated with the following over-determined set of equations:

2x+ 3y + z = 0

x− y − z = 1

2x+ y = 0

2y + z = −2.

Show that one of the singular values is close to zero. Determine the two larger

singular values by an appropriate iteration process and the smallest by indirect

calculation.

The matrix and its (Hermitian) transpose associated with the set of equations are

A =


2 3 1

1 −1 −1

2 1 0

0 2 1

 , A† =

 2 1 2 0

3 −1 1 2

1 −1 0 1

 ,
and their 3 × 3 product is

A†A =

 9 7 1

7 15 6

1 6 3

 .
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To determine the singular values of A we find the eigenvalues of this product:

0 =

∣∣∣∣∣∣
9 − λ 7 1

7 15 − λ 6

1 6 3 − λ

∣∣∣∣∣∣
= (9 − λ)(9 − 18λ+ λ2) + 7(7λ− 15) + 1(λ+ 27)

= −(λ3 − 27λ2 + 121λ− 3).

This is the equation satisfied by the squares of the singular values of A.

Using the properties of the three roots λi of the cubic equation, we conclude that,

since their sum
∑

i λi = 27 whilst their product is only
∏

i λi = 3, at least one of

the roots must be close to zero.

Using either the rearrangement iteration method,

xn+1 =
(
27x2

n − 121xn + 3
)1/3

,

or the Newton-Raphson method,

xn+1 = xn − x3
n − 27x2

n + 121xn − 3

3x2
n − 54xn + 121

,

the two larger roots are found to be 21.33521 and 5.639852. The third root can

be found most accurately as 3/(21.33521 × 5.639852) = 0.024938.

The corresponding singular values are the square roots of these eigenvalues,

namely, 4.6190, 2.3748 and 0.1579.

8.42 Find the SVD form of the matrix

A =


22 28 −22

1 −2 −19

19 −2 −1

−6 12 6

 .
Use it to determine the best solution x of the equation Ax = b when (i) b =

(6 −39 15 18)T, (ii) b = (9 −42 15 15)T, showing that (i) has an exact

solution, but that the best solution to (ii) has a residual of
√

18.
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We start by computing

A†A =

 22 1 19 −6

28 −2 −2 12

−22 −19 −1 6




22 28 −22

1 −2 −19

19 −2 −1

−6 12 6


=

 882 504 −558

504 936 −504

−558 −504 882

 .
And then find its eigenvalues:

|A†A − λ| =

∣∣∣∣∣∣
882 − λ 504 −558

504 936 − λ −504

−558 −504 882 − λ

∣∣∣∣∣∣
=

∣∣∣∣∣∣
324 − λ 0 324 − λ

504 936 − λ −504

−558 −504 882 − λ

∣∣∣∣∣∣
= (324 − λ)

(∣∣∣∣ 936 − λ −504

−504 882 − λ

∣∣∣∣+ ∣∣∣∣ 504 936 − λ

−558 −504

∣∣∣∣)
= (324 − λ)(λ2 − 1818λ+ 571536 − 558λ+ 268272)

= (324 − λ)(λ2 − 2376λ+ 839808)

= (324 − λ)(λ− 432)(λ− 1944).

This shows that the singular values (
√
λ) are 18

√
6, 12

√
3 and 18. We have, as

usual, taken the singular values to be positive; this choice is reflected in the signs

of the terms in the matrix U calculated later.

The corresponding normalised eigenvectors (x1, x2, x3)
T satisfy:

−1062x1 + 504x2 − 558x3 = 0,

504x1 − 1008x2 − 504x3 = 0. ⇒ v1 =
1√
3

(1, 1, −1)T .

450x1 + 504x2 − 558x3 = 0,

504x1 + 504x2 − 504x3 = 0. ⇒ v2 =
1√
6

(1, −2, −1)T .

558x1 + 504x2 − 558x3 = 0,

504x1 + 504x2 − 504x3 = 0. ⇒ v3 =
1√
2

(1, 0, 1)T .

The next step is to calculate the (normalised) column vectors ui from (si)
−1Avi =
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ui:

u1 =
1

18
√

6

1√
3


22 28 −22

1 −2 −19

19 −2 −1

−6 12 6


 1

1

−1

 =
1

3
√

2


4

1

1

0

 .

u2 =
1

12
√

3

1√
6


22 28 −22

1 −2 −19

19 −2 −1

−6 12 6


 1

−2

−1

 =
1

3
√

2


−1

2

2

−3

 .

u3 =
1

18

1√
2


22 28 −22

1 −2 −19

19 −2 −1

−6 12 6


 1

0

1

 =
1√
2


0

−1

1

0

 .
Although we will not need its components for the present exercise, we now find

the fourth base vector (to make U a unitary matrix). It has to be orthogonal

to the three vectors just found; simple simultaneous equations show that, when

normalised, it is u4 = (1/
√

18)(−1 2 2 3)T.

Thus, finally, we are able to write A = USV† explicitly as

1

N


4 −1 0 −1

1 2 −3 2

1 2 3 2

0 −3 0 3




18
√

6 0 0

0 12
√

3 0

0 0 18

0 0 0




√
2

√
2 −

√
2

1 −2 −1√
3 0

√
3

 ,
where N =

√
18 ×

√
6.

The best solution to Ax = b is given by x = VS̄U†b. We therefore compute

R = VS̄U† as (with N defined as previously)

1

N


√

2 1
√

3√
2 −2 0

−
√

2 −1
√

3




1

18
√

6
0 0 0

0 1

12
√

3
0 0

0 0 1
18

0




4 1 1 0

−1 2 2 −3

0 −3 3 0

−1 2 2 3



=
1

N


1

18
√

3

1

12
√

3

√
3

18
0

1

18
√

3
− 1

6
√

3
0 0

− 1

18
√

3
− 1

12
√

3

√
3

18
0




4 1 1 0

−1 2 2 −3

0 −3 3 0

−1 2 2 3
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=
1√
108

1

36
√

3

 5 −10 26 −9

14 −10 −10 18

−5 −26 10 9

 .
(i) With b = (6 − 39 15 18)T the best solution is

x =
1√
108

1

36
√

3

 5 −10 26 −9

14 −10 −10 18

−5 −26 10 9




6

−39

15

18


x1 = 1

648
(30 + 390 + 390 − 162) = 1,

x2 = 1
648

(84 + 390 − 150 + 324) = 1,

x3 = 1
648

(−30 + 1014 + 150 + 162) = 2.

Thus, the best solution is (1, 1, 2)T and the residual vector given by
22 28 −22

1 −2 −19

19 −2 −1

−6 12 6


 1

1

2

−


6

−39

15

18

 =


0

0

0

0

 .
The residual vector is the zero vector and the best solution is an exact solution.

(ii) With b = (9 − 42 15 15)T the best solution is

x =
1√
108

1

36
√

3

 5 −10 26 −9

14 −10 −10 18

−5 −26 10 9




9

−42

15

15

 =
1

36

 40

37

74

 .
With 1

36
(40, 37, 74)T as the best solution, the residual vector is

1

36


22 28 −22

1 −2 −19

19 −2 −1

−6 12 6


 40

37

74

−


9

−42

15

15

 =


−1

2

2

3

 .
We conclude that the solution is not exact and that the residual (equal to the

modulus of the residual vector) is [ (−1)2 + 22 + 22 + 32 ]1/2 =
√

18.
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Normal modes

9.2 A double pendulum, smoothly pivoted at A, consists of two light rigid

rods, AB and BC , each of length l, which are smoothly jointed at B and carry

masses m and αm at B and C respectively. The pendulum makes small oscillations

in one plane under gravity; at time t, AB and BC make angles θ(t) and φ(t)

respectively with the downward vertical. Find quadratic expressions for the kinetic

and potential energies of the system and hence show that the normal modes have

angular frequencies given by

ω2 =
g

l

[
1 + α±

√
α(1 + α)

]
.

For α = 1/3, show that in one of the normal modes the mid-point of BC does not

move during the motion.

For small oscillations, the sideways displacements and consequent velocities of

the masses are

x1 = lθ and ẋ1 = lθ̇

x2 = lθ + lφ and ẋ2 = lθ̇ + lφ̇

To first order in small quantities (i.e. ignoring any vertical components of velocity)

the total kinetic energy of the system is therefore

KE = 1
2
mẋ2

1 + 1
2
αmẋ2

2

= 1
2
ml2[θ̇2 + α(θ̇2 + 2θ̇φ̇+ φ̇2)],

and the kinetic energy matrix

T = 1
2
ml2
(

1 + α α

α α

)
.
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Remembering that the raising of the lower mass receives a contribution from

that of the upper mass and working to second order in the displacements, the

potential energy is

PE = mgl(1 − cos θ) + αmgl[(1 − cos θ) + (1 − cosφ)]

≈ 1
2
mglθ2 + 1

2
αmgl(θ2 + φ2).

The potential energy matrix is therefore

V = 1
2
mgl

(
1 + α 0

0 α

)
.

The normal frequencies, determined by | − ω2T + V| = 0, are given by

1
2
m

∣∣∣∣ −l2ω2

(
1 + α α

α α

)
+ gl

(
1 + α 0

0 α

)∣∣∣∣ = 0.

Writing ω2l/g as λ, this requirement is∣∣∣∣ (1 + α) − λ(1 + α) −λα
−λα α− λα

∣∣∣∣ = 0,

i.e. (1+α)(1−λ)α(1−λ)−λ2α2 = λ2−2(1+α)λ+(1+α) = 0

The angular frequencies of the two normal modes are given by the roots of this

quadratic equation as

ω2 =
gλ

l
=
g

l
[(1 + α) ±

√
α(1 + α)]. (∗)

For α = 1
3

the two values of ω2 become
2g

l
and

2g

3l
, and the components of the

solution vector must satisfy (using the second line of the matrix-vector equation)

−2
1

3
θ +

(
1

3
− 2

3

)
φ = 0 ⇒ φ = −2θ when λ = 2,

−2

3

1

3
θ +

(
1

3
− 2

9

)
φ = 0 ⇒ φ = 2θ when λ =

2

3
.

For the mid-point of BC , x = lθ + 1
2
lφ. In the higher frequency mode, φ = −2θ

and ẋ = lθ̇ + 1
2
l(−2θ̇) = 0, i.e. the mid-point does not move.

Note It is of some interest to check that (∗) gives the correct limits for small and

large α. It obviously leads (correctly) to ω2 = g/l (repeated) as α → 0. For α → ∞
one solution has an (unphysical) infinite frequency; the other has

lω2

g
= lim

α→∞
1 + α−

√
α(1 + α) = lim

α→∞
1 + α− α

(
1 +

1

α

)1/2

= lim
α→∞

1 + α− α

(
1 +

1

2α
+ · · ·

)
=

1

2
,
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L1 L2

CC

C

I1 I2

Q1 Q2

Q3

Figure 9.1 The circuit and notation for example 9.4.

i.e. the correct value for a simple pendulum of length 2l.

9.4 Consider the circuit consisting of three equal capacitors and two different

inductors shown in figure 9.1. For charges Qi on the capacitors and currents Ii
through the components, write down Kirchhoff ’s law for the total voltage change

around each of two complete circuit loops. Note that, to within an unimportant

constant, the conservation of current implies that Q3 = Q1 −Q2 and hence express

the loop equations in the form given in (9.7), namely

AQ̈ + BQ = 0.

Use this to show that the normal frequencies of the circuit are given by

ω2 =
1

CL1L2

[
L1 + L2 ± (L2

1 + L2
2 − L1L2)

1/2
]
.

Obtain the same matrices and result by finding the total energy stored in the various

capacitors (typically Q2/(2C)) and in the inductors (typically LI2/2).

For the special case L1 = L2 = L determine the relevant eigenvectors and so

describe the patterns of current flow in the circuit.

We apply Kirchhoff’s law to a loop taken round the left-hand part of the circuit

and to one taken round the whole circuit (one round the right-hand part does not

give any further independent information as there are only two currents needed

to specify the situtation).

L1İ1 +
Q1

C
+
Q3

C
= 0,

L1İ1 +
Q1

C
+
Q2

C
+ L2İ2 = 0,

with I1 = Q̇1, I2 = Q̇2 and I1 − I2 = Q̇3 = Q̇1 − Q̇2.
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Writing everything in terms of Q1, Q2 and their time derivatives,

L1Q̈1 +
Q1

C
+
Q1 − Q2

C
= 0,

L1Q̈1 +
Q1

C
+
Q2

C
+ L2Q̈2 = 0.

In matrix and vector form, AQ̈ + BQ = 0, these equations read(
L1 0

L1 L2

)(
Q̈1

Q̈2

)
+

(
2C−1 −C−1

C−1 C−1

)(
Q1

Q2

)
=

(
0

0

)
.

To find the normal frequencies, we now have to solve |B − ω2A| = 0. After

mutiplying through by C , this reads∣∣∣∣ 2 − ω2L1C −1

1 − ω2L1C 1 − ω2L2C

∣∣∣∣ = 0,

2 − (L1 + 2L2)Cω
2 + L1L2C

2ω4 + 1 − L1Cω
2 = 0,

L1L2C
2ω4 − 2(L1 + L2)Cω

2 + 3 = 0.

Hence the normal frequencies are

ω2 =
(L1 + L2)C ±

√
(L1 + L2)2C2 − 3L1L2C2

L1L2C2

=
1

CL1L2

[
L1 + L2 ± (L2

1 + L2
2 − L1L2)

1/2
]
.

We now repeat this derivation, working in terms of stored energy, rather than the

equations of motion.

The total ‘kinetic energy’ is the energy stored in the magnetic fields of the inductors

(typically 1
2
LI2). This is

T = 1
2
L1I

2
1 + 1

2
L2I

2
2 .

The ‘potential energy’ term is the energy stored in the capacitors (typically
1
2
C−1Q2). This is

V = 1
2
C−1[Q2

1 + Q2
2 + (Q1 − Q2)

2 ].

The charateristic equation determining (the squares of) the normal mode fre-

quencies is therefore ∣∣∣∣ 2C−1 − ω2L1 −C−1

−C−1 2C−1 − ω2L2

∣∣∣∣ = 0,

4C−2 − 2(L1 + L2)C
−1ω2 + L1L2ω

4 − C−2 = 0.

After multiplication by C2, this is the same equation as that obtained previously

and has the same roots for ω2.
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If L1 = L2 = L then one mode has ω2 = (LC)−1 and the eigenvector is given by

(2 − 1)Q1 − Q2 = 0 ⇒ Q1 = Q2.

Under these circumstances Q3 = 0 and no current flows through the central

capacitor.

The other mode has ω2 = 3(LC)−1; for this mode,

(2 − 3)Q1 − Q2 = 0 ⇒ Q1 = −Q2.

In this case, equal currents I (one clockwise, one anticlockwise) flow in the two

loops and the current through the central capacitor is 2I .

9.6 The simultaneous reduction to diagonal form of two real symmetric

quadratic forms.

Consider the two real symmetric quadratic forms uTAu and uTBu, where uT stands

for the row matrix (x y z), and denote by un those column matrices that satisfy

Bun = λnAun (∗),

in which n is a label and the λn are real, non-zero and all different.

(a) By multiplying (∗) on the left by (um)T and the transpose of the corresponding

equation for um on the right by un, show that (um)TAun = 0 for n �= m.

(b) By noting that Aun = (λn)
−1Bun, deduce that (um)TBun = 0 for m �= n.

(c) It can be shown that the un are linearly independent; the next step is to

construct a matrix P whose columns are the vectors un.

(d) Make a change of variables u = Pv such that uTAu becomes vTCv, and uTBu

becomes vTDv. Show that C and D are diagonal by showing that cij = 0 if

i �= j and similarly for dij .

Thus u = Pv or v = P−1u reduces both quadratics to diagonal form.

To summarise, the method is as follows:

(a) find the λn that allow (∗) a non-zero solution, by solving |B − λA| = 0;

(b) for each λn construct un;

(c) construct the non-singular matrix P whose columns are the vectors un;

(d) make the change of variable u = Pv.

We are given that AT = A, BT = B and λm �= λn if m �= n.
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(a) From (∗) and its transpose, with n replaced by m in the latter,

Bun = λnAun and (um)TBT = λm(um)TAT,

(um)TBun = λn(u
m)TAun and (um)TBun = λm(um)TAun,

⇒ (λn − λm)(um)TAun = 0,

⇒ (um)TAun = 0 if m �= n.

(b) We next rearrange (∗) to read Aun = (λn)
−1Bun. This equation is of the same

form as (∗) but with the roles of A and B interchanged. It therefore follows that,

since (λm)−1 �= (λn)
−1 for m �= n, (um)TBun = 0 if m �= n.

(c) We now change variables from u to v where the two variables are connected

by u = Pv; here P is the matrix whose columns are the un. Thus

P = (u1 u2 u3), i.e. Pij = (uj)i and PT
ij = (ui)j .

Then,

Q1 = uTAu = (Pv)TA(Pv) = vTPTAPv = vTCv,

where the elements of C are cij given by

cij = (PTAP)ij

= PT
ikAklPlj

= (ui)kAkl(u
j)l

= (ui)TA(uj)

= 0 if i �= j.

Similarly,

Q2 = uTBu = vTDv,

with dij = 0 if i �= j.

Thus, the transformation u = Pv (or v = P−1u) reduces both Q1 and Q2 to

diagonal form. We note that, in general, P is not an orthogonal matrix, even if

the vectors un are normalised.

9.8 (It is recommended that the reader does not attempt this question until

exercise 9.6 has been studied.)

Find a real linear transformation that simultaneously reduces the quadratic forms

3x2 + 5y2 + 5z2 + 2yz + 6zx− 2xy,

5x2 + 12y2 + 8yz + 4zx

to diagonal form.
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With the two quadratic forms

Q1 = xTAx = 3x2 + 5y2 + 5z2 + 2yz + 6zx− 2xy,

Q2 = xTBx = 5x2 + 12y2 + 8yz + 4zx,

we must find the vectors that satisfy Bu = λAu. To do this, we evaluate

|B − λA|

=

∣∣∣∣∣∣
5 − 3λ λ 2 − 3λ

λ 12 − 5λ 4 − λ

2 − 3λ 4 − λ −5λ

∣∣∣∣∣∣
=

∣∣∣∣∣∣
5 36 − 14λ 14 − 6λ

λ 12 − 5λ 4 − λ

2 40 − 16λ 12 − 8λ

∣∣∣∣∣∣
=

∣∣∣∣∣∣
5 −6 + 4λ 14 − 6λ

λ −2λ 4 − λ

2 4 + 8λ 12 − 8λ

∣∣∣∣∣∣
= 5(24λ2 − 52λ− 16) + λ(−16λ2 − 8λ+ 128) + 2(−16λ2 + 50λ− 24)

= −16λ3 + 80λ2 − 32λ− 128.

Setting this expression equal to zero gives the cubic equation satisfied by accept-

able values of λ:

λ3 − 5λ2 + 2λ+ 8 = 0,

(λ+ 1)(λ− 2)(λ− 4) = 0,

⇒ λ = −1 or 2 or 4.

The three required vectors ui must have components that satisfy:

For λ = −1

8x− y + 5z = 0,

−x+ 17y + 5z = 0, ⇒ u1 = (2, 1, −3)T .

For λ = 2

−x+ 2y − 4z = 0,

2x+ 2y + 2z = 0, ⇒ u2 = (−2, 1, 1)T .

For λ = 4

−7x+ 4y − 10z = 0,

4x− 8y = 0, ⇒ u3 = (2, 1, −1)T .
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The final step is to form the transformation matrix P, using these three vectors

as its columns:

P =

 2 −2 2

1 1 1

−3 1 −1


and read off from its rows the required transformation

x = 2ξ − 2η + 2χ,

y = ξ + η + χ,

z = −3ξ + η − χ.

[ They are not needed for the question as set, but the transformed expressions

are 16ξ2 + 16η2 + 4χ2 and −16ξ2 + 32η2 + 16χ2; as expected, they contain no

cross terms. Note that corresponding coefficients are in the ratio given by the

associated eigenvalue. Explicitly: −16/16 = −1 for ξ; 32/16 = 2 for η; 16/4 = 4

for χ. ]

9.10 Use the Rayleigh–Ritz method to estimate the lowest oscillation frequency

of a heavy chain of N links, each of length a (= L/N), which hangs freely from

one end. Consider simple calculable configurations such as all links but one vertical,

or all links collinear, etc.

Intuitively, having all links collinear should give a good estimate of the lowest

oscillation frequency of the chain. However, the example discussed in the text,

of a rod on the end of a string, suggests that in the true lowest-frequency mode

the lower links will tend to be at a larger inclination to the vertical than are the

upper ones.

With θi as the (small) angle the ith link makes with the vertical, the potential

energy of the ith link is

mg

i−1∑
j=1

a(1 − cos θj) + mg
a

2
(1 − cos θi) ≈ mga

2

 i−1∑
j=1

θ2
j + 1

2
θ2
i

 .
The lateral velocity of the same link is

i−1∑
j=1

aθ̇j + 1
2
aθ̇i.

The link’s kinetic energy is therefore

1

2
m

 i−1∑
j=1

aθ̇j + 1
2
aθ̇i

2

.
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It also has some rotational kinetic energy about its own centre of mass but this

is small compared to the two contributions considered above and can be ignored

in an estimate such as this.

The two quadratic forms xTAx and xTBx are, respectively, the total kinetic energy

divided by ω2 and the total potential energy. We now evaluate them with the

trial configuration

x = (θ1, θ2, . . . , θN)T = α(1, 1, . . . , 1)T.

The contribution of the ith link to the potential energy is

mga

2

 i−1∑
j=1

θ2
j + 1

2
θ2
i

 =
mga

2
(i− 1

2
)α2,

and its contribution to xTAx/ω2 is

1

2
m

 i−1∑
j=1

aθ̇j + 1
2
aθ̇i

2

=
ma2

2
(i− 1

2
)2α2.

For the whole chain:

V = 1
2
mgaα2

∑N
i=1(i− 1

2
)

= 1
2
mgaα2[ 1

2
N(N + 1) − 1

2
N ] = 1

4
mgaα2N2.

T

ω2
= 1

2
ma2α2

∑N
i=1(i− 1

2
)2

= 1
2
ma2α2[ 1

6
N(N + 1)(2N + 1) − 1

2
N(N + 1) + 1

4
N ]

≈ 1
6
ma2α2N3 for large N.

Thus the estimate is

λ ≈
1
4
mgaα2N2

1
6
ma2α2N3

=
3g

2Na
=

3g

2L
.
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Vector calculus

10.2 At time t = 0, the vectors E and B are given by E = E0 and B = B0,

where the fixed unit vectors E0 and B0 are orthogonal. The equations of motion

are

dE

dt
= E0 + B × E0,

dB

dt
= B0 + E × B0.

Find E and B at a general time t, showing that after a long time the directions of

E and B have almost interchanged.

Use a coordinate system in which E0 has components (1, 0, 0) and B0 has compo-

nents (0, 1, 0). Then

B × E0 = (0, Bz,−By) and E × B0 = (−Ez, 0, Ex)

and, on equating components in the equations of motion,

dEx

dt
= 1,

dEy

dt
= Bz,

dEz

dt
= −By,

dBx

dt
= −Ez,

dBy

dt
= 1,

dBz

dt
= Ex.

Recalling that Ex(0) = 1 = By(0), we see that the first and fifth of these equations

integrate to

Ex = t+ 1 and By = t+ 1.
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We note that all other components have zero values at t = 0, leading to:

dBz

dt
= Ex = t+ 1 ⇒ Bz = 1

2
t2 + t,

dEz

dt
= −By = −t− 1 ⇒ Ez = − 1

2
t2 − t,

dEy

dt
= Bz = 1

2
t2 + t ⇒ Ey = 1

6
t3 + 1

2
t2,

dBx

dt
= −Ez = 1

2
t2 + t ⇒ Bx = 1

6
t3 + 1

2
t2.

Thus,

E(t) = (t+ 1, 1
6
t3 + 1

2
t2,− 1

2
t2 − t) and B(t) = (1

6
t3 + 1

2
t2, t+ 1, 1

2
t2 + t).

So, after a long time, when the terms cubic in t dominate, E is almost along the

y-direction and B is almost along the x-direction, i.e. the directions of E and B

have almost interchanged.

10.4 Use vector methods to find the maximum angle to the horizontal at which

a stone may be thrown so as to ensure that it is always moving away from the

thrower.

The equation of motion of the stone is

r̈ = g with ṙ(0) = v0 and r(0) = 0.

Integrating the equation with the given boundary conditions yields

ṙ = gt+ v0 and r = 1
2
gt2 + v0t.

The requirement that the stone is always moving away from the thrower can be

expressed as ṙ · r > 0 for all t, i.e. that ṙ · r = 0 has no real roots for t > 0:

1
2
g2t3 + 3

2
v0 · gt2 + v20t > 0

for all t, which requires that

4 × 1
2
g2 × v20 > ( 3

2
)2(v0 · g)2,√

8

9
>

v0 · g
v0g

.

This means that the angle between the initial trajectory and the vertical must

exceed cos−1 0.9429 = 19.5◦. The maximum permitted angle to the horizontal is

therefore 70.5◦.
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10.6 Prove that for a space curve r = r(s), where s is the arc length measured

along the curve from a fixed point, the triple scalar product(
dr

ds
× d2r

ds2

)
· d

3r

ds3

at any point on the curve has the value κ2τ, where κ is the curvature and τ the

torsion at that point.

We start from the relationship

b̂ = t̂ × n̂

in which b̂, t̂ and n̂ are respectively the binormal, tanget and normal unit vectors at

a point on the curve. This is differentiated with respect to s and use is made of the

Frenet-Serret formulae. One of these is needed in the form κn̂ = dt̂/ds = d2r/ds2

or, in terms of the radius of curvature ρ, n̂ = ρ dt̂/ds = ρ d2r/ds2.

b̂ = t̂ × n̂,

db̂

ds
=

(
dt̂

ds
× n̂

)
+

(
t̂ × dn̂

ds

)
,

−τn̂ = (κn̂ × n̂) +

(
t̂ × dn̂

ds

)
,

−τρd
2r

ds2
= 0 +

dr

ds
× d

ds

(
ρ
dt̂

ds

)
=
dr

ds
× d

ds

(
ρ
d2r

ds2

)
= ρ

(
dr

ds
× d3r

ds3

)
+

(
dr

ds
× d2r

ds2

)
dρ

ds
.

We now take the scalar product of this vector equation with d2r/ds2 (sometimes

written as κn̂) and obtain

−τρκ2(n̂ · n̂) = ρ

(
dr

ds
× d3r

ds3

)
· d

2r

ds2
+
dρ

ds

(
dr

ds
× d2r

ds2

)
· d

2r

ds2
,

−τκ2 =

(
dr

ds
× d3r

ds3

)
· d

2r

ds2
+ 0,

τκ2 =

(
dr

ds
× d2r

ds2

)
· d

3r

ds3
,

i.e. as stated in the question.
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10.8 The shape of the curving slip road joining two motorways that cross at

right angles and are at vertical heights z = 0 and z = h can be approximated by

the space curve

r =

√
2h

π
ln cos

(zπ
2h

)
i +

√
2h

π
ln sin

(zπ
2h

)
j + zk.

Show that the radius of curvature ρ of the slip road is (2h/π) cosec (zπ/h) at

height z and that the torsion τ = −1/ρ. (To shorten the algebra, set z = 2hθ/π

and use θ as the parameter.)

The slip road is given by

r = A(ln cos θ, ln sin θ,
√

2θ),

where A =
√

2h/π. It follows that

dr

dθ
= A(− tan θ, cot θ,

√
2)

and

ds

dθ
= A(tan2 θ + cot2 θ + 2)1/2

= A(sec2 θ + cosec 2θ)1/2

=
A

(sin2 θ cos2 θ)1/2
=

A

sin θ cos θ
.

Next,

t̂ =
dr

ds
=
dr

dθ

dθ

ds

= A(− tan θ, cot θ,
√

2)
sin θ cos θ

A

= (− sin2 θ, cos2 θ,
√

2 sin θ cos θ).

from which it follows that

1

ρ
n̂ =

dt̂

ds
=
dt̂

dθ

dθ

ds
=

sin θ cos θ

A
(− sin 2θ, − sin 2θ,

√
2 cos 2θ).

Thus,

1

ρ
=

sin θ cos θ

A
(sin2 2θ + sin2 2θ + 2 cos2 2θ)1/2 =

√
2 sin θ cos θ

A

and, as was required to be shown,

ρ =
√

2A cosec 2θ =
2h

π
cosec

(πz
h

)
.
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With n̂ a unit vector in the direction of dt̂/ds, we have

n̂ =
1√
2
(− sin 2θ, − sin 2θ,

√
2 cos 2θ) and

t̂ = (− sin2 θ, cos2 θ,
√

2 sin θ cos θ),

⇒ b̂ = t̂ × n̂ = (cos2 θ, − sin2 θ,
√

2 sin θ cos θ).

and
db̂

ds
=
db̂

dθ

dθ

ds
=

sin θ cos θ

A
(− sin 2θ, − sin 2θ,

√
2 cos 2θ)

=

√
2 sin θ cos θ

A
n̂.

From this it follows that

τ = −n̂ · db̂
ds

=
−

√
2 sin θ cos θ√

2h/π
= − π

2h
sin
(zπ
h

)
= − 1

ρ
.

10.10 Find the areas of the given surfaces using parametric coordinates.

(a) Using the parameterization x = u cosφ, y = u sinφ, z = u cotΩ, find the

sloping surface area of a right circular cone of semi-angle Ω whose base has

radius a. Verify that it is equal to 1
2
× perimeter of the base × slope height.

(b) Using the same parameterization as in (a) for x and y, and an appropriate

choice for z, find the surface area between the planes z = 0 and z = Z of

the paraboloid of revolution z = α(x2 + y2).

(a) With x = u cosφ, y = u sinφ, and z = u cotΩ,

∂r

∂u
= (cosφ, sinφ, cot Ω),

∂r

∂θ
= (−u sinφ, u cosφ, 0),

∂r

∂u
× ∂r

∂θ
= (−u cosφ cotΩ, −u sinφ cotΩ, u),∣∣∣∣ ∂r∂u × ∂r

∂θ

∣∣∣∣ = u(1 + cot2 Ω)1/2 = u cosec Ω.

Thus dS = u cosec Ω du dφ and the total surface area is

S =

∫ 2π

0

dφ

∫ a

0

u cosec Ω du = πa2cosec Ω.

This can clearly be written as 1
2

× 2πa× a cosec Ω, i.e. 1
2
× perimeter of the base

× slope height of the cone.
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(b) With the given parameterization for x and y, we have

z = α(x2 + y2) = αu2,

and so

dr

du
= (cosφ, sinφ, 2αu),

dr

dφ
= (−u sinφ, u cosφ, 0),

dS =

∣∣∣∣ ∂r∂u × ∂r

∂φ

∣∣∣∣ du dφ = | (−2αu2 cosφ, −2αu2 sinφ, u) | du dφ

= (u2 + 4α2u4)1/2 du dφ = u(1 + 4α2u2)1/2 du dφ.

The total area is thus

S =

∫ 2π

0

dφ

∫ (Z/α)1/2

0

u(1 + 4α2u2)1/2 du

= 2π

[
2

3

(1 + 4α2u2)3/2

8α2

](Z/α)1/2

0

=
π

6α2

[
(1 + 4αZ)3/2 − 1

]
.

This is only the curved surface area; if the plane end of the paraboloid is also

counted, an additional πZ/α must be included.

10.12 For the function

z(x, y) = (x2 − y2)e−x2−y2

,

find the location(s) at which the steepest gradient occurs. What are the magni-

tude and direction of that gradient? The algebra involved is easier if plane polar

coordinates are used.

The function is antisymmetric under the interchange of x and y and so we need

to consider explicitly only x > 0.

With x = ρ cosφ and y = ρ sinφ we can write z(x, y) = f(ρ, φ) as

f(ρ, φ) = ρ2(cos2 φ− sin2 φ)e−ρ2

= ρ2 cos 2φe−ρ2

.

From this it follows that

∇f =
(
2(ρ− ρ3)e−ρ2

cos 2φ,−2ρ2e−ρ2

sin 2φ
)
,

|∇f|2 = 4ρ2e−2ρ2

[ (1 − ρ2)2 cos2 2φ+ ρ2 sin2 2φ ]

= 4se−2s[ (1 − s)2 cos2 2φ+ s sin2 2φ ],
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where we have set ρ2 = s for brevity.

For the line of steepest gradient,

(i) ∂|∇f|2/∂φ = 0 giving

−4(1 − s)2 cos 2φ sin 2φ+ 4s sin 2φ cos 2φ = 0,

i.e. sin 4φ = 0 and φ = nπ/4 or s = (1 − s)2 ⇒ s = (3 ±
√

5)/2.

(ii) ∂|∇f|2/∂ρ = 0 or, alternatively, ∂|∇f|2/∂s = 0. We therefore require that

(1 − 2s)[(1 − s)2 cos2 2φ+ s sin2 2φ] + s[−2(1 − s) cos2 2φ+ sin2 2φ] = 0. (∗)

We now need to examine the various possible combinations of conditions.

For sin 2φ = 0, cos2 2φ = 1 and (∗) reduces to

(1 − 2s)(1 − s)2 − 2s(1 − s) = 0 ⇒ s = 1 or s =
5 ±

√
17

4
.

The corresponding values of |∇f|2, obtained by direct substitution, are 0, 0.156

and 0.345.

For cos 2φ = 0, sin2 2φ = 1 and (∗) reduces to

(1 − 2s)s+ s = 0 ⇒ s = 0 or s = 1.

The corresponding values of |∇f|2, obtained by direct substitution, are 0 and

4e−2 = 0.541.

In the third case, when s = (1 − s)2, |∇f|2 has no φ dependence and takes the

form 4s2e−2s, which has values 0.146 and 0.272 at s = (3 ±
√

5)/2

The largest of these seven values is 0.541, obtained when cos 2φ = 0, i.e. when

φ = ±π/4 and s = 1. Thus the steepest gradient occurs on the circle ρ = 1 at the

points x = ±1/
√

2, y = ±1/
√

2. The gradient vector there is

∇f(ρ, φ) = (0,−2e−2 sin 2φ)

and is therefore azimuthal along the lines x± y = ±
√

2 and x± y = ∓
√

2.

10.14 In the following exercises a is a vector field.

(a) Simplify

∇ × a(∇ · a) + a × [∇ × (∇ × a)] + a × ∇2a.

(b) By explicitly writing out the terms in Cartesian coordinates prove that

[c · (b · ∇) − b · (c · ∇)] a = (∇ × a) · (b × c).

(c) Prove that a × (∇ × a) = ∇( 1
2
a2) − (a · ∇)a.

(a) Using results given in the text for ∇ × (φa) and for ∇ × (∇ × a), the first two
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terms can be expanded, as follows.

∇ × a(∇ · a) = ∇(∇ · a) × a + (∇ · a)(∇ × a),

a × [∇ × (∇ × a)] = [a × ∇(∇ · a)] − [a × ∇2a].

Substituting these into the original expression gives

∇(∇ · a) × a + (∇ · a)(∇ × a) + a × ∇(∇ · a) − a × ∇2a + a × ∇2a.

Thus the original expression is equal to (∇ · a)(∇ × a).

(b) The first term on the LHS is

c · (b · ∇)a = cxbx
∂ax

∂x
+ cxby

∂ax

∂y
+ cxbz

∂ax

∂z

+ cybx
∂ay

∂x
+ cyby

∂ay

∂y
+ cybz

∂ay

∂z

+ czbx
∂az

∂x
+ czby

∂az

∂y
+ czbz

∂az

∂z
.

The second term has the same form, but with b and c interchanged. The difference

between the two is therefore

(cxby − bxcy)
∂ax

∂y
+ (cxbz − bxcz)

∂ax

∂z
+ (cybx − bycx)

∂ay

∂x

+ (cybz − bycz)
∂ay

∂z
+ (czbx − bzcx)

∂az

∂x
+ (czby − bzcy)

∂az

∂y
.

= (bxcy − bycx)

(
∂ay

∂x
− ∂ax

∂y

)
+ (bycz − bzcy)

(
∂az

∂y
− ∂ay

∂z

)
+(bzcx − bxcz)

(
∂ax

∂z
− ∂az

∂x

)
= (b × c)z(∇ × a)z + (b × c)x(∇ × a)x + (b × c)y(∇ × a)y

= (b × c) · (∇ × a),

as stated.

(c) Consider the z-component of the LHS.

[a × (∇ × a)]z = ax(∇ × a)y − ay(∇ × a)x

= ax

(
∂ax

∂z
− ∂az

∂x

)
− ay

(
∂az

∂y
− ∂ay

∂z

)
= ax

∂ax

∂z
+ ay

∂ay

∂z
+ az

∂az

∂z
− az

∂az

∂z
− ax

∂az

∂x
− ay

∂az

∂y

=
1

2

∂

∂z

(
a2
x + a2

y + a2
z

)
− (a · ∇)az

=
[
∇( 1

2
a2) − (a · ∇)a

]
z

= z-component of RHS.
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In the third line az(∂az/∂z) was both added and subtracted. The corresponding

results for the x- and y-components can be proved in the same way, thus

establishing the vector result.

10.16 Verify that (10.42) is valid for each component separately when a is the

Cartesian vector x2y i + xyz j + z2y k, by showing that each side of the equation

is equal to z i + (2x+ 2z) j + x k.

With a = (x2y, xyz, z2y) we have:

For the RHS ∇ · a = 2xy + xz + 2zy,

∇(∇ · a) = (2y + z, 2x+ 2z, x+ 2y),

∇2a = (2y, 0, 2y),

∇(∇ · a) − ∇2a = (z, 2x+ 2z, x).

For the LHS ∇ × a = (z2 − xy, 0, yz − x2),

∇ × (∇ × a) = (z, 2z + 2x, x).

This verifies that the vector equality is valid term-by-term for this vector field

expressed in Cartesian coordinates.

10.18 Evaluate the Laplacian of a vector field using two different coordinate

systems as follows.

(a) For cylindrical polar coordinates ρ, φ, z evaluate the derivatives of the three

unit vectors with respect to each of the coordinates, showing that only ∂êρ/∂φ

and ∂êφ/∂φ are non-zero.

(i) Hence evaluate ∇2a when a is the vector êρ, i.e. a vector of unit

magnitude everywhere directed radially outwards from the z-axis.

(ii) Note that it is trivially obvious that ∇×a = 0 and hence that equation

(10.41) requires that ∇(∇ · a) = ∇2a.

(iii) Evaluate ∇(∇ · a) and show that the latter equation holds, but that

[∇(∇ · a)]ρ �= ∇2aρ.

(b) Rework the same problem in Cartesian coordinates (where, as it happens,

the algebra is more complicated).

161



VECTOR CALCULUS

r
dφdφ

dφ
êρ

êφ

dêφ = −dφêρ

dêρ = dφêφ

Figure 10.1 The changes in the unit base vectors calculated in exercise 10.18.

(a) It is clear that êz does not depend upon the position at which it is evaluated

(recall that the vectors are determined by their magnitudes and directions, and

not by their absolute positions in space); consequently all of its derivatives are

zero.

Equally, êρ and êφ are unaltered if only the value of z is changed; thus ∂êρ/∂z =

∂êφ/∂z = 0.

In the same way, ∂êρ/∂ρ = ∂êφ/∂ρ = 0 are both zero.

That leaves only possible variations of êρ and êφ with φ to consider. Figure

10.1, a section in any plane of constant z, shows these two unit vectors and the

changes in them. When φ is changed to φ+dφ, êρ changes direction by dφ and its

vector position has been changed by an amount 1×dφ in the azimuthal direction

parallel to êφ, i.e.

dêρ = dφ êφ ⇒ ∂êρ

∂φ
= êφ.

The same change, dφ, also causes êφ to change direction and alter its vector

position by an amount of magnitude dφ. But this change is along the radial

direction êρ and directed towards the polar axis, i.e.

dêφ = −dφ êρ ⇒ ∂êφ
∂φ

= −êρ.

(i) With a = (1, 0, 0),

∇2a = ∇2(1 êρ)

=
1

ρ

∂

∂ρ

(
ρ
∂êρ
∂ρ

)
+

1

ρ2

∂

∂φ

∂êρ
∂φ

+
∂

∂z

∂êρ
∂z

= 0 +
1

ρ2

∂êφ
∂φ

+ 0

=
1

ρ2
(−êρ).

(ii) and (iii). Using the expressions for the divergence and gradient in cylindrical
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polar coordinates, as given in the text, we have

∇ · a =
1

ρ

∂

∂ρ
(ρ 1) + 0 + 0 =

1

ρ
.

∇(∇ · a) = − 1

ρ2
êρ + 0 êφ + 0 êz = − 1

ρ2
êρ.

In this case, in which ∇ × a, and hence ∇ × (∇ × a), are trivially zero everywhere,

this verifies the more general result

∇ × (∇ × a) = ∇(∇ · a) − ∇2a.

However, even in this especially simple case, it is clear that ∇2aρ = ∇21 = 0 whilst

the ρ-component of ∇(∇ · a) is equal to −1/ρ2; this shows that the equality does

not hold component-by-component.

(b) In Cartesian coordinates, the same vector field takes the form

a =

(
x

(x2 + y2)1/2
,

y

(x2 + y2)1/2
, 0

)
.

Straightforward but somewhat tedious differentiation gives the required partial

derivatives of the x-component as

∂ax

∂x
=

y2

(x2 + y2)3/2
,

∂ax

∂y
=

−xy
(x2 + y2)3/2

,

∂2ax

∂x2
=

−3y2x

(x2 + y2)5/2
,

∂2ax

∂x2
=

2y2x− x3

(x2 + y2)5/2
.

Together with the obvious ∂2ax/∂z
2 = 0, these results give

∇2ax =
−3y2x

(x2 + y2)5/2
+

2y2x− x3

(x2 + y2)5/2
= − x

(x2 + y2)3/2
.

But,

[∇(∇ · a)]x =
∂

∂x

(
∂ax

∂x
+
∂ay

∂y

)
=

∂

∂x

(
y2

(x2 + y2)3/2
+

x2

(x2 + y2)3/2

)
=

∂

∂x

(
1

(x2 + y2)1/2

)
= − x

(x2 + y2)3/2
,

thus re-establishing the result. Similarly ∇2ay = [∇(∇ · a)]y .
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10.20 For a description in spherical polar coordinates with axial symmetry of

the flow of a very viscous fluid, the components of the velocity field u are given in

terms of the stream function ψ by

ur =
1

r2 sin θ

∂ψ

∂θ
, uθ =

−1

r sin θ

∂ψ

∂r
.

Find an explicit expression for the differential operator E defined by

Eψ = −(r sin θ)(∇ × u)φ.

The stream function satisfies the equation of motion E2ψ = 0 and, for the flow of

a fluid past a sphere, takes the form ψ(r, θ) = f(r) sin2 θ. Show that f(r) satisfies

the (ordinary) differential equation

r4f(4) − 4r2f′′ + 8rf′ − 8f = 0.

Using the formulae given in the text, we have

(∇ × u)φ =
r sin θ

r2 sin θ

[
∂

∂r
(ruθ) − ∂ur

∂θ

]
=

1

r

[
∂

∂r

(
−1

sin θ

∂ψ

∂r

)
− ∂

∂θ

(
1

r2 sin θ

∂ψ

∂θ

)]
= − 1

r sin θ

∂2ψ

∂r2
− 1

r3
∂

∂θ

(
1

sin θ

∂ψ

∂θ

)
.

Hence, E is the operator

E =
∂2

∂r2
+

sin θ

r2
∂

∂θ

(
1

sin θ

∂

∂θ

)
.

With ψ(r, θ) = f(r) sin2 θ,

Eψ = f′′ sin2 θ +
f sin θ

r2
∂

∂θ

(
2 sin θ cos θ

sin θ

)
=

(
f′′ − 2f

r2

)
sin2 θ,

E2ψ =
∂2

∂r2

(
f′′ − 2f

r2

)
sin2 θ +

sin θ

r2
∂

∂θ

(
1

sin θ

∂

∂θ

)(
f′′ − 2f

r2

)
sin2 θ

= sin2 θ

[
f(4) − ∂

∂r

(
−4f

r3
+

2f′

r2

)]
− 2 sin2 θ

r2

(
f′′ − 2f

r2

)
= sin2 θ

[
f(4) − 12f

r4
+

4f′

r3
− 2f′′

r2
+

4f′

r3
− 2f′′

r2
+

4f

r4

]
= 0.
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Simplifying then gives

f(4) − 4f′′

r2
+

8f′

r3
− 8f

r4
= 0,

in agreement with the equation stated in the question.

10.22 Non-orthogonal curvilinear coordinates are difficult to work with and

should be avoided if at all possible, but the following example is provided to illus-

trate the content of section 10.10.

In a new coordinate system for the region of space in which the Cartesian coor-

dinate z satisfies z ≥ 0, the position of a point r is given by (α1, α2, R), where α1

and α2 are respectively the cosines of the angles made by r with the x- and y-

coordinate axes of a Cartesian system and R = |r|. The ranges are −1 ≤ αi ≤ 1,

0 ≤ R < ∞.

(a) Express r in terms of α1, α2, R and the unit Cartesian vectors i, j, k.

(b) Obtain expressions for the vectors ei (= ∂r/∂α1, . . . ) and hence show that the

scale factors hi are given by

h1 =
R(1 − α2

2)
1/2

(1 − α2
1 − α2

2)
1/2
, h2 =

R(1 − α2
1)

1/2

(1 − α2
1 − α2

2)
1/2
, h3 = 1.

(c) Verify formally that the system is not an orthogonal one.

(d) Show that the volume element of the coordinate system is

dV =
R2 dα1 dα2 dR

(1 − α2
1 − α2

2)
1/2
,

and demonstrate that this is always less than or equal to the corresponding

expression for an orthogonal curvilinear system.

(e) Calculate the expression for (ds)2 for the system, and show that it differs

from that for the corresponding orthogonal system by

2α1α2R
2

1 − α2
1 − α2

2

dα1dα2.

(a) Clearly, x = Rα1, y = Rα2 and, since z2 = R2 − x2 − y2, z = (1 − α2
1 − α2

2)
1/2R.

To save space we will write (1 − α2
1 − α2

2)
1/2 as β and (1 − α2

1 − α2
2)

−1/2 as γ. We

note that βγ = 1 and that ∂β/∂αi = −γαi. Thus,

r = α1R i + α2R j + βR k.
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(b) The tangent vectors are

e1 =
∂r

∂α1
= R i + 0 j − Rγα1 k,

e2 =
∂r

∂α2
= 0 i + R j − Rγα2 k,

e3 =
∂r

∂R
= α1 i + α2 j + β k,

and so the scale factors are

h2
1 = R2 + R2γ2α2

1 = R2γ2(1 − α2
2) ⇒ h1 = Rγ(1 − α2

2)
1/2,

h2
2 = R2 + R2γ2α2

2 = R2γ2(1 − α2
1) ⇒ h2 = Rγ(1 − α2

1)
1/2,

h2
3 = α2

1 + α2
2 + β2 = 1 ⇒ h3 = 1.

(c) Consider the scalar products:

e1 · e2 = 0 + 0 + R2γ2α1α2 �= 0,

e1 · e3 = α1R + 0 − βγα1R = 0,

e2 · e3 = 0 + α2R − βγα2R = 0.

These show that, whilst both e1 and e2 are orthogonal to e3, they are not

orthogonal to each other, i.e the system is not an orthogonal one.

(d) The volume element is

dV = dα1 dα2 dR |(e1 × e2) · e3|
= dα1 dα2 dR (R2γα1, R

2γα2, R
2) · (α1, α2, β)

= dα1 dα2 dR R
2(γα2

1 + γα2
2 + β)

= dα1 dα2 dR γR
2.

If the system were an orthogonal one, the elemental volume would be

dV⊥ = h1dα1 h2dα2 h3dR = R2γ2(1 − α2
2)

1/2(1 − α2
1)

1/2 dα1 dα2 dR.

The ratio of the two is

dV

dV⊥
=

1

γ(1 − α2
2)

1/2(1 − α2
1)

1/2
=

(1 − α2
1 − α2

2)
1/2

(1 − α2
1 − α2

2 + α2
1α

2
2)

1/2
.

This is always less than or equal to unity, with equality only when α1 and/or α2

is equal to zero.
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(e) We first note that dβ = −γα1 dα1 − γα2 dα2. Then,

(ds)2 = (R dα1 + α1 dR)2 + (R dα2 + α2 dR)2 + (R dβ + β dR)2

= (dα1)
2(R2 + R2γ2α2

1) + (dα2)
2(R2 + R2γ2α2

2)

+ (dR)2(α2
1 + α2

2 + β2) + (dα1 dα2)(2R
2γ2α1α2)

+ (dα1 dR)(2Rα1 − 2Rβγα1) + (dα2 dR)(2Rα2 − 2Rβγα2)

= R2γ2(1 − α2
2)(dα1)

2 + R2γ2(1 − α2
1)(dα2)

2

+ (dR)2 + 2R2γ2α1α2 dα1 dα2

= h2
1(dα1)

2 + h2
2(dα2)

2 + h2
3(dR)2 +

2R2α1α2

1 − α2
1 − α2

2

dα1 dα2.

This establishes the stated result.

10.24 In a Cartesian system, A and B are the points (0, 0,−1) and (0, 0, 1)

respectively. In a new coordinate system a general point P is given by (u1, u2, u3)

with u1 = 1
2
(r1 + r2), u2 = 1

2
(r1 − r2), u3 = φ; here r1 and r2 are the distances AP

and BP and φ is the angle between the plane ABP and y = 0.

(a) Express z and the perpendicular distance ρ from P to the z-axis in terms of

u1, u2, u3.

(b) Evaluate ∂x/∂ui, ∂y/∂ui, ∂z/∂ui, for i = 1, 2, 3.

(c) Find the Cartesian components of ûj and hence show that the new coordi-

nates are mutually orthogonal. Evaluate the scale factors and the infinitesi-

mal volume element in the new coordinate system.

(d) Determine and sketch the forms of the surfaces ui = constant.

(e) Find the most general function f of u1 only that satisfies ∇2f = 0.

We have the following five defining equations:

(i) r21 = x2 + y2 + (z + 1)2,

(ii) r22 = x2 + y2 + (z − 1)2,

(iii) r1 + r2 = 2u1, 1 ≤ u1 < ∞,
(iv) r1 − r2 = 2u2, −1 ≤ u2 ≤ 1,

(v) φ = u3.

(a) Multiplying (iii) by (iv) and subtracting (ii) from (i) gives the equality

4u1u2 = r21 − r22 = (z + 1)2 − (z − 1)2 = 4z ⇒ z = u1u2.
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Writing ρ2 = x2 + y2, the addition of (i) and (ii) gives

2ρ2 + 2z2 + 2 = r21 + r22 = (u1 + u2)
2 + (u1 − u2)

2 = 2u2
1 + 2u2

2,

ρ2 = u2
1 + u2

2 − u2
1u

2
2 − 1

= (u2
1 − 1)(1 − u2

2).

ρ dρ = (1 − u2
2)u1 du1 − (u2

1 − 1)u2 du2.

(b) and (c)

r = ρ cos u3 i + ρ sin u3 j + u1u2 k,

u1 =
∂r

∂u1
=
u1(1 − u2

2)

ρ
cos u3 i +

u1(1 − u2
2)

ρ
sin u3 j + u2 k,

u2 =
∂r

∂u2
= −u2(u

2
1 − 1)

ρ
cos u3 i − u2(u

2
1 − 1)

ρ
sin u3 j + u1 k,

u3 =
∂r

∂u3
= −ρ sin u3 i + ρ cos u3 j.

Next, consider the scalar products:

u1 · u2 =
u1u2(1 − u2

2)(u
2
1 − 1)

ρ2
(− cos2 u3 − sin2 u3) + u1u2

= u1u2(1 − cos2 u3 − sin2 u3) = 0,

u1 · u3 = −(1 − u2
2)u1 cos u3 sin u3 + (1 − u2

2)u1 sin u3 cos u3 = 0,

u2 · u3 = (u2
1 − 1)u2 cos u3 sin u3 − (u2

1 − 1)u2 sin u3 cos u3 = 0.

Thus, the new coordinates form an orthogonal system. Further,

h2
1 =

(1 − u2
2)

2u2
1

ρ2
(cos2 u3 + sin2 u3) + u2

2 =
u2

1 − u2
2

u2
1 − 1

,

h2
2 =

(u2
1 − 1)2u2

2

ρ2
(cos2 u3 + sin2 u3) + u2

1 =
u2

1 − u2
2

1 − u2
2

,

h2
3 = ρ2(sin2 u3 + cos2 u3) = ρ2,

giving the scale factors as

h1 =

√
u2

1 − u2
2

u2
1 − 1

, h2 =

√
u2

1 − u2
2

1 − u2
2

, h3 =

√
(u2

1 − 1)(1 − u2
2).

The volume element is

dV = h1h2h3 du1 du2 du3 = |u2
1 − u2

2| du1 du2 du3.

(d) Since one definition of an ellipsoid is the locus of a point the sum of whose

distances from two fixed points is a constant, the surfaces u1 = 1
2
(r1 + r2) = c

must be ellipsoids, all with foci at (0, 0,±1). The range of c is 1 ≤ c < ∞, with

c = 1 corresponding to the line AB.

168



VECTOR CALCULUS

Similarly, u2 = 1
2
(r1 − r2) = c, with −1 ≤ c ≤ 1, is a set confocal hyperboloids.

The extreme values for c of +1 and −1 correspond to the parts of the z-axis

1 ≤ z < ∞ and −1 ≥ z > −∞, respectively.

The surfaces u3 = constant are clearly half-planes containing the z-axis.

(e) If f = f(u1) is a solution of ∇2f = 0, then Laplace’s equation reduces to

0 =
∂

∂u1

(
h2h3

h1

∂f

∂u1

)

=
∂

∂u1


√
u2

1 − 1
√
u2

1 − 1
√

1 − u2
2√

1 − u2
2

∂f

∂u1

 .
Integrating this and simplifying the factor containing square roots, now gives

∂f

∂u1
=

k

u2
1 − 1

=
k

2(u1 − 1)
− k

2(u1 + 1)

which on further integration gives the most general function of u1 that satisfies

Laplace’s equation as

f(u1) = A ln
u1 − 1

u1 + 1
+ B,

where A and B are arbitrary constants.
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11.2 The vector field Q is defined as

Q =
[
3x2(y + z) + y3 + z3

]
i +
[
3y2(z + x) + z3 + x3

]
j

+
[
3z2(x+ y) + x3 + y3

]
k.

Show that Q is a conservative field, construct its potential function and hence

evaluate the integral J =
∫

Q· dr along any line connecting the point A at (1,−1, 1)

to B at (2, 1, 2).

To test whether Q is conservative we consider the components of ∇ × Q, which

are

(∇ × Q)x =
∂Qz

∂y
− ∂Qy

∂z
= (3z2 + 3y2) − (3y2 + 3z2) = 0,

(∇ × Q)y =
∂Qx

∂z
− ∂Qz

∂x
= (3x2 + 3z2) − (3z2 + 3x2) = 0,

(∇ × Q)z =
∂Qy

∂x
− ∂Qx

∂y
= (3y2 + 3x2) − (3x2 + 3y2) = 0.

Hence, ∇ × Q = 0 which implies that Q is indeed a conservative field.

Let its potential function be φ(x, y, z) = f(x, y, z) + g(y, z) + h(z). Then, from the

x-component of Q,

∂f

∂x
= 3x2(y + z) + y3 + z3 ⇒ f(x, y, z) = x3(y + z) + x(y3 + z3).

From its y-component,

x3 + 3y2x+
∂g

∂y
= 3y2(z + x) + z3 + x3 ⇒ g(y, z) = y3z + z3y.
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And finally, from its z-component,

x3 + 3z2x+ y3 + 3z2y +
∂h

∂z
= 3z2(x+ y) + x3 + y3 ⇒ h(z) = c.

Thus,

φ(x, y, z) = x3(y + z) + (y3 + z3)x+ y3z + z3y + c

= yz(y2 + z2) + zx(z2 + x2) + xy(x2 + y2) + c.

Because the field is conservative, J is independent of the path taken and equal to

φ(2, 1, 2) − φ(1,−1, 1) = (52 + c) − (−2 + c) = 54.

11.4 By making an appropriate choice for the functions P (x, y) and Q(x, y)

that appear in Green’s theorem in a plane, show that the integral of x − y over

the upper half of the unit circle centred on the origin has the value − 2
3
. Show the

same result by direct integration in Cartesian coordinates.

To obtain the integral of x− y over the bounded region we must choose Q(x, y)

such that ∂Q/∂x is x, and P (x, y) such that ∂P/∂y is y. Clearly Q(x, y) = 1
2
x2 and

P (x, y) = 1
2
y2 will do. Green’s theorem then reads

1

2

∮
C

(
y2 dx+ x2 dy

)
=

∫ ∫
R

(x− y) dx dy.

We now evaluate the line integral on the LHS using x = cos θ and y = sin θ

on the semi-circular part of the contour and ordinary integration with y = 0 on

the straight-line portion joining (−1, 0) to (1, 0). Clearly, the latter contributes

nothing, as both y = 0 and dy = 0.

With this parameterisation, the integral is

I =

∫ π

0

sin2 θ(− sin θ dθ) + cos2 θ(cos θ dθ)

= −
∫ π

0

(1 − cos2 θ) sin θ dθ +

∫ π

0

(1 − sin2 θ) cos θ dθ

=

[
cos θ − 1

3
cos3 θ

]π
0

+

[
sin θ − 1

3
sin3 θ

]π
0

= −2 +
2

3
+ 0 − 0 = −4

3
.

The integral of x− y is therefore one-half of this, i.e. − 2
3
.
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As a double integral in Cartesian coordinates, we have∫ 1

−1

dx

∫ √
1−x2

0

(x− y) dy =

∫ 1

−1

[
x

√
1 − x2 − 1

2
(1 − x2)

]
dx

=

[
−1

3
(1 − x2)3/2

]1

−1

− 1

2

[
x− x3

3

]1

−1

= 0 − 0 − 1 + 1
3

= − 2
3
.

11.6 By using parameterisations of the form x = a cosn θ and y = a sinn θ for

suitable values of n, find the area bounded by the curves

x2/5 + y2/5 = a2/5 and x2/3 + y2/3 = a2/3.

Consider first x2/5 + y2/5 = a2/5, which is clearly parameterised by x = a cos5 θ

and y = a sin5 θ. As shown in the worked example in section 11.3, the area of a

region R enclosed by a simple closed curve C is given by A = 1
2

∮
C
(x dy− y dx) =∮

C
x dy = −

∮
C
y dx. Applying this to the present case,

A1 =
1

2

∮
(x dy − y dx)

=
1

2

∫ 2π

0

[ 5a2 cos5 θ sin4 θ cos θ − 5a2 sin5 θ cos4 θ(− sin θ) ] dθ

=
1

2

∫ 2π

0

5a2 cos4 θ sin4 θ dθ.

In the same way, the area bounded by x2/3 + y2/3 = a2/3 will be given by

A2 =
1

2

∫ 2π

0

3a2 cos2 θ sin2 θ dθ.

Integrals of this sort were considered in exercise 2.42 where it was shown that

J(m, n) =

∫ π/2

0

cosm θ sinn θ dθ =
m− 1

m+ n
J(m− 2, n) =

n− 1

m+ n
J(m, n− 2),

with J(0, 0) = π/2. Hence,

A1 =
5a2

2
4 J(4, 4) = 10a2 3

8
J(2, 4)

=
15a2

4

1

6
J(0, 4) =

5a2

8

3

4
J(0, 2)

=
15a2

32

1

2
J(0, 0) =

15πa2

128
.
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In the same way,

A2 =
3a2

2
4 J(2, 2) = 6a2 1

4
J(0, 2)

=
3a2

2

1

2
J(0, 0) =

3πa2

8
.

The area in the first quadrant enclosed between the two curves is therefore

πa2

(
3

8
− 15

128

)
=

33πa2

128
.

11.8 Criticise the following ‘proof ’ that π = 0.

(a) Apply Green’s theorem in a plane to the two functions P (x, y) = tan−1(y/x)

and Q(x, y) = tan−1(x/y), taking the region R to be the unit circle centred

on the origin.

(b) The RHS of the equality so produced is∫ ∫
R

y − x

x2 + y2
dx dy

which, either by symmetry considerations or by changing to plane polar co-

ordinates, can be shown to have zero value.

(c) In the LHS of the equality set x = cos θ and y = sin θ, yielding P (θ) = θ

and Q(θ) = π/2 − θ. The line integral becomes∫ 2π

0

[(π
2

− θ
)

cos θ − θ sin θ
]
dθ,

which has value 2π.

(d) Thus 2π = 0 and the stated result follows.

All of the mathematical steps are as indicated with, in part (b),

∂P

∂y
=

x

x2 + y2
and

∂Q

∂x
=

y

x2 + y2
,

and, in part (c),

P = tan−1 sin θ

cos θ
= θ and Q = tan−1 cos θ

sin θ
= tan−1 cot θ =

π

2
− θ.

The non-zero contribution to the integral on the LHS comes from the integral of

θ (− sin θ dθ). Thus the false result does not arise from an algebraic or integration

error.
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However, the functions P (x, y) = tan−1(y/x) and Q(x, y) = tan−1(x/y), are not

continuous (let alone differentiable!) at the origin. As this point is enclosed by

the contour, the conditions for Green’s theorem to apply are not met and the

‘proof’ is false.

11.10 Find the vector area S of the part of the curved surface of the hyperboloid

of revolution

x2

a2
− y2 + z2

b2
= 1

that lies in the region z ≥ 0 and a ≤ x ≤ λa.

The curved surface in question, together with the semicircular intersection of

the hyperboloid with the plane x = λa and its hyperbolic intersection with the

plane z = 0, make up a closed surface. Since the vector area of a closed surface

vanishes, the vector area of the curved surface can be found by subtracting the

vector areas of the other two plane surfaces from 0. Thus, S = −S1 i + S2 k where

S1 is the area of the semicircle and S2 that of the hyperbolic intersection.

For S1, x = λa and

λ2a2

a2
− 1 =

y2 + z2

b2
,

i.e the radius of the semicircular intersection is b
√
λ2 − 1 and the corresponding

area is S1 = 1
2
πb2(λ2 − 1).

For S2, z = 0 and
x2

a2
− y2

b2
= 1 and so, making the substitution x = a cosh θ and

writing cosh−1 λ as µ, we obtain

S2 =

∫ λa

a

2b

√
x2

a2
− 1 dx

=

∫ µ

0

2b sinh θ (a sinh θ dθ)

=

∫ µ

0

ab(cosh 2θ − 1) dθ

= ab

[
sinh 2θ

2
− θ

]µ
0

= ab(λ
√
λ2 − 1 − cosh−1 λ).

In summary, S = − 1
2
πb2(λ2 − 1) i + ab(λ

√
λ2 − 1 − cosh−1 λ) k.
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11.12 Show that the expression below is equal to the solid angle subtended by a

rectangular aperture of sides 2a and 2b at a point a distance c from the aperture

along the normal to its centre:

Ω = 4

∫ b

0

ac

(y2 + c2)(y2 + c2 + a2)1/2
dy.

By setting y = (a2 + c2)1/2 tanφ, change this integral into the form∫ φ1

0

4ac cosφ

c2 + a2 sin2 φ
dφ,

where tanφ1 = b/(a2 + c2)1/2, and hence show that

Ω = 4 tan−1

[
ab

c(a2 + b2 + c2)1/2

]
.

The general expression for the solid angle subtended at the origin is

Ω =

∫
S

r · dS
r3

.

In the present case, taking the plane’s normal along the z-axis, r = x i + y j + c k

and dS = dx dy k. Therefore

Ω = 4

∫ a

0

∫ b

0

c dx dy

(c2 + x2 + y2)3/2
.

If we write c2 + y2 = p2 and x = p tan θ with tan−1(a/p) = µ, then this becomes

Ω = 4

∫ b

0

dy

∫ µ

0

cp sec2 θ dθ

(p2 sec2 θ)3/2

= 4

∫ b

0

dy

∫ µ

0

c cos θ

p2
dθ

= 4

∫ b

0

c sinµ

p2
dy.

Now,

sinµ =
a

(a2 + p2)1/2
=

a

(a2 + c2 + y2)1/2
,

and so

Ω = 4

∫ b

0

ac

(y2 + c2)(y2 + c2 + a2)1/2
dy,

as given in the question.
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Next, as suggested, set y = (a2+c2)1/2 tanφ and define φ1 by b = (a2+c2)1/2 tanφ1.

Then,

Ω = 4ac

∫ φ1

0

(a2 + c2)1/2 sec2 φdφ

[ c2 + (a2 + c2) tan2 φ ](a2 + c2)1/2(sec2 φ)1/2

= 4ac

∫ φ1

0

secφdφ

c2 + (a2 + c2) tan2 φ

= 4ac

∫ φ1

0

cosφdφ

a2 sin2 φ+ c2

=
4ac

a2

∫ φ1

0

cosφdφ

sin2 φ+
c2

a2

=
4c

a

[
a

c
tan−1 a sinφ

c

]φ1

0

= 4 tan−1 a sinφ1

c
= 4 tan−1 ab

c(a2 + c2 + b2)1/2
.

This establishes the explicit expression for the solid angle subtended by the

rectangle.

11.14 A vector field a is given by (z2 + 2xy) i + (x2 + 2yz) j + (y2 + 2zx) k.

Show that a is conservative and that the line integral
∫

a ·dr along any line joining

(1, 1, 1) and (1, 2, 2) has the value 11.

We show that the field is conservative by showing that it is possible to construct

a suitable potential function, as follows.

∂φ

∂x
= z2 + 2xy ⇒ φ(x, y, z) = xz2 + x2y + f(y, z),

∂φ

∂y
= x2 + 2yz = x2 +

∂f

∂y
⇒ f(y, z) = y2z + g(z),

∂φ

∂z
= y2 + 2zx = 2xz + y2 +

∂g

∂z
⇒ g(z) = c.

Thus

φ(x, y, z) = xz2 + x2y + y2z + c

is a suitable potential function.

It follows that the line integral of a along any line joining (1, 1, 1) to (1, 2, 2) has

the value φ(1, 2, 2) − φ(1, 1, 1) = (14 + c) − (3 + c) = 11.
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11.16 One of Maxwell’s electromagnetic equations states that all magnetic fields

B are solenoidal (i.e. ∇ ·B = 0). Determine whether each of the following vectors

could represent a real magnetic field; where it could, try to find a suitable vector

potential A, i.e. such that B = ∇×A. (Hint: seek a vector potential that is parallel

to ∇ × B.):

(a)
B0b

r3
[(x− y)z i + (x− y)z j + (x2 − y2) k] in Cartesians with r2 = x2 + y2 +

z2;

(b)
B0b

3

r3
[cos θ cos φ êr − sin θ cos φ êθ + sin 2θ sin φ êφ] in spherical polars;

(c) B0b
2

[
zρ

(b2 + z2)2
êρ +

1

b2 + z2
êz

]
in cylindrical polars.

(a) We calculate ∇ · B in Cartesian coordinates.

∇ · B
B0b

= −3(x− y)zx

r5
+
z

r3
− 3(x− y)zy

r5
− z

r3
− 3(x2 − y2)z

r5

= −6(x2 − y2)z

r5
�= 0 ⇒ B cannot be a real field.

(b) Working in spherical polar coordinates:

∇ · B =
1

r2
∂

∂r
(r2Br) +

1

r sin θ

∂

∂θ
(sin θBθ) +

1

r sin θ

∂Bφ

∂φ

= B0b
3

[
−cos θ cosφ

r4
− cosφ 2 sin θ cos θ

r4 sin θ
+

sin 2θ cosφ

r4 sin θ

]
= −B0b

3 cos θ cosφ

r4
�= 0 ⇒ B cannot be a real field.

(c) B has no φ-dependence and so

∇ · B =
1

ρ

∂

∂ρ
(ρBρ) +

∂Bz

∂z

∇ · B
B0b2

=
1

ρ

∂

∂ρ

(
ρ z ρ

(b2 + z2)2

)
+

∂

∂z

(
1

b2 + z2

)
=

2z

(b2 + z2)2
− 2z

(b2 + z2)2
= 0

⇒ B could be a real magnetic field.

Following the hint (and with no φ component or φ-dependence in B),

∇ × B

B0b2
=

(
1

ρ
(0 − 0),

∂Bρ

∂z
− ∂Bz

∂ρ
,

1

ρ
(0 − 0)

)
=

(
0,

ρ

(b2 + z2)2
− 4ρz2

(b2 + z2)3
− 0, 0

)
.
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∇ × B has only a φ-component and so take A = (0, Aφ, 0). We then require

B0b
2zρ

(b2 + z2)2
= (∇ × A)ρ = −∂Aφ

∂z

⇒ Aφ =
B0b

2ρ

2(b2 + z2)
+ g(ρ),

B0b
2

b2 + z2
= (∇ × A)z =

1

ρ

∂

∂ρ
(ρAφ)

⇒ ρAφ =
B0b

2ρ2

2(b2 + z2)
+ f(z).

These two equations, taken together, imply that A = (0, Aφ, 0), with

Aφ =
B0b

2ρ

2(b2 + z2)

a suitable component. To this A could be added any vector field that is the

gradient of a scalar.

11.18 A vector field a = f(r)r is spherically symmetric and everywhere directed

away from the origin. Show that a is irrotational but that it is also solenoidal only

if f(r) is of the form Ar−3.

In spherical polar coordinates, a = f(r)r = rf(r)êr , and

∇ × a =
1

r2 sin θ

∣∣∣∣∣∣∣∣
êr rêθ r sin θêφ
∂

∂r

∂

∂θ

∂

∂φ
rf(r) 0 0

∣∣∣∣∣∣∣∣
= 0êr +

1

r sin θ

∂(rf)

∂φ
êθ − 1

r

∂(rf)

∂θ
êφ

= 0.

Hence a is irrotational. For it also to be solenoidal requires that

0 = ∇ · a =
1

r2
∂

∂r
[ r2 rf(r) ] + 0 + 0 ⇒ r3f(r) = A ⇒ f(r) =

A

r3
.
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11.20 Obtain an expression for the value φP at a point P of a scalar function

φ that satisfies ∇2φ = 0 in terms of its value and normal derivative on a surface

S that encloses it, by proceeding as follows.

(a) In Green’s second theorem take ψ at any particular point Q as 1/r, where r

is the distance of Q from P . Show that ∇2ψ = 0 except at r = 0.

(b) Apply the result to the doubly connected region bounded by S and a small

sphere Σ of radius δ centred on P.

(c) Apply the divergence theorem to show that the surface integral over Σ in-

volving 1/δ vanishes, and prove that the term involving 1/δ2 has the value

4πφP .

(d) Conclude that

φP = − 1

4π

∫
S

φ
∂

∂n

(
1

r

)
dS +

1

4π

∫
S

1

r

∂φ

∂n
dS.

This important result shows that the value at a point P of a function φ

that satisfies ∇2φ = 0 everywhere within a closed surface S that encloses P

may be expressed entirely in terms of its value and normal derivative on S .

This matter is taken up more generally in connection with Green’s functions

in chapter 21 and in connection with functions of a complex variable in

section 24.10.

Green’s theorems apply to any suitably differentiable pair of functions, but here

we apply them to a function φ that satisfies ∇2φ = 0 and ψ, which has a value at

any point Q equal to the reciprocal of its distance r from a fixed point P .

(a) Using spherical polar coordinates centred on P , we have

∇2ψ = ∇2

(
1

r

)
=

1

r2
∂

∂r

(
r2
∂

∂r

(
1

r

))
=

1

r2
∂(−1)

∂r
= 0.

Thus ∇2ψ = 0 except at r = 0 where the function is not differentiable.

(b) When these results are put into Green’s second theorem applied to the doubly

connected region bounded by S and a small sphere Σ of radius δ centred on P,

the integrand in the volume integral vanishes, leading to∫
S

1

r

∂φ

∂n
dS +

∫
Σ

1

r

∂φ

∂n
dS =

∫
S

φ
∂

∂n

(
1

r

)
dS +

∫
Σ

φ
∂

∂n

(
1

r

)
dS.

(c) For the term on the LHS taken over the sphere Σ, the factor r−1 is a constant

and equal to δ−1 and, by the divergence theorem, the surface integral of ∂φ/∂n

is equal to the volume integral of ∇2φ. But this is zero and so the term vanishes.
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For the term on the RHS taken over the sphere Σ,

∂

∂n

(
1

r

)
= −

(
− 1

r2

)
r=δ

=
1

δ2
.

The additional minus sign arises because n̂ is the outward normal to the space

and this is in the direction of decreasing r. The surface area is 4πδ2 and so the

value of the integral is 4πφP in the limit of δ → 0.

(d) Taking all terms involving integrals over S to one side of the equation, it can

be rearranged as

φP = − 1

4π

∫
S

φ
∂

∂n

(
1

r

)
dS +

1

4π

∫
S

1

r

∂φ

∂n
dS,

thus establishing the stated result.

11.22 A rigid body of volume V and surface S rotates with angular velocity ω.

Show that

ω = − 1

2V

∮
S

u × dS,

where u(x) is the velocity of the point x on the surface S .

From result (11.22), which is proved in exercise 11.24, we have in general that∫
V

(∇ × b) dV =

∮
S

dS × b.

For the current application we set b equal to u(x) = ω × x, giving∮
S

dS × u =

∫
V

∇ × (ω × x) dV

=

∫
V

[ ω(∇ · x) − x(∇ · ω) + (x · ∇)ω − (ω · ∇)x ] dV

=

∫
V

[ 3ω − 0 − 0 − (ωx i + ωy j + ωz k) ] dV

= 3ωV − ωV .

To obtain the second line we used the standard identity for ∇ × (a × b) (see table

10.1). Thus,

ω = − 1

2V

∮
S

u × dS.
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11.24 Prove equation (11.22) and, by taking b = zx2i+ zy2j+(x2 − y2)k, show

that the two integrals

I =

∫
x2 dV and J =

∫
cos2 θ sin3 θ cos2 φdθ dφ,

both taken over the unit sphere, must have the same value. Evaluate both directly

to show that the common value is 4π/15.

We have to prove that ∫
V

(∇ × b) dV =

∮
S

dS × b.

Let a = b × c, where c is an arbitrary but fixed vector. Then, from the divergence

theorem ∫
V

∇ · a =

∮
S

a · dS,∫
V

∇ · (b × c) =

∮
S

(b × c) · dS,∫
V

[ c · (∇ × b) − b · (∇ × c) ] dV =

∮
S

(dS × b) · c.

To obtain this last line we have used a result from table 10.1 and the cyclic

property of a triple scalar product. But ∇ × c = 0 and so

c ·
∫
V

(∇ × b) dV = c ·
∮
S

dS × b,

and, since c is also arbitrary, it follows that∫
V

(∇ × b) dV =

∮
S

dS × b.

With b = zx2 i + zy2 j + (x2 − y2) k,

∇ × b = (−2y − y2) i + (x2 − 2x) j.

Clearly, on (anti-) symmetry grounds,
∫
x dV =

∫
y dV = 0 for integrals over the

unit sphere and so
∫

(∇ × b) dV has the form (−I, I, 0) where I =
∫
x2 dV =∫

y2 dV .

On the surface of the unit sphere, where x = sin θ cosφ, y = sin θ sinφ and

z = cos θ,

dS = sin θ(sin θ cosφ i + sin θ sinφ j + cos θ k) dθ dφ,

b = cos θ sin2 θ cos2 φ i + cos θ sin2 θ sin2 φ j + sin2 θ cos 2φ k.
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Thus, we have

dS × b

dθ dφ
= sin θ(sin3 θ sinφ cos 2φ− cos2 θ sin2 θ sin2 φ) i

+ sin θ(cos2 θ sin2 θ cos2 φ− sin3 θ cosφ cos 2φ) j

+ sin θ(cos θ sin3 θ cosφ sin2 φ− sin3 θ cos θ sinφ cos2 φ) k.

The two terms in the k-coordinate cancel each other when integrated over

0 ≤ φ < 2π. The first term in the i-coordinate can be written as g(θ)(sin 3φ−sinφ)

and therefore integrates to zero; similarly, the second term in the j-coordinate

does not contribute.

In summary, the integral
∮
dS × b has the form (−J, J, 0) where

J =

∫∫
cos2 θ sin3 θ sin2 φdθ dφ =

∫∫
cos2 θ sin3 θ cos2 φdθ dφ.

It follows that the integrals I and J defined in the question are equal.

It only remains to evaluate I and J . For I we have

I =

∫
V

x2 dV

=

∫ π

0

∫ 2π

0

∫ 1

0

r2 sin2 θ cos2 φ r2 sin θ dr dφ dθ

=

∫ π

0

∫ 2π

0

1

5
sin3 θ cos2 φdφ dθ

=
π

5

∫ π

0

sin θ(1 − cos2 θ) dθ

=
π

5

[
2 − 2

3

]
=

4π

15
.

For J the integral is

J =

∫ 2π

0

∫ π

0

cos2 θ sin3 θ sin2 φdθ dφ

= π

∫ π

0

(cos2 θ − cos4 θ) sin θ dθ

= π

[
2

3
− 2

5

]
=

4π

15
,

i.e. the same value as I .
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11.26 A vector field F is defined in cylindrical polar coordinates ρ, θ, z by

F = F0

(
x cos λz

a
i +

y cos λz

a
j + (sin λz)k

)
≡ F0ρ

a
(cos λz)eρ + F0(sin λz)k,

where i, j and k are the unit vectors along the Cartesian axes and eρ is the unit

vector (x/ρ)i + (y/ρ)j.

(a) Calculate, as a surface integral, the flux of F through the closed surface

bounded by the cylinders ρ = a and ρ = 2a and the planes z = ±aπ/2.

(b) Evaluate the same integral using the divergence theorem.

(a) The flux through the cylindrical surfaces

=

∫ aπ/2

−aπ/2

F0

a
cos λz dz

[ ∫ 2π

0

ρ ρ dφ

]ρ=2a

ρ=a

=

∫ aπ/2

−aπ/2

2πF0

a
[ (2a)2 − (a)2 ] cos λz dz

= 6πF0a

∫ aπ/2

−aπ/2
cos λz dz

=
12πF0a

λ
sin

(
λπa

2

)
.

The flux through the planes

= π(4a2 − a2)

[
F0 sin

(
λπa

2

)
− F0 sin

(
−λπa

2

)]
= 6πa2F0 sin

(
λπa

2

)
.

Adding these together gives

Total flux = 6πF0

(
a2 +

2a

λ

)
sin

(
λπa

2

)
.

(b) Using the Cartesian form

∇ · F =
F0

a
(cos λz + cos λz + aλ cos λz),

which is independent of ρ. Thus the ρ and φ integrations are trivial and the
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volume integral of the divergence reduces to∫
V

∇ · F dV =

∫ aπ/2

−aπ/2

πF0(4a
2 − a2)(2 + aλ)

a
cos λz dz

= 3πF0a(2 + aλ)

[
sin λz

λ

]aπ/2
−aπ/2

= 6πF0

(
2a

λ
+ a2

)
sin

(
λπa

2

)
, as in part (a).

11.28 A vector force field F is defined in Cartesian coordinates by

F = F0

[(
y3

3a3
+
y

a
exy/a

2

+ 1

)
i +

(
xy2

a3
+
x+ y

a
exy/a

2

)
j +

z

a
exy/a

2

k

]
.

Use Stokes’ theorem to calculate ∮
L

F · dr,

where L is the perimeter of the rectangle ABCD given by A = (0, a, 0), B =

(a, a, 0), C = (a, 3a, 0) and D = (0, 3a, 0).

The rectangle ABCD lies in the plane z = 0 and so to apply Stokes’ theorem we

need only the z-component of ∇ × F. this is given by

(∇ × F)z = F0

(
y2

a3
+

1

a
exy/a

2

+
(x+ y)y

a3
exy/a

2

)
− F0

(
y2

a3
+

1

a
exy/a

2

+
xy

a3
exy/a

2

)
=
F0y

2

a3
exy/a

2

.

So, by Stokes’ theorem, the line integral has the same value as this component of

curl F integrated over the area of the rectangle, i.e.∮
L

F · dr =

∫ a

0

dx

∫ 3a

a

dy
F0y

2

a3
exy/a

2

.

Since x appears in the integrand only in the form eλx, the x-integration is

straightforward and is therefore carried out first to give∮
L

F · dr =
F0

a3

∫ 3a

a

a2
(
ey/a − 1

)
y2

y
dy.
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After simplification, this can be integrated by parts to yield the final value for

the contour integral:∮
L

F · dr =
F0

a

∫ 3a

a

(yey/a − y) dy

=
F0

a

{[
ayey/a

]3a
a

−
∫ 3a

a

aey/a dy −
[
y2

a

]3a

a

}

=
F0

a

(
3a2e3 − a2e− a2e3 + a2e− 9

2
a2 +

1

2
a2

)
= F0a(2e

3 − 4).

185



12

Fourier series

12.2 Derive the Fourier coefficients br in a similar manner to the derivation of

the ar in section 12.2.

As explained in the text, the method of proof is almost identical to that given in

section 12.2, the only differences being multiplying the Fourier expansion (12.4)

through by sin(2πpx/L) rather than by cos(2πpx/L) and using the first (12.1) and

last (12.3) of the orthogonality relations (rather than the first and second).

The given text may be taken as a model solution once these small changes have

been allowed for. There is never a b0 term, formally because sin(2πrx/L) is zero

for all x if r = 0.

12.4 By moving the origin of t to the centre of an interval in which f(t) = +1,

i.e. by changing to a new independent variable t′ = t− 1
4
T , express the square-wave

function in the example in section 12.2 as a cosine series. Calculate the Fourier

coefficients involved (a) directly and (b) by changing the variable in result (12.8).

With the change in origin, the function becomes an even one and only cosine

terms will be needed. However, the change of origin does not affect the average

value of the function, which therefore remains equal to zero. This means that the

value of A0 in the cosine series will also be zero.
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(a) By direct calculation:

An =
2

T

∫ T/2

−T/2
f(t′) cos

2πnt′

T
dt′

=
4

T

∫ T/2

0

f(t′) cos
2πnt′

T
dt′

=
4

T

∫ T/4

0

f(t′) cos
2πnt′

T
dt′ − 4

T

∫ T/2

T/4

f(t′) cos
2πnt′

T
dt′

= 4

[
sin(2πnt′/T )

2πn

]T/4
0

− 4

[
sin(2πnt′/T )

2πn

]T/2
T/4

=
2

πn

[
sin

nπ

2
− sin 0 − sin nπ + sin

nπ

2

]
=

4

nπ
(−1)(n−1)/2 for odd n, and = 0 for even n.

(b) By changing the variable in the result for f(t) derived in the text, and writing

2π/T as ω:

f(t) =
4

π

∑
nodd

sin nωt

n
,

g(t′) =
4

π

∑
nodd

sin nω(t′ + 1
4
T )

n
,

=
4

π

∑
nodd

1

n
[ sin(nωt′) cos( 1

4
nωT ) + cos(nωt′) sin( 1

4
nωT ) ].

Now, for n odd, cos( 1
4
nωT ) = cos(nπ/2) = 0 but sin( 1

4
nωT ) = sin(nπ/2) =

(−1)(n−1)/2. Thus, only the cos(nωt′) terms survive and

g(t′) =
4

π

∑
n odd

(−1)(n−1)/2

n
cos(nωt′).

This is, as it must be, the same result as that obtained by direct calculation.

12.6 For the function

f(x) = 1 − x, 0 ≤ x ≤ 1,

find (a) the Fourier sine series and (b) the Fourier cosine series. Which would

be better for numerical evaluation? Relate your answer to the relevant periodic

continuations.

(a) Sine series. In order to make the function both periodic and odd in x, it must
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be continued in the range −1 < x ≤ 0 as f(x) = −1 − x. The function thus has a

discontinuity of 2 at x = 0. The Fourier coefficients are

bn = 2
2

2

∫ 1

0

(1 − x) sin nπx dx

= 2

{[
−cos nπx

nπ

] 1

0
+
[ x cos nπx

nπ

] 1

0
−
∫ 1

0

cos nπx

nπ
dx

}
= 2

(
− (−1)n − 1

nπ
+

(−1)n

nπ
− 0

)
=

2

nπ
.

Thus the Fourier sine series for this function is

1 − x = f(x) =
2

π

∞∑
n=1

sin nπx

n
.

(b) Cosine series. In order to make the function both periodic and even in x, it

must be continued in the range −1 < x ≤ 0 as f(x) = 1 + x. The function then

has no discontinuity at x = 0. The Fourier coefficients are

an = 2
2

2

∫ 1

0

(1 − x) cos nπx dx

= 2

{[
sin nπx

nπ

] 1

0

−
[
x sin nπx

nπ

] 1

0

+

∫ 1

0

sin nπx

nπ
dx

}

= 2

(
0 − 0 +

[
−cos nπx

n2π2

] 1

0

)
= 2

(
− (−1)n − 1

n2π2

)
=

4

n2π2
for n odd, and = 0 for positive even n.

For n = 0, the non-zero integral is a0 = 2
∫ 1

0
(1 − x) dx = 1, making the complete

Fourier cosine series representation

1 − x = f(x) =
1

2
+

4

π2

∑
nodd

cos nπx

n2
.

Because alternate terms (the positive even values of n) are missing and the series

converges as n−2 (rather than as n−1), it is clear that the cosine series is much

superior for calculational purposes. This superiority is reinforced by the lack

of a discontinuity in the continued function in case (b); the discontinuity in

case (a) will bring additional computational difficulty as a result of the Gibbs’

phenomenon.
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12.8 The function y(x) = x sinx for 0 ≤ x ≤ π is to be represented by a

Fourier series of period 2π that is either even or odd. By sketching the function

and considering its derivative, determine which series will have the more rapid

convergence. Find the full expression for the better of these two series, showing

that the convergence ∼ n−3 and that alternate terms are missing.

As the period is to be 2π, the question is how to define y(x) in the range

−π ≤ x ≤ 0. The even and odd continuations would be

ye(x) = x sinx and yo(x) = −x sinx.

Both continuations make the function continuous at x = 0 and at x = ±π.

However, there is a difference in their derivatives. Both have zero derivative at

x = 0, but, at x = −π, y′
e = π whilst y′

o = −π. To avoid a discontinuity in the

derivative, the derivative of the continuation must match that of y(x) evaluated

at x = +π. The value of the latter is −π, and so the odd continuation is the one

to be preferred as it will give more rapid convergence and avoid problems arising

from the Gibbs’ phenomenon.

Thus the series is to be a sine series with

bn =
2

2π
2

∫ π

0

x sinx sin nx dx

=
1

π

∫ π

0

x[ cos(n− 1)x− cos(n+ 1)x ] dx.

Now, for integer p, except when p = 0,∫ π

0

x cos px dx =

[
x sin px

p

] π
0

−
∫ π

0

sin px

p
dx = 0 +

[
cos px

p2

] π
0

=
(−1)p − 1

p2
.

When p = 0 the integral has value π2/2.

Thus

bn =
1

π

[
(−1)n−1 − 1

(n− 1)2
− (−1)n+1 − 1

(n+ 1)2

]
=

1

π

[
−2

(n− 1)2
+

2

(n+ 1)2

]
, for n even,

= − 8n

π(n2 − 1)2
, for n even,

bn = 0 − 0 for n odd, except for n = 1

When n = 1,

bn =
1

π

∫ π

0

x(1 − cos 2x) dx =
1

π

[
π2

2
− 0

]
=
π

2
.
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Finally, collecting together the results obtained,

y(x) = x sinx =
π

2
sinx− 8

π

∑
n even

n

(n2 − 1)2
sin nx.

The series converges as n/(n2)2 ∼ n−3.

12.10 By integrating term by term the Fourier series found in the previous

question (exercise 12.9) and using the Fourier series for f(x) = x, show that∫
exp x dx = exp x+c. Why is it not possible to show that d(exp x)/dx = exp x

by differentiating the Fourier series of f(x) = exp x in a similar manner?

The series for exp x (found in exercise 12.9) is

exp x = (sinh 1)

{
1 + 2

∞∑
n=1

(−1)n

1 + n2π2
[ cos(nπx) − nπ sin(nπx) ]

}
.

Integrating this term by term gives

I =

∫
exp x dx = (sinh 1)

{
x+ 2

∞∑
n=1

(−1)n

1 + n2π2

[
sin(nπx)

nπ
+ cos(nπx)

]}
.

Now the function x can be expanded in −1 ≤ x ≤ 1 as a Fourier sine series with

bn =
2

2

∫ 1

−1

x sin(nπx) dx =

[
−x cos(nπx)

nπ

] 1

−1

+

∫ 1

−1

cos(nπx)

nπ
dx =

2(−1)n+1

nπ
+ 0.

Thus, we may show that I has the form stated in the question as follows:

I = 2(sinh 1)

∞∑
n=1

[(
(−1)n

nπ(1 + n2π2)
+

(−1)n+1

nπ

)
sin(nπx)

+
(−1)n

1 + n2π2
cos(nπx)

]
= 2(sinh 1)

∞∑
n=1

[
(−1)n(−n2π2)

nπ(1 + n2π2)
sin(nπx) +

(−1)n

1 + n2π2
cos(nπx)

]
= expx− sinh 1, by comparison with the original series.

If the original series is differentiated (with the aim of finding a series to represent

the derivative of exp x) it will contain the sum

2(sinh 1)

∞∑
n=1

(−1)n+1(nπ)2

1 + n2π2
cos(nπx).

This sum does not converge since the terms do not → 0 as n → ∞. Consequently,

no useful result is obtained.
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12.12 Find, without calculation, which terms will be present in the Fourier series

for the periodic functions f(t), of period T , that are given in the range −T/2 to

T/2 by:

(a) f(t) = 2 for 0 ≤ |t| < T/4, f = 1 for T/4 ≤ |t| < T/2;

(b) f(t) = exp[−(t− T/4)2];

(c) f(t) = −1 for −T/2 ≤ t < −3T/8 and 3T/8 ≤ t < T/2, f(t) = 1 for

−T/8 ≤ t < T/8; the graph of f is completed by two straight lines in the

remaining ranges so as to form a continuous function.

If the Fourier series for f(t) is written in the form

f(t) =
a0

2
+

∞∑
r=1

[
ar cos

(
2πrt

L

)
+ br sin

(
2πrt

L

)]
,

then the consequences of any symmetry properties that f(t) may possess can be

summarised by

• if f(t) is even about t = 0 then all br = 0,

• if f(t) is odd about t = 0 then all ar = 0,

• if f(t) is even about t = T/4 then a2r+1 = 0 and b2r = 0,

• if f(t) is odd about t = T/4 then a2r = 0 and b2r+1 = 0,

• the average value of f(t) over a complete cycle is 1
2
a0.

Sketching the given functions shows the following.

(a) This is a function that:

(i) is even about t = 0 ⇒ no sine terms are present;

(ii) has a non-zero average ⇒ a0 (= 3) present;

(iii) is odd about t = T/4 once the average value has been subtracted ⇒
a2n = 0.

Thus the series contains a constant and odd-n cosine terms.

(b) The periodic version of this function does not exhibit symmetry about any

value of t; there is a discontinuity of −(e−T 2/16 − e−9T 2/16) at t = T/2. Conse-

quently, all terms are present.

(c) This is a function that:

(i) is even about t = 0 ⇒ no sine terms are present;

(ii) has a zero average ⇒ a0 = 0;

(iii) is odd about t = T/4 ⇒ a2n = 0.

Thus the series consists of odd-n cosine terms only.
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12.14 Show that the Fourier series for the function y(x) = |x| in the range

−π ≤ x < π is

y(x) =
π

2
− 4

π

∞∑
m=0

cos(2m+ 1)x

(2m+ 1)2
.

By integrating this equation term by term from 0 to x, find the function g(x) whose

Fourier series is

4

π

∞∑
m=0

sin(2m+ 1)x

(2m+ 1)3
.

Deduce the value of the sum S of the series

1 − 1

33
+

1

53
− 1

73
+ · · · .

The function y(x) = |x| is an even function and its Fourier series will therefore

contain only cosine terms. They are given, for n ≥ 1, by

an =
2

2π

∫ π

−π
|x| cos nx dx

=
2

π

∫ π

0

x cos nx dx

=

{[
x sin nx

n

] π
0

−
∫ π

0

sin nx

n
dx

}
=

2

π

[ cos nx

n2

] π
0

= − 4

πn2
for n odd, and = 0 for n even.

The constant term is a0 =
2

π

∫ π

0

x dx = π. Thus

y(x) =
π

2
− 4

π

∞∑
m=0

cos(2m+ 1)x

(2m+ 1)2
.

We now consider the integral of y(x) from 0 to x.

(i) For x < 0,

∫ x

0

|x′| dx′ =

∫ x

0

(−x′) dx′ = −1

2
x2.

(ii) For x > 0,

∫ x

0

|x′| dx′ =

∫ x

0

x′ dx′ =
1

2
x2.

Integrating the series gives

πx

2
− 4

π

∞∑
m=0

sin(2m+ 1)x

(2m+ 1)3
.
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Equating these two results and isolating the series gives

4

π

∞∑
m=0

sin(2m+ 1)x

(2m+ 1)3
=

{
1
2
x(π + x) for x ≤ 0,

1
2
x(π − x) for x ≥ 0.

If we set x = π/2 in this result, the sine terms have values (−1)m and we obtain

1

2

π

2

(
π − π

2

)
=

4

π

∞∑
m=0

(−1)m

(2m+ 1)3
=

4

π
S.

It follows that S = π3/32.

12.16 By finding a cosine Fourier series of period 2 for the function f(t) that

takes the form f(t) = cosh(t− 1) in the range 0 ≤ t ≤ 1, prove that

∞∑
n=1

1

n2π2 + 1
=

1

e2 − 1
.

Deduce values for the sums
∑

(n2π2 + 1)−1 over odd n and even n separately.

In order to obtain a cosine series we must make an even continuation f(t) =

cosh(t+ 1) for −1 ≤ t ≤ 0.

The constant term in the series is a0/2 with

a0 = 2

∫ 1

0

cosh(t− 1) dt = [ 2 sinh(t− 1) ] 1
0 = 2 sinh(1).

The general coeeficient is

an = 2

∫ 1

0

cosh(t− 1) cos(nπt) dt

= 2

[
cosh(t− 1) sin(nπt)

nπ

] 1

0

− 2

∫ 1

0

sinh(t− 1) sin(nπt)

nπ
dt

= 0 − 2

[
− sinh(t− 1) cos(nπt)

n2π2

] 1

0

− 2

∫ 1

0

cosh(t− 1) cos(nπt)

n2π2
dt

Hence,

an

(
1 +

1

n2π2

)
= −2 sinh(−1)

n2π2
⇒ an =

2 sinh(1)

n2π2 + 1
.

The Fourier expansion for f(t) is thus

cosh(t− 1) = sinh(1)

(
1 + 2

∞∑
n=1

cos nπt

1 + n2π2

)
.
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Setting t = 0 gives

cosh(1) = sinh(1) + 2 sinh(1)

∞∑
n=1

1

1 + n2π2
(∗)

∞∑
n=1

1

1 + n2π2
=

cosh(1) − sinh(1)

2 sinh(1)

=
e−1

e− e−1
=

1

e2 − 1
.

Now, to separate the contributions to the series from the odd and the even

integers, we need an extra factor of (−1)n in each term. We get this, in the form

cos nπ, by setting t = 1 and so obtain

cosh(0) = sinh(1) + 2 sinh(1)

∞∑
n=1

(−1)n

1 + n2π2
(∗∗).

Adding (∗) and (∗∗) gives, with an obvious notation,

cosh(1) + cosh(0)

sinh(1)
= 2 + 4 Σeven

Re-arrangement and substitution of explicit expressions for the hyperbolic sinu-

soids give

Σeven =
1

4

1
2
(e+ e−1) + 1 − (e− e−1)

1
2
(e− e−1)

=
3 − e2 + 2e

4(e2 − 1)
=

(3 − e)(1 + e)

4(e− 1)(e+ 1)
=

3 − e

4(e− 1)
.

It then follows that

Σodd = Σall − Σeven

=
1

e2 − 1
− 3 − e

4(e− 1)
=

4 − 2e+ e2 − 3

4(e2 − 1)

=
(1 − e)2

4(e2 − 1)
=

e− 1

4(e+ 1)
.

12.18 Express the function f(x) = x2 as a Fourier sine series in the range

0 < x ≤ 2 and show that it converges to zero at x = ±2.

To ensure a sine series we take f(x) = −x2 for −2 < x ≤ 0. This means that

f(−2) = −4 and so, since f(2) = +4, we expect the series to converge to the

average value of 1
2
(−4 + 4) = 0 at x = ±2.
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The coefficients in the sine series
∑
bn sin(nπx/2) are

bn = 2
2

4

∫ 2

0

x2 sin
nπx

2
dx.

Setting nπx/2 = y gives bn = 8In/(nπ)3 with

In =

∫ nπ

0

y2 sin y dy

=
[

−y2 cos y
] nπ

0
+

∫ nπ

0

2y cos y dy

= (−1)n+1n2π2 + [ 2y sin y ] nπ0 −
∫ nπ

0

2 sin y dy

= (−1)n+1n2π2 + 0 + [ 2 cos y ] nπ0

= (−1)n+1n2π2 + 2(−1)n − 2.

Thus,

bn =
(−1)n+18

nπ
− 32

n3π3
for n odd,

=
(−1)n+18

nπ
for n even.

For x = ±2 all terms in the series are zero and so this is the value of the

expansion at these points. This is not simply as expected, but inevitable, because,

for a pure Fourier sine series, the arguments of all the sine functions are bound

to be of the form nπ at the end points of the period.

12.20 Show that the Fourier series for | sin θ | in the range −π ≤ θ ≤ π is given

by

| sin θ | =
2

π
− 4

π

∞∑
m=1

cos 2mθ

4m2 − 1
.

By setting θ = 0 and θ = π/2, deduce values for

∞∑
m=1

1

4m2 − 1
and

∞∑
m=1

1

16m2 − 1
.

This is an even function about θ = 0 with cosine coefficient a0 given by

a0 =
2

2π

∫ π

−π
| sin θ | dθ =

1

π
2 [ − cos θ ]π0 =

4

π
.
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For n ≥ 1, we have

an =
2

2π
2

∫ π

0

sin θ cos nθ dθ

=
2

π

∫ π

0

1
2
[ sin(n+ 1)θ − sin(n− 1)θ ] dθ

=
1

π

[
−cos(n+ 1)θ

n+ 1
+

cos(n− 1)θ

n− 1

] π
0

=
1

π

[
− (−1)n+1 − 1

n+ 1
+

(−1)n−1 − 1

n− 1

] π
0

= − 4

π

1

n2 − 1
if n is even, and = 0 if n is odd.

Hence, writing n = 2m,

| sin θ | =
2

π
− 4

π

∞∑
m=1

cos 2mθ

4m2 − 1
.

Now, setting θ = 0 yields

0 =
2

π
− 4

π

∞∑
n=1

1

4n2 − 1
⇒

∞∑
n=1

1

4n2 − 1
=

1

2
.

Setting θ = π/2, instead, gives

1 =
2

π
− 4

π

∞∑
n=1

(−1)n

4n2 − 1
.

Adding this to the previous result then yields

1 =
4

π
− 4

π
2
∑
n even

1

4n2 − 1

=
4

π
− 8

π

∞∑
m=1

1

16m2 − 1
,

⇒
∞∑
m=1

1

16m2 − 1
=
π

8

(
4

π
− 1

)
=

1

2
− π

8
.
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12.22 The repeating output from an electronic oscillator takes the form of a

sine wave f(t) = sin t for 0 ≤ t ≤ π/2; it then drops instantaneously to zero and

starts again. The output is to be represented by a complex Fourier series of the

form
∞∑

n=−∞
cne

4nti.

Sketch the function and find an expression for cn. Verify that c−n = c∗
n. Demonstrate

that setting t = 0 and t = π/2 produces differing values for the sum

∞∑
n=1

1

16n2 − 1
.

Determine the correct value and check it using the quoted result of exercise 12.20.

As the period of the expansion is to be π/2 the complex expansion coefficients

are given by

π

2
cn =

∫ π/2

0

sin t e−i4nt

=

[
sin t e−i4nt

−4ni

] π/2
0

−
∫ π/2

0

cos t e−i4nt

−4ni
dt

=
1

−4ni
+

[
cos t e−i4nt

4ni(−4ni)

] π/2
0

+

∫ π/2

0

sin t e−i4nt

4ni(−4ni)
dt.

It follows that

π

2
cn

(
1 − 1

16n2

)
=

i

4n
− 1

16n2
,

and hence that

cn =
2

π

4ni− 1

16n2 − 1
.

It is obvious that

c∗
−n =

2

π

4(−n)(−i) − 1

16n2 − 1
= cn.

The series representation is therefore

sin(t) =
2

π

∞∑
n=−∞

4ni− 1

16n2 − 1
ei4nt. (∗)

Setting t = 0, equating real parts, noting that the n = 0 term has value −1 and
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that the ±n-terms are equal for n �= 0, together imply that

∞∑
n=−∞

1

16n2 − 1
= 0 ⇒

∞∑
n=1

1

16n2 − 1
=

1

2
.

But, setting t = π/2 and then equating real parts implies that

2

π

∞∑
n=−∞

−1

16n2 − 1
= 1 ⇒

∞∑
n=1

1

16n2 − 1
= −1

2

π

2

(
1 − 2

π

)
=

1

2
− π

4
.

These results are clearly contradictory.

As there is a discontinuity in the function, the correct value is the mean of these

two, namely 1
2

− π
8
. This is the value obtained in solution 12.20.

12.24 A string, anchored at x = ±L/2, has a fundamental vibration frequency

of 2L/c, where c is the speed of transverse waves on the string. It is pulled aside

at its centre point by a distance y0 and released at time t = 0. Its subsequent

motion can be described by the series

y(x, t) =

∞∑
n=1

an cos
nπx

L
cos

nπct

L
.

Find a general expression for an and show that only odd harmonics of the fun-

damental frequency are present in the sound generated by the released string. By

applying Parseval’s theorem, find the sum S of the series
∑∞

0 (2m+ 1)−4.

Since only cosine terms are present and the spatial terms have the form cos(nπx/L),

the period of the continued function is 2L. We take its forms beyond x = ±L/2
as continuing that set by the physical string; they have the common value −y0

at x = ±L.

The values of the an are set by the initial displacement y(x, 0) and given by

(writing π/L as k)

an =
2

2L

∫ L

−L
y(x, 0) cos nkx dx

=
2y0

L

∫ L

0

(
1 − 2x

L

)
cos nkx dx

=
2y0

L

[
sin nkx

nk

]L
0

− 4y0

L2

{[
x sin nkx

nk

]L
0

−
∫ L

0

sin nkx

nk
dx

}

=
4y0

L2

[
− cos nkx

n2k2

]L
0

=
8y0

n2π2
for n odd, and = 0 for n even.
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This shows that only the odd harmonics are present. Because of the presence of

n in the denominators of several expressions in the above calculation, the case

n = 0 needs to be considered separately; however, it is clear that the average

value of the continued function is zero and so a0 = 0.

In order to apply Parseval’s theorem we need to evaluate both the integral over

one period of the square of the magnitude of the function, and the sum of the

squares of the magnitudes of its Fourier coefficients:

(i)
1

2L

∫ L

−L
|y(x, 0)|2 dx =

4y2
0

2L

∫ L/2

0

(
1 − 2x

L

)2

dx

=
2y2

0

L

[
1

3

(
−L
2

)(
1 − 2x

L

)3
]L/2

0

=
1

3
y2

0 .

(ii)
1

2

∞∑
n=1

a2
n =

1

2

∑
nodd

64y2
0

n4π4
=

32y2
0

π4

∞∑
m=0

1

(2m+ 1)4
.

Equating these two expressions shows that

∞∑
m=0

1

(2m+ 1)4
=
π4

96
.

12.26 An odd function f(x) of period 2π is to be approximated by a Fourier

sine series having only m terms. The error in this approximation is measured by

the square deviation

Em =

∫ π

−π

[
f(x) −

m∑
n=1

bn sin nx

]2

dx.

By differentiating Em with respect to the coefficients bn, find the values of bn that

minimise Em.

Sketch the graph of the function f(x), where

f(x) =

{
−x(π + x) for −π ≤ x < 0,

x(x− π) for 0 ≤ x < π.

f(x) is to be approximated by the first three terms of a Fourier sine series. What

coefficients minimise E3? What is the resulting value of E3?

We minimise Em by differentiating it with respect to bj and setting the partial
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derivative equal to zero.

Em =

∫ π

−π

[
f(x) −

m∑
n=1

bn sin nx

]2

dx,

∂Em

∂bj
=

∫ π

−π
2

[
f(x) −

m∑
n=1

bn sin nx

]
sin jx dx,

0 = 2

∫ π

−π
f(x) sin jx dx− 2

m∑
n=1

bn
1

2
2π δjn,

⇒ bj =
1

π

∫ π

−π
f(x) sin(jx) dx,

i.e. bj is the usual Fourier coefficient.

The function defined by

f(x) =

{
−x(π + x) for −π ≤ x < 0,

x(x− π) for 0 ≤ x < π,

is an odd function in x and therefore has a pure sine series Fourier expansion.

The expansion coefficients are given by

bn =
2

π

∫ π

0

x(x− π) sin nx dx.

Integrating by parts, we obtain

πbn

2
=

∫ π

0

x2 sin nx dx−
∫ π

0

πx sin nx dx

=

[
−x2 cos nx

n

] π
0

+

∫ π

0

2x cos nx

n
dx

−
[−πx cos nx

n

] π
0

−
∫ π

0

π cos nx

n
dx

=
(−1)n+1π2

n
+

[
2x sin nx

n2

] π
0

−
∫ π

0

2 sin nx

n2
dx+

(−1)n+2π2

n
+ 0

= 0 +
2

n2

[cos nx

n

] π
0
,

i.e.

bn = − 8

πn3
for n odd, and = 0 for n even.

Thus, the minimising coefficients are

b1 = − 8

π
, b2 = 0, b3 = − 8

27π
.

As the full Fourier series reproduces f(x) accurately, the error E3 using these
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three calculated coefficients must be

E3 =

∫ π

−π

∞∑
odd n=5

(
− 8

πn3
sin nx

)2

dx

=

∞∑
odd n=5

64

π2n6

1

2
2π

=
64

π

∞∑
m=2

1

(2m+ 1)6
.
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13

Integral transforms

13.2 Use the general definition and properties of Fourier transforms to show

the following.

(a) If f(x) is periodic with period a then f̃(k) = 0 unless ka = 2πn for integer

n.

(b) The Fourier transform of tf(t) is idf̃(ω)/dω.

(c) The Fourier transform of f(mt+ c) is

eiωc/m

m
f̃
(ω
m

)
.

(a) As f is periodic with period a,

f(x) = f(x− ma),

for any integer m. However, from the general translation property of Fourier

transforms,

f̃(k) = F [ f(x) ] = F [ f(x− ma) ] = e−imkaf̃(k).

Thus

0 = f̃(k)(1 − e−imka),

implying, in the particular case m = 1, that either f̃(k) = 0 or ka = 2πn where n

is an integer.

(b) This result is immediate, since differentiating under the integral sign gives

i
df̃(ω)

dω
=

i√
2π

∂

∂ω

(∫ ∞

−∞
f(t) e−iωt dt

)
=

1√
2π

∫ ∞

−∞
tf(t) e−iωt dt.
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(c) From the definition of a Fourier transform,

F [ f(mt+ c) ] =
1√
2π

∫ ∞

−∞
f(mt+ c) e−iωt dt.

We make a change of integration variable by setting mt+ c = u, with dt = du/m

and −∞ < u < ∞. This yields

F [ f(mt+ c) ] =
1√
2π

∫ ∞

−∞
f(u) e−iω(u−c)/m du

m

=
eiωc/m

m

1√
2π

∫ ∞

−∞
f(u) e−i(ω/m)u du

=
eiωc/m

m
f̃
(ω
m

)
,

as stated in the question.

13.4 Prove that the Fourier transform of the function f(t) defined in the tf-plane

by straight-line segments joining (−T , 0) to (0, 1) to (T , 0), with f(t) = 0 outside

|t| < T , is

f̃(ω) =
T√
2π

sinc2

(
ωT

2

)
,

where sinc x is defined as (sin x)/x.

Use the general properties of Fourier transforms to determine the transforms of

the following functions, graphically defined by straight-line segments and equal to

zero outside the ranges specified:

(a) (0, 0) to (0.5, 1) to (1, 0) to (2, 2) to (3, 0) to (4.5, 3) to (6, 0);

(b) (−2, 0) to (−1, 2) to (1, 2) to (2, 0);

(c) (0, 0) to (0, 1) to (1, 2) to (1, 0) to (2,−1) to (2, 0).

The function f(t) is given algebraically by

f(t) =


1 +

t

T
for −T ≤ t ≤ 0,

1 − t

T
for 0 ≤ t ≤ T .

Its Fourier transform is therefore

f̃(ω) =
1√
2π

∫ 0

−T

(
1 +

t

T

)
e−iωt dt+

1√
2π

∫ T

0

(
1 − t

T

)
e−iωt dt.
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Setting t = −u in the first integral and t = u in the second yields

√
2πf̃(ω) =

∫ 0

T

(
1 − u

T

)
eiωu (−du) +

∫ T

0

(
1 − u

T

)
e−iωu du

=

∫ T

0

(
1 − u

T

)
2 cosωu du

= 2

[
sinωu

ω

]T
0

− 2

[
u sinωu

ωT

]T
0

+
2

T

∫ T

0

sinωu

ω
du

=
2 sinωT

ω
− 0 − 2 sinωT

ω
+ 0 +

2

T

[− cosωu

ω2

]T
0

=
2

Tω2
(1 − cosωT ) =

4 sin2( 1
2
ωT )

Tω2
,

f̃(ω) =
T√
2π

sinc2

(
ωT

2

)
,

where sinc(x) = sin x/x.

In addition to straightforward scaling, two of the other properties of Fourier

transforms that are available are (i) F [ f(t+ a) ] = eiaωf̃(ω) and (ii) F
[
f′(t)

]
=

iωf̃(ω).

(a) This function consists of three segments of the same shape as f(x), but with

each one scaled and shifted. The first segment is centred on t = 1
2

and has T = 1
2
;

its contribution to the transform is therefore

e−iω/2 1

2
√

2π
sinc2

(ω
4

)
.

The second segment is scaled by a factor of 2, is centred on t = 2 and has T = 1.

The third is scaled by a factor of 3, is centred on t = 9
2

and has 2T = 3. The full

function therefore has as its Fourier transform

1√
2π

[
e−iω/2 1

2
sinc2

(ω
4

)
+ e−i2ω2sinc2

(ω
2

)
+ e−i9ω/2 9

2
sinc2

(
3ω

4

)]

=
8√

2πω2

[
e−iω/2 sin2

(ω
4

)
+ e−i2ω sin2

(ω
2

)
+ e−i9ω/2 sin2

(
3ω

4

)]
(b) This function could be considered as the superposition of a ‘triangle’ of height

2 with T = 2 and two other triangles, each of unit height with T = 1, displaced

from the first by ±1. Alternatively, it could be considered as the difference between

two ‘triangles’ centred on t = 0, one of height 4 with T = 2 and the other of

height 2 with T = 1. Necessarily, both approaches give the same answer. Using
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the second,

f̃2(ω) =
8√
2π

sinc2ω − 2√
2π

sinc2
(ω

2

)
=

8√
2πω2

sin2
(ω

2

) [
4 cos2

(ω
2

)
− 1
]

=
8√

2πω2
sin2

(ω
2

)
(2 cosω + 1).

(c) This function can be viewed as the superposition of a ‘triangle’ with T = 1

centred on t = 1 and one cycle of a unit square-wave function, also centred on

t = 1. But, the unit square-wave function is exactly the derivative of the triangle

function, i.e. +1 for 0 ≤ t ≤ 1 and −1 for 1 ≤ t ≤ 2. If the complete function

were centred on t = 0, its Fourier transform would be

f̃3(ω) = F [ f(t) ] + F
[
f′(t)

]
= f̃(ω) + iωf̃(ω).

However, it is centred on t = 1 and so an extra factor of e−iω has to be included

to give

f̃3(ω) =
(1 + iω) e−iω

√
2π

sinc2
(ω

2

)
.

13.6 By differentiating the definition of the Fourier sine transform f̃s(ω) of

the function f(t) = t−1/2 with respect to ω, and then integrating the resulting

expression by parts, find an elementary differential equation satisfied by f̃s(ω).

Hence show that this function is its own Fourier sine transform, i.e. f̃s(ω) = Af(ω),

where A is a constant. Show that it is also its own Fourier cosine transform. Assume

that the limit as x → ∞ of x1/2 sin αx can be taken as zero.

Starting from the definition

f̃s(ω) =

√
2

π

∫ ∞

0

t−1/2 sinωt dt,

and then differentiating under the integral sign, we have

df̃s(ω)

dω
=

√
2

π

∫ ∞

0

t−1/2 t cosωt dt,

=

√
2

π

[
t1/2 sinωt

ω

]∞

0

−
√

2

π

∫ ∞

0

1

2
t−1/2 sinωt

ω
dt

= 0 − 0 − 1

2ω
f̃s(ω).
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The Fourier sine transform therefore satisfies the differential equation

df̃s(ω)

dω
+

1

2ω
f̃s(ω) = 0 ⇒ f̃s(ω) =

A

ω1/2
= Af(ω).

The Fourier cosine transform must behave in exactly the same way, although the

constant A could be different, and the details will not be worked out here.

13.8 Calculate the Fraunhofer spectrum produced by a diffraction grating,

uniformly illuminated by light of wavelength 2π/k, as follows. Consider a grating

with 4N equal strips each of width a and alternately opaque and transparent. The

aperture function is then

f(y) =

{
A for (2n+ 1)a ≤ y ≤ (2n+ 2)a, −N ≤ n < N,

0 otherwise.

(a) Show, for diffraction at angle θ to the normal to the grating, that the required

Fourier transform can be written

f̃(q) = (2π)−1/2
N−1∑
r=−N

exp(−2iarq)

∫ 2a

a

A exp(−iqu) du,

where q = k sin θ.

(b) Evaluate the integral and sum to show that

f̃(q) = (2π)−1/2 exp(−iqa/2)
A sin(2qaN)

q cos(qa/2)
,

and hence that the intensity distribution I(θ) in the spectrum is proportional

to

sin2(2qaN)

q2 cos2(qa/2)
.

(c) For large values of N, the numerator in the above expression has very closely

spaced maxima and minima as a function of θ and effectively takes its mean

value, 1/2, giving a low-intensity background. Much more significant peaks

in I(θ) occur when θ = 0 or the cosine term in the denominator vanishes.

Show that the corresponding values of |f̃(q)| are

2aNA

(2π)1/2
and

4aNA

(2π)1/2(2m+ 1)π
with m integral.

Note that the constructive interference makes the maxima in I(θ) ∝ N2, not

N. Of course, observable maxima only occur for 0 ≤ θ ≤ π/2.
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(a) and (b) The required Fourier transform is given by

√
2πf̃(q) =

∫ ∞

−∞
f(y) e−iqy dy

=

N−1∑
n=−N

∫ (2n+2)a

(2n+1)a

A e−iqy dy, set y = 2na+ u,

=

N−1∑
n=−N

e−iq2na
∫ 2a

a

A e−iqu du

= eiq2Na
1 − e−iq4Na

1 − e−iq2a
A( e−iq2a − e−iqa)

−iq

=
2i sin(2qaN)

e−iqa2i sin(qa)

e−i3qa/22iA[ − sin(qa/2) ]

−iq

= e−iqa/2 sin(2qaN)

2 sin(qa/2) cos(qa/2)

2A sin(qa/2)

q
,

f̃(q) =
1√
2π

e−iqa/2A sin(2qaN)

q cos(qa/2)
.

The intensity distribution is proportional to the squared modulus of this, i.e to

sin2(2qaN)

q2 cos2(qa/2)
.

(c) For the significant peaks:

(i) At θ = 0, when q = k sin θ = 0. Using the fact that for small φ sinφ ≈ φ,

|f̃(q)| =
1√
2π

A2qaN

q 1
=

2aNA√
2π

.

(ii) When qa/2 = (m + 1
2
)π with m an integer, i.e. ka sin θ = (2m + 1)π. The

modulus of the transform becomes

|f̃(q)| =
1√
2π

A sin[N(4m+ 2)π ]

a−1(2m+ 1)π cos[ (m+ 1
2
)π ]

.

This has the form 0/0 and is indeterminate. To evaluate the ratio we set qa = ψ

and determine the limit of the ratio as ψ → (2m+ 1)π using l’Hôpital’s rule.

√
2π| f̃ | =

∣∣∣∣ Aa sin(2ψN)

ψ cos(ψ/2)

∣∣∣∣
=

∣∣∣∣∣ 2NAa cos(2ψN)

cos(ψ/2) + 1
2
ψ sin(ψ/2)

∣∣∣∣∣
=

∣∣∣∣∣ 2NAa 1
1
2
(2m+ 1)π(−1)m

∣∣∣∣∣ ,
|f̃| =

4NaA√
2π(2m+ 1)π

.
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13.10 In many applications in which the frequency spectrum of an analogue

signal is required, the best that can be done is to sample the signal f(t) a finite

number of times at fixed intervals and then use a discrete Fourier transform Fk
to estimate discrete points on the (true) frequency spectrum f̃(ω).

(a) By an argument that is essentially the converse of that given in section 13.1,

show that, if N samples fn, beginning at t = 0 and spaced τ apart, are taken,

then f̃(2πk/(Nτ)) ≈ Fkτ where

Fk =
1√
2π

N−1∑
n=0

fne
−2πnki/N .

(b) For the function f(t) defined by

f(t) =

{
1 for 0 ≤ t < 1,

0 otherwise,

from which eight samples are drawn at intervals of τ = 0.25, find a formula

for |Fk| and evaluate it for k = 0, 1, . . . , 7.

(c) Find the exact frequency spectrum of f(t) and compare the actual and esti-

mated values of
√

2π|f̃(ω)| at ω = kπ for k = 0, 1, . . . , 7. Note the relatively

good agreement for k < 4 and the lack of agreement for larger values of k.

(a) With the exact definition of the Fourier transform of f(t) (taken as zero for

t < 0) being given by the integral

f̃(ω) =
1√
2π

∫ ∞

0

f(t) e−iωt dt,

we approximate it with the sum of the areas of a series of rectangles. Each has

width τ but the height of the nth is determined by the sample value fn.

f̃(ω) ≈ 1√
2π

N−1∑
n=0

fnτ e
−iωnτ.

For the sample frequencies ω = 2πk/(Nτ) this gives the estimated spectrum values

as

f̃

(
2πk

Nτ

)
≈ 1√

2π

N−1∑
n=0

fnτ e
−i2πnk/N ≡ Fkτ.

(b) The eight sample values are fn = 1 for n = 0, 1, 2 and 3, and fn = 0 for n =

4, 5, 6 and 7.

With k = 0,
√

2πF0 = 1 + 1 + 1 + 1 + 0 + 0 + 0 + 0 = 4.
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For a more general value of k

Fk =
1√
2π

3∑
n=0

e−i2πnk/8

=
1√
2π

1 − e−i4(kπ/4)

1 − e−ikπ/4

=
1√
2π

eikπ/8[ 1 − (−1)k ]

eikπ/8 − e−ikπ/8 .

To obtain the last line we have used eikπ = (−1)k and arranged for the final

expression to be real apart from a single overall phase factor. It follows that the

modulus of Fk is given by

|Fk| =
1√
2π

1

sin kπ/8
for odd k

and is equal to zero for even k.

(c) The exact frequency spectrum of f(t) is

f̃(ω) =
1√
2π

∫ ∞

−∞
e−iωt dt

=
1√
2π

[
e−iωt

−iω

] 1

0

=
e−iω/2
√

2π

2 sin(ω/2)

ω

=
e−iω/2
√

2π
sinc

ω

2
.

Noting that τ = 1
4
, giving ω = 2πk/(8 × 0.25), the comparison of the magnitudes

of the exact values
√

2πf̃(ω) and the estimated values
√

2πFkτ is

ω = kπ = 0 π 2π 3π 4π 5π 6π 7π
√

2π|f̃(ω)| = 1 2
π

0 2
3π

0 2
5π

0 2
7π

= 1 0.637 0 0.212 0 0.127 0 0.091
√

2π|Fkτ| = 1 0.653 0 0.271 0 0.271 0 0.653

The lack of agreement for the higher frequencies (k > 4) is obvious.
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13.12 A signal obtained by sampling a function x(t) at regular intervals T is

passed through an electronic filter, whose response g(t) to a unit δ-function input

is represented in a tg-plot by straight lines joining (0, 0) to (T , 1/T ) to (2T , 0) and

is zero for all other values of t. The output of the filter is the convolution of the

input,
∑∞

−∞ x(t)δ(t− nT ), with g(t).

Using the convolution theorem, and the result given in exercise 13.4, show that the

output of the filter can be written

y(t) =
1

2π

∞∑
n=−∞

x(nT )

∫ ∞

−∞
sinc2

(
ωT

2

)
e−iω[(n+1)T−t]dω.

In order to use the convolution theorem we need the Fourier transforms of both

the input signal x(t) and the filter response g(t). The former is

x̃(ω) =
1√
2π

∫ ∞

−∞
e−iωt

∞∑
n=−∞

x(t)δ(t − nT ) dt =
1√
2π

∞∑
n=−∞

x(nT ) e−inωT .

The latter is the same as that obtained in exercise 13.4, except that it is scaled by

a factor 1/T and centred on t = T , rather that t = 0. The required transform is

therefore

g̃(ω) =
e−iωT
√

2π
sinc2

(
ωT

2

)
.

The transform of the output is therefore the product of these two transforms

multiplied by
√

2π.

Using the Fourier inversion theorem, we can therefore write the output of the

filter as

y(t) =
1√
2π

∫ ∞

−∞

[√
2π g̃(ω) x̃(ω)

]
eiωt dω

=
1√
2π

∫ ∞

−∞

[√
2π

e−iωT
√

2π
sinc2

(
ωT

2

)
× 1√

2π

∞∑
n=−∞

x(nT ) e−inωT

]
eiωt dω

=
1

2π

∞∑
n=−∞

x(nT )

∫ ∞

−∞
sinc2

(
ωT

2

)
e−iω[(n+1)T−t]dω,

as stated in the question.
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13.14 Prove the equality∫ ∞

0

e−2at sin2 at dt =
1

π

∫ ∞

0

a2

4a4 + ω4
dω.

We utilise the first result of the previous exercise (13.13) in the special case where

γ = p = a, f(t) = e−at sin at and consequently

f̃(ω) =
1√
2π

a

(a+ iω)2 + a2
.

Applying Parseval’s theorem,∫ ∞

−∞
|f(t)|2 dt =

∫ ∞

−∞
|f̃(ω)|2 dω,

to this function and its transform:∫ ∞

0

e−2at sin2 at dt =
1

2π

∫ ∞

−∞

[
a

(a+ iω)2 + a2

] [
a

(a− iω)2 + a2

]
dω

=
1

2π

∫ ∞

−∞

a2

(a2 + ω2)2 + 2a2(a2 − ω2) + a4
dω

=
1

π

∫ ∞

0

a2

4a4 + ω4
dω.

13.16 In quantum mechanics, two equal-mass particles having momenta

pj = �kj and energies Ej = �ωj and represented by plane wavefunctions φj =

exp[i(kj · rj −ωjt)], j = 1, 2, interact through a potential V = V (|r1 − r2|). In first-

order perturbation theory the probability of scattering to a state with momenta

and energies p′
j , E

′
j is determined by the modulus squared of the quantity

M =

∫∫∫
ψ∗

f Vψi dr1 dr2 dt.

The initial state ψi is φ1φ2 and the final state ψf is φ′
1φ

′
2.

(a) By writing r1 + r2 = 2R and r1 − r2 = r and assuming that dr1 dr2 = dR dr,

show that M can be written as the product of three one-dimensional integrals.

(b) From two of the integrals deduce energy and momentum conservation in the

form of δ-functions.

(c) Show that M is proportional to the Fourier transform of V , i.e. Ṽ (k) where

2�k = (p2 − p1) − (p′
2 − p′

1).
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Putting in explicit expressions for the wavefunctions gives

M =

∫∫∫
ψ∗

f Vψi dr1 dr2 dt

=

∫∫∫
exp[ −i(k′

2 · r2 − ω′
2t) ] exp[ −i(k′

1 · r1 − ω′
1t) ]V (|r1 − r2|)

× exp[ i(k2 · r2 − ω2t) ] exp[ i(k1 · r1 − ω1t) ] dr1 dr2 dt.

(a) Writing the integrand in terms of the centre-of-mass coordinate, r, and the

coordinate of the centre of mass, R, given by

r1 + r2 = 2R and r1 − r2 = r,

with dr1 dr2 = dR dr, we can express r1 as r1 = R + 1
2
r and r2 as r2 = R − 1

2
r.

When these substitutions are made the integral becomes

M =

∫
exp[ i(−k′

2 − k′
1 + k2 + k1) · R ] dR

×
∫

exp[ 1
2
i(k′

2 − k′
1 − k2 + k1) · r ]V (r) dr

×
∫

exp[ i(ω′
2 + ω′

1 − ω2 − ω1)t ] dt.

This is now the product of three 1-dimensional integrals.

(b) The first integral is, as shown in the text, a representation of the 3-dimensional

δ-function and is equal to (2π)3δ(k1+k2−k′
1−k′

2). Since pj = �kj , this is equivalent

to p1 + p2 = p′
1 + p′

2, i.e. to momentum conservation.

Similarly, the last of the three integrals produces a 1-dimensional δ-function,

which, since Ej = �ωj , is equivalent to energy conservation, namely E ′
1 + E ′

2 =

E1 + E2.

(c) The second integral, containing V (r), can be written as∫
V (r) e−ik·r dr,

where k = 1
2
(k′

1 − k′
2 − k1 + k2), i.e. where 2�k = (p2 − p1) − (p′

2 − p′
1); the integral

is thus proportional to Ṽ (k).

Note Since, from part (b), (p′
2 − p2) = −(p′

1 − p1) and 2�k can be written as

2�k = (p′
1 − p1) − (p′

2 − p2), it follows that �k = p′
1 − p1. Thus the k appearing

in Ṽ (k) is the wave vector corresponding to the momentum transferred from one

particle to the other.

212



INTEGRAL TRANSFORMS

13.18 The equivalent duration and bandwidth, Te and Be, of a signal x(t) are

defined in terms of the latter and its Fourier transform x̃(ω):

Te =
1

x(0)

∫ ∞

−∞
x(t) dt,

Be =
1

x̃(0)

∫ ∞

−∞
x̃(ω) dω,

where neither x(0) nor x̃(0) is zero. Show that the product TeBe = 2π (this is a

form of uncertainty principle), and find the equivalent bandwidth of the signal

x(t) = exp(−|t|/T ).

For this signal, determine the fraction of the total energy that lies in the frequency

range |ω| < Be/4. You will need the indefinite integral with respect to x of (a2 +

x2)−2, which is

x

2a2(a2 + x2)
+

1

2a3
tan−1 x

a
.

With x̃(ω) being the Fourier transform of x(t),

Te =
1

x(0)

∫ ∞

−∞
x(t) dt and Be =

1

x̃(0)

∫ ∞

−∞
x̃(ω) dω,

we have that

x̃(0) =
1√
2π

∫ ∞

−∞
x(t) e−i0t dt =

1√
2π

∫ ∞

−∞
x(t) dt =

1√
2π

x(0)Te.

Consequently,

x(0) =
1√
2π

∫ ∞

−∞
x̃(ω) eiω0 dω =

1√
2π

x̃(0)Be =
1√
2π

Be
1√
2π

x(0)Te.

It then follows that BeTe = 2π.

For x(t) = exp(−|t|/T ), the equivalent duration is

Te =
1

x(0)

∫ ∞

−∞
x(t) dt = 2

∫ ∞

0

e−t/T dt = 2
[

−Te−t/T
]∞

0
= 2T .

The equivalent bandwidth is therefore Be = 2π/(2T ) = π/T .

The energy density spectrum is proportional to |x̃(ω)|2 and the fraction of the

total energy lying within |ω| < Be/4 is

f =

∫ Be/4

−Be/4

|x̃(ω)|2 dω∫ ∞

−∞
|x̃(ω)|2 dω

.
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Now,

x̃(ω) =
1√
2π

∫ 0

−∞
et/T e−iωt dt+

1√
2π

∫ ∞

0

e−t/T e−iωt dt

=
1√
2π

∫ ∞

0

e−t′/T eiωt
′
dt′ +

1√
2π

∫ ∞

0

e−t/T e−iωt dt

=
2√
2π

∫ ∞

0

e−t/T cos(ωt) dt

=
2√
2π

Re

[
e−t/T+iωt

− 1
T

+ iω

]∞

0

=
2√
2π

T−1

T−2 + ω2
=

2T√
2π

1

1 + ω2T 2
.

The fraction f is therefore given by

f =

∫ π/(4T )

−π/(4T )

(1 + ω2T 2)−2 dω∫ ∞

−∞
(1 + ω2T 2)−2 dω

=

2

∫ π/4

0

(1 + x2)−2 dx

2

∫ ∞

0

(1 + x2)−2 dx

=

{
π

8[1 + (π/4)2]
+

1

2
tan−1 π

4

}{
0 +

1

2
tan−1 ∞

}−1

=
1

2[1 + (π/4)2]
+

2

π
tan−1 π

4
= 0.733.

13.20 Prove that the cross-correlation C(z) of the Gaussian and Lorentzian

distributions

f(t) =
1

τ
√

2π
exp

(
− t2

2τ2

)
, g(t) =

( a
π

) 1

t2 + a2
,

has as its Fourier transform the function

1√
2π

exp

(
−τ2ω2

2

)
exp(−a|ω|).

Hence show that

C(z) =
1

τ
√

2π
exp

(
a2 − z2

2τ2

)
cos
(az
τ2

)
.

We need the Fourier transforms of both f(t) and g(t). That for f is derived in the
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text as

f̃(ω) =
1√
2π

e−ω2τ2/2.

That for g can be found from the result of either of the exercises 13.18 and 13.19

(or from the contour integral of a complex variable, as in chapter 24). If, in the

final result of the previous exercise (13.19), we make the substitutions ω → −t,
λ → a and z → ω, we obtain

∫ ∞

−∞

e−itω

a2 + t2
dt =

π

a
e−a|ω|.

From this it follows that

g̃(ω) =
1√
2π

∫ ∞

−∞

a

π

e−iωt

t2 + a2
dt =

1√
2π

e−a|ω|.

From the Wiener-Kinchin theorem, we can now state that the Fourier transform

of the cross-correlation function is

C̃(ω) =
√

2π
1√
2π

e−ω2τ2/2 1√
2π

e−a|ω| =
1√
2π

exp

(
−τ2ω2

2

)
exp(−a|ω|).

The correlation function itself is obtained by forming the inverse tranform and

evaluating it by ‘completing the square’.

C(z) =
1√
2π

∫ ∞

−∞

1√
2π

e−ω2τ2/2 e−a|ω| eiωz dω

=
2

2π
Re

∫ ∞

0

exp(− 1
2
ω2τ2 − aω + iωz) dω

=
1

π
Re

∫ ∞

0

exp

{
−1

2
τ2
[
ω2 +

2(a− iz)ω

τ2
+

(a− iz)2

τ4

]}
× exp

[
(a− iz)2

2τ2

]
dω

=
1

π

(
1

2

√
2π

τ

)
Re

[
exp

(
a2 − z2

2τ2

)
exp

(
−2aiz

2τ2

)]
=

1√
2π

1

τ
exp

(
a2 − z2

2τ2

)
cos
(az
τ2

)
,

as given in the question.

215



INTEGRAL TRANSFORMS

13.22 Find the functions y(t) whose Laplace transforms are the following:

(a) 1/(s2 − s− 2);

(b) 2s/[(s+ 1)(s2 + 4)];

(c) e−(γ+s)t0/[(s+ γ)2 + b2].

To find the original functions we must express the transforms in terms of those

given in table 13.1. Partial fraction expansions (chapter 1) are needed for (a) and

(b).

(a) Factorising the denominator and expressing the transform as partial fractions:

f̄(s) =
1

s2 − s− 2
=

1

3(s− 2)
− 1

3(s+ 1)
,

and from the table of Laplace transforms and the liearity of the process of taking

Laplace transforms, it follows that

f(t) =
1

3
(e2t − e−t).

(b) The quadratic term in the denominator cannot be factorised further without

involving complex roots (and, in any case, transforms containing (s2 + a2)−2

appear in the table) and so we express the transform in partial fractions as

2s

(s+ 1)(s2 + 4)
=

A

s+ 1
+
Bs+ C

s2 + 4
,

2s = s2(A+ B) + s(B + C) + (4A+ C),

⇒ A = − 2
5
, B = 2

5
, C = 8

5
.

Thus, we may write

f̄(s) = − 2

5(s+ 1)
+

2s+ 8

5(s2 + 4)
,

and from the table of Laplace transforms can read off that

f(t) = 2
5
(−e−t + cos 2t+ 4 sin 2t).

(c) Apart from the factor e−γt0 (which indicates a change of origin to t = t0), f̄(s)

is the product of the Laplace transforms of δ(t − t0) and b−1e−γt sin bt. Thus, by
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the convolution theorem,

f(t) =
e−γt0

b

∫ t

0

e−γu sin(bu)H(u) δ(t − u− t0) du

=
e−γt0

b
e−γ(t−t0) sin[ b(t− t0) ]H(t− t0)

=
1

b
e−γt sin[ b(t− t0) ]H(t− t0).

Note that f(t) = 0 for t < t0.

13.24 Find the solution (the so-called impulse response or Green’s function)

of the equation

T
dx

dt
+ x = δ(t)

by proceeding as follows.

(a) Show by substitution that

x(t) = A(1 − e−t/T )H(t)

is a solution, for which x(0) = 0, of

T
dx

dt
+ x = AH(t), (∗)

where H(t) is the Heaviside step function.

(b) Construct the solution when the RHS of (∗) is replaced by AH(t− τ) with

dx/dt = x = 0 for t < τ, and hence find the solution when the RHS is a

rectangular pulse of duration τ.

(c) By setting A = 1/τ and taking the limit when τ → 0, show that the impulse

response is x(t) = T−1e−t/T .

(d) Obtain the same result much more directly by taking the Laplace transform

of each term in the original equation, solving the resulting algebraic equation

and then using the entries in table 13.1.

(a) For t > 0, consider x(t) = A(1 − e−t/T )H(t), for which x(0) = A(1 − 1) = 0.

Substitute it into (∗):

T
A

T
e−t/TH(t) + A(1 − e−t/T )H(t) = AH(t),

which is clearly satisfied.

(b) With the RHS of (∗) = AH(t − τ) the solution will be x(t) = A(1 −
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e−(t−τ)/T )H(t − τ) and, because of the linearity of the equation, the solution

when the RHS is a rectangular pulse of duration τ is

x(t) = A(1 − e−t/T )H(t) − A(1 − e−(t−τ)/T )H(t− τ).

This follows because the rectangular pulse can be thought of as the linear

superposition of a positive Heaviside function and an equal and opposite negative

Heaviside function, the latter being delayed by an interval τ.

(c) We now make A equal to 1/τ, so that the area under the pulse is unity,

whatever the value of τ, and consider the limiting form of f(t) as τ → 0.

lim
τ→0

1

τ

[
(1 − e−t/T )H(t) − (1 − e−(t−τ)/T )H(t− τ)

]
= lim

τ→0

1

τ

{
(1 − e−t/T )H(t) −

[
1 − e−t/T

(
1 +

τ

T
+ O(τ2)

) ]
H(t− τ)

}
= lim

τ→0

{
(1 − e−t/T )

[H(t) −H(t− τ) ]

τ
+
e−t/T

τ

τ

T
H(t− τ) + O(τ2)

}
=
(
1 − e−t/T

)
t=0

+
e−t/T

T
H(t)

=
e−t/T

T
H(t).

This is the impulse response.

(d) Laplace transforming the original equation and incorporating the initial value

x(0) = 0 gives

Tsx̄− 0 + x̄ = 1.

From this it follows that

x̄ =
1

1 + sT
=

1

T (T−1 + s)
,

⇒ x(t) =
e−t/T

T
H(t),

in agreement with the result in part (c).
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13.26 By writing f(x) as an integral involving the δ-function δ(ξ−x) and taking

the Laplace transforms of both sides, show that the transform of the solution of

the equation

d4y

dx4
− y = f(x)

for which y and its first three derivatives vanish at x = 0 can be written as

ȳ(s) =

∫ ∞

0

f(ξ)
e−sξ

s4 − 1
dξ.

Use the properties of Laplace transforms and the entries in table 13.1 to show that

y(x) =
1

2

∫ x

0

f(ξ) [sinh(x− ξ) − sin(x− ξ)] dξ.

We first need to write f(x) as an integral involving the δ-function δ(ξ−x) so that

the only x-dependence of the RHS is on functions for which we know the explicit

Laplace transform; we do not know that of f(x). Thus, we take the transform of

the equation in the form

d4y

dx4
− y =

∫ ∞

−∞
H(ξ) f(ξ) δ(ξ − x) dξ.

Since y and its first three derivatives vanish at x = 0 the transform of d4y/dx4

does not contain any terms involving s3, s2, s or a constant. The transform of

δ(x− x0) is e−sx0 , and so the Laplace transform of the original equation reads

s4ȳ − ȳ =

∫ ∞

0

f(ξ)e−sξ dξ.

This can be rearranged to express ȳ explicitly as

ȳ(s) =

∫ ∞

0

f(ξ)
e−sξ

s4 − 1
dξ,

which is the form stated in the question.

To find the form of y(x), we begin by rewriting the integrand using partial

fractions. The denominator could be written as the product of four linear factors,

but, with one eye on the form of the quoted solution (and the other on table 13.1),

we write it as the product of two quadratic functions leading to the partial

fractions representation:

ȳ(s) =
1

2

∫ ∞

0

f(ξ)

(
e−sξ

s2 − 1
− e−sξ

s2 + 1

)
dξ.
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Now, using the table and recognising the implication of the factor e−sξ so far as

the arguments of the inverted functions are concerned:

y(x) =
1

2

∫ ∞

0

f(ξ)[ sinh(x− ξ) − sin(x− ξ) ]H(x− ξ) dξ

=
1

2

∫ x

0

f(ξ)[ sinh(x− ξ) − sin(x− ξ) ] dξ,

i.e. as stated in the question.

13.28 Show that the Laplace transform of f(t − a)H(t − a), where a ≥ 0, is

e−asf̄(s) and that, if g(t) is a periodic function of period T , ḡ(s) can be written as

1

1 − e−sT

∫ T

0

e−stg(t) dt.

(a) Sketch the periodic function defined in 0 ≤ t ≤ T by

g(t) =

{
2t/T 0 ≤ t < T/2,

2(1 − t/T ) T/2 ≤ t ≤ T ,

and, using the previous result, find its Laplace transform.

(b) Show, by sketching it, that

2

T
[tH(t) + 2

∞∑
n=1

(−1)n(t− 1
2
nT )H(t− 1

2
nT )]

is another representation of g(t) and hence derive the relationship

tanh x = 1 + 2

∞∑
n=1

(−1)ne−2nx.

From the definition of a Laplace transform,

L [f(t− a)H(t− a)] =

∫ ∞

0

f(t− a)H(t− a) e−st dt.

We start by changing the integration variable to u = t− a, with a corresponding

change in the integration limits:

L [f(t− a)H(t− a)] =

∫ ∞

−a
f(u)H(u)e−sue−sa du

=

∫ ∞

0

f(u)e−sue−sa du

= e−saf̄(s).
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With g(t) periodic, g(t) = g(t− T ) and the Laplace transform can be written as∫ ∞

0

H(t)g(t) e−st dt =

∫ T

0

H(t)g(t) e−st dt+

∫ ∞

T

H(t)g(t) e−st dt.

However, it follows from the properties of the Heavisde function that∫ ∞

T

H(t) · · · dt =

∫ ∞

0

H(t− T ) · · · dt

and so, using the previous result, we can rewrite the above equation as

ḡ(s) =

∫ ∞

0

g(t) e−st dt =

∫ T

0

g(t) e−st dt+

∫ ∞

0

H(t− T )g(t− T ) e−st dt

=

∫ T

0

g(t) e−st dt+ e−sT ḡ(s)

⇒ ḡ(s) =
1

1 − e−sT

∫ T

0

g(t) e−st dt.

(a) The graph of g(t) consists of a continuously repeating pattern of isosceles

triangles, each of unit height and base width T . Any one of these triangles has

the same shape as the function ga(x) found in Exercise 13.27, except that a has

been replaced by T/2 and the height of the triangle is unity rather than a. Its

Laplace transform is therefore

1

(T/2)

1

s2

(
1 − e−sT/2

)2

.

From our earlier result it now follows that the Laplace transform of g(t) is

ḡ(s) =
2

Ts2

(
1 − e−sT/2)2
1 − e−sT

=
2

Ts2
1 − e−sT/2

1 + e−sT/2

=
2

Ts2
tanh

(
sT

4

)
.

(b) The contributions to

f(t) =

∞∑
n=0

fn(t) =
2

T
[tH(t) + 2

∞∑
n=1

(−1)n(t− 1
2
nT )H(t− 1

2
nT )]

are shown in the sketch (figure 13.1).

For 0 ≤ t ≤ T/2, only f0 contributes; it is identical to g(t) with f(T/2) = 1.

For T/2 ≤ t ≤ T , f0 and f1 contribute with net slope −2/T and f1 = −f0 at

t = T , making f(T ) = 0.

For T ≤ t ≤ 3T/2, f2(t) + f1(t) = f1(T ), since the two terms contribute equal

and opposite changes as t varies; the change in f(t) is entirely due to that in f0.
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T 2T
t

f0

f1

f2

f3

f4

1

2

0

−1

−2

Figure 13.1 The contributions to the function considered in exercise 13.28.

Their analytic forms in terms of the Heaviside function are f0 = 2tH(t)/T ,

with slope 2/T ; fn = 4(−1)n (t− 1
2
nT )H(t− 1

2
nT )/T , with slope 4/T .

For 3T/2 ≤ t ≤ 2T , the change in f(t) is due to those in f0 and f3, i.e. has a net

slope −2/T , making f(2T ) = 0.

This sequence is then repeated in successive blocks of length 2T .

Hence f(t) is an alternative representation of g(t) with

f̄(s) =
2

T

[
L [tH(t)] + 2

∞∑
n=1

(−1)ne−nTs/2L [tH(t)]

]
,

where we have used the result from part (a). But,

L [tH(t)] =

∫ ∞

0

t e−st dt =

[
t e−st

−s

]∞

0

−
[
e−st

s2

]∞

0

=
1

s2
.

Thus,

2

Ts2
tanh

(
sT

4

)
=

2

Ts2

[
1 + 2

∞∑
n=1

(−1)ne−nTs/2

]
.

Finally, setting sT = 4x gives

tanhx = 1 + 2

∞∑
n=1

(−1)ne−2nx.

222



14

First-order ordinary differential
equations

In this chapter unspecified symbols appearing in solutions are arbitrary constants.

Some of the constants may have specific relationships to earlier ones in the same

solution, but this will not be indicated unless it has particular significance in the

final answer.

14.2 Solve the following equations by separation of the variables:

(a) y′ − xy3 = 0;

(b) y′ tan−1 x− y(1 + x2)−1 = 0;

(c) x2y′ + xy2 = 4y2.

In each case we re-arrange the equation so that all terms involving y appear on

one side of an equality sign and all those involving x appear on the other. To

save space we write two equations on each line.

(a) y′ = xy3, ⇒ dy

y3
= x dx,

⇒ − 1

2y2
=

1

2
x2 + A, ⇒ y =

±1√
c− x2

.

(b) y′ tan−1 x =
y

1 + x2
, ⇒ dy

y
=

dx

(1 + x2) tan−1 x
,

⇒ ln y = ln(tan−1 x) + A, ⇒ y = c tan−1 x.

(c) x2y′ = y2(4 − x), ⇒ dy

y2
=

(
4

x2
− 1

x

)
dx,

⇒ −1

y
= − 4

x
− lnx+ c, ⇒ y =

x

4 + x lnx− cx
.
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14.4 Find the values of α and β that make

dF(x, y) =

(
1

x2 + 2
+
α

y

)
dx+ (xyβ + 1) dy

an exact differential. For these values solve dF(x, y) = 0.

For the differential to be exact we need

∂

∂y

(
1

x2 + 2
+
α

y

)
=

∂

∂x
(xyβ + 1),

− α

y2
= yβ.

Thus if α = −1 and β = −2 then dF will be an exact differential. Integrating the

equation then leads to

c′ = F(x, y) =

∫ (
x

y2
+ 1

)
dy + g(x)

= −x

y
+ y + g(x),

where

1

x2 + 2
− 1

y
=
∂F

∂x
= −1

y
+ g′(x),

which implies that

g(x) =
1√
2

tan−1

(
x√
2

)
+ c′′.

Collecting these results together, we can give the solution as

c = F(x, y) = −x

y
+ y +

1√
2

tan−1

(
x√
2

)
.

14.6 By finding an appropriate integrating factor, solve

dy

dx
= −2x2 + y2 + x

xy
.

Arrange the equation in the form

xy dy + (2x2 + y2 + x) dx = 0.
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Now apply the standard prescription for determining whether a suitable IF exists:

1

xy

[
∂

∂y
(2x2 + y2 + x) − ∂

∂x
(xy)

]
=

1

xy
(2y − y) =

1

x
.

This is a function of x only, thus showing that one does and that the IF needed

is

µ(x) = exp

{∫
1

x
dx

}
= exp(ln x) = x.

The exact equation is thus

x2y dy + (2x3 + xy2 + x2) dx = 0.

If this is to integrate to f(x, y) = c then

∂f

∂x
= 2x3 + xy2 + x2 ⇒ f(x, y) =

1

2
x4 +

1

2
x2y2 +

1

3
x3 + g(y).

The further requirement that ∂f/∂y = x2y shows that g(y) = 0 and so, on

multiplying through by 6, we obtain the solution

3x4 + 2x3 + 3x2y2 = c.

14.8 An electric circuit contains a resistance R and a capacitor C in series, and

a battery supplying a time-varying electromotive force V (t). The charge q on the

capacitor therefore obeys the equation

R
dq

dt
+
q

C
= V (t).

Assuming that initially there is no charge on the capacitor, and given that V (t) =

V0 sinωt, find the charge on the capacitor as a function of time.

In standard form the equation is

dq

dt
+

q

RC
=
V0

R
sinωt.

The required IF is

µ(t) = exp

{∫ t 1

RC
du

}
= et/RC ≡ eω0t,

thus defining ω0.

Multiplying through by this IF and expressing the LHS as a total derivative gives

d

dt
[ eω0tq(t) ] =

V0 e
ω0t

R
sinωt.
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Since q(0) = 0, this leads to

q(t) =
V0e

−ω0t

R

∫ t

0

eω0u sinωu du

=
V0e

−ω0t

R
Im

{∫ t

0

e(ω0+iω)u du

}
=
V0e

−ω0t

R
Im

[
e(ω0+iω)t − 1

ω0 + iω

]
=

V0e
−ω0t

R(ω2
0 + ω2)

Im
[
ω0e

(ω0+iω)t − iωe(ω0+iω)t − ω0 + iω
]

=
V0e

−ω0t

R(ω2
0 + ω2)

[
ω0e

ω0t sinωt− ωeω0t cosωt+ ω
]

=
R2C2V0

R(1 + R2C2ω2)

[
1

RC
sinωt− ω cosωt+ ωe−t/RC

]
=

CV0

1 + (RCω)2

[
sinωt− ωRC cosωt+ ωRCe−t/RC

]
.

This gives the full time dependence of the charge on the capacitor. The first two

terms give the long-term behaviour, whilst the final one is a transient arising from

the intial conditions.

14.10 Use the result of exercise 14.9 to find the law of force, acting towards

the origin, under which a particle must move so as to describe the following tra-

jectories:

(a) A circle of radius a that passes through the origin;

(b) An equiangular spiral, which is defined by the property that the angle α

between the tangent and the radius vector is constant along the curve.

(a) As shown in part (a) of figure 14.1, p = r sinφ and, from simple geometry,

sinφ = 1
2
r/a. It follows immediately that r2 = 2ap and

f =
h2

mp3

dp

dr
=
h2

m

8a3

r6
2r

2a
∝ 1

r5
.

(b) By definition, and as shown in figure (b), p = r sin α and therefore

f =
h2

mp3

dp

dr
=

h2 sin α

mr3 sin3 α
∝ 1

r3
.

Note that for each case the constant h, which depends upon the initial conditions,

will contain the parameter a or α; consequently only the r-dependence of f can

be stated.
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O
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r

φ

φ α

(a) (b)

Figure 14.1 The trajectories discussed in exercise 14.10.

14.12 A mass m is accelerated by a time-varying force α exp(−βt)v3, where v is

its velocity. It also experiences a resistive force ηv, where η is a constant, owing

to its motion through the air. The equation of motion of the mass is therefore

m
dv

dt
= α exp(−βt)v3 − ηv.

Find an expression for the velocity v of the mass as a function of time, given that

it has an initial velocity v0.

The equation can be written as

dv

dt
+
η

m
v =

αe−βt

m
v3,

which is Bernouilli’s equation with n = 3. Therefore put u = v1−3, i.e. v = u−1/2;

this leads to

−1

2

1

u3/2

du

dt
+
η

m
u−1/2 =

αe−βt

m
u−3/2,

du

dt
− 2η

m
u = −2αe−βt

m
.

The IF for this equation is clearly e−2ηt/m and when applied gives

d

dt
(ue−2ηt/m) = −2α

m
exp

[
−
(
β +

2η

m

)
t

]
ue−2ηt/m =

2α

βm+ 2η
exp

[
−
(
β +

2η

m

)
t

]
+ A,

or, in terms of v,
1

v2
=

2αe−βt

βm+ 2η
+ Ae2ηt/m.
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Using the initial velocity to determine the value of A then gives the solution at a

general time t as v(t) where

1

v2
=

2α

βm+ 2η

(
e−βt − e2ηt/m

)
+

1

v20
e2ηt/m.

14.14 Solve
dy

dx
=

1

x+ 2y + 1
.

Since the only linear combination of x and y to appear is x + 2y + 1, we set it

equal to v with dv/dx = 1 + 2dy/dx. The equation then becomes

1

2

dv

dx
− 1

2
=

1

v
⇒ dv

dx
=
v + 2

v
.

We can now separate the variables and integrate:

dx =

(
1 − 2

v + 2

)
dv ⇒ x+ c = v − 2 ln(v + 2).

Re-substitution for v gives the final answer as

x+ c = x+ 2y + 1 − 2 ln(x+ 2y + 3),

⇒ k + y = ln(x+ 2y + 3).

14.16 If u = 1 + tan y, calculate d(ln u)/dy; hence find the general solution of

dy

dx
= tan x cos y (cos y + sin y).

With u = 1 + tan y, the derivative of ln u with respect to y is

d(ln u)

dy
=

sec2 y

1 + tan y
=

1

cos y(cos y + sin y)
.

Now, rearranging the equation given in the question:

dy

cos y(cos y + sin y)
= tan x dx, [ separating variables ]

ln(1 + tan y) = − ln cosx+ A, [ integrating, using the above result ]

cosx(1 + tan y) = k,
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to give as the final solution

y = tan−1(k secx− 1).

14.18 A reflecting mirror is made in the shape of the surface of revolution

generated by revolving the curve y(x) about the x-axis. In order that light rays

emitted from a point source at the origin are reflected back parallel to the x-axis,

the curve y(x) must obey

y

x
=

2p

1 − p2
,

where p = dy/dx. By solving this equation for x find the curve y(x).

We first eliminate y, by differentiating it to obtain a first-order equation for p, as

follows.

y =
2p x

1 − p2
,

p =
dy

dx
=

(1 − p2)(2p+ 2xp′) − (2p x)(−2p p′)

(1 − p2)2
,

(p− p3)(1 − p2) = 2p− 2p3 + 2xp′ − 2xp2p′ + 4xp2p′,

(1 − p2)(p− p3 − 2p) = (1 + p2)2xp′,

p (p2 − 1) = 2xp′.

We now separate the variables, use partial fractions and integrate:

dx

x
=

2 dp

p (p− 1)(p+ 1)

=
−2 dp

p
+

dp

p− 1
+

dp

p+ 1
,

⇒ A+ ln x = −2 ln p+ ln(p− 1) + ln(p+ 1).

This can be arranged as

Bx =
p2 − 1

p2
or p =

±1√
1 − Bx

.

We now substitute for p in the original equation and obtain

y

x
=

2p−1

p−2 − 1
=

±2
√

1 − Bx

1 − Bx− 1
,

which, in turn, can be rearranged as

y = ∓2
√

1 − Bx

B
or y2 =

4

B2
− 4x

B
.
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This is a parabola, symmetric about the x-axis and with its apex at x = 1/B. The

way it faces depends upon the sign of B.

14.20 Find a parametric solution of

x

(
dy

dx

)2

+
dy

dx
− y = 0

as follows.

(a) Write an equation for y in terms of p = dy/dx and show that

p = p2 + (2px+ 1)
dp

dx
.

(b) Using p as the independent variable, arrange this as a linear first-order

equation for x.

(c) Find an appropriate integrating factor to obtain

x =
ln p− p+ c

(1 − p)2
,

which, together with the expression for y obtained in (a), gives a parameter-

isation of the solution.

(d) Reverse the roles of x and y in steps (a) to (c), putting dx/dy = p−1, and

show that essentially the same parameterisation is obtained.

(a) Writing p = dy/dx, the equation becomes

y = xp2 + p,

p =
dy

dx
= p2 + 2xp p ′ + p ′

= p2 + (2xp+ 1)
dp

dx
.

(b) In differential form, this equation reads

df = p (1 − p) dx− (2xp+ 1) dp = 0.

(c) We now apply the standard test for the existence of an IF for f(x, p) dx +

g(x, p) dp:

1

f

(
∂g

∂x
− ∂f

∂p

)
=

1

p (1 − p)
[ −2p− (1 − 2p) ] = − 1

p (1 − p)
.
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As this is a function of p alone, an IF exists and is given by

exp

[∫ −1

p (1 − p)
dp

]
= exp

[∫ (
−1

p
− 1

1 − p

)
dp

]
= exp[ − ln p+ ln(1 − p) ] =

1 − p

p
.

With this IF, the equation becomes

(1 − p)2 dx− (2xp+ 1)(1 − p)

p
dp = 0,

d[ (1 − p)2x ] − dp

p
+ dp = 0,

(1 − p)2x− ln p+ p = c.

This gives x = (c+ ln p− p)(1 − p)−2 and, together with y = p+ p2x, gives a full

parameterisation, x = x(p), y = y(p), of the solution.

(d) Now set dx/dy = p−1 = q. A parallel calculation to that in part (b) gives

0 = xp2 + p− y,

x = −1

p
+
y

p2
= −q + q2y,

q =
dx

dy
= −dq

dy
+ q2 + 2qy

dq

dy
,

0 = (2qy − 1) dq + (q2 − q) dy.

As in part (c), consider

1

q(q − 1)
[ 2q − (2q − 1) ] = − 1

q(1 − q)
.

It follows that relevant IF is (1 − q)/q and that when it is applied the equation

becomes

−(1 − q)2 dy +
(1 − q)(2qy − 1)

q
dq = 0.

This leads to

d[ (1 − q)2y ] +
dq

q
− dq = 0,

and then to

y =
c′ − ln q + q

(1 − q)2
.

Together with x = −q + q2y, this expression for y gives essentially the same

parameterisation as obtained previously. This can be verified, if necessary, by

writing q = p−1 and substituting in the second parameterisation; it will be found

that c = 2 + c′ makes the two forms identical.

231



FIRST-ORDER ODES

14.22 The action of the control mechanism on a particular system for an input

f(t) is described, for t ≥ 0, by the coupled first-order equations:

ẏ + 4z = f(t),

ż − 2z = ẏ + 1
2
y.

Use Laplace transforms to find the response y(t) of the system to a unit step input

f(t) = H(t), given that y(0) = 1 and z(0) = 0.

We start by taking the Laplace transforms of the two equations, at the same time

incorporating the initial conditions.

sȳ − 1 + 4z̄ = f̄ ⇒ 4z̄ = f̄ + 1 − sȳ

and

sz̄ − 0 − 2z̄ = sȳ − 1 + 1
2
ȳ ⇒ (s− 2)z̄ = (s+ 1

2
)ȳ − 1.

Eliminating z̄ from these algebraic equations gives

4
(s+ 1

2
)ȳ − 1

s− 2
= f̄ + 1 − sȳ,

ȳ[ 4s+ 2 + s(s− 2) ] = (s− 2)(f̄ + 1) + 4,

ȳ =
(f̄ + 1)s+ 2 − 2f̄

s2 + 2s+ 2
.

This is the transform of the response to a general input f(t).

For the particular input f(t) = H(t), f̄ = 1/s and

ȳ =
1 + s+ 2 − 2s−1

s2 + 2s+ 2

=
s2 + 3s− 2

s[ (s+ 1)2 + 1 ]

=
A

s
+

Bs+ C

(s+ 1)2 + 1
.

Cross-multiplying and equating coefficients requires that 1 = A+ B, 3 = 2A+ C

and −2 = 2A. These have solution A = −1, B = 2 and C = 5 to give

ȳ = −1

s
+

2(s+ 1)

(s+ 1)2 + 1
+

3

(s+ 1)2 + 1
,

⇒ y(t) = −1 + 2e−t cos t+ 3e−t sin t.

232



FIRST-ORDER ODES

14.24 Solve the following first-order equations for the boundary conditions

given:

(a) y′ − (y/x) = 1, y(1) = −1;

(b) y′ − y tanx = 1, y(π/4) = 3;

(c) y′ − y2/x2 = 1/4, y(1) = 1;

(d) y′ − y2/x2 = 1/4, y(1) = 1/2.

(a) As in part (a) of the previous exercise (14.23), this equation needs an integrating

factor, given in this case by

µ(x) = exp

{∫
− 1

x
dx

}
= exp(− lnx) =

1

x
.

We then have

d

dx

(y
x

)
=

1

x
⇒ y

x
= lnx+ A.

Since y(1) = −1, A must have the value −1 and so y = x lnx− x.

(b) Again, an IF is needed; this time given by

µ(x) = exp

{∫
− tanx dx

}
= exp(ln cosx) = cosx.

The equation now reads

d

dx
(y cosx) = cosx ⇒ y cosx = sinx+ A.

The given boundary condition is that 3/
√

2 = 1/
√

2 + A, establishing A as
√

2.

The final answer is therefore y = tan x+
√

2 secx.

(c) This is not a linear equation, though it is homogeneous, and we therefore set

y = ux. The equation then becomes

u+ x
du

dx
= u2 +

1

4
,

x
du

dx
=

(
1

2
− u

)2

.

The equation is now separable and gives

du

( 1
2

− u)2
=
dx

x
⇒ 1

1
2

− u
= lnx+ A.

The boundary condition is that u = 1/1 = 1 when x = 1, implying that A = −2.
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Now, substituting u = y/x gives

1

2
− y

x
=

1

ln x− 2
⇒ y =

x

2 − ln x
+
x

2
.

(d) For the boundary condition y(1) = 1/2 the method of solution used in part

(c) fails, as it requires A to satisfy the impossible equation 1/0 = 0 +A. We must

therefore try to find a singular solution.

The first equation of the solution in part (c) would be automatically satisfied with

u independent of x if

du

dx
= 0 ⇒ u = u2 +

1

4
⇒ u =

1

2
.

The conclusion is that u is a constant and, since this satisfies the inital assumption

that its derivative is zero, the ‘circle is complete’. Hence there is a singular solution

u = 1
2
, i.e. y = 1

2
x, that satisfies both the differential equation and the boundary

condition.

14.26 Solve the differential equation

sinx
dy

dx
+ 2y cosx = 1

subject to the boundary condition y(π/2) = 1.

Either

By inspection, the IF for this equation is sin x.

or

After dividing through by sinx this becomes a standard first-order linear equation

in need of the integrating factor

exp

{∫
2 cosx

sin x
dx

}
= exp(2 ln sin x) = sin2 x.

By either method, multiplying the original equation through by sinx or the

standardised one by sin2 x, the exact equation is

sin2 x
dy

dx
+ 2y cosx sinx = sin x,

d

dx
(y sin2 x) = sin x,

y sin2 x = − cosx+ A.

The condition y(π/2) = 1 implies that A = 1 and hence

y =
1 − cosx

sin2 x
=

1 − cosx

1 − cos2 x
=

1

1 + cosx
.
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14.28 Find the solution of

(5x+ y − 7)
dy

dx
= 3(x+ y + 1).

The equation is not homogeneous and the two variables x and y appear in differ-

ent linear combinations on the two sides of the equation. We therefore seek shifts

in their origins that will make the expression for the derivative homogeneous, i.e.

remove the constant terms from both its numerator and denominator. To do this

we set

x = X + α and y = Y + β.

We then require

3α+ 3β + 3 = 0 and 5α+ β − 7 = 0

These have the straightforward solution α = 2 and β = −3; with these values the

original equation reduces to

dX

dY
=

3X + 3Y

5X + Y
.

This is now homogeneous and to solve it we set Y = vX and obtain

dY

dX
= v +X

dv

dX
,

X
dv

dX
=
dY

dX
− v =

3X + 3Y

5X + Y
− v,

=
3 + 3v − 5v − v2

5 + v
.

We now separate the variables and use method (iii) for a partial fraction expan-

sion, obtaining

dX

X
=

5 + v

3 − 2v − v2
=

A

3 + v
+

B

1 − v
,

=
1

2(3 + v)
+

3

2(1 − v)
,

⇒ lnX = 1
2
ln(3 + v) − 3

2
ln(1 − v) + k.

Re-substituting for v, X and Y , gives

x− 2 = A

(
3 +

y + 3

x− 2

)1/2(
1 − y + 3

x− 2

)−3/2

= A
(3x+ y − 3)1/2(x− 2)

(x− y − 5)3/2
.
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Finally, this result can be re-written as

(x− y − 5)3 = B(3x+ y − 3).

14.30 Find the solution of

(2 sin y − x)
dy

dx
= tan y,

if (a) y(0) = 0, and (b) y(0) = π/2.

Since x appears only in the combination x dy/dx it will probably make the

solution simpler to take y as the independent variable and x as the dependent

one. With this in mind, we re-arrange the equation as

tan y
dx

dy
+ x = 2 sin y,

or, in standard form, as

dx

dy
+ x cot y = 2 cos y.

The IF is clearly exp(ln sin y) = sin y, and the equation can be written

d

dy
(x sin y) = sin 2y,

x sin y = − 1
2
cos 2y + k.

(a) For y(0) = 0 we must have k = 1
2
, and the solution becomes

x =
1 − cos 2y

2 sin y
=

2 sin2 y

2 sin y
= sin y.

(b) If y(0) = π/2 then k = − 1
2

and the solution is

x =
−1 − cos 2y

2 sin y
=

−2 cos2 y

2 sin y
= − cos y cot y.
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Higher-order ordinary differential
equations

15.2 Find the roots of the auxiliary equation for the following. Hence solve

them for the boundary conditions stated.

(a)
d2f

dt2
+ 2

df

dt
+ 5f = 0 with f(0) = 1, f′(0) = 0.

(b)
d2f

dt2
+ 2

df

dt
+ 5f = e−t cos 3t with f(0) = 0, f′(0) = 0.

The two equations have the same LHS and the trial function f(x) = emx leads to

the common auxiliary equation

m2 + 2m+ 5 = 0 ⇒ m = −1 ±
√

1 − 5 = −1 ± 2i.

Thus the CF for both equations is f(t) = e−t(A cos 2t+ B sin 2t).

(a) Since the RHS of the equation is zero, no particular integral is needed

(formally it is f(x) = 0). For the CF the boundary conditions require

f(0) = 1 ⇒ 1 = 1(A+ 0) ⇒ A = 1,

f′(0) = 0 ⇒ 0 = −2e−t sin 2t− e−t cos 2t

− Be−t sin 2t+ 2Be−t cos 2t, at t = 0,

= −1 + 2B ⇒ B = 1
2
.

Resubstitution gives f(t) = e−t(cos 2t+ 1
2
sin 2t).

(b) Since the CF does not contain a term involving e−t cos 3t we may try a linear
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combination of e−t cos 3t and e−t sin 3t as the PI, as follows.

f = e−t(C cos 3t+ D sin 3t),

f′ = −e−t(C cos 3t+ D sin 3t) + e−t(−3C sin 3t+ 3D cos 3t),

f′′ = e−t(C cos 3t+ D sin 3t) − 2e−t(−3C sin 3t+ 3D cos 3t)

− 9e−t(C cos 3t+ D sin 3t).

When these are substituted into the equation, the coefficients of e−t sin 3t require

that

D + 6C − 9D − 2D − 6C + 5D = 0 ⇒ D = 0.

Those for e−t cos 3t imply that

C − 0 − 9C − 2C + 0 + 5C = 1 ⇒ C = − 1
5
.

With this PI the general solution becomes

f(t) = e−t(A cos 2t+ B sin 2t) − 1
5
e−t cos 3t.

The boundary condition f(0) = 0 requires that A = 1
5
, and the condition on the

derivative, f′(0) = 0, implies (after multiplying all through by 5 for convenience)

that

0 = −e−t(cos 2t+ 5B sin 2t− cos 3t)

+ e−t(−2 sin 2t+ 10B cos 2t+ 3 sin 3t) at t = 0,

⇒ 0 = −(1 + 0 − 1) + (−0 + 10B + 0) ⇒ B = 0.

Thus, the final solution is

f(t) = 1
5
e−t(cos 2t− cos 3t),

which can, if necessary, be checked by re-substitution.

15.4 Solve the differential equation

d2f

dt2
+ 6

df

dt
+ 9f = e−t,

subject to the conditions f = 0 and df/dt = λ at t = 0.

Find the equation satisfied by the positions of the turning points of f(t) and hence,

by drawing suitable sketch graphs, determine the number of turning points the

solution has in the range t > 0 if (a) λ = 1/4, and (b) λ = −1/4.
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The auxiliary equation and resulting CF are

m2 + 6m+ 9 = 0 ⇒ m = −3 (repeated root),

⇒ f(t) = (A+ Bt)e−3t.

For a particular integral, since e−t does not appear in the CF, we try f = Ce−t

and obtain

Ce−t − 6Ce−t + 9Ce−t = e−t ⇒ C = 1
4
.

The general solution is therefore

f(t) = (A+ Bt)e−3t + 1
4
e−t.

We now incorporate the boundary conditions:

f(0) = 0 ⇒ 0 = (A+ 0)1 + 1
4

⇒ A = − 1
4
,

f′(0) = λ ⇒ λ = −3A+ B − 0 − 1
4

⇒ B = λ− 1
2
.

Therefore the solution matching these boundary conditions is

f(t) = [− 1
4

+ (λ− 1
2
)t]e−3t + 1

4
e−t.

The turning points of the solution are given by f′(t) = 0, i.e.

3
4
e−3t + (λ− 1

2
)e−3t − 3(λ− 1

2
)te−3t − 1

4
e−t = 0,

e−2t
[
(λ+ 1

4
) + (3

2
− 3λ)t

]
= 1

4
,

(4λ+ 1) + (6 − 12λ)t = e2t.

(a) For λ = 1
4

the equation becomes e2t = 2 + 3t. Consider the behaviours of the

functions on either side of this equation:

At t = 0, 2 + 3t = 2 > 1 = e2t.

For large t, e2t > 2 + 3t.

Both functions are monotonic and thus there is one, and only one, solution to

e2t = 2 + 3t in t > 0. It follows that the solution to the original differential

equation has only one turning point in this range.

(b) For λ = − 1
4

the equation becomes e2t = 9t. Again consider the behaviours of

the two sides of the equation.

At t = 0, e2t = 1 > 0 = 9t.

At t = 1, e2t = e2 < 9 = 9t.

For large t, e2t > 9t.

Both functions are monotonic and thus there are two solutions to e2t = 9t in

t > 0. It follows that the solution to the original differential equation has two

turning points in this range.
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15.6 Determine the values of α and β for which the following functions are

linearly dependent:

y1(x) = x coshx+ sinhx,

y2(x) = x sinhx+ coshx,

y3(x) = (x+ α)ex,

y4(x) = (x+ β)e−x.

You will find it convenient to work with those linear combinations of the yi(x) that

can be written the most compactly.

To make the working more compact, write

y5(x) = y1 + y2 = (x+ 1)(coshx+ sinhx) = (x+ 1)ex,

y6(x) = y1 − y2 = (x− 1)(coshx− sinhx) = (x− 1)e−x.

We notice that y3 = y5 if α = 1 and that y4 = y6 if β = −1. With these values the

functions are linearly dependent and so give the answer to the original question.

However, we will continue as if this had not been noticed and compute the

Wronskian W (y3, y4, y5, y6). For this we need the derivatives (using Leibnitz’

theorem)

dn

dxn
[ (x+ γ)ex ] = (x+ γ)ex + nex = (x+ γ + n)ex,

dn

dxn
[ (x+ γ)e−x ] = (−1)n(x+ γ)e−x + n(−1)n−1e−x

= (−1)n(x+ γ − n)e−x.

Each column of the Wronskian will have a common factor of e±x and we take

these outside the determinant, writing W (y3, y4, y5, y6) as

W = ex e−x ex e−x

∣∣∣∣∣∣∣∣
x+ α x+ β x+ 1 x− 1

x+ α+ 1 −x− β + 1 x+ 2 −x+ 2

x+ α+ 2 x+ β − 2 x+ 3 x− 3

x+ α+ 3 −x− β + 3 x+ 4 −x+ 4

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
α− 1 β + 1 x+ 1 x− 1

α− 1 −β − 1 x+ 2 −x+ 2

α− 1 β + 1 x+ 3 x− 3

α− 1 −β − 1 x+ 4 −x+ 4

∣∣∣∣∣∣∣∣ .
To obtain this last form, we have subtracted the third column from the first and

the fourth from the second. The common factors α−1 and β+1 can be taken out

of the determinant which then becomes a function of x only. For the Wronskian
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to vanish for all x (and hence make the functions dependent) requires either

α = 1 or β = −1 or both. In fact, the remaining determinant has the value −16,

independent of the value of x, but all that matters for drawing our conclusion is

that it is non-zero.

15.8 The two functions x(t) and y(t) satisfy the simultaneous equations

dx

dt
− 2y = − sin t,

dy

dt
+ 2x = 5 cos t.

Find explicit expressions for x(t) and y(t), given that x(0) = 3 and y(0) = 2. Sketch

the solution trajectory in the xy-plane for 0 ≤ t < 2π, showing that the trajectory

crosses itself at (0, 1/2) and passes through the points (0,−3) and (0,−1) in the

negative x-direction.

By differentiating the first equation and then substituting for dy/dt from the

second we obtain

d2x

dt2
− 2

dy

dt
= − cos t,

d2x

dt2
− 2(5 cos t− 2x) = − cos t,

d2x

dt2
+ 4x = 9 cos t.

The RHS is not contained in the CF and so the general solution is of the form

x(t) = A cos 2t+ B sin 2t+ C cos t.

Substituting the PI part of this into the equation to find the value of C , gives

C(−1 + 4) = 9 and hence C = 3. Further, since x(0) = 3, we must have A = 0

and it follows that

x(t) = B sin 2t+ 3 cos t.

Now,

y(t) =
1

2

(
dx

dt
+ sin t

)
= B cos 2t− 3

2
sin t+ 1

2
sin t

= B cos 2t− sin t.

Since y(0) = 2, B = 2 and so, in summary,

x(t) = 2 sin 2t+ 3 cos t,

y(t) = 2 cos 2t− sin t.
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x

y
t = 0

t = π/2

t = π

t = 3π/2

Figure 15.1 The closed curve generated by the equations in exercise 15.8.

The (closed) curve is shown in figure 15.1.

It crosses the y-axis when

2 sin 2t+ 3 cos t = 0, i.e when 4 sin t cos t+ 3 cos t = 0.

This has solutions when cos t = 0, i.e. t = 1
2
π and t = 3

2
π, as well as when sin t =

− 3
4
. The latter corresponds to two values of t, but with only one corresponding

y-value given by

y(t) = 2 cos 2t− sin t = 2 − 4 sin2 t− sin t = 2 − 4

(
−3

4

)2

+
3

4
=

1

2
.

Thus the curve crosses itself at (0, 1
2
).

Finally, consider the two other points on the trajectory at which x = 0.

When t = 1
2
π, y(t) = 2(−1)−1 = −3 and dx/dt = 4 cos 2t−3 sin t = −4−3 = −7.

When t = 3
2
π, y(t) = 2(−1) − (−1) = −1 and dx/dt = −4 + 3 = −1.

In both cases dx/dt is negative, showing that the trajectory passes through the

points (0,−3) and (0,−1) in the negative x-direction.

15.10 Use the method of Laplace transforms to solve

(a)
d2f

dt2
+ 5

df

dt
+ 6f = 0, f(0) = 1, f′(0) = −4,

(b)
d2f

dt2
+ 2

df

dt
+ 5f = 0, f(0) = 1, f′(0) = 0.
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(a) Recalling that L
[
f′] = sf̄ − f(0) and L

[
f′′] = s2f̄ − sf(0) − f′(0), we have

0 = s2f̄ − sf(0) − f′(0) + 5[ sf̄ − f(0) ] + 6f̄

= s2f̄ − s+ 4 + 5(sf̄ − 1) + 6f̄,

⇒ f̄ =
s+ 1

s2 + 5s+ 6
=

A

s+ 2
+

B

s+ 3
,

=
−1

s+ 2
+

2

s+ 3
, using one of the standard methods,

⇒ f(t) = 2e−3t − e−2t, from the look-up table.

(b) Using the same method as in (a), we have

0 = s2f̄ − sf(0) − f′(0) + 2[ sf̄ − f(0) ] + 5f̄

= s2f̄ − s+ 2(sf̄ − 1) + 5f̄,

⇒ f̄ =
s+ 2

s2 + 2s+ 5
=

s+ 2

(s+ 1)2 + 4

=
(s+ 1) + 1

(s+ 1)2 + 4
,

⇒ f(t) = e−t cos 2t+ 1
2
e−t sin 2t, from the look-up table.

We note that this is the same result as that obtained in Exercise 15.2(a).

15.12 Use Laplace transforms to solve, for t ≥ 0, the differential equations

ẍ+ 2x+ y = cos t,

ÿ + 2x+ 3y = 2 cos t,

which describe a coupled system that starts from rest at the equilibrium position.

Show that the subsequent motion takes place along a straight line in the xy-plane.

Verify that the frequency at which the system is driven is equal to one of the

resonance frequencies of the system; explain why there is no resonant behaviour

in the solution you have obtained.

We start by taking the Laplace transforms of the equations with all initial values

and first derivatives equal to zero.

s2x̄+ 2x̄+ ȳ =
s

1 + s2
(∗),

s2ȳ + 2x̄+ 3ȳ =
2s

1 + s2
(∗∗).
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Now consider the equation obtained by taking 2 × (∗) − (∗∗).

x̄(2s2 + 4 − 2) + ȳ(2 − s2 − 3) = 0,

2(s2 + 1)x̄− (s2 + 1)ȳ = 0,

2x̄− ȳ = 0.

This final equation, which is independent of s and hence of the t-dependence of

x and y, means that y(t) is a direct multiple of x(t) and the motion takes place

along a straight line in the x-y plane.

Setting ȳ = 2x̄ in (∗) gives

(s2 + 4)x̄ =
s

1 + s2
,

which, after rearrangement, gives the partial fraction expression for x̄ as

x̄ =
s

3(s2 + 1)
− s

3(s2 + 4)
.

This, in turn, implies (from the table of Laplace transforms) that

x(t) = 1
3
(cos t− cos 2t).

As in chapter 9 on Normal Modes, the natural frequencies of the system are

given by ∣∣∣∣ −ω2 + 2 1

2 −ω2 + 3

∣∣∣∣ = 0,

ω4 − 5ω2 + 4 = 0,

(ω2 − 4)(ω2 − 1) = 0.

Thus the resonance frequencies are ω = 2 and ω = 1; the given driving frequency

is the second of these.

However, for ω = 1 the (x, y) eigenvector satisfies (−1 + 2)x + (1)y = 0, i.e.

y = −x, whilst for ω = 2 the (x, y) eigenvector satisfies (−4 + 2)x+ (1)y = 0, i.e.

y = 2x.

The driving terms in the given situation have frequency ω = 1. But the solution

obtained is purely that corresponding to ω = 2 and contains no component of

the ω = 1 response. Consequently there is no resonant behaviour.
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15.14 For a lightly damped (γ < ω0) harmonic oscillator driven at its undamped

resonance frequency ω0, the displacement x(t) at time t satisfies the equation

d2x

dt2
+ 2γ

dx

dt
+ ω2

0x = F sinω0t.

Use Laplace transforms to find the displacement at a general time if the oscillator

starts from rest at its equilibrium position.

(a) Show that ultimately the oscillation has amplitude F/(2ω0γ) with a phase

lag of π/2 relative to the driving force per unit mass F .

(b) By differentiating the original equation, conclude that if x(t) is expanded as

a power series in t for small t then the first non-vanishing term is Fω0t
3/6.

Confirm this conclusion by expanding your explicit solution.

With no initial dispacement or motion, the Laplace transformed equation reads

s2x̄+ 2γsx̄+ ω2
0 x̄ =

Fω0

s2 + ω2
0

,

x̄

Fω0
=

1

(s2 + ω2
0)(s

2 + 2γs+ ω2
0)

=
A+ Bs

s2 + ω2
0

+
C + Ds

(s+ γ)2 + k2
,

where k2 = ω2
0 − γ2.

Cross-multiplying and equating the coefficients of the various powers of s yields

s3 : D + B = 0,

s2 : A+ 2Bγ + C = 0,

s1 : 2Aγ + Bγ2 + Bk2 + Dω2
0 = 0,

s0 : Aγ2 + Ak2 + Cω2
0 = 1,

with solutions

A = 0, D = −B =
1

2γω2
0

, C =
1

ω2
0

.

We can now rewrite the partial fraction expansion as

2γω2
0 x̄

Fω0
= − s

s2 + ω2
0

+
(s+ γ) + 2γ − γ

(s+ γ)2 + k2
,

which integrates to

2γω0 x(t)

F
= − cosω0t+ e−γt cos kt+

γ

k
e−γt sin kt,

i.e. x(t) =
F

2ω0

[
1

γ
(e−γt cos kt− cosω0t) +

1

k
e−γt sin kt

]
.

This is the complete solution, valid for all times t > 0.
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(a) As t → ∞,

x(t) ≈ − F

2ω0γ
cosω0t =

F

2ω0γ
sin(ω0t− 1

2
π).

Thus ultimately the oscillation has amplitude F/(2ω0γ) with a phase lag of π/2

relative to the driving force F .

(b) At t = 0, both x and x′ are zero, and so is F sinω0t. It therefore follows from

the original equation that x′′(0) is also zero. Thus, if x(t) were expanded in a

Taylor series about t = 0 the constant, linear and quadratic terms of the series

would be missing.

Now consider the equation

x′′′ + 2γx′′ + ω2
0x

′ = ω0F cosω0t,

obtained by differentiating the original one. At t = 0 this reduces to x′′′ = ω0F ,

which is non-zero. Thus the leading term in the Taylor expansion of x(t) is

Fω0t
3/3!.

From the explicit solution, the contributions to 2ω0x(t)/F of the three terms, up

to order t3, are:

f1 =
1

γ

(
1 − k2t2

2!
+ · · ·

)(
1 − γt+

γ2t2

2!
− γ3t3

3!
+ · · ·

)
=

1

γ

(
1 − γt+

(γ2 − k2)t2

2!
− (γ3 − 3γk2)t3

3!
+ · · ·

)
,

f2 = −1

γ

(
1 − ω2

0t
2

2!
+ · · ·

)
,

f3 =
1

k

(
kt− k3t3

3!
+ · · ·

)(
1 − γt+

γ2t2

2!
− γ3t3

3!
+ · · ·

)
=

1

k

(
kt− kγt2 +

(3kγ2 − k3)t3

3!
+ · · ·

)
.

Recalling that k2 = ω2
0 − γ2, we see that, when these contributions are added

together, the constant term and the linear and quadratic terms in t all vanish.

The cubic term in 2ω0x(t)/F is

− (γ2 − 3k2)t3

3!
+

(3γ2 − k2)t3

3!
=

2(γ2 + k2)t3

3!
=
ω2

0t
3

3
,

and so the leading term in x(t) is Fω0t
3/6. This confirms our earlier conclusion

based on the differential equation rather than its solution.
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15.16 In a particular scheme for modelling numerically one-dimensional fluid

flow, the successive values, un, of the solution are connected for n ≥ 1 by the

difference equation

c(un+1 − un−1) = d(un+1 − 2un + un−1),

where c and d are positive constants. The boundary conditions are u0 = 0 and

uM = 1. Find the solution to the equation and show that successive values of un
will have alternating signs if c > d.

We substitute the trial solution un = Aλn into the recurrence relation and obtain

−c(λn+1 − λn−1) + d(λn+1 − 2λn + λn−1) = 0,

(d− c)λ2 − 2dλ+ (d+ c) = 0.

This is a quadratic equation for λ, with solution

λ =
d±
√
d2 − (d2 − c2)

d− c
=
d± c

d− c
= 1 or

d+ c

d− c
.

The general solution, formed by taking a linear superposition of the trial solutions

corresponding to the allowed values of λ, is thus

un = A1n + B

(
d+ c

d− c

)n
≡ A+ Bµn, defining µ.

Now, imposing the boundary conditions:

u0 = 0 ⇒ B = −A,
uM = 1 ⇒ A(1 − µM) = 1,

⇒ un =
1 − µn

1 − µM
.

This is the specific solution as a function of n.

If c > d then µ is negative and has a magnitude > 1. The ratio of successive

terms is

1 − µn+1

1 − µn
=

1

(d− c)

[ (d− c)n+1 − (d+ c)n+1 ]

[ (d− c)n − (d+ c)n ]
.

Since d and c are both positive, the terms in square brackets are necessarily both

negative and the ratio has the same sign as d − c, i.e negative. Thus successive

terms alternate in sign.
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15.18 Find an explicit expression for the un satisfying

un+1 + 5un + 6un−1 = 2n,

given that u0 = u1 = 1. Deduce that 2n − 26(−3)n is divisible by 5 for all integer

n.

The characteristic equation of the recurrence relation, obtained by substituting

un = Cλn into it with the RHS set equal to zero, is

λ2 + 5λ+ 6 = 0 ⇒ λ = −2 or − 3.

As neither value of λ is equal to 2, we may try un = D 2n as a particular solution,

leading to

D 2n+1 + 5D 2n + 6D 2n−1 = 2n,

D(4 + 10 + 6) = 2, ⇒ D = 1
10
.

The general solution is thus

un = A(−2)n + B(−3)n +
2n

10
.

Incorporating the two initial values:

u0 = 1 ⇒ 1 = A+ B + 1
10
,

u1 = 1 ⇒ 1 = −2A− 3B + 2
10
,

⇒ A = 35
10

and B = − 26
10
.

Thus, for general n,

un =
1

10
[35(−2)n − 26(−3)n + 2n] .

With these initial values and a recurrence relation that has integer coefficients

(with that for the highest-index term equal to unity) all terms in the series must be

integers. Thus, the expression in square brackets must divide by 10 for all n ≥ 2,

as well as for n = 0 and n = 1.

For n > 0, the first term in the bracket contains explicit factors of 2 and 5 and

so divides by 10. We thus conclude that the sum of the remaining terms must

also divide by 10, i.e. 2n − 26(−3)n divides by 10 and, therefore, also by 5. For

n = 0, explicit evaluation of the expression gives -25, which is divisible by 5; this

completes the proof.
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15.20 Consider the seventh-order recurrence relation

un+7 − un+6 − un+5 + un+4 − un+3 + un+2 + un+1 − un = 0.

Find the most general form of its solution, and show that:

(a) if only the four initial values u0 = 0, u1 = 2, u2 = 6 and u3 = 12, are

specified then the relation has one solution that cycles repeatedly through

this set of four numbers;

(b) but if, in addition, it is required that u4 = 20, u5 = 30 and u6 = 42 then the

solution is unique, with un = n(n+ 1).

The characteristic equation is a seventh-order polynomial equation (but fortu-

nately one with some obvious roots).

λ7 − λ6 − λ5 + λ4 − λ3 + λ2 + λ− 1 = 0,

(λ− 1)(λ6 − λ4 − λ2 + 1) = 0,

(λ− 1)(λ2 − 1)(λ4 − 1) = 0.

The roots are therefore λ = 1 (triple), λ = −1 (double) and λ = ±i. Consequently,

the general solution is

(A+ Bn+ Cn2)1n + (D + En)(−1)n + F(i)n + G(−i)n,

where the constants A,B, . . . , G must be consistent with any given values of

particular un.

(a) If only the four initial values u0 = 0, u1 = 2, u2 = 6 and u3 = 12 are specified

then we can choose all constants associated with linear or quadratic terms in n

to be zero, i.e. B = C = E = 0 and solve for the remaining constants.

n = 0, 0 = A+ D + F + G,

n = 1, 2 = A− D + iF − iG,

n = 2, 6 = A+ D − F − G,

n = 3, 12 = A− D − iF + iG.

Adding all the equations shows that A = 5, and adding the first and third shows

that A+D = 3, i.e. D = −2. Putting these values into the first two equations then

gives

F = − 3
2

+ 5
2
i and G = − 3

2
− 5

2
i.

Thus the solution

un = 5 − 2(−1)n − 3
2
(i)n(1 + (−1)n) + 5

2
(i)n+1(1 − (−1)n)
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fits the first four given values and then cycles endlessly around them since (−1)n,

(i)n and (−i)n are all unchanged if n is increased by 4.

(b) With the first 7 values given and 7 unknown constants A,B, . . . , G to be

determined, the solution will be unique (unless the determining equations turn

out to be dependent). The simultaneous equations to be solved are:

0 = A+ D + F + G,

2 = A+ B + C − D − E + iF − iG,

6 = A+ 2B + 4C + D + 2E − F − G,

12 = A+ 3B + 9C − D − 3E − iF + iG,

20 = A+ 4B + 16C + D + 4E + F + G,

30 = A+ 5B + 25C − D − 5E + iF − iG,

42 = A+ 6B + 36C + D + 6E − F − G.

It is clear from inspection and easily verified by substitution that they are satisfied

by B = C = 1, with all other constants equal to zero. The direct solution of these

equations, though tedious, gives the same result; it also provides assurance that

the solution is unique. The general expression is therefore un = n(n+ 1).

15.22 Find the general solution of

(x+ 1)2
d2y

dx2
+ 3(x+ 1)

dy

dx
+ y = x2.

This is Legendre’s linear equation and, as a first step, we set x+ 1 = et with

dx

dt
= et,

d

dx
= e−t d

dt
,

d2

dx2
= e−t d

dt

(
e−t d

dt

)
.

These substitutions give

e2te−t d

dt

(
e−t dy

dt

)
+ 3ete−t dy

dt
+ y = (et − 1)2,

et
(
e−t d

2y

dt2
− e−t dy

dt

)
+ 3

dy

dt
+ y = (et − 1)2,

d2y

dt2
+ 2

dy

dt
+ y = (et − 1)2.

This reduced equation with constant coefficients has the characteristic equation

m2 +2m+1 = 0, which has a repeated root and gives the CF as y(t) = (A+Bt)e−t.

This is not the same function as that in the equation’s RHS (which contains a
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constant and t-dependent terms e2t and et); we may therefore try substituting the

simplest PI of Ce2t + Det + E to obtain

4Ce2t + Det + 4Ce2t + 2Det + Ce2t + Det + E = e2t − 2et + 1.

Clearly C = 1
9
, D = − 1

2
and E = 1 and, after re-substituting for t, we have the

general solution of the original equation as

y(x) =
A+ B ln(x+ 1)

x+ 1
+

(x+ 1)2

9
− x+ 1

2
+ 1

=
A+ B ln(x+ 1)

x+ 1
+
x2

9
− 5x

18
+

11

18
.

As expected, since the differential equation is second-order, its solution contains

two arbitrary constants.

15.24 Use the method of variation of parameters to find the general solutions

of

(a)
d2y

dx2
− y = xn, (b)

d2y

dx2
− 2

dy

dx
+ y = 2xex.

(a) The CF is clearly

y(x) = Aex + Be−x,

and so we take as the PI

y(x) = k1(x)e
x + k2(x)e

−x.

The two simultaneous equations generated using the method of variation of

parameters are

k′
1e
x + k′

2e
−x = 0,

k′
1e
x − k′

2e
−x = xn.

Solving for k′
1 and integrating gives

k′
1 =

xne−x

2
,

k1 =

[
−xne−x

2

] x
+

∫ x nxn−1

2
e−x dx

= −e−x

2
(xn + nxn−1 + n(n− 1)xn−2 + · · · + n!)

= −e−x

2
n!

n∑
m=0

xm

m!
.
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Similarly, k2 is given by

k′
2 = −xnex

2
,

k2 = −
[
xnex

2

] x
−
∫ x nxn−1

2
ex dx

= −ex

2
(xn − nxn−1 + n(n− 1)xn−2 − · · · + (−1)nn!)

= −ex

2
n!(−1)n

n∑
m=0

(−x)m

m!
.

The full PI, k1(x)e
x+k2(x)e

−x, has no explicit exponential factors, since each term

in it contains the product exe−x. It takes the form

y(x) = −n!

2

n∑
m=0

xm

m!
− n!

2
(−1)n

n∑
m=0

(−x)m

m!

= −n!

2

n∑
m=0

xm

m!
[ 1 + (−1)n+m ].

This n-th order polynomial is added to the CF, y(x) = Aex + Be−x, to give the

general solution.

(b) The auxiliary equation for the CF is m2 − 2m + 1 = 0, which has repeated

roots m = 1. Thus the Cf is y(x) = (A+Bx)ex and, since the RHS of the original

equation is contained in this, the PI is to be taken as y(x) = k1(x)e
x + k2(x)xe

x.

The simultaneous equations generated by the variation of parameters method are

k′
1e
x + k′

2xe
x = 0,

k′
1e
x + k′

2(e
x + xex) = 2xex,

k′
2e
x = 2xex ⇒ k2(x) = x2,

k′
1 = −k′

2x = −2x2 ⇒ k1(x) = − 2
3
x3.

A PI is therefore

y(x) = − 2
3
x3ex + x2 xex = 1

3
x3ex,

giving the general solution as

y(x) = (A+ Bx+ 1
3
x3)ex.
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15.26 Consider the equation

F(x, y) = x(x+ 1)
d2y

dx2
+ (2 − x2)

dy

dx
− (2 + x)y = 0.

(a) Given that y1(x) = 1/x is one of its solutions, find a second linearly inde-

pendent one,

(i) by setting y2(x) = y1(x)u(x), and

(ii) by noting the sum of the coefficients in the equation.

(b) Hence, using the variation of parameters method, find the general solution

of

F(x, y) = (x+ 1)2.

(a)(i) Set y2(x) = u(x)/x and substitute:

x(x+ 1)

(
2u

x3
− 2u′

x2
+
u′′

x

)
+ (2 − x2)

(
− u

x2
+
u′

x

)
− 2 + x

x
u = 0,

(1 + x)u′′ +

[
−2(1 + x)

x
+

2 − x2

x

]
u′ + 0u = 0,

(1 + x)u′′ − (2 + x)u′ = 0.

Hence, on separating variables and integrating once, we have

u′′

u′ =
2 + x

1 + x
= 1 +

1

1 + x
,

ln u′ = x+ ln(1 + x),

u′ = (1 + x)ex.

A second integration then gives

u = ex + [ xex ] x −
∫ x

ex dx,

= ex + xex − ex = xex,

i.e. y2(x) =
1

x
xex = ex is the second solution.

(a)(ii) The sum of the coefficients of the various terms in the linear equation is

x(x+ 1) + (2 − x2) − (2 + x) = 0.

It follows immediately (see subsection 15.3.6) that y(x) = ex is a solution of the

equation, as we have already found.

(b) We already have the two independent solutions needed to form the CF, x−1

and ex. So we take for the PI

y(x) = k1(x)x
−1 + k2(x)e

x
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and require that

k′
1x

−1 + k′
2e
x = 0,

−k′
1x

−2 + k′
2e
x =

(x+ 1)2

x(x+ 1)
=
x+ 1

x
,

−k′
1

1 + x

x2
=
x+ 1

x
, by subtraction,

⇒ k′
1 = −x ⇒ k1(x) = − 1

2
x2,

⇒ k′
2 = −e−x(−x)

x
= e−x ⇒ k2(x) = −e−x.

The complete PI is thus

y(x) = −1

2

x2

x
− e−x ex = −x

2
− 1,

and the general solution of the inhomogeneous equation F(x, y) = (x+ 1)2 is

y(x) =
A

x
+ Bex − x

2
− 1,

for arbitrary constants A and B.

15.28 Use the result of the previous exercise (15.27) to find the Green’s function

G(x, ξ) that satisfies

d2G

dx2
+ 3

dG

dx
+ 2G = δ(x− x),

in the interval 0 ≤ x, ξ ≤ 1 with G(0, ξ) = G(1, ξ) = 0. Hence obtain integral

expressions for the solution of

d2y

dx2
+ 3

dy

dx
+ 2y =

{
0 0 < x < x0,

1 x0 < x < 1,

distinguishing between the cases (a) x < x0, and (b) x > x0.

The auxiliary equation is m2 + 3m + 2 = 0 and two independent solutions are

y(x) = e−x and y(x) = e−2x. We need linear combinations of these that satisfy

y1(0) = 0 and y2(1) = 0. The former is clearly satisfied by taking y1(x) = e−x−e−2x.

For the latter, take

y2(x) = e−x + αe−2x and require y2(1) = 0 ⇒ α = −e.

Thus y2(x) = e−x − e−2x+1 is the appropriate linear combination for the region

containing x = 1.
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The Wronskian of these two functions is

W (y1, y2) = y1y
′
2 − y2y

′
1

= (e−x − e−2x)(−e−x + 2e−2x+1)

− (e−x − e−2x+1)(−e−x + 2e−2x)

= e−3x+1 − e−3x

= (e− 1)e−3x.

Hence, using the result from the previous question in the main text, the Green’s

function is

G(x, ξ) =


G1(x, ξ) =

(e−x − e−2x)(e−ξ − e−2ξ+1)

(e− 1)e−3ξ
0 < x < ξ

G2(x, ξ) =
(e−x − e−2x+1)(e−ξ − e−2ξ)

(e− 1)e−3ξ
ξ < x < 1.

Now, in general, the solution of the given equation with its RHS equal to f(x) is

y(x) =

∫ 1

0

G(x, ξ)f(ξ) dξ =

∫ 1

x0

G(x, ξ) dξ.

The second equality follows because f(ξ) = 0 for ξ < x0.

(a) For x < x0, the variable of integration ξ is greater than x throughout the

integration range x0 ≤ ξ ≤ 1 and so G = G1 throughout, i.e.

y(x) =

∫ 1

x0

G1(x, ξ) dξ.

(b) However, for x > x0 the integral is divided into two parts. For x0 < ξ < x,

G2 is the appropriate Green’s function, whilst for the remainder of the integral

range, x < ξ < 1, G1 must be used. Thus

y(x) =

∫ x

x0

G2(x, ξ) dξ +

∫ 1

x

G1(x, ξ) dξ.

15.30 Show that the Green’s function for the equation

d2y

dx2
+
y

4
= f(x),

subject to the boundary conditions y(0) = y(π) = 0, is given by

G(x, z) =

{
−2 cos 1

2
x sin 1

2
z 0 ≤ z ≤ x,

−2 sin 1
2
x cos 1

2
z x ≤ z ≤ π.
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This result could be written down almost immediately using the general result

of exercise 15.27. It could also be derived more specifically using the continu-

ity/discontinuity conditions at x = z. By way of illustration, we will use yet

another approach, based on the variation of parameters.

It is clear that the CF of the given equation is y(x) = A sin(x/2) +B cos(x/2). So

we take y(x) = A(x) sin(x/2) + B(x) cos(x/2), with A(π) = 0 and B(0) = 0, and

impose the usual constraints of the method, namely

A′ sin
x

2
+ B′ cos

x

2
= 0,

1

2
A′ cos

x

2
− 1

2
B′ sin

x

2
= f(x).

These simultaneous equations have the solution

A′ = 2f(x) cos
x

2
and B′ = −2f(x) sin

x

2
.

Integrating these two differential equations, incorporating the boundary values of

A and B given above, and resubstituting in the assumed form of solution gives

y(x) = − cos
x

2

∫ x

0

2f(z) sin
z

2
dz − sin

x

2

∫ π

x

2f(z) cos
z

2
dz.

Note that the expression for A(x) has to be obtained by integrating from π, where

its value is known, to x.

From this integral form of solution the Green’s function can be read off as

G(x, z) =

{
−2 cos 1

2
x sin 1

2
z 0 ≤ z ≤ x,

−2 sin 1
2
x cos 1

2
z x ≤ z ≤ π.

15.32 Consider the equation

d2y

dx2
+ f(y) = 0,

where f(y) can be any function.

(a) By multiplying through by dy/dx, obtain the general solution relating x and

y.

(b) A mass m, initially at rest at the point x = 0, is accelerated by a force

f(x) = A(x0 − x)

[
1 + 2 ln

(
1 − x

x0

)]
.

Its equation of motion is md2x/dt2 = f(x). Find x as a function of time and

show that ultimately the particle has travelled a distance x0.
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(a) We multiply the equation through by y′ and integrate twice obtaining

y′y′′ = −fy′,

1

2
(y′)2 = −

∫
f(y)

dy

dx
dx+ A,

dy

dx
=

(
B − 2

∫ y

f(u) du

)1/2

,∫ x

dx =

∫ y dz(
B − 2

∫ z
f(u) du

)1/2 ,
C + x =

∫ y dz(
B − 2

∫ z
f(u) du

)1/2 .
This is the general equation relating y to x, whatever the form of the function f.

(b) Here x is the dependent variable, the independent one being t.

To use the result of part (a) we first need to evaluate

∫
A(x0 − u)

[
1 + 2 ln

(
1 − u

x0

)]
du.

Either by observation or by integration by parts the integrand is the derivative of

−A(x0 − x)2 ln[ (x0 − x)/x0 ]. The force is related to the ‘f’ of part (a) by a factor

of −1/m. Consequently the solution given in part (a) becomes

C + t =

∫ x dz(
B − 2A

m
(x0 − z)2 ln[ (x0 − z)/x0 ]

)1/2
Referring back to the derivation in part (a), we see that if y′ = 0 when y = 0

then A = B = 0; the corresponding situation, ẋ = 0 when x = 0, holds good here

and B in the denominator of the integrand is zero. More obviously, since x = 0

when t = 0 we must have C = 0. Thus

t =

∫ x dz(
2A
m

(x0 − z)2 ln[ x0/(x0 − z) ]
)1/2 .

Note that we have inverted the argument of the logarithm.
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All that remains is to evaluate the integral.√
2A

m
t =

∫ x dz

(x0 − z)
√

lnx0 − ln(x0 − z)

=
[
2
√

lnx0 − ln(x0 − z)
] x

0
,

= 2
√

lnx0 − ln(x0 − x),

2At2

m
= 4[ lnx0 − ln(x0 − x) ],

x0 − x

x0
= e−At2/2m,

x = x0

(
1 − e−At2/2m

)
.

Clearly as t → ∞ the value of x approaches x0.

15.34 Find the general solution of the equation

x
d3y

dx3
+ 2

d2y

dx2
= Ax.

This third-order equation is one in which y does not appear and so we set

dy/dx = p and rewrite the equation as one of second order.

x
d2p

dx2
+ 2

dp

dx
= Ax,

x2 d
2p

dx2
+ 2x

dp

dx
= Ax2, using the obvious IF,

d

dx

(
x2 dp

dx

)
= Ax2.

Successive integrations then give

x2 dp

dx
=
Ax3

3
+ B,

dp

dx
=
Ax

3
+
B

x2
,

p =
Ax2

6
− B

x
+ C,

y =
Ax3

18
− B ln x+ Cx+ D.

Recall that A is given in the question; there are only three arbitray constants, B,

C and D, as is to be expected for the solution of a third-order equation.
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15.36 Find the form of the solutions of the equation

dy

dx

d3y

dx3
− 2

(
d2y

dx2

)2

+

(
dy

dx

)2

= 0

that have y(0) = ∞.

[ You will need the result
∫ z

cosech u du = − ln(cosech z + coth z). ]

Since y does not appear in the equation (the same is true of x) we set dy/dx = p

and reformulate it. The required derivatives are

d2y

dx2
=
dp

dx
=
dp

dy

dy

dx
= p

dp

dy
,

d3y

dx3
=
dy

dx

d

dy

(
p
dp

dy

)
= p

(
dp

dy

)2

+ p2 d
2p

dy2
,

and the re-formulated equation is

0 = p2

(
dp

dy

)2

+ p3 d
2p

dy2
− 2p2

(
dp

dy

)2

+ p2,

0 = p
d2p

dy2
−
(
dp

dy

)2

+ 1.

This non-linear equation can be simplified by setting dp/dy = q with, in the same

way as above, d2p/dy2 = q dq/dp.

p q
dq

dp
− q2 + 1 = 0,

q dq

q2 − 1
=
dp

p
, separating variables,

⇒ 1
2
ln(q2 − 1) = ln p+ A,

q2 − 1 = B2p2.

Now set Bp = sinh θ, with

q =
dp

dy
=

cosh θ

B

dθ

dy
,

to obtain

cosh2 θ

B2

(
dθ

dy

)2

− 1 = sinh2 θ,

cosh2 θ

B2

(
dθ

dy

)2

= cosh2 θ,

⇒ θ = By + C.
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Now,

B
dy

dx
= Bp = sinh(By + C),

dx =
B dy

sinh(By + C)
, separating variables,

⇒ x+ c = − ln[ cosech (By + C) + coth(By + C) ].

Since y(0) = ∞,

0 + c = − ln[ 0 + 1 ] ⇒ c = 0

and the final answer is

cosech (By + C) + coth(By + C) = e−x.
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16

Series solutions of ordinary
differential equations

16.2 Find solutions, as power series in z, of the equation

4zy′′ + 2(1 − z)y′ − y = 0.

Identify one of the solutions and verify it by direct substitution.

Putting the equation in its standard form shows that z = 0 is a singular point of

the equation but, as 2z(1 − z)/4z and −z2/4z are finite as z → 0, it is a regular

singular point. We therefore substitute a Frobenius type solution,

y(z) = zσ
∞∑
n=0

anz
n with a0 �= 0,

and obtain

4

∞∑
n=0

(n+ σ)(n+ σ − 1)anz
n+σ−1

+ 2(1 − z)

∞∑
n=0

(n+ σ)anz
n+σ−1 −

∞∑
n=0

anz
n+σ = 0.

Equating the coefficient of zσ−1 to zero gives the indicial equation as

4σ(σ − 1)a0 + 2σa0 = 0 ⇒ σ = 0, 1
2
.

These two indicial values do not differ by an integer and so we expect both to

yield (independent) series solutions.

(a) σ = 0.

Equating the general coefficient of zm to zero (with σ = 0),

4(m+ 1)mam+1 + 2(m+ 1)am+1 − 2mam − am = 0,
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gives the recurrence relation as

am+1 =
2m+ 1

2(m+ 1)(2m+ 1)
=

am

2(m+ 1)
,

⇒ am =
a0

2m m!
,

⇒ y(x) = a0z
0

∞∑
n=0

zn

2n n!
= a0e

z/2.

Substituting this into the original equation yields

4a0z
ez/2

4
+ 2a0(1 − z)

ez/2

2
− a0e

z/2 = 0,

which is a valid equation and thus verifies the solution.

(b) σ = 1
2

Equating the general coefficient of zm+ 1
2 to zero (with σ = 1

2
),

4(m+ 3
2
)(m+ 1

2
)am+1 + 2(m+ 3

2
)am+1 − 2(m+ 1

2
)am − am = 0,

gives the recurrence relation as

am+1 =
2m+ 2

(2m+ 3)(2m+ 2)
am =

am

2m+ 3
,

⇒ am =
a0

1 3 5 · · · (2m+ 1)
=

2m m! a0

(2m+ 1)!
,

and the second series solution as

y(x) = a0

∞∑
n=0

2n n! zn+
1
2

(2n+ 1)!
.

16.4 Change the independent variable in the equation

d2f

dz2
+ 2(z − α)

df

dz
+ 4f = 0 (∗)

from z to x = z − α, and find two independent series solutions, expanded about

x = 0, of the resulting equation. Deduce that the general solution of (∗) is

f(z, α) = A(z − α)e−(z−α)2 + B

∞∑
m=0

(−4)mm!

(2m)!
(z − α)2m,

with A and B arbitrary constants.

We start with f′′ + 2(z − α)f′ + 4f = 0 and set f(z) = g(x), where x = z − α.
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The differential operators are unchanged, i.e. d/dx = d/dz and d2/dx2 = d2/dz2.

The resulting equation for g(x) is g′′ + 2xg′ + 4g = 0, where now a prime denotes

differentiation with respect to x.

The origin x = 0 is an ordinary point of this equation and we can write its two

solutions as ordinary power series (formally, its indicial roots are 0 and 1),

g(x) =

∞∑
n=0

anx
n.

Making this substitution yields

∞∑
n=0

n(n− 1)anx
n−2 + 2

∞∑
n=0

nanx
n + 4

∞∑
n=0

anx
n = 0.

Equating the coefficient of xm to zero then gives

am+2 = − 2m+ 4

(m+ 2)(m+ 1)
am = − 2

m+ 1
am,

or, on re-indexing,

am = − 2

m− 1
am−2.

Since this recurrence relation relates indices differing by 2, we can (as expected)

obtain two linearly independent solutions by taking (i) a0 = 1, a1 = 0 and (ii)

a0 = 0, a1 = 0.

(i) a0 = 1, a1 = 0

Here, only even powers of x appear and we can write m = 2p. The expansion

coefficients are then given by

a2p = − 2

2p− 1
a2p−2 =

(−1)p 2p 2p p !

(2p)!
a0,

and one solution of the original equation is

f0(z) = g0(x) = a0

∞∑
n=0

(−4)n n!

(2n)!
x2n = a0

∞∑
n=0

(−4)n n!

(2n)!
(z − α)2n.

(ii) a0 = 0, a1 = 1

Here, only odd powers of x appear and we can write m = 2p+ 1. The expansion

coefficients are then given by

a2p+1 = − 2

2p
a2p−1 =

(−1)p

p !
a1,
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and a second solution of the original equation is

f1(z) = g1(x) = a1

∞∑
n=0

(−1)n

n!
x2n+1

= a1

∞∑
n=0

(−1)n

n!
(z − α)2n+1

= a1(z − α)e−(z−α)2 .

The general solution of (∗) is any linear combination of f0(z) and f1(z), as stated.

16.6 Verify that z = 0 is a regular singular point of the equation

z2y′′ − 3
2
zy′ + (1 + z)y = 0,

and that the indicial equation has roots 2 and 1/2. Show that the general solution

is

y(z) = 6a0z
2

∞∑
n=0

(−1)n(n+ 1)22nzn

(2n+ 3)!

+ b0

(
z1/2 + 2z3/2 − z1/2

4

∞∑
n=2

(−1)n22nzn

n(n− 1)(2n− 3)!

)
.

In standard form the equation is

y′′ − 3

2z
y′ +

1 + z

z2
= 0.

Now,

−3z

2z
→ −3

2
and

z2(1 + z)

z2
→ 1 as z → 0.

Both limits are finite and so z = 0 is a regular singular point of the equation.

Substituting a Frobenius solution gives

∞∑
n=0

(σ + n)(σ + n− 1)anz
σ+n − 3

2

∞∑
n=0

(σ + n)anz
σ+n + (1 + z)

∞∑
n=0

anz
σ+n = 0.

Equating the coefficient of zσ to zero shows that

[ σ(σ − 1) − 3
2
σ + 1 ]a0 = 0,

σ2 − 5
2
σ + 1 = 0 ⇒ σ = 2, 1

2
.

These roots do not differ by an integer and so we expect two linearly independent

power series solutions.
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(a) Setting σ = 2 and equating the coefficient of zm+2 to zero gives

(2 + m)(1 + m)am − 3
2
(2 + m)am + am + am−1 = 0,

⇒ am(2 + 3m+ m2 − 3 − 3
2
m+ 1) = −am−1,

⇒ am[m( 3
2

+ m) ] = −am−1.

Repeated application of this relation gives

am = − 2

m(2m+ 3)
am−1 =

(−1)m 2m

m! [ (2m+ 3)(2m+ 1) · · · 5 ]
a0

=
(−1)m 2m 3 2m+1 (m+ 1)!

m! (2m+ 3)!
a0

=
6(−1)m 22m (m+ 1)

(2m+ 3)!
a0,

leading to y1(z) = Az2
∞∑
n=0

(−1)n 22n (n+ 1) zn

(2n+ 3)!
.

(b) Setting σ = 1
2

and following the same procedure (for zm+ 1
2 ) yields

( 1
2

+ m)(− 1
2

+ m)am − 3
2
( 1
2

+ m)am + am + am−1 = 0,

am(4m2 − 1 − 3 − 6m+ 4) = −4am−1,

which reduces to

am = − 2

m(2m− 3)
am−1.

In particular, for m = 1,

a1 = − 2

1(−1)
a0 = 2a0.

For m ≥ 2,

am =
(−1)m−1 2m−1 2m−2 (m− 2)!

m! (2m− 3)!
a1 =

(−1)m−1 22m 2a0

8m(m− 1) (2m− 3)!

and the full expression for the second independent solution is

y2(z) = Bz1/2

(
1 + 2z − 1

4

∞∑
n=0

(−1)n 22n zn

n(n− 1) (2n− 3)!

)
.

As stated in the question, the general solution is y1(z) + y2(z) for arbitrary values

of A and B.
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16.8 Consider a series solution of the equation

zy′′ − 2y′ + yz = 0 (∗)

about its regular singular point.

(a) Show that its indicial equation has roots that differ by an integer but that

the two roots nevertheless generate linearly independent solutions

y1(z) = 3a0

∞∑
n=1

(−1)n+1 2nz2n+1

(2n+ 1)!
,

y2(z) = a0

∞∑
n=0

(−1)n+1(2n− 1)z2n

(2n)!
.

(b) Show that y1(z) is equal to 3a0(sin z − z cos z) by expanding the sinusoidal

functions. Then, using the Wronskian method, find an expression for y2(z) in

terms of sinusoids. You will need to write z2 as (z/ sin z)(z sin z) and integrate

by parts to evaluate the integral involved.

(c) Confirm that the two solutions are linearly independent by showing that their

Wronskian is equal to −z2, as would be expected from the form of (∗).

(a) Substituting a Frobenius solution gives

∞∑
n=0

(σ + n)(σ + n− 1)anz
σ+n−1 − 2

∞∑
n=0

(σ + n)anz
σ+n−1 +

∞∑
n=0

anz
σ+n+1 = 0.

Equating the coefficient of zσ−1 to zero shows that

[ σ(σ − 1) − 2σ ]a0 = 0, ⇒ σ = 0 or 3.

Setting the coefficient of zm+σ−1 to zero now gives the required recurrence relation:

(σ + m)(σ + m− 1)am − 2(σ + m)am + am−2 = 0,

(σ + m)(σ + m− 3)am + am−2 = 0,

i.e.

am =
−1

(σ + m)(σ + m− 3)
am−2.

For σ = 3, am = −am−2/[m(m+ 3) ] and

y1(z) = a0z
3

(
1 − z2

(2)(5)
+

z4

(2)(5)(4)(7)
− · · ·

)
= 3a0

∞∑
n=1

(−1)n+1 2n z2n+1

(2n+ 1)!
.
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For σ = 0, am = −am−2/[m(m− 3) ] and

y2(z) = a0z
0

(
1 +

z2

2
− z4

(2)(4)(1)
+ · · ·

)
= a0

∞∑
n=0

(−1)n+1 (2n− 1) z2n

(2n)!
.

Thus, although the indicial roots, 0 and 3, differ by an integer, two linearly

independent series solutions are produced.

(b) We write the given function in series form:

3a0(sin z − z cos z) = 3a0

∞∑
n=0

(−1)nz2n+1

(2n+ 1)!
− 3a0z

∞∑
n=0

(−1)nz2n

(2n)!

= 3a0

∞∑
n=0

(−1)n (1 − 2n− 1) z2n+1

(2n+ 1)!

= 3a0

∞∑
n=0

(−1)n+1 2n z2n+1

(2n+ 1)!

= 3a0

∞∑
n=1

(−1)n+1 2n z2n+1

(2n+ 1)!
= y1(z).

This confirms that the the first series is a multiple of sin z − z cos z and the

Wronskian method now gives the second solution as

y2(z) = y1(z)

∫ z 1

y2
1(u)

exp

{
−
∫ u (−2

v

)
dv

}
du

= y1(z)

∫ z 1

y2
1(u)

exp(2 ln u) du

= y1(z)

∫ z u2

(sin u− u cos u)2
du

= y1(z)

∫ z u

sin u

u sin u

(sin u− u cos u)2
du

= y1(z)

{[
u

sin u

−1

(sin u− u cos u)

] z
+

∫ z ( 1

sin u
− u cos u

sin2 u

) (
1

sin u− u cos u

)
du

}
= − z

sin z
+ y1(z)

∫ z 1

sin2 u
du

= − z

sin z
+ (sin z − z cos z)(− cot z)

=
−z − sin z cos z + z cos2 z

sin z
= −z sin z − cos z.
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Comparing the constant terms (i.e. the z0 term) in this solution and the series

obtained earlier, shows that this sinusoidal form is the negative of the series

solution. Thus the series y2(z) = cos z + z sin z.

(c) From the way the sinusoidal form was calculated, the solutions must satisfy

the Wronskian condition, but an explicit verification is as follows.

W (y1, y2) = (sin z − z cos z)(− sin z + sin z + z cos z)

− (cos z + z sin z)(cos z − cos z + z sin z)

= z cos z sin z − z2 cos2 z − z sin z cos z − z2 sin2 z

= −z2.

This is in accord with what is expected from (∗), where the factor multiplying y′

is −2/z when the equation is put in standard form. Explicitly,

W (y1, y2) = exp

{
−
∫ z (−2

v

)
dv

}
= z2,

an arbitrary constant multiplying factor being irrelevant.

16.10 Solve the equation

z(1 − z)
d2y

dz2
+ (1 − z)

dy

dz
+ λy = 0,

as follows.

(a) Identify and classify its singular points and determine their indices.

(b) Find one series solution in powers of z. Give a formal expression for a second

linearly independent solution.

(c) Deduce the values of λ for which there is a polynomial solution PN(z) of

degree N. Evaluate the first four polynomials, normalised in such a way that

PN(0) = 1.

(a) In standard form the equation reads

y′′ +
1

z
y′ +

λy

z(1 − z)
= 0.

By inspection, there are singular points at z = 0 and z = 1. However, the

denominators of the functions that make the points singular have only first-order

zeros; consequently, the points are both regular singular points.
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Substituting a Frobenius solution about z = 0 gives

z(1 − z)

∞∑
n=0

(σ + n)(σ + n− 1)anz
σ+n−2

+ (1 − z)

∞∑
n=0

(σ + n)anz
σ+n−1 + λ

∞∑
n=0

anz
σ+n = 0.

Equating the coefficient of zσ−1 to zero shows that

[ σ(σ − 1) + 1σ ]a0 = 0, ⇒ σ = 0 (repeated root).

For the point z = 1, we set z − 1 = u with f(u) = y(z) and obtain

(u+ 1)(−u)f′′ + (−u)f′ + λf = 0.

If a Frobenius solution about u = 0 is substituted, the lowest power of u present

will be uσ−1; it will arise only from the first term and have coefficient −σ(σ−1)a0.

For this to be zero requires that σ = 0 or σ = 1; these are the indices of the point

u = 0, i.e. of the point z = 1.

(b) For the solution about z = 0 we have a repeated indicial root σ = 0.

We therefore need to use the derivative method to obtain two solutions. The

recurrence relation generated by setting the coefficient of zm+σ to zero in the

equation in part (a) is

(m+ 1 + σ)(m+ σ)am+1 − (m+ σ)(m+ σ − 1)am

+(m+ 1 + σ)am+1 − (m+ σ)am + λam = 0,

⇒ am+1 =
(m+ σ)2 − λ

(m+ 1 + σ)2
am.

The first solution is obtained by setting σ equal to 0 in this relation to yield

am =

m−1∏
r=0

(r2 − λ)

(m!)2
a0

and

y1(z) = a0 + a0

∞∑
n=1

n−1∏
r=0

(r2 − λ)

(n!)2
zn.

The second solution y2(z) is obtained by differentiating the general solution with
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respect to σ before setting σ = 0.

∂y

∂σ
=
d(zσ)

dσ

∞∑
n=0

an(σ)zn + zσ
∞∑
n=1

dan(σ)

dσ
zn,

y2(z) = z0 ln z

∞∑
n=0

an(0)z
n + z0

∞∑
n=1

dan(0)

dσ
zn

= y1(z) ln z +

∞∑
n=1

∂

∂σ

n−1∏
r=0

(r + σ)2 − λ

(r + 1 + σ)2

∣∣∣∣∣
σ=0

zn.

(c) From the recurrence relation it is clear that the condition for the series solution

to terminate is that λ = (m + σ)2 for some integer m. Since σ = 0, this means

that λ = N2 for a polynomial of degree N. The first four polynomials, constucted

using the recurrence relation, are

λ = 0, P0(z) = 1,

λ = 1, P1(z) = 1 +
−1

12
z = 1 − z,

λ = 4, P2(z) = 1 +
−4

12
z +

(−3)(−4)

22
z2 = 1 − 4z + 3z2,

λ = 9, P3(z) = 1 +
−9

12
z +

(−8)(−9)

22
z2 +

(−5)(−8)(−9)

62
z3

= 1 − 9z + 18z2 − 10z3.

By choosing a0 = 1 in each case, we have ensured that PN(0) = 1 for all N.

16.12 Find the radius of convergence of a series solution about the origin for

the equation (z2 + az + b)y′′ + 2y = 0 in the following cases:

(a) a = 5, b = 6; (b) a = 5, b = 7.

Show that if a and b are real and 4b > a2 then the radius of convergence is always

given by b1/2.

The two roots of z2 + az + b = 0 give the singular points, z1 and z2, of the

equation. The radius of convergence R of the series solution about the origin is

equal to the smaller of their two moduli.

If 4b > a2 then the roots are necessarily complex conjugates and

R2 = |z1|2 = |z2|2 =
(−a

2

)2

+

(√
4b− a2

2

)2

= b ⇒ R =
√
b.

This is case (b), for which therefore R = b = 7.
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If a2 > 4b the roots are real and the smaller of their two magnitudes gives the

value of R. In case (a) the roots are 1
2
(−5 ±

√
25 − 24) = −2 or −3, implying that

R = 2.

16.14 Prove that the Laguerre equation

z
d2y

dz2
+ (1 − z)

dy

dz
+ λy = 0

has polynomial solutions LN(z) if λ is a non-negative integer N, and determine

the recurrence relationship for the polynomial coefficients. Hence show that an

expression for LN(z), normalised in such a way that LN(0) = N!, is

LN(z) =

N∑
n=0

(−1)n(N!)2

(N − n)!(n!)2
zn.

Evaluate L3(z) explicitly.

We assume that there is a polynomial solution LN(z) =
∑N

n=0 anz
n with aN �= 0

and substitute this form into the differential equation:

z

N∑
n=0

n(n− 1)anz
n−2 + (1 − z)

N∑
n=0

nanz
n−1 + λ

N∑
n=0

anz
n = 0.

Consideration of the coefficient of zN shows that we require λ = N.

The recurrence relation comes from equating the coefficient of zm−1 to zero:

m(m− 1)am + mam − (m− 1)am−1 +Nam−1 = 0,

am =
m− 1 −N

m2
am−1 =

(−1)n N! a0

(N − n)! (n!)2
=

(−1)n (N!)2

(N − n)! (n!)2
,

where, in the last step, we have used the requirement that a0 = LN(0) = N!.

Hence

LN(z) =

N∑
n=0

(−1)n (N!)2 zn

(N − n)! (n!)2
.

Explicitly, for N = 3,

L3(z) = 3! − 62

2! 12
z +

62

1! 22
z2 − 62

0! 62
z3 = 6 − 18z + 9z2 − z3.

Essentially the same proof, but with a different normalisation of the polynomials,

is given in the main text in section 18.7.
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16.16 Obtain the recurrence relations for the solution of Legendre’s equation

(1 − z2)y′′ − 2zy′ + �(�+ 1)y = 0.

in inverse powers of z, i.e. set y(z) =
∑
anz

σ−n, with a0 �= 0. Deduce that if � is

an integer then the series with σ = � will terminate and hence converge for all

z �= 0 whilst that with σ = −(�+ 1) does not terminate and hence converges only

for |z| > 1.

We substitute y =
∑∞

n=0 anz
σ−n with a0 �= 0 into Legendre’s equation

(1 − z2)y′′ − 2zy′ + �(�+ 1)y = 0.

and obtain

(1 − z2)

∞∑
n=0

(σ − n)(σ − n− 1)anz
σ−n−2

− 2z

∞∑
n=0

(σ − n)anz
σ−n−1 + �(�+ 1)

∞∑
n=0

anz
σ−n = 0.

For the terms containing zσ ,

−σ(σ − 1)a0 − 2σa0 + �(�+ 1)a0 = 0

⇒ −σ(σ − 1 + 2) + �(�+ 1) = 0

⇒ σ = �, −(�+ 1).

These are the two indicial roots.

The recurrence relation is obtained by equating the coefficient of zσ−m, i.e.

(σ − m+ 2)(σ − m+ 1)am−2 − (σ − m)(σ − m− 1)am − 2(σ − m)am + �(�+ 1)am,

to zero. The relation is thus

am =
(σ − m+ 2)(σ − m+ 1)

(σ − m)(σ − m− 1 + 2) − �(�+ 1)
am−2 with m ≥ 2.

For σ = �

an =
(�− n+ 2)(�− n+ 1)

(�− n)(�− n− 1 + 2) − �(�+ 1)
an−2

=
(�− n+ 2)(�− n+ 1)

−n(�+ 1 + �) + n2
an−2

=
(�− n+ 2)(�− n+ 1)

n(n− 2�− 1)
an−2.

If � is a positive integer then, irrespective of whether � is even or odd, n will
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pass through either � + 1 or � + 2 and at that point one of the factors in

the numerator will become zero. The series of coefficients will then terminate

producing a function with a finite number of terms, each of which is a positive

power of z−1; such a function must be finite for all (non-zero) z. Although the

denominator of the recurrence relation would become zero when n = 2�+ 1, the

series will have terminated before that value of n is reached.

For σ = −(�+ 1)

an =
(−�− 1 − n+ 2)(−�− 1 − n+ 1)

(−�− 1 − n)(−�− 1 − n− 1 + 2) − �(�+ 1)
an−2

=
(�+ n)(�+ n− 1)

(�+ n+ 1)(�+ n) − �(�+ 1)
an−2

=
(�+ n)(�+ n− 1)

n(n+ 2�+ 1)
an−2.

This series will not terminate because (�+n)(�+n−1) cannot be equal to zero for

� > 0 and n ≥ 2. The denominator of the recurrence relation can never become

zero.

Since the series is an infinite one in inverse powers of z, it will only converge for∣∣∣∣ 1

z2

∣∣∣∣ < lim
n→∞

∣∣∣∣an−2

an

∣∣∣∣ = lim
n→∞

∣∣∣∣ (�− n+ 2)(�− n+ 1)

n(n− 2�− 1)

∣∣∣∣ = 1,

i.e. for |z| > 1.
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Eigenfunction methods for
differential equations

17.2 Write the homogeneous Sturm-Liouville eigenvalue equation for which

y(a) = y(b) = 0 as

L(y; λ) ≡ (py′)′ + qy + λρy = 0,

where p(x), q(x) and ρ(x) are continuously differentiable functions. Show that if

z(x) and F(x) satisfy L(z; λ) = F(x) with z(a) = z(b) = 0 then∫ b

a

y(x)F(x) dx = 0.

Demonstrate the validity of this general result by direct calculation for the specific

case in which p(x) = ρ(x) = 1, q(x) = 0, a = −1, b = 1 and z(x) = 1 − x2.

Write the integral I (omitting all arguments of functions) as follows:

I =

∫ b

a

yF dx

=

∫ b

a

yL(z; λ) dx

=

∫ b

a

[
y(pz′)′ + yqz + yλρz

]
dx

=
[
ypz′ ] b

a
−
∫ b

a

[
y′pz′ − z(qy + λρy)

]
dx, with y(a) = y(b) = 0,

= 0 −
[
y′pz

] b
a
+

∫ b

a

[
(y′p)′z + z(qy + λρy)

]
dx, with z(a) = z(b) = 0,

= 0 +

∫ b

a

zL(y; λ) dx =

∫ b

a

z 0 dx = 0.
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For the special case in which p(x) = ρ(x) = 1, a = −1, b = 1 and q(x) = 0, the

equation reduces to

y′′ + λy = 0 with y(±1) = 0.

⇒ y(x) = A cos(
√
λx),

with λ =
(2n+ 1)2π2

4
and n a non-negative integer.

With the given form of z(x),

L(z; λ) = (1 − x2)′′ + λ(1 − x2) = −2 + λ(1 − x2).

To verify the result we need to prove that I = 0, where

I =

∫ 1

−1

cos(µx)[ −2 + µ2(1 − x2) ] dx, with µ =
√
λ =

(2n+ 1)π

2
,

=

∫ 1

−1

(µ2 − 2) cosµx dx− µ2

∫ 1

−1

x2 cosµx dx

= (µ2 − 2)

[
sinµx

µ

] 1

−1

− µ2J

=
2(−1)n(µ2 − 2)

µ
− µ2J.

Here J is the integral

J =

∫ 1

−1

x2 cosµx dx

=

[
x2 sinµx

µ

] 1

−1

− 2

∫ 1

−1

x
sinµx

µ
dx

=
2(−1)n

µ
+

[
2x cosµx

µ2

] 1

−1

−
∫ 1

−1

2 cosµx

µ2
dx

=
2(−1)n

µ
+ 0 − 0 −

[
2 sinµx

µ3

] 1

−1

= (−1)n
(

2

µ
− 4

µ3

)
.

Thus

I = (−1)n
2(µ2 − 2)

µ
− µ2(−1)n

(
2

µ
− 4

µ3

)
= 0,

as expected.
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17.4 Show that the equation

y′′ + aδ(x)y + λy = 0,

with y(±π) = 0 and a real, has a set of eigenvalues λ satisfying

tan(π
√
λ) =

2
√
λ

a
.

Investigate the conditions under which negative eigenvalues, λ = −µ2 with µ real,

are possible.

The problem is that of finding the Green’s function G(x, x0) for the point x0 = 0

over the range −π ≤ x ≤ π with boundary values y(±π) = 0. We assume first

that λ > 0. Continuity of the solution is needed at x = 0 but its derivative will

have a step increase of magnitude −ay(0).
Let

y(x) =

{
A sin νx+ B cos νx, −π ≤ x < 0,

C sin νx+ D cos νx, 0 ≤ x ≤ π.
,

where ν =
√
λ. Then, continuity at x = 0 implies that D = B, whilst the step

condition can be written

(νC + 0) − (νA+ 0) = −a(0 + B).

The boundary values require

B

A
= tan νπ = −D

C
⇒ A = −C.

Thus, substituting in the step condition gives

−νA− νA = −aA tan νπ ⇒ tan νπ =
2ν

a
, i.e. tan

√
λπ =

2
√
λ

a
.

We note that, since the operator
d2

dx2
+ aδ(x) is Hermitian, its eigenvalues can

only be real. But this does not rule out the possibility of negative eigenvalues

λ = −µ2 with µ real.

Putting the calculated values of B, C and D back into the assumed forms in part

(a) shows that the explicit solution for that part is

y(x) =

{
E sin[

√
λ(π + x) ] −π ≤ x < 0,

E sin[
√
λ(π − x) ] 0 ≤ x ≤ π.

The corresponding result for λ = −µ2 is

y(x) =

{
E sinh[ µ(π + x) ] −π ≤ x < 0,

E sinh[ µ(π − x) ] 0 ≤ x ≤ π.
,
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leading to the condition

tanhµπ =
2µ

a
.

A simple sketch shows that this equation can only have a real solution for µ if

the slope of f(µ) = tanh(µπ) at µ = 0 is greater than the slope of g(µ) = 2µ/a at

the same place. The former slope is π and the latter 2/a. Thus the condition for

negative eigenvalues of the original equation is a > 2/π.

17.6 Starting from the linearly independent functions 1, x, x2, x3, . . . , in the

range 0 ≤ x < ∞, find the first three orthonormal functions φ0, φ1 and φ2, with

respect to the weight function ρ(x) = e−x. By comparing your answers with the

Laguerre polynomials generated by the recurrence relation

(n+ 1)Ln+1 − (2n+ 1 − x)Ln + nLn−1 = 0,

deduce the form of φ3(x).

We aim to construct the orthonormal functions using the Gram–Schmidt proce-

dure. To evaluate the integrals involved we will make repeated use of the general

result ∫ ∞

0

xne−x dx = Γ(n+ 1) = n!.

Starting with φ0 = 1, all we need to check is its normalisation. Since∫ ∞

0

12e−x dx = 1,

φ0 is already correctly normalised.

We next calculate φ1 as

φ1 = x− φ0〈φ0|x〉

= x− 1

∫ ∞

0

1 z e−z dz

= x− 1,

and check its normalisation:

〈φ1|φ1〉 =

∫ ∞

0

(x− 1)2e−x dx =

∫ ∞

0

(x2 − 2x+ 1)e−x dx = 2! − 2(1!) + 1 = 1.

It too is already correctly normalised.
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To find φ2 we continue with the Gram–Schmidt construction using the expressions

already derived for φ0 and φ1, as follows.

φ2(x) = x2 − 1

∫ ∞

0

1 z2e−z dz − (x− 1)

∫ ∞

0

(z − 1)z2e−z dz

= x2 − 2! − (x− 1)

∫ ∞

0

(z3 − z2)e−z dz

= x2 − 2 − (x− 1)(3! − 2!) = x2 − 4x+ 2.

Determining its normalisation constant is a little more complicated than for the

first two functions, but to do so we evaluate

〈φ2|φ2〉 =

∫ ∞

0

(x4 + 16x2 + 4 − 8x3 + 4x2 − 16x)e−x dx

= 4! + 20(2!) − 8(3!) − 16(1!) + 4

= 24 + 40 − 48 − 16 + 4 = 4.

It is then clear that the correctly normalised φ2 is φ2(x) = 1
2
(x2 − 4x+ 2).

Next we explicitly generate the Laguerre polynomials using the recurrence relation

(n+ 1)Ln+1 − (2n+ 1 − x)Ln + nLn−1 = 0,

starting with L0(x) = 1 (and L−1 conventionally equal to zero; it is multiplied by

zero in any case). The equations for n = 0, 1, 2 read

L1 − (0 + 1 − x)L0 + 0 = 0 ⇒ L1(x) = 1 − x,

2L2 − (2 + 1 − x)L1 + L0 = 0 ⇒ L2(x) = 1
2
[ (3 − x)(1 − x) − 1 ]

⇒ L2(x) = 1
2
[ x2 − 4x+ 2 ],

3L3 − (4 + 1 − x)L2 + 2L1 = 0 ⇒ 3L3(x) = (5 − x) 1
2
(x2 − 4x+ 2)

−2(1 − x)

⇒ L3(x) = 1
6
(−x3 + 9x2 − 18x+ 6).

Comparing these results with the corresponding φn(x) for n = 0, 1, 2 shows that

the φn are the same as the Ln, but their relative signs alternate. Although it is

not conclusive on the basis of only three comparisons, a connection φn(x) =

(−1)nLn(x) seems plausible. This is, in fact, correct and indicates that φ3(x) =

(−1)3 1
6
(−x3 + 9x2 − 18x + 6) = 1

6
(x3 − 9x2 + 18x − 6), a conclusion that can be

checked by direct, but tedious, calculation.

278



EIGENFUNCTION METHODS FOR ODES

17.8 A particle moves in a parabolic potential in which its natural angular

frequency of oscillation is 1/2. At time t = 0 it passes through the origin with

velocity v and is suddenly subjected to an additional acceleration of +1 for 0 ≤
t ≤ π/2, and then −1 for π/2 < t ≤ π. At the end of this period it is at the origin

again. By making an eigenfunction expansion of the solution to the equation of

motion, show that

v = − 8

π

∞∑
m=0

1

(4m+ 2)2 − 1
4

≈ −0.81.

The equation of motion is

ÿ +
1

4
y = f(t) =

{
1, 0 ≤ t < π/2,

−1, π/2 ≤ t < π,

with y(0) = y(π) = 0.

The eigenfunctions of the operator L =
d2

dt2
+

1

4
are obviously

yn(t) = An sin nt+ Bn cos nt

with corresponding eigenvalues λn = n2 − 1
4
.

The boundary conditions, y(0) = y(π) = 0, require that n is a positive integer and

that Bn = 0, i.e.

yn(t) = An sin nt =

√
2

π
sin nt (when normalised) with n ≥ 1.

If the required solution is y(t) =
∑

n anyn(t), then direct substitution yields

∞∑
n=1

( 1
4

− n2)anyn(t) = f(t).

Remembering that the yn are sine functions, we apply the normal procedure for

Fourier analysis, and obtain

am =
1

1
4

− m2

∫ π

0

f(z)ym(z) dz

and, consequently, that

y(t) =

∞∑
n=1

√
2

π

sin nt
1
4

− n2

√
2

π

∫ π

0

f(z) sin(nz) dz.
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Now, from the given data, f(z) = +1 for t < π/2 and f(z) = −1 for t > π/2. So,∫ π

0

f(z) sin(nz) dz =

∫ π/2

0

sin(nz) dz −
∫ π

π/2

sin(nz) dz

=
[− cos nz

n

] π/2
0

−
[− cos nz

n

]π
π/2

=


1

n
(1 − 1) = 0, for n odd,

1

2m
[ −(−1)m + 1 + 1 − (−1)m ], for n = 2m,

=


4

2m
for m odd, i.e. n = 2m = 4r + 2,

0 otherwise.

Thus,

y(t) =
2

π

∞∑
r=0

4 sin[ (4r + 2)t ]

(4r + 2)[ 1
4

− (4r + 2)2 ]
,

and, by differentiation with respect to t and then setting t = 0,

v = ẏ(0) = − 8

π

∞∑
r=0

cos(0)

(4r + 2)2 − 1
4

≈ −0.81,

as stated in the question.

17.10 Consider the following two approaches to constructing a Green’s function.

(a) Find those eigenfunctions yn(x) of the self-adjoint linear differential operator

d2/dx2 that satisfy the boundary conditions yn(0) = yn(π) = 0, and hence

construct its Green’s function G(x, z).

(b) Construct the same Green’s function using a method based on the comple-

mentary function of the appropriate differential equation and the boundary

coditions to be satisfied at the position of the δ-function, showing that it is

G(x, z) =

{
x(z − π)/π, 0 ≤ x ≤ z,

z(x− π)/π, z ≤ x ≤ π.

(c) By expanding the function given in (b) in terms of the eigenfunctions yn(x),

verify that it is the same function as that derived in (a).

Recalling that we have chosen to define the eigenvalue of a linear operator by

Lyn = λnρyn,
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the eigenfunctions satisfying the given boundary conditions are

yn(x) =

√
2

π
sin nx,

with corresponding eigenvalues λn = −n2 for integer n. The Green’s function is

thus

G(x, z) =

∞∑
n=0

1

λn
yn(x)y

∗
n(z) = − 2

π

∞∑
n=0

1

n2
sin nx sin nz.

(b) The differential equation defining the Green’s function is

y′′ = δ(x− z) with y(0) = y(π) = 0.

It’s solution takes the form

H(x, z) =

{
A+ Bx 0 ≤ x ≤ z,

C + Dx z < x ≤ π.

From the boundary conditions it is clear that A = 0 and that C = −Dπ.

Continuity at x = z implies Bz = C + Dz whilst the required unit step in

the derivative implies D − B = 1. Together, these give C = −z, D = z/π and

B = (z/π) − 1. Resubstitution then gives as the Green’s function

H(x, z) =


( z
π

− 1
)
x =

x(z − π)

π
0 ≤ x ≤ z,

−z +
z

π
x =

z(x− π)

π
z < x ≤ π.

(c) This verification is tantamount to finding a Fourier sine-series for the answer

found in part (b):

H(x, z) =

∞∑
n=1

an

√
2

π
sin nx with

π
π

2

√
2

π
an =

∫ z

0

(z − π)x sin nx dx+

∫ π

z

z(x− π) sin nx dx

= (z − π)

{[−x cos nx

n

] z
0
+

∫ z

0

cos nx

n
dx

}
− zπ

[− cos nx

n

]π
z

+ z

{[−x cos nx

n

]π
z

+

∫ π

z

cos nx

n
dx

}
= (z − π)

(
−z cos nz

n
− 0 +

sin nz

n2
− 0

)
+

(−1)nzπ

n

− zπ cos nz

n
+ z

(
− (−1)nπ

n
+
z cos nz

n
+ 0 − sin nz

n2

)
= −π sin nz

n2
.
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Thus,

an = −
√

2

π

sin nz

n2
,

and resubstituting this expression for an shows that

H(x, z) = − 2

π

∞∑
n=0

sin nz sin nx

n2
,

so confirming that this is the same function as that derived in part (a).

17.12 Show that the linear operator

L ≡ 1
4
(1 + x2)2

d2

dx2
+ 1

2
x(1 + x2)

d

dx
+ a,

acting upon functions defined in −1 ≤ x ≤ 1 and vanishing at the endpoints of

the interval, is Hermitian with respect to the weight function (1 + x2)−1.

By making the change of variable x = tan(θ/2), find two even eigenfunctions,

f1(x) and f2(x), of the differential equation

Lu = λu.

We take as our general functions u(x) and v(x) with u(±1) = v(±1) = 0. The

operator L will be Hermitian with respect to the given weight function w(x) if its

adjoint, L† defined by ∫ 1

−1

v∗(Lu)w dx =

∫ 1

−1

(L†v)∗uw dx,

is equal to L and certain boundary contributions vanish.

Now consider

I =

∫ 1

−1

v∗Lu
1 + x2

dx

=

∫ 1

−1

v∗
[
1

4
(1 + x2)

d2u

dx2
+

1

2
x
du

dx
+

au

1 + x2

]
dx

=

∫ 1

−1

v∗
{[

1
4
(1 + x2)u′ ]′ +

au

1 + x2

}
dx.
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Integrating by parts, we obtain

I =
[
v∗ 1

4
(1 + x2)u′ ] 1

−1
−
∫ 1

−1

{
v∗′ 1

4
(1 + x2)u′ − auv∗

1 + x2

}
dx

= 0 −
[
v∗′ 1

4
(1 + x2)u

] 1

−1
+

∫ 1

−1

{[
1
4
(1 + x2)v∗′ ]′

u+
auv∗

1 + x2

}
dx

= 0 +

∫ 1

−1

u

{[
1
4
(1 + x2)v′ ]′ +

a∗v

1 + x2

}∗
dx

=

∫ 1

−1

(Lv)∗u

1 + x2
dx,

provided a is real. If so, L = L† and L is Hermitian.

We now make a change of variable to θ = 2 tan−1 x with −π/2 ≤ θ ≤ π/2,

f(x) = u(θ) and

dθ

dx
=

2

1 + x2
= 2 cos2(θ/2).

The expression for Lu becomes

Lu =
1

4
sec4(θ/2) 2 cos2(θ/2)

d

dθ

(
2 cos2(θ/2)

du

dθ

)
+

1

2
tan(θ/2) 2

du

dθ
+ au

= sec2(θ/2)

[
− cos(θ/2) sin(θ/2)

du

dθ
+ cos2(θ/2)

d2u

dθ2

]
+ tan(θ/2)

du

dθ
+ au

=
d2u

dθ2
+ au

Thus, we have to solve

d2u

dθ2
+ au = λu with u(− 1

2
π) = u( 1

2
π) = 0 and u(−θ) = u(θ).

In view of the boundary conditions we need solutions of the form

u(θ) = A cos(
√
a− λ θ) with

√
a− λ = 2n+ 1.

(i) n = 0 and λ = a− 1.

f1(x) = u(θ) = A cos θ = A
1 − x2

1 + x2
.

(ii) n = 1 and λ = a− 9.

f2(x) = u(θ) = B cos 3θ = B(4 cos3 θ − 3 cos θ)

= 4B

(
1 − x2

1 + x2

)3

− 3B
1 − x2

1 + x2
.

Both of these functions are functions of x2 and therefore clearly even functions

of x.

283



EIGENFUNCTION METHODS FOR ODES

17.14 Express the solution of Poisson’s equation in electrostatics,

∇2φ(r) = −ρ(r)/ε0,

where ρ is the non-zero charge density over a finite part of space, in the form of

an integral and hence identify the Green’s function for the ∇2 operator.

Consider the (infinitesimal) potential dφ(r) due to a small element of charge

dq = ρ(r′) dv′ situated at the position r′. This is clearly

dφ(r) =
ρ(r′) dv′

4πε0|r − r′| .

Since Poisson’s equation is linear, we may apply superposition and so obtain the

total potential at position r. This same potential must also be expressible in terms

of the Green’s function associated with Poisson’s equation. Thus,

−
∫
G(r, r′)

ρ(r′)

ε0
dv′ ≡ φ(r) =

∫
dφ(r) =

∫
ρ(r′) dv′

4πε0|r − r′| .

Hence, by inspection,

G(r, r′) = − 1

4π|r − r′| .

284



18

Special functions

18.2 Express the function

f(θ, φ) = sin θ[sin2(θ/2) cosφ+ i cos2(θ/2) sinφ] + sin2(θ/2)

as a sum of spherical harmonics.

Since every spherical harmonic can only contain φ as a multiplicative factor of

the form e±imφ, we must decompose the given expression into a sum of terms

containing such factors. Further, as the spherical harmonics are expressed in term

of θ, (rather than of θ/2) we also express the given function in these terms.

f(θ, φ) = sin θ

[
sin2 θ

2
cosφ+ i cos2 θ

2
sinφ

]
+ sin2 θ

2

= sin θ

[
1

2
(1 − cos θ) cosφ+

i

2
(1 + cos θ) sinφ

]
+

1

2
(1 − cos θ)

=
1

2
(1 − cos θ) +

1

4
(1 − cos θ) sin θ ( eiφ + e−iφ)

+
1

4
(1 + cos θ) sin θ( eiφ − e−iφ)

=
1

2
− 1

2
cos θ +

1

2
sin θ eiφ − 1

2
cos θ sin θ e−iφ

=
1

2

√
4πY 0

0 − 1

2

√
4π

3
Y 0

1 − 1

2

√
8π

3
Y 1

1 − 1

2

√
8π

15
Y −1

2

=
√
π

(
Y 0

0 −
√

1

3
Y 0

1 −
√

2

3
Y 1

1 −
√

2

15
Y −1

2

)
.
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18.4 Carry through the following procedure as a proof of the result

In =

∫ 1

−1

Pn(z)Pn(z) dz =
2

2n+ 1
.

(a) Square both sides of the generating-function definition of the Legendre poly-

nomials,

(1 − 2zh+ h2)−1/2 =

∞∑
n=0

Pn(z)h
n.

(b) Express the RHS as a sum of powers of h, obtaining expressions for the

coefficients.

(c) Integrate the RHS from −1 to 1 and use the orthogonality property of the

Legendre polynomials.

(d) Similarly integrate the LHS and expand the result in powers of h.

(e) Compare coefficients.

We are required to evaluate

In =

∫ 1

−1

Pn(z)Pn(z) dz.

We start with the generating function and apply the steps indicated:

(1 − 2zh+ h2)−1/2 =

∞∑
n=0

Pn(z)h
n,

1

1 − 2zh+ h2
=

∞∑
n=0

∞∑
m=0

Pn(z)Pm(z) hm+n,

∫ 1

−1

dz

1 − 2zh+ h2
=

∞∑
n=0

∞∑
m=0

∫ 1

−1

Pn(z)Pm(z) dz hm+n,

− 1

2h

[
ln(1 − 2zh+ h2)

] 1

−1
=

∞∑
n=0

∞∑
m=0

Im δmn h
m+n,

using the orthogonality property. Thus,

∞∑
m=0

Im h
2m = − 1

2h
ln

(1 − h)2

(1 + h)2

=
1

h
ln

1 + h

1 − h

=
1

h

( ∞∑
n=0

(−1)nhn+1

n+ 1
−

∞∑
n=0

(−1)hn+1

n+ 1

)
=

∞∑
n even

2hn

n+ 1
.
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q

2q

−q

a

a

r

r1

r2

θ

(r, θ)

Figure 18.1 The arrangement of charges and notation for exercise 18.6.

Hence, from equating the coefficients of h2m (i.e. setting n = 2m), we have

Im =
2

2m+ 1
,

as stated in the question.

18.6 A charge +2q is situated at the origin and charges of −q are situated at

distances ±a from it along the polar axis. By relating it to the generating function

for the Legendre polynomials, show that the electrostatic potential Φ at a point

(r, θ, φ) with r > a is given by

Φ(r, θ, φ) =
2q

4πε0r

∞∑
s=1

(a
r

)2s

P2s(cos θ).

The situation is shown in figure 18.1. We superimpose the potentials due to the

individual charges. That due to the charge 2q is simply 2q/(4πε0r). To obtain the

distances r1 and r2 of the point (r, θ) from the negative charges we use the cosine

rule:

r21 = r2 + a2 − 2ar cos θ,

1

r1
=

1

r

[
1 − 2a

r
cos θ +

(a
r

)2
]−1/2

.

This gives Φ1 as

Φ1 = − q

4πε0r
(1 − 2h cos θ + h2)−1/2 = − q

4πε0r

∞∑
n=0

Pn(cos θ)hn,
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where we have written a/r = h and, having done so, identified the resulting

expression as the generating function for Legendre polynomials. Similarly,

Φ2 = − q

4πε0r

∞∑
n=0

Pn(− cos θ)hn.

Since Pn(− cos θ) = (−1)nPn(cos θ), when all three terms are added together we

obtain

Φ = − 2q

4πε0r

∞∑
n even

Pn(cos θ)hn +
2q

4πε0r

= − 2q

4πε0r

∞∑
n even �=0

Pn(cos θ)hn

= − 2q

4πε0r

∞∑
s=1

(a
r

)2s

P2s(cos θ),

as stated in the question.

18.8 The quantum mechanical wavefunction for a one-dimensional simple har-

monic oscillator in its nth energy level is of the form

ψ(x) = exp(−x2/2)Hn(x),

where Hn(x) is the nth Hermite polynomial. The generating function for the poly-

nomials is

G(x, h) = e2hx−h2

=

∞∑
n=0

Hn(x)

n!
hn.

(a) Find Hi(x) for i = 1, 2, 3, 4.

(b) Evaluate by direct calculation∫ ∞

−∞
e−x2

Hp(x)Hq(x) dx,

(i) for p = 2, q = 3; (ii) for p = 2, q = 4; (iii) for p = q = 3. Check your

answers against the expected values 2p p!
√
π δpq .

[ You will find it convenient to use∫ ∞

−∞
x2ne−x2

dx =
(2n)!

√
π

22nn!

for integer n ≥ 0. ]

288



SPECIAL FUNCTIONS

(a) The generating function is

G(x, h) = exp(2hx− h2) =

∞∑
n=0

Hn(x)

n!
hn,

from which it follows that

Hn(x) =
∂n

∂hn

[
exp(2hx− h2)

]∣∣
h=0

.

We therefore calculate these derivatives:

∂G

∂h
= (2x− 2h)G ⇒ H1(x) = 2x,

∂2G

∂h2
= (2x− 2h)2G− 2G ⇒ H2(x) = 4x2 − 2,

∂3G

∂h3
= (2x− 2h)3G+ 2(−2)(2x− 2h)G− 2(2x− 2h)G

= (2x− 2h)3G− 6(2x− 2h)G ⇒ H3(x) = 8x3 − 12x,

∂4G

∂h4
= (2x− 2h)4G+ 3(−2)(2x− 2h)2G− 6(2x− 2h)2G+ 12G

= (2x− 2h)4G− 12(2x− 2h)2G+ 12G

⇒ H4(x) = 16x4 − 48x2 + 12.

(b) Denote by Jn the integral

Jn =

∫ ∞

−∞
xne−x2

dx with J2r =
(2r)!

√
π

22r r!
and J2r+1 = 0.

Further, define Ip q as

Ip q =

∫ ∞

−∞
e−x2

Hp(x)Hq(x) dx.

Then, for case (i)

I23 =

∫ ∞

−∞
e−x2

(4x2 − 2)(8x3 − 12) dx

= 32J5 − 16J3 − 48J3 + 24J1 = 0, as all subscripts are odd.

For case (ii)

I24 =

∫ ∞

−∞
e−x2

(4x2 − 2)(16x4 − 48x2 + 12) dx

= 64J6 − 192J4 + 48J2 − 32J4 + 96J2 − 24J0

= 64
6!

√
π

26 3!
− 224

4!
√
π

24 2!
+ 144

2!
√
π

22 1!
− 24

0!
√
π

20 0!

=
√
π(120 − 168 + 72 − 24) = 0.
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Finally, for case (iii)

I33 =

∫ ∞

−∞
e−x2

(8x3 − 12x)2 dx

= 64J6 − 192J4 + 144J2

= 64
6!

√
π

26 3!
− 192

4!
√
π

24 2!
+ 144

2!
√
π

22 1!

=
√
π(120 − 144 + 72) = 48

√
π.

The expected values are∫ ∞

−∞
e−x2

Hp(x)Hq(x) dx = 2pp !
√
πδpq.

This is equal to zero for p �= q and equal to 23 3!
√
π = 48

√
π for p = q = 3. All

three results agree with this.

18.10 By choosing a suitable form for h in their generating function,

G(z, h) = exp

[
z

2

(
h− 1

h

)]
=

∞∑
n=−∞

Jn(z)h
n,

show that integral repesentations of the Bessel functions of the first kind are given,

for integral m, by

J2m(z) =
(−1)m

π

∫ 2π

0

cos(z cos θ) cos 2mθ dθ, m ≥ 1,

J2m+1(z) =
(−1)m+1

π

∫ 2π

0

cos(z cos θ) sin(2m+ 1)θ dθ, m ≥ 0.

In the generating function equation,

G(z, h) = exp

[
z

2

(
h− 1

h

)]
=

∞∑
n=−∞

Jn(z)h
n,

we set h = ieiθ and obtain

exp
[ z

2

(
ieiθ + ie−iθ) ] =

∞∑
n=−∞

Jn(z)i
neinθ,

exp[ iz cos θ ] =

∞∑
n=−∞

Jn(z)i
n(cos nθ + i sin nθ).

Our choice for h was prompted by the presence in the quoted answer of a

sinusoidal function with a sinusoidal arguement – or, equivalently, for complex
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variables, an exponential function with an exponential argument. Equating the

real parts of both sides of the equality gives

cos(z cos θ) =

∞∑
m=−∞

(−1)mJ2m cos 2mθ

+

∞∑
m=−∞

(−1)m+1J2m+1 sin(2m+ 1)θ.

Now multiplying both sides of this equation by cos 2rθ and integrating over

θ from 0 to 2π gives (because of the mutual orthogonality of the sinusoidal

functions) that∫ 2π

0

cos(z cos θ) cos(2rθ) dθ = (−1)rπ J2r(z) for r ≥ 1.

Hence the first result stated.

Similarly, multiplying through by sin(2r+1)θ and integrating produces the second

result.

18.12 By making the substitution z = (1 − x)/2 and suitable choices for a, b

and c, convert the hypergeometric equation,

z(1 − z)
d2u

dz2
+ [ c− (a+ b+ 1)z ]

du

dz
− abu = 0,

into the Legendre equation

(1 − x2)
d2y

dx2
− 2x

dy

dx
+ �(�+ 1)y = 0.

Hence, using the hypergeometric series, generate the Legendre polynomials P�(x)

for the integer values � = 0, 1, 2, 3. Comment on their normalisations.

From the substitution z = (1 − x)/2, it follows that 1 − z = (1 + x)/2 and

d /dz = −2d /dx. If u(z) = y(x) then the hypergeometric equation becomes

1 − x

2

1 + x

2
(−2)2

d2y

dx2
+

[
c− (a+ b+ 1)(1 − x)

2

]
(−2)

dy

dx
− ab y = 0. (∗)

We now compare this with the Legendre equation. From the undifferentiated

term we must have that the product −ab = �(�+1), whilst, from the coefficient of

dy/dx, we see that the sum a+ b must not depend upon �. The only possibilities

are a = � with b = −(� + 1) and a = −� with b = � + 1. Noting that a + b + 1

has the value 0 in the former case and 2 in the latter, we choose the second

possibility, since we require a term containing x in the coefficient of dy/dx.
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The equation (∗) now becomes

(1 − x2)
d2y

dx2
− 2[ c− (1 − x) ]

dy

dx
+ �(�+ 1)y = 0.

All that remains to reproduce the Legendre equation is to choose c = 1. Thus,

apart from a possible normalisation factor,

P�(x) = F

(
−�, �+ 1, 1,

1 − x

2

)
.

The corresponding hypergeometric function is therefore

1 +
(−�)(�+ 1)

1! 1!

(
1 − x

2

)
+

(−�)(−�+ 1)(�+ 1)(�+ 2)

2! (1 + 1)!

(
1 − x

2

)2

+ · · · .

Because of the factor −�+ n in the numerator of the (n + 2)th term, each series

terminates after �+ 1 terms. For the specific values of �:

� = 0, P0(x) = 1,

� = 1, P1(x) = 1 +
(−1)(2)

1! 1!

(
1 − x

2

)
= x,

� = 2, P2(x) = 1 +
(−2)(3)

1! 1!

(
1 − x

2

)
+

(−2)(−1)(3)(4)

2! (1 + 1)!

(
1 − x

2

)2

= 1 − 3(1 − x) + 3
2
(1 − 2x+ x2)

= − 1
2

+ 3
2
x2 = 1

2
(3x2 − 1),

� = 3, P3(x) = 1 +
(−3)(4)

1! 1!

(
1 − x

2

)
+

(−3)(−2)(4)(5)

2! (1 + 1)!

(
1 − x

2

)2

+
(−3)(−2)(−1)(4)(5)(6)

3! (1 + 2)!

(
1 − x

2

)3

= 1 − 6(1 − x) + 15
2
(1 − 2x+ x2)

− 5
2
(1 − 3x+ 3x2 − x3)

= (1 − 6 + 15
2

− 5
2
) + (6 − 15 + 15

2
)x

+ (15
2

− 15
2
)x2 + 5

2
x3

= − 3
2
x+ 5

2
x3 = 1

2
(5x3 − 3x).

These are the first four Legendre polynomials — usually found by other means.

That they are all correctly normalised is the result of the arbitrary, but standard,

requirement that P�(1) = 1 (rather than, say,
∫ 1

−1 P
2
� dx = 1). This requirement is

automatically satisfied by the hypergeometric series since when x = 1 we have

z = 0 and F(a, b, c; 0) = 1 for all a and b, and for all c, except possibly when c is

a negative integer; here c = 1.
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18.14 Prove that, if m and n are both greater than −1, then

I =

∫ ∞

0

um

(au2 + b)(m+n+2)/2
du =

Γ[ 1
2
(m+ 1) ] Γ[ 1

2
(n+ 1) ]

2a(m+1)/2 b(n+1)/2 Γ[ 1
2
(m+ n+ 2) ]

.

Deduce the value of

J =

∫ ∞

0

(u+ 2)2

(u2 + 4)5/2
du.

Since the quoted answer strongly resembles a beta function and this is most

easily connected to integrals over the range 0 to 1, we first take a factor au2

out of the parentheses in the denominator and then make the change of variable

1 +
b

au2
=

1

x
. With this change,

u =

[
b

a

x

1 − x

]1/2

, du =
1

2

(
b

a

)1/2
dx

x1/2 (1 − x)3/2

and the integration limits (originally 0 and ∞) are 0 and 1. Thus,

I =

∫ ∞

0

um

(au2 + b)(m+n+2)/2
du

=

∫ ∞

0

um

a(m+n+2)/2(1 + b
au2 )(m+n+2)/2um+n+2

du

=

∫ 1

0

x(m+n+2)/2 a(n+2)/2 (1 − x)(n+2)/2 b1/2

a(m+n+2)/2 b(n+2)/2 x(n+2)/2 2a1/2 x1/2(1 − x)3/2
dx

=

∫ 1

0

x(m−1)/2 (1 − x)(n−1)/2

2a(m+1)/2 b(n+1)/2
dx.

This integral is a multiple of the beta function B

(
m+ 1

2
,
n+ 1

2

)
and can

therefore be expressed in terms of gamma functions as

I =
Γ[ 1

2
(m+ 1) ] Γ[ 1

2
(n+ 1) ]

2a(m+1)/2 b(n+1)/2 Γ[ 1
2
(m+ n+ 2) ]

.

In the notation used above, we have for this given specific case that a = 1 and

b = 4. J can be expressed as the sum of three integrals of the form considered

there by expanding its numerator:

J =

∫ ∞

0

u2

(u2 + 4)5/2
du+

∫ ∞

0

4u

(u2 + 4)5/2
du+

∫ ∞

0

4

(u2 + 4)5/2
du.

The corresponding pairs of values of m and n are m = 2, n = 1 for the first term,
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m = 1, n = 2 for the second and m = 0, n = 3 for the third. Thus the value of J

is

J =
1

2 1 4

Γ(3
2
) Γ(1)

Γ( 5
2
)

+
4

2 1 43/2

Γ(1) Γ( 3
2
)

Γ( 5
2
)

+
4

2 1 42

Γ( 1
2
) Γ(2)

Γ( 5
2
)

=
3Γ(3

2
) Γ(1) + Γ(1

2
) Γ(2)

8 Γ(5
2
)

=
3 1

2

√
π 1 +

√
π 1

8 3
4

√
π

=
5

12
.

18.16 For −1 < Re z < 1, use the definition and value of the beta function to

show that

z! (−z)! =

∫ ∞

0

uz

(1 + u)2
du.

Contour integration gives the value of the integral on the RHS of the above equa-

tion as πz cosec πz. Use this to deduce the value of (− 1
2
)!.

From the expression for the beta function in terms of gamma functions and the

relationship between the gamma and factorial functions for Re zi > −1, we have

z1! z2!

(z1 + z2 + 1)!
= B(z1 + 1, z2 + 1) =

∫ 1

0

tz1 (1 − t)z2 dt.

Since −1 < Re z < 1, −z is not a negative integer and so (−z)! is defined and

finite. Setting z1 = z and z2 = −z, we obtain

z! (−z)! = (z − z + 1)!

∫ 1

0

tz(1 − t)−z dt.

Making the change of integration variable

t =
u

1 + u
, with 1 − t =

1

1 + u
and dt =

1

(1 + u)2
du,

gives

z! (−z)! = 1!

∫ ∞

0

uz

(1 + u)z
(1 + u)z

1z
1

(1 + u)2
du

=

∫ ∞

0

uz

(1 + u)2
du =

πz

sinπz
, (given).

Now, setting z = − 1
2

and using the general result (z + 1)! = (z + 1)z!, we have

1
2
! (− 1

2
)! = (− 1

2
+ 1) (− 1

2
)! (− 1

2
)!.
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Since (− 1
2
π)/ sin(− 1

2
π) = π/2, it follows that [ (− 1

2
)! ]2 = π.

Now, 1
2
! =

∫ ∞
0
u−1/2e−u du and is clearly positive, since the integrand is positive

everywhere. Further, since 1
2
! = 1

2
(− 1

2
)! it follows that (− 1

2
)! has the same sign as

1
2
!, i.e. (− 1

2
)! is positive. Therefore (− 1

2
)! =

√
π.

18.18 Consider two series expansions of the error function as follows:

(a) Obtain a series expansion of the error function erf(x) in ascending powers

of x. How many terms are needed to give a value correct to four significant

figures for erf(1)?

(b) Obtain an asymptotic expansion that can be used to estimate erfc(x) for large

x(> 0) in the form of a series

erfc(x) = R(x) = e−x2
∞∑
n=0

an

xn
.

Consider what bounds can be put on the estimate and at what point the

infinite series should be terminated in a practical estimate. In particular,

estimate erfc(1) and test the answer for compatibility with that in part (a).

(a) This series can be determined straightforwardly by expanding the integrand

in a series of its own and then integrating term-by-term.

erf(x) =
2√
π

∫ x

0

e−u2

du

=
2√
π

∫ x

0

(
1 − u2 +

u4

2!
− u6

3!
+ · · ·

)
du

=
2√
π

(
x− x2

3
+

x5

2! 5
− x7

3! 7
+ · · ·

)
.

From tables, either directly or by setting x =
√

2 in the relationship 1
2
erf(x/

√
2) =

Φ(x) − 1
2

where Φ(x) is the (cumulative) Gaussian distribution function, we find

that erf(1) = 0.8427.

From the calculated series, the successive partial sums corresponding to 1, 2, 3, . . .

terms are 1.1284, 0.7523, 0.8651, 0.8382, 0.8434, 0.8426, 0.8427, 0.8427, . . . . Thus

seven terms are needed to obtain the desired accuracy.

(b) We start with

erfc(x) = R(x) = e−x2
∞∑
n=0

an

xn
.
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Now,

erfc(x) =
2√
π

∫ ∞

x

e−u2

du ⇒ dR

dx
= − 2√

π
e−x2

.

Substituting for R(x) and differentiating gives, as the equation to be satisfied,

−2xe−x2
∞∑
n=0

an

xn
+ e−x2

∞∑
n=1

(−n)an
xn+1

= − 2√
π
e−x2

.

Equating the coefficients of x and the constant terms gives a0 = 0 and a1 = 1/
√
π,

whilst equating inverse powers of xn−1 yields the recurrence relation

−2an + [ −(n− 2) ]an−2 = 0.

Thus, only the terms with n odd are present and

a2k+1 = − (2k − 1)

2
a2k−1 = · · · =

(−1)k(2k − 1)(2k − 2) · · · 1
2k

a1

=
(−1)k(2k − 1)!!

2k
√
π

,

where (2k − 1)!! denotes the product 1 × 3 × 5 × · · · × (2k − 1).

The explicit form of R(x) is therefore

R(x) =
e−x2

√
π

(
1

x
+

∞∑
k=1

(−1)k (2k − 1)!!

2k x2k+1

)
.

Examination, as k → ∞, of the modulus of the ratio of successive terms in the

sum, which is (2k+ 1)/2x2, shows that the series does not converge for any finite

fixed x. However, if the series in truncated at k = K with value R(x,K) then,

R(x,K − 1) < erfc(x) < R(x,K) if K is even,

R(x,K − 1) > erfc(x) > R(x,K) if K is odd.

Thus successive pairs of values of the partial sum bracket the true value of

erfc(x), but with the bracketting range ultimately getting larger (rather than

smaller). Which value of K gives the tightest bounds on erfc(x) depends upon

the value of x; the best pair of values for K are probably the two integers that

bracket x2 − 1
2
.

For erfc(1) we have the series

erfc(1) ≈ e−1

√
π

(
1

1
− 1

2
+

3

4
− 3 × 5

8
+ · · ·

)
.

The partial sums for 1, 2, . . . terms are 0.2076, 0.1038, 0.2594,−0.1627, . . . . The

correct answer [ see part (a) ] is 1.000 − 0.8427 = 0.1573. This behaviour of the

partial sums is as expected, with the correct value always lying between any

successive pair and the tightest bounds given by K = 0 (i.e. just the first term)
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and K = 1; in fact it lies roughly mid-way between the two. Later terms cause

the partial sum to swing with increasing amplitude on either side of the correct

value.

18.20 The Bessel function Jν(z) can be considered as a special case of the

solution M(a, c; z) of the confluent hypergeometric equation, the connection being

lim
a→∞

M(a, ν + 1; −z/a)
Γ(ν + 1)

= z−ν/2Jν(2
√
z).

Prove this equality by writing each side in terms of an infinite series and showing

that the series are the same.

The hypergeometric series can be written more compactly by introducing the

notation

(c)n ≡ c(c+ 1)(c+ 2) · · · (c+ n− 1) with (c)0 = 1,

for the n-factor product. We note that limc→∞(c)n/c
n = 1 and that

Γ(ν + 1)(ν + 1)n = Γ(ν + n+ 1).

On the one hand, with this notation,

lim
a→∞

M(a, ν + 1; −z/a)
Γ(ν + 1)

=
1

Γ(ν + 1)
lim
a→∞

∞∑
n=0

(a)n
n! (ν + 1)n

(
−z

a

)n
=

1

Γ(ν + 1)
lim
a→∞

∞∑
n=0

(−1)n zn

n! (ν + 1)n

[
(a)n
an

]

=

∞∑
n=0

(−1)n zn

n! Γ(ν + n+ 1)
.

But, on the other hand, from the standard series for the Bessel function of order

ν ,

z−ν/2Jν(2
√
z) = z−ν/2

∞∑
n=0

(−1)n ( 1
2
2
√
z)ν+2n

n! Γ(ν + n+ 1)

=

∞∑
n=0

(−1)n (
√
z)−ν+ν+2n

n! Γ(ν + n+ 1)

=

∞∑
n=0

(−1)n (z)n

n! Γ(ν + n+ 1)
.

Thus the two series expressions are the same and the equality is established.
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18.22 Show from its definition that the Bessel function of the second kind of

integral order ν can be written as

Yν(z) =
1

π

[
∂Jµ(z)

∂µ
− (−1)ν

∂J−µ(z)

∂µ

]
µ=ν

.

Using the explicit series expression for Jµ(z), show that ∂Jµ(z)/∂µ can be written

as

Jν(z) ln
( z

2

)
+ g(ν, z),

and deduce that Yν(z) can be expressed as

Yν(z) =
2

π
Jν(z) ln

( z
2

)
+ h(ν, z),

where h(ν, z), like g(ν, z), is a power series in z.

Using the fact that, for integer ν , J−ν(z) = (−1)νJν(z), direct substitution in the

definition of Yν(z) produces the indeterminate equation

Yν(z) ≡ lim
µ→ν

[
Jµ(z) cosµπ − J−µ(z)

sinµπ

]
=

[
Jν(z)(−1)ν − (−1)νJν(z)

sin νπ

]
=

0

0
.

We therefore employ l’Hôpital’s rule:

Yν(z) ≡ lim
µ→ν

[
Jµ(z) cosµπ − J−µ(z)

sinµπ

]
= lim

µ→ν

[
−π sin(µπ)Jµ(z) + cosµπJ̇µ(z) − J̇−µ(z)

π cosµπ

]
,

where J̇µ(z) =
∂Jµ(z)

∂µ
. Thus,

Yν(z) =
1

π

[
∂Jµ(z)

∂µ
− (−1)ν

∂J−µ(z)

∂µ

]
µ=ν

. (∗)

Now, we have as an explicit series represntation of Jµ(z)

Jµ(z) =

∞∑
n=0

(−1)n

n! Γ(µ+ n+ 1)

(z
2

)µ+2n

.

We need the partial derivative of this with respect to µ and since µ appears in

each term as an exponent, as well as part of a multiplicative factor, each term in

the series will generate two terms in the derivative, one of which will contain a

logarithm. This is a particular example of the general result that the derivative of

xµ with respect to µ is xµ lnx. Carrying this through, the derivative with respect
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to µ is given by

∂Jµ

∂µ
=

∞∑
n=0

(−1)n

n!

( z
2

)2n
[

1

Γ(µ+ n+ 1)

∂

∂µ

(z
2

)µ
+
(z

2

)µ ∂

∂µ

(
1

Γ(µ+ n+ 1)

)]
=

∞∑
n=0

(−1)n

n!

( z
2

)2n
[

1

Γ(µ+ n+ 1)

(z
2

)µ
ln
( z

2

)
+
(z

2

)µ ∂

∂µ

(
1

Γ(µ+ n+ 1)

)]
.

Hence, to obtain the second solution we set µ = ν:

(
∂Jµ

∂µ

)
µ=ν

= Jν(z) ln
( z

2

)
+ g(ν, z),

where g(ν, z) is a power series in z. The coefficients in the power series are

complicated, but well defined, functions of ν and n involving Γ-functions and

their derivatives.

Setting µ = −ν produces the corresponding result

(
∂Jµ

∂µ

)
µ=−ν

= −J−ν(z) ln
(z

2

)
+ g(−ν, z)

= −(−1)νJν(z) ln
(z

2

)
+ g(−ν, z).

We note that the early terms in g(−ν, z) will be absent because of the presence

of (the infinite quantities) Γ(n+ 1 − ν) and their derivatives in the denominator.

Finally, on substituting in (∗), we note that the two logarithmic terms contribute

in the same sense (as opposed to cancelling) and we have

Yν(z) =
2

π
Jν(z) ln

( z
2

)
+ h(ν, z),

where h(ν, z) is a power series in z.
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18.24 The solutions y(x, a) of the equation

d2y

dx2
− ( 1

4
x2 + a)y = 0 (∗)

are known as parabolic cylinder functions.

(a) If y(x, a) is a solution of (∗), determine which of the following are also

solutions: (i) y(a,−x), (ii) y(−a, x), (iii) y(a, ix) and (iv) y(−a, ix).
(b) Show that one solution of (∗), even in x, is

y1(x, a) = e−x2/4M( 1
2
a+ 1

4
, 1

2
, 1

2
x2),

where M(α, c, z) is the confluent hypergeometric function satisfying

z
d2M

dz2
+ (c− z)

dM

dz
− αM = 0.

You may assume (or prove) that a second solution, odd in x, is given by

y2(x, a) = xe−x2/4M( 1
2
a+ 3

4
, 3

2
, 1

2
x2).

(c) Find, as an infinite series, an explicit expression for ex
2/4y1(x, a).

(d) Using the results from part (a) show that y1(x, a) can also be written as

y1(x, a) = ex
2/4M(− 1

2
a+ 1

4
, 1

2
,− 1

2
x2)

(e) By making a suitable choice for a deduce that

1 +

∞∑
n=1

bn x
2n

(2n)!
= ex

2/2

(
1 +

∞∑
n=1

(−1)n bn x
2n

(2n)!

)
,

where bn =
∏n

r=1(2r − 3
2
).

(a) When changing x to µx the second derivative of y is multiplied by µ−2 and

the factor x2 by µ2. Thus

(i) The equation becomes (−1)−2y′′ − ( 1
4
(−1)2x2 + a)y = 0, i.e is unaltered. Thus

y(a,−x) is also a solution.

(ii) The equation becomes y′′ − ( 1
4
x2 − a)y = 0, i.e is a different equation. Thus

y(−a, x) is not a solution of (∗).

(iii) The equation becomes (i−2)y′′ − ( 1
4
(i2)x2 + a)y = 0. This is the same equation

as in part (ii). Thus y(a, ix) is not a solution of (∗).

(iv) The equation becomes (i−2)y′′ − ( 1
4
(i2)x2 − a)y = 0, i.e is unaltered. Thus

y(−a, ix) is a second solution of (∗).

(b) We first write y1(x, a) as y1(x, a) = e−x2/4u(x) and determine the equation u(x)
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must satisfy. The function and derivatives needed are

y1 = e−x2/4u,

y′
1 = −x

2
e−x2/4u+ e−x2/4u′,

y′′
1 = −1

2
e−x2/4u+

x2

4
e−x2/4u− 2

x

2
e−x2/4u′ + e−x2/4u′′.

Thus, (cancelling a factor e−x2/4) substitution in (∗) yields

−1

2
u+

x2

4
u− xu′ + u′′ − x2

4
u− au = 0,

⇒ u′′ − xu′ − (a+ 1
2
)u = 0. (∗∗)

Now, the equation satisfied by M( 1
2
a+ 1

4
, 1

2
, z) is

z
d2M

dz2
+ (1

2
− z)

dM

dz
− ( 1

2
a+ 1

4
)M = 0.

In this we set z = 1
2
x2, with d/dz = x−1d/dx, and write M(z) = N(x), obtaining

x2

2

1

x

d

dx

(
1

x

dN

dx

)
+

(
1

2
− x2

2

)
1

x

dN

dx
−
(

1

2
a+

1

4

)
N = 0,

x

2

(
− 1

x2
N ′ +

1

x
N ′′
)

+
1

2x
N ′ − x

2
N ′ −

(
1

2
a+

1

4

)
N = 0,

N ′′ − xN ′ − (a+ 1
2
)N = 0.

This is the same equation as (∗∗) thus establishing that y1(a, x) can be written as

y1(x, a) = e−x2/4M( 1
2
a+ 1

4
, 1

2
, 1

2
x2).

Since the confluent hypergeometric function is a polynomial function of its third

argument the solution is clearly even in x.

(c) With the result established in part (b) we need only evaluate a typical term of

the hypergeometric series for M( 1
2
a+ 1

4
, 1

2
, 1

2
x2). The zeroth term is 1 and the nth

term (n > 0) is

tn =
(1
2
a+ 1

4
)( 1

2
a+ 5

4
) · · · ( 1

2
a+ 1

4
+ n− 1)

( 1
2
)( 3

2
) · · · ( 2n−1

2
)

1

n!

(
x2

2

)n
=

(a+ 1
2
)(a+ 5

2
) · · · (a+ 2n− 3

2
)

(1)(3) · · · (2n− 1) (2n n!)
x2n.

Writing the numerator as a product and noting that 2n n! = (2)(4) · · · (2n), we can

now write the whole series as

ex
2/4y1(x, a) = 1 +

∞∑
n=1

∏n
r=1(a+ 2r − 3

2
)

(2n)!
x2n.
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(d) In part (a)(iv) we showed that since y1(x, a) is a solution of (∗) so is y1(−a, ix),
i.e

y3(x, a) ≡ y1(−a, ix) = e−i2x2/4M(− 1
2
a+ 1

4
, 1

2
, 1

2
i2x2)

= ex
2/4M(− 1

2
a+ 1

4
, 1

2
,− 1

2
x2)

must also be a solution of (∗).

Since we already have two linearly independent solutions of (∗), namely y1 and

y2, and (∗) is only a 2nd-order equation, y3 must be linearly dependent on y1 and

y2. However, it is clearly an even function of x and so it must be a multiple λ of

y1. Further, since M(α, c, 0) = 1 for all α and c, and exp(±02/4) = 1, we conclude

from setting x = 0 that λ = 1 and consequently that y3(x, a) = y1(x, a).

(e) Expressing this last result in term of the series representions of the parabolic

cylinder functions gives the equality

y1(x, a) = e−x2/4

[
1 +

∞∑
n=1

∏n
r=1(a+ 2r − 3

2
)

(2n)!
x2n

]

= y3(x, a) = ex
2/4

[
1 +

∞∑
n=1

∏n
r=1(−a+ 2r − 3

2
)

(2n)!
(−x2)n

]

= ex
2/4

[
1 +

∞∑
n=1

∏n
r=1(a+ 3

2
− 2r)

(2n)!
x2n

]
.

Now, choosing a = 0 and writing
∏n

r=1(2r − 3
2
) as bn reduces the equality of the

first and third lines to

e−x2/4

[
1 +

∞∑
n=1

bn

(2n)!
x2n

]
= ex

2/4

[
1 +

∞∑
n=1

(−1)n bn
(2n)!

x2n

]
from which the stated result follows immediately.
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Quantum operators

19.2 By expressing the operator Lz , corresponding to the z-component of

angular momentum, in spherical polar coordinates (r, θ, φ), show that the angular

momentum of a particle about the polar axis cannot be known at the same time

as its azimuthal position around that axis.

The expression for Lz in Cartesian coordinates is

Lz = −i�
(
x
∂

∂y
− y

∂

∂x

)
,

the connections with spherical polar coordinates being

x = r sin θ cosφ, y = r sin θ sinφ, z = r cos θ,

r2 = x2 + y2 + z2, θ = tan−1 (x2 + y2)1/2

z
, φ = tan−1 y

x
.

Using the chain rule, we have

∂

∂y
=
∂r

∂y

∂

∂r
+
∂θ

∂y

∂

∂θ
+
∂φ

∂y

∂

∂φ

=
y

r

∂

∂r
+

zy

r2(x2 + y2)1/2
∂

∂θ
+

x

x2 + y2

∂

∂φ
.

Similarly,

∂

∂x
=
x

r

∂

∂r
+

zx

r2(x2 + y2)1/2
∂

∂θ
− y

x2 + y2

∂

∂φ
.

Thus,

x
∂

∂y
− y

∂

∂x
=
xy − yx

r

∂

∂r
+

z(xy − yx)

r2(x2 + y2)1/2
∂

∂θ
+
x2 + y2

x2 + y2

∂

∂φ
=

∂

∂φ
.

303



QUANTUM OPERATORS

Thus, expressed in spherical polar coordinates, Lz = −i�∂/∂φ. To establish a

relationship between the uncertainties, ∆Lz and ∆φ, in the z-component of the

angular momentum and angular position about the z-axis, we need to evaluate

the commutator of Lz and φ. This is done by considering

[Lz, φ ] |ψ〉 = −i� ∂

∂φ
(φ|ψ〉) + i�φ

∂

∂φ
|ψ〉 = −i�|ψ〉,

i.e. [Lz, φ ] = −i�. Since the commutator is a non-zero constant, comparison

with the case of [ px, x ] shows that ∆Lz × ∆φ ≥ 1
2
�, whatever the state |ψ〉 of

the system. That is, if the value of the z-component of the angular momentum

is known (∆Lz = 0), the value of φ (considered as a multivalued function) is

completely unknown.

[ The transformation of the Cartesian expression for Lz is very much simpler if

cylindrical, rather than spherical, polar coordinates are used, as the reader may

wish to verify. The result is the same, as it must be, since φ has the same meaning

in both systems of coordinates. ]

19.4 Show that the Pauli matrices

Sx = 1
2
�

(
0 1

1 0

)
, Sy = 1

2
�

(
0 −i
i 0

)
, Sz = 1

2
�

(
1 0

0 −1

)
,

which are used as the operators corresponding to intrinsic spin of 1
2
� in non-

relativistic quantum mechanics, satisfy S2
x = S2

y = S2
z = 1

4
�

2I and have the same

commutation properties as the components of orbital angular momentum. Deduce

that any state |ψ〉 represented by the column vector (a, b)T is an eigenstate of S2

with eigenvalue 3�
2/4.

We note that all the Sj are Hermitian and evaluate their various possible products.

S2
x =

�
2

4

(
0 1

1 0

)(
0 1

1 0

)
=

�
2

4

(
1 0

0 1

)
=

�
2

4
I,

SxSy =
�

2

4

(
0 1

1 0

)(
0 −i
i 0

)
=

�
2

4

(
i 0

0 −i

)
=
i�

2
Sz,

SySx =
�

2

4

(
0 −i
i 0

)(
0 1

1 0

)
=

�
2

4

(
−i 0

0 i

)
= − i�

2
Sz.

Similarly, S2
y = S2

z = 1
4
�

2I and

SySz =
i�

2
Sx = −SzSy,

SzSx =
i�

2
Sy = −SxSz.
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Thus, [
Sx,Sy

]
= SxSy − SySx =

i�

2
Sz −

(
− i�

2
Sz

)
= i�Sz,

and similarly [
Sy,Sz

]
= i�Sx and [ Sz ,Sx ] = i�Sy.

Thus the commutators have the same structure as those for Lx, Ly and Lz in

equation (19.27).

Since S2
x = S2

y = S2
z = 1

4
�

2I, and S2 = S2
x + S2

y + S2
z = 3

4
�

2I,

S2

(
a

b

)
= 3

4
�

2I

(
a

b

)
= 3

4
�

2

(
a

b

)
for any a and b,i.e. any such state is an eigenstate of S2 with eigenvalue 3�

2/4.

19.6 Operators A and B anti-commute. Evaluate (A+ B)2n for a few values of

n and hence propose an expression for cnr in the expansion

(A+ B)2n =

n∑
r=0

cnr A
2n−2r B2r .

Prove your proposed formula for general values of n, using the method of induction.

Show that

cos(A+ B) =

∞∑
n=0

n∑
r=0

dnr A
2n−2rB2r ,

where the dnr are constants whose values you should determine.

By taking as A the matrix A =

(
0 1

1 0

)
, confirm that your answer is consistent

with that obtained in exercise 19.5.

First a few trials, noting that BpAq = (−1)pABpAq−1 = · · · = (−1)pqAqBp.

n = 1 (A+B)(A+B) = A2+AB+BA+B2 = A2+B2, since AB = −BA.

n = 2 (A+ B)4 = (A2 + B2)2

= A4 + A2B2 + B2A2 + B4

= A4 + A2B2 + (−1)4A2B2 + B4

= A4 + 2A2B2 + B4.
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n = 3 (A+ B)6 = (A2 + B2)(A4 + 2A2B2 + B4)

= A6 + 2A4B2 + A2B4 + B2A4 + 2B2A2B2 + B6

= A6 + 2A4B2 + A2B4 + (−1)8A4B2 + 2(−1)4A2B4 + B6

= A6 + 3A4B2 + 3A2B4 + B6.

The obvious indication is that

(A+ B)2n =

n∑
r=0

nCr A
2n−2r B2r (∗).

To prove this result for general n, we assume that it is true for a particular value

of n and consider (A+ B)2n+2

= (A2 + B2)

n∑
r=0

nCr A
2n−2r B2r

=

n∑
r=0

nCr A
2n+2−2r B2r +

n∑
r=0

nCr (−1)4n−4r A2n−2r B2r+2

=

n∑
r=0

nCr A
2n+2−2r B2r +

n+1∑
s=1

nCs−1 A
2n−2s+2 B2s, with s = r + 1,

= nC0A
2n+2B0 +

n∑
r=1

[
( nCr + nCr−1) A

2n+2−2r B2r
]
+ nCnA

0B2n+2.

Now

nCr + nCr−1 =
n!

(n− r)! r!
+

n!

(n− r + 1)! (r − 1)!

=
(n+ 1)!

(n+ 1 − r)! r!
= n+1Cr

whilst

nC0 = 1 = n+1C0 and nCn = 1 = n+1Cn+1.

Thus,

(A+ B)2n+2 = n+1C0A
2n+2B0 +

n∑
r=1

n+1Cr A
2n+2−2r B2r

+ n+1Cn+1A
0B2n+2

=

n+1∑
r=0

n+1Cr A
2n+2−2r B2r ,

i.e. the same form as (∗) but with n → n+ 1, thus proving the form for general n,

since it has already been shown to be valid for n = 1.

306



QUANTUM OPERATORS

We calculate the cosine function from its defining series

cos(A+ B) =

∞∑
n=0

(−1)n
(A+ B)2n

(2n)!

=

∞∑
n=0

(−1)n n!

(2n)!

n∑
r=0

A2n−2r B2r

(n− r)! r!
.

Thus

dnr =
(−1)n n!

(2n)! (n− r)! r!
.

Since in exercise 19.5 C =

(
1 1

1 −1

)
, in order to use the given form of A we

must take

B = C − A =

(
1 1

1 −1

)
−
(

0 1

1 0

)
=

(
1 0

0 −1

)
.

Now,

AB =

(
0 −1

1 0

)
= −BA;

so they do anticommute, and we can apply our previous result. But

A2 =

(
0 1

1 0

)(
0 1

1 0

)
=

(
1 0

0 1

)
and B2 =

(
1 0

0 −1

)(
1 0

0 −1

)
=

(
1 0

0 1

)
.

It follows that

cosC =

∞∑
n=0

n∑
r=0

(−1)n n!

(2n)! (n− r)! r!
In−r Ir.

But
n∑
r=0

n!

(n− r)! r!
= (1 + 1)n = 2n,

and so

cosC =

∞∑
n=0

(−1)n 2n

(2n)!
I = (cos

√
2)

(
1 0

0 1

)
,

as in exercise 19.5.
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19.8 For a system of N electrons in their ground state |0〉, the Hamiltonian is

H =

N∑
n=1

p2
xn

+ p2
yn

+ p2
zn

2m
+

N∑
n=1

V (xn, yn, zn).

Show that
[
p2
xn
, xn
]

= −2i�pxn , and hence that the expectation value of the double

commutator [ [ x,H ] , x ], where x =
∑N

n=1 xn is given by

〈0 | [ [ x,H ] , x ] | 0〉 =
N�

2

m
.

Now evaluate the expectation value using the eigenvalue properties of H , namely

H |r〉 = Er|r〉, and deduce the sum rule for oscillation strengths,

∞∑
r=0

(Er − E0)| 〈r | x | 0〉 |2 =
N�

2

2m
.

First we evaluate the commutator[
p2
xn
, xn
]

= pxn
[
pxn , x

]
+
[
pxn , x

]
pxn

= pxn(−i�) + (−i�)pxn = −2i�pxn .

Now, all variables with differing values of n, or referring to different coordinate

directions even if n is the same, commute with each other whilst each xm commutes

with V (xn, yn, zn). Consequently the only non-zero terms in the commutator [ x,H ]

are terms like
[
xn, p

2
xn
/2m

]
which, as shown above, have the values i�pxn/m. Thus,

D ≡ 〈0 | [ [ x,H ] , x ] | 0〉 = 〈0 |
N∑
n=1

i�

m

[
pxn , xn

]
| 0〉 =

i�

m
(−i�)N =

N�
2

m
.

We now evaluate D in a different way, making use of result (19.11):

D = 〈0 | (xH −Hx)x | 0〉 − 〈0 | x(xH −Hx) | 0〉

=

∞∑
r=0

〈0 | (xH −Hx) | r〉〈r | x | 0〉 −
∞∑
r=0

〈0 | x | r〉〈r | (xH −Hx) | 0〉

=

∞∑
r=0

〈0 | (xEr − E0x) | r〉〈r | x | 0〉 −
∞∑
r=0

〈0 | x | r〉〈r | (xE0 − Erx) | 0〉

= 2

∞∑
r=0

(Er − E0)〈0 | x | r〉〈r | x | 0〉 = 2

∞∑
r=0

(Er − E0)|〈r | x | 0〉|2

Equating the two expressions for D gives the stated result.
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19.10 For a system containing more than one particle, the total angular mo-

mentum J and its components are represented by operators that have completely

analogous commutation relations to those for the operators for a single particle,

i.e. J2 has eigenvalue j(j + 1)�2 and Jz has eigenvalue mj� for the state |j, mj〉.
The usual orthonormality relationship 〈j ′, m′

j | j, mj〉 = δj ′j δm′
jmj

is also valid.

A system consists of two (distinguishable) particles A and B. Particle A is in an

� = 3 state and can have state functions of the form |A, 3, mA〉 whilst B is in an

� = 2 state with possible state functions |B, 2, mB〉. The range of possible values

for j is |3 − 2| ≤ j ≤ |3 + 2|, i.e. 1 ≤ j ≤ 5, and the overall state function can be

written as

|j, mj〉 =
∑

mA+mB=mj

C
j mj
mA mB |A, 3, mA〉 |B, 2, mB〉.

The numerical coefficients C
j mj
mA mB are known as Clebsch–Gordon coefficients.

Assume (as can be shown) that the ladder operators U(AB) and D(AB) for the

system can be written as U(A)+U(B) and D(A)+D(B) respectively and that they

lead to relationships equivalent to (19.34) and (19.35) with � replaced by j and

m by mj .

(a) Apply the operators to the (obvious) relationship

|AB, 5, 5〉 = |A, 3, 3〉 |B, 2, 2〉

to show that

|AB, 5, 4〉 =

√
6
10

|A, 3, 2〉 |B, 2, 2〉 +

√
4
10

|A, 3, 3〉 |B, 2, 1〉.

(b) Find, to within an overall sign, the real coefficients c and d in the expansion

|AB, 4, 4〉 = c|A, 3, 2〉 |B, 2, 2〉 + d|A, 3, 3〉 |B, 2, 1〉

by requiring it to be orthogonal to |AB, 5, 4〉. Check your answer by considering

U(AB)|AB, 4, 4〉.

(c) Find, to within an overall sign and as efficiently as possible, an expression for

|AB, 4,−3〉 as a sum of products of the form |A, 3, mA〉 |B, 2, mB〉.

(a) We start with |AB, 5, 5〉 = |A, 3, 3〉 |B, 2, 2〉 and apply D(AB) = D(A) +D(B) to

both sides, yielding√
(5)(6) − (5)(4) |AB, 5, 4〉 =

√
(3)(4) − (3)(2) |A, 3, 2〉 |B, 2, 2〉

+
√

(2)(3) − (2)(1) |A, 3, 3〉 |B, 2, 1〉

|AB, 5, 4〉 =

√
6
10

|A, 3, 2〉 |B, 2, 2〉 +

√
4
10

|A, 3, 3〉 |B, 2, 1〉.
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(b) Since

|AB, 4, 4〉 = c|A, 3, 2〉 |B, 2, 2〉 + d|A, 3, 3〉 |B, 2, 1〉

must be orthogonal to |AB, 5, 4〉, we have (remembering the orthonormality

relation 〈j ′, m′
j | j, mj〉 = δj ′j δm′

jmj
)

0 = 〈AB, 5, 4 |AB, 4, 4〉

=

√
6
10
c(1)(1) +

√
6
10
d(0)(0) +

√
4
10
c(0)(0) +

√
4
10
d(1)(1).

It must also be normalised, and so

1 = 〈AB, 4, 4 |AB, 4, 4〉 = c2(1)(1) + cd(0)(0) + dc(0)(0) + d2(1)(1).

Thus c = ±(4/10)1/2 and d = ∓(6/10)1/2.

As a check, consider

U(AB)|AB, 4, 4〉

= [U(A) +U(B) ]

[√
4
10

|A, 3, 2〉 |B, 2, 2〉 −
√

6
10

|A, 3, 3〉 |B, 2, 1〉
]

=

√
4
10

(√
(3)(4) − (2)(3)|A, 3, 3〉 |B, 2, 2〉 + |∅〉

)
−
√

6
10

(
|∅〉 +

√
(2)(3) − (1)(2)|A, 3, 3〉 |B, 2, 2〉

)
=

(√
4
10

√
6 −
√

6
10

√
4

)
|A, 3, 3〉 |B, 2, 2〉

= |∅〉, as it should.

(c) We abbreviate our notation from |A, 3, mA〉 |B, 2, mB〉 to |mA〉 |mB〉, in that

order.

We start with the known relationship that is ‘closest’ to |AB, 4,−3〉, namely

|AB, 5,−5〉 = | − 3〉 | − 2〉,

and apply U(AB) to both sides, obtaining√
(5)(6) − (−5)(−4)|AB, 5,−4〉 =

√
(3)(4) − (−3)(−2) | − 2〉 | − 2〉

+
√

(2)(3) − (−2)(−1) | − 3〉 | − 1〉,

|AB, 5,−4〉 =

√
6
10

| − 2〉 | − 2〉 +

√
4
10

| − 3〉 | − 1〉.

The state |AB, 4, 4〉 must be orthogonal to this, but consist of a different linear

combination of the same two states. As it must be normalised it can only be

|AB, 4,−4〉 =

√
4
10

| − 2〉 | − 2〉 −
√

6
10

| − 3〉 | − 1〉.
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Now use U(AB) again on both sides:√
(4)(5) − (−4)(−3) |AB, 4,−3〉

=

√
4
10

(√
(3)(4) − (−2)(−1) | − 1〉 | − 2〉

+
√

(2)(3) − (−2)(−1) | − 2〉 | − 1〉
)

−
√

6
10

(√
(3)(4) − (−3)(−2) | − 2〉 | − 1〉

+
√

(2)(3) − (−1)(0) | − 3〉 |0〉
)
.

Simplifying the RHS of this equation and dividing through by
√

8 then gives

|AB, 4,−3〉 =

√
1
2

| − 1〉 | − 2〉 +

(√
1
5

−
√

9
20

)
| − 2〉 | − 1〉

−
√

9
20

| − 3〉 |0〉

=

√
1
2

| − 1〉 | − 2〉 −
√

1
20

| − 2〉 | − 1〉 −
√

9
20

| − 3〉 |0〉.

This is the required expansion and, as expected, it is automatically normalised:(√
1
2

)2

+

(
−
√

1
20

)2

+

(
−
√

9
20

)2

= 1.
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20

Partial differential equations:
general and particular solutions

20.2 Find partial differential equations satisfied by the following functions

u(x, y) for all arbitrary functions f and all arbitrary constants a and b:

(a) u(x, y) = f(x2 − y2);

(b) u(x, y) = (x− a)2 + (y − b)2;

(c) u(x, y) = ynf(y/x);

(d) u(x, y) = f(x+ ay).

In each case we need to generate enough partial derivatives of u that the arbitrary

functions and constants can be eliminated by re-substitution.

(a)
∂u

∂x
= 2xf′,

∂u

∂y
= −2yf′ ⇒ y

∂u

∂x
+x

∂u

∂y
= 0.

(b)
∂u

∂x
= 2(x−a), ∂u

∂y
= 2(y−b) ⇒

(
∂u

∂x

)2

+

(
∂u

∂y

)2

= 4u.

(c) u(x, y) = ynf
(y
x

)
,

∂u

∂x
= ynf′ ∂

∂x

(y
x

)
= −yn+1

x2
f′,

∂u

∂y
= nyn−1f + ynf′ ∂

∂y

(y
x

)
= nyn−1f +

yn

x
f′.

Substituting for f and f′ from the first two equations into the third one gives

∂u

∂y
= n

u

y
− x

y

∂u

∂x
,
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which can be rearranged as

⇒ y
∂u

∂y
+ x

∂u

∂x
= nu.

(d) Since both the constant a and the form of the function f are to be eliminated,

second partial derivatives will be required.

∂u

∂x
= f′ and

∂u

∂y
= af′ ⇒ ∂u

∂y
= a

∂u

∂x
.

Differentiating again with respect to x, say, and then eliminating a between the

two PDEs gives

∂2u

∂x∂y
= a

∂2u

∂x2
and hence

∂u

∂y

∂2u

∂x2
=
∂u

∂x

∂2u

∂x∂y

If the second partial derivative is taken with respect to y (rather than x) the

equivalent result is

∂u

∂y

∂2u

∂y∂x
=
∂u

∂x

∂2u

∂y2
.

20.4 Find the most general solutions u(x, y) of the following equations, consistent

with the boundary conditions stated:

(a) y
∂u

∂x
− x

∂u

∂y
= 0, u(x, 0) = 1 + sin x;

(b) i
∂u

∂x
= 3

∂u

∂y
, u = (4 + 3i)x2 on the line x = y;

(c) sinx sin y
∂u

∂x
+ cosx cos y

∂u

∂y
= 0, u = cos 2y on x+ y = π/2;

(d)
∂u

∂x
+ 2x

∂u

∂y
= 0, u = 2 on the parabola y = x2.

In each case, we need to determine a p = p (x, y) such that the solution for general

x and y is u(x, y) = f(p ). The form of p will be determined by the PDE and that

of f by the (given) form that u takes on the relevant boundary.

(a) y
∂u

∂x
−x∂u

∂y
= 0 ⇒ dx

y
= −dy

x
⇒ x2+y2 = p.

The given boundary is y = 0 and on this line the expression for p is p = x2. For

this to match the given form, 1 + sinx, the form of f(p) must be

f(p ) = 1 + sin p1/2.
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This then determines the form of u(x, y) = f(p) for all x and y, not just for y = 0

and general x:

u(x, y) = 1 + sin[ (x2 + y2)1/2 ].

The remaining parts of this exercise are tackled in an analogous way and are

given with little commentary.

(b) i
∂u

∂x
= 3

∂u

∂y
⇒ dx

i
= −dy

3
⇒ 3x+iy = p.

On x = y, p = (3 + i)x and

u(x, x) = (4 + 3i)x2 ⇒ f(p ) = αp2,

where α(3 + i)2 = 4 + 3i,

α[ (9 − 1) + 6i ] = 4 + 3i ⇒ α = 1
2
,

⇒ u(x, y) = 1
2
p2 = 1

2
(9x2 + 6ixy − y2).

(c) For sin x sin y
∂u

∂x
+ cosx cos y

∂u

∂y
= 0, u = cos 2y on x+ y = π/2,

dx

sinx sin y
=

dy

cosx cos y
,

cosx dx

sin x
=

sin y dy

cos y
,

ln(sinx) = − ln(cos y) + k,

sinx cos y = p.

On x+ y = 1
2
π, u(x, y) = cos 2y and

p = sin( 1
2
π − y) cos y = cos2 y,

f(p ) = cos 2y = 2 cos2 y − 1 = 2p− 1,

u(x, y) = 2p− 1 = 2 sinx cos y − 1.

(d) For
∂u

∂x
+ 2x

∂u

∂y
= 0 with u(x, y) = 2 on y = x2,

dx

1
=
dy

2x
,

x2 − y = p.

On y = x2, p = 0 and f(p ) = g(p ) + 2, where g(p) is any function for which

g(0) = 0. The general solution is u(x, y) = g(y − x2) + 2; this indeterminacy is

related to the boundary curve being a characteristic of the PDE.
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20.6 Find the most general solutions u(x, y) of the following equations consistent

with the boundary conditions stated:

(a) y
∂u

∂x
− x

∂u

∂y
= 3x, u = x2 on the line y = 0;

(b) y
∂u

∂x
− x

∂u

∂y
= 3x, u(1, 0) = 2;

(c) y2 ∂u

∂x
+ x2 ∂u

∂y
= x2y2(x3 + y3), no boundary conditions.

(a) y
∂u

∂x
− x

∂u

∂y
= 3x, u = x2 on the line y = 0.

The CF is given by

dx

y
= −dy

x
⇒ x2 + y2 = p.

An obvious PI is u(x, y) = −3y and, as any valid PI will do, the general solution

is

u(x, y) = f(x2 + y2) − 3y.

On y = 0, p = x2 and

x2 = u(x, 0) = p ⇒ f(p) = p ⇒ u(x, y) = p− 3y = x2 + y2 − 3y.

(b) y
∂u

∂x
− x

∂u

∂y
= 3x, u(1, 0) = 2.

As in part (a), the general solution is u(x, y) = f(x2 + y2) − 3y.

At (1, 0), p = 1 and we require 2 = u(1, 0) = f(1) − 0. Thus,

f(x2 + y2) = 2 + g(x2 + y2) where g(1) = 0.

Thus the most general solution consistent with the (one-point) boundary condition

is

u(x, y) = 2 − 3y + g(x2 + y2)

or 2 − 3y + (x2 + y2 − 1) + h(x2 + y2)

or 2 − 3y + sin[ (x2 + y2)π ] + j(x2 + y2)

or . . . ,

where any arbitrary function not written explicitly has value 0 when its argument

has value 1.

(c) For y2 ∂u

∂x
+ x2 ∂u

∂y
= x2y2(x3 + y3) with no boundary conditions.
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The CF is found from

dx

y2
=
dy

x2
⇒ x3 − y3 = p.

From the symmetry between x and y in the equation, we are led to try u(x, y) =

α(xn + yn) for some n and α as a possible PI. Substituting this trial solution:

αny2xn−1 + αnx2yn−1 = y2x5 + x2y5.

This is satisfied if n = 6 and α = 1/6. Thus

u(x, y) = 1
6
(x6 + y6) + f(x3 − y3),

where f(p) is any function of p. As there are no boundary conditions to be

satisfied, there are no restrictions on the form of f, provided it is differentiable.

20.8 A function u(x, y) satisfies

2
∂u

∂x
+ 3

∂u

∂y
= 10,

and takes the value 3 on the line y = 4x. Evaluate u(2, 4).

To find the CF we set

dx

2
=
dy

3
⇒ 3x− 2y = p.

An elementary PI, obvious from inspection, is u = 5x. Consequently the general

solution is u(x, y) = f(p) + 5x.

On the line y = 4x, we have p = 3x− 2(4x) = −5x and so

3 = u(x, 4x) = f(−5x) + 5x = f(−5x) − (−5x) ⇒ f(p) = p+ 3.

This gives the form of f(p) = u(x, y) everywhere, not just on the line y = 4x, and

so re-expressing it in terms of x and y shows that

u(x, y) = f(3x− 2y) + 5x = 3x− 2y + 3 + 5x = 8x− 2y + 3.

We can now compute u(2, 4) as

u(2, 4) = 16 − 8 + 3 = 11.
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20.10 Consider the partial differential equation

∂2u

∂x2
− 3

∂2u

∂x∂y
+ 2

∂2u

∂y2
= 0. (∗)

(a) Find the function u(x, y) that satisfies (∗) and the boundary condition u =

∂u/∂y = 1 when y = 0 for all x. Evaluate u(0, 1).

(b) In which region of the xy-plane would u be determined if the boundary

condition were u = ∂u/∂y = 1 when y = 0 for all x > 0?

(a) For solutions of the form u(x, y) = f(x+ λy), λ must satisfy

1 − 3λ+ 2λ2 = 0 ⇒ λ = 1
2
, 1.

Thus the general solution is u(x, y) = g(x+ 1
2
y) + f(x+ y) ≡ g(p1) + f(p2).

With the boundary conditions u =
∂u

∂y
= 1 for y = 0 and all x, p 1 = p 2 = x on

the boundary and

1 = u(x, 0) = g(x) + f(x), (∗)

1 =
∂u

∂y
(x, 0) = 1

2
g′(x) + f′(x).

From (∗), 0 = g′(x) + f′(x).

Subtracting, 1 = − 1
2
g′(x).

Integrating, g(x) = −2x+ k ⇒ f(x) = 2x− k + 1, from (∗).

Hence, u(x, y) = −2(x+ 1
2
y) + k + 2(x+ y) − k + 1

= y + 1

⇒ u(0, 1) = 2.

(b) For u =
∂u

∂y
= 1 for y = 0 and x > 0, the validity of the solution obtained in

part (a) is restricted to the region whose characteristic curves intersect the positive

x-axis (as opposed to the whole x-axis). The characteristic curves in this case are

the families of straight lines

x+ 1
2
y = p 1 and x+ y = p 2.

For both families, the lowest value of p i for which the curve cuts the positive

x-axis is 0. [ For negative values of p i the curves cut the negative x-axis. ] The

common slope of the first family is −2 and for the second family it is −1. The

two lines with these slopes that pass through the origin determine the limit of the

region of validity of the solution (both constraints must be satisfied). In terms of

the conventional angle θ measured from the positive x-axis, − 1
4
π < θ < 1

2
π + φ,
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where tanφ = 2. A rough sketch of typical characteristics will probably be found

helpful.

20.12 Solve

6
∂2u

∂x2
− 5

∂2u

∂x∂y
+
∂2u

∂y2
= 14,

subject to u = 2x+ 1 and ∂u/∂y = 4 − 6x, both on the line y = 0.

For solutions of the form u(x, y) = f(x+ λy) we require

6 − 5λ+ λ2 = 0 ⇒ λ = 2, 3.

One possible (trivial) PI is u(x, y) = 7y2, making the general solution

u(x, y) = f(x+ 2y) + g(x+ 3y) + 7y2.

Imposing the given boundary conditions

2x+ 1 = u(x, 0) = f(x) + g(x), (∗)

4 − 6x =
∂u

∂y
(x, 0) = 2f′(x) + 3g′(x),

Differentiating (∗) gives

2 = f′ + g′,

Eliminating f′ from these two equations yields

−6x = g′(x),

from which it follows that

g(x) = −3x2 + k

⇒ f(x) = 2x+ 1 + 3x2 − k.

Thus, the solution for general x and y is

u(x, y) = 2(x+ 2y) + 1 + 3(x+ 2y)2 − k − 3(x+ 3y)2 + k + 7y2

= −8y2 − 6xy + 2x+ 4y + 1.

It can be verified by re-substitution into the initial equation and checking the

boundary conditions.

20.14 Solve

∂2u

∂x∂y
+ 3

∂2u

∂y2
= x(2y + 3x).
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For the homogeneous equation to have solutions of the form u(x, y) = f(x+ λy)

we require

λ+ 3λ2 = 0 ⇒ λ = 0, −3 ⇒ u(x, y) = f(x − 3y) + g(x).

This is the CF part of the solution.

For a PI we try u(x, y) = Axmyn:

Amnxm−1yn−1 + 3An(n− 1)xmyn−2 = 2xy + 3x2.

Such an equation is not guaranteed to have a consistent solution for m and n, but

in this case it has; it is satisfied by m = 2, n = 2 and A = 1
2
. The general solution

is, therefore,

u(x, y) = f(x− 3y) + g(x) + 1
2
x2y2.

20.16 An infinitely long string on which waves travel at speed c has an initial

displacement

y(x) =

{
sin(πx/a), −a ≤ x ≤ a,

0, |x| > a.

It is released from rest at time t = 0, and its subsequent displacement is described

by y(x, t).

By expressing the initial displacement as one explicit function incorporating Heav-

iside step functions, find an expression for y(x, t) at a general time t > 0. In par-

ticular, determine the displacement as a function of time (a) at x = 0, (b) at x = a,

and (c) at x = a/2.

The solution of the wave equation at a general time t can be expressed in terms

of the initial displacement φ(x) by making the substitution

φ(x) → 1
2
[φ(x− ct) + φ(x+ ct) ]

and adding an integral of the initial velocity profile. In the present case there is

no initial velocity and the integral contributes nothing.

The initial displacement profile, described piece-wise in the question, can be

written as a single function of x by incorporating Heaviside functions as follows:

φ(x) = sin
(πx
a

)
[H(x+ a) −H(x− a) ].

Crudely speaking, this formalism ‘turns on’ the sine function at x = −a and turns

it off again at x = a. It is only when x is between these limits that the expression

in square brackets is non-zero.
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Now making the substitution described above we obtain for a general time t that

y(x, t) =
1

2
sin

(
π(x− ct)

a

)
[H(x − ct+ a) −H(x− ct− a) ]

+
1

2
sin

(
π(x+ ct)

a

)
[H(x+ ct+ a) −H(x+ ct− a) ]

=
1

2
sin
(πx
a

)
cos

(
πct

a

)
[H(x− ct+ a) −H(x − ct− a)

+ H(x+ ct+ a) −H(x+ ct− a) ]

+
1

2
cos
(πx
a

)
sin

(
πct

a

)
[H(x+ ct+ a) −H(x+ ct− a)

− H(x− ct+ a) +H(x− ct− a) ].

Although this final expression is lengthy, its evaluation is fairly straightforward.

(a) At x = 0 the first term is zero for all t and the second contains the factor

[H(ct+a)−H(ct−a)−H(−ct+a)+H(−ct−a) ] = [ 1−H(ct−a)−H(−ct+a)+0 ].

Whatever the sign of ct − a, one of the middle two terms in this bracket is −1

and the other is 0. Thus the bracket has total value 0 and the displacement is

zero at all times.

(b) At x = a the first term in y(x, t) is zero for all t and the second contains the

factor

[H(2a+ ct) −H(ct) −H(2a− ct) +H(−ct) ].

The first term in this is +1, the second −1 and the last is 0; the result therefore

depends solely on whether or not ct > 2a. If it is, there is no displacement. If

0 ≤ ct ≤ 2a then the displacement is

1

2
cosπ sin

(
πct

a

)
(−1) =

1

2
sin

(
πct

a

)
.

(c) At x = 1
2
a the second term in y(x, t) is zero for all t; the first term contains

the factor

[H(
3

2
a− ct) −H(−ct− 1

2
a) +H(

3

2
a+ ct) −H(ct− 1

2
a) ].

For 0 < 2ct < a this factor has the value 1 − 0 + 1 − 0 = 2.

For a < 2ct < 3a it has the value 1 − 0 + 1 − 1 = 1.

For 3a < 2ct < ∞ the bracket has the value 0 − 0 + 1 − 1 = 0.

In summary the displacement at this value of x is cos(πct/a) for 0 ≤ t ≤ a/2c,
1
2
cos(πct/a) for a/2c ≤ t ≤ 3a/2c, and 0 otherwise.
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20.18 Like the Schrödinger equation, the equation describing the transverse

vibrations of a rod,

a4 ∂
4u

∂x4
+
∂2u

∂t2
= 0,

has different orders of derivatives in its various terms. Show, however, that it has

solutions of exponential form u(x, t) = A exp(λx + iωt) provided that the relation

a4λ4 = ω2 is satisfied.

Use a linear combination of such allowed solutions, expressed as the sum of si-

nusoids and hyperbolic sinusoids of λx, to describe the transverse vibrations of a

rod of length L clamped at both ends. At a clamped point both u and ∂u/∂x must

vanish; show that this implies that cos(λL) cosh(λL) = 1, thus determining the

frequencies ω at which the rod can vibrate.

Direct substitution of u(x, t) = A exp(λx+ iωt) yields immediately that

a4λ4u(x, t) + (iω)2u(x, t) = 0 ⇒ a4λ4 − ω2 = 0.

This gives ±
√
ω/a and ±i

√
ω/a as the four possible values of λ corresponding

to any particular frequency ω. The four solutions were obtained as exponential

functions, but we may work with any four independent linear combinations of

them; for our purposes the four sinusoidal and hyperbolic sinusoids form a

convenient set.

At each of the clamped ends, we apply both of the stated boundary conditions

to a general expression for the (maximum) transverse displacement of the form

u(x) = A sin λx+ B cos λx+ C sinh λx+ D cosh λx,

with

u′(x) = λ(A cos λx− B sin λx+ C cosh λx+ D sinh λx).

The four conditions will be enough to determine the four initially unknown

constants, A, B, C and D.

At the x = 0 end of the rod:

u(0) = 0 ⇒ D = −B,
u′(0) = 0 ⇒ C = −A.

Hence, u(x) = A(sin λx− sinh λx) + B(cos λx− cosh λx),

u′(x) = λA(cos λx− cosh λx) + λB(− sin λx− sinh λx).
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Now, writing λL = θ, we have from the conditions at the other end x = L that

A(sin θ − sinh θ) + B(cos θ − cosh θ) = 0,

λA(cos θ − cosh θ) + λB(− sin θ − sinh θ) = 0.

For consistency, (cos θ − cosh θ)2 + (sin2 θ − sinh2 θ) = 0,

cos2 θ − 2 cos θ cosh θ + cosh2 θ + sin2 θ − sinh2 θ = 0,

2 − 2 cos θ cosh θ = 0,

i.e. cos(λL) cosh(λL) = 1. For a given value of L this gives the spectrum of values

of λ, and hence of ω, at which the rod can undergo free vibrations.

20.20 A sheet of material of thickness w, specific heat capacity c and thermal

conductivity k is isolated in a vacuum, but its two sides are exposed to fluxes of

radiant heat of strengths J1 and J2. Ignoring short-term transients, show that the

temperature difference between its two surfaces is steady at (J2 − J1)w/2k, whilst

their average temperature increases at a rate (J2 + J1)/cw.

As the short-term transients are being ignored, we need a solution of the diffusion

equation, i.e. a solution of k∂2u/∂x2 = c∂u/∂t, that does not involve time-

dependent decaying exponentials. The required solution has the form

u(x, t) =
αc

2k
x2 + gx+ αt+ β,

where x = 0 is one of the surfaces and g, α and β are constants to be determined.

At each surface, the rate at which heat arrives must equal that at which it is

carried into the material by the temperature gradient there. So

at x = 0, −k ∂u
∂x

= J1 ⇒ −αc 0 − kg = J1,

at x = w, −k ∂u
∂x

= −J2 ⇒ −αcw − kg = −J2,

leading to αcw = J1 + J2 and g = −J1/k. Thus

u(x, t) =
J1 + J2

2kw
x2 − J1

k
x+

J1 + J2

cw
t+ β.

The temperature difference between the surfaces and the rate at which the average

temperature rises are therefore given by

u(w, t) − u(0, t) =
J1 + J2

2kw
w2 − J1

k
w =

(J2 − J1)w

2k
,

ū =
u(w, t) + u(0, t)

2
=

(J1 + J2)w

4k
− J1w

2k
+
J1 + J2

cw
t+ β,

∂ū

∂t
= 0 +

J1 + J2

cw
+ 0.
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20.22 The daily and annual variations of temperature at the surface of the earth

may be represented by sine-wave oscillations, with equal amplitudes and periods

of 1 day and 365 days, respectively. Assume that for (angular) frequency ω the

temperature at depth x in the earth is given by u(x, t) = A sin(ωt+ µx) exp(−λx),
where λ and µ are constants.

(a) Use the diffusion equation to find the values of λ and µ.

(b) Find the ratio of the depths below the surface at which the two amplitudes

have dropped to 1/20 of their surface values.

(c) At what time of year is the soil coldest at the greater of these depths, as-

suming that the smoothed annual variation in temperature at the surface has

a minimum on February 1st?

(a) Substituting the form u(x, t) = A sin(ωt + µx) exp(−λx) into the diffussion

equation,

κ
∂2u(x, t)

∂x2
=
∂u(x, t)

∂t
,

gives

Aκ
[

−µ2 sin(ωt+ µx)e−λx + 2µ(−λ) cos(ωt+ µx)e−λx

+ λ2 sin(ωt+ µx)e−λx ] = Aω cos(ωt+ µx)e−λx.

From comparing coefficients it is clear that we need

λ2 = µ2, and 2µ(−λ)κ = ω ⇒ λ = −µ =
( ω

2κ

)1/2

.

(b) For the two sinusoids to be attenuated by the same factor they must have

equal values of λx. Thus

xd

xy
=
λy

λd
=

(
ωy

ωd

)1/2

=

(
1

365

)1/2

.

(c) At the greater depth xy only the yearly variation is significant and its phase

relative to that on the surface is µyxy. This is equal to −λyxy which, in turn, is

equal to − ln 20 (from the way xy was defined). Thus, the temperature at this

depth is ln 20/2π of a year behind that at the surface, i.e. it is at its coldest on 1

February + (0.477 × 365) days, about 23 July.
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20.24 This example gives a formal demonstration that the type of a second-

order PDE (elliptic, parabolic or hyperbolic) cannot be changed by a new choice

of independent variable. The algebra is somewhat lengthy, but straightforward.

If a change of variable ξ = ξ(x, y), η = η(x, y) is made in

A
∂2u

∂x2
+ B

∂2u

∂x∂y
+ C

∂2u

∂y2
+ D

∂u

∂x
+ E

∂u

∂y
+ Fu = R(x, y),

so that it reads

A′ ∂
2u

∂ξ2
+ B′ ∂

2u

∂ξ∂η
+ C ′ ∂

2u

∂η2
+ D′ ∂u

∂ξ
+ E ′ ∂u

∂η
+ F ′u = R′(ξ, η),

show that

B′2 − 4A′C ′ = (B2 − 4AC)

[
∂(ξ, η)

∂(x, y)

]2

.

Hence deduce the conclusion stated above.

To save space, we denote
∂ξ

∂x
by ξx, etc.

By the chain rule, the differential operators with respect to x and y take the

following forms when expressed in terms of the new variables:

∂

∂x
= ξx

∂

∂ξ
+ ηx

∂

∂η
and

∂

∂y
= ξy

∂

∂ξ
+ ηy

∂

∂η
.

Then, with u(x, y) = v(ξ, η), the second derivative of u with respect to x becomes

∂2u

∂x2
=

(
ξx
∂

∂ξ
+ ηx

∂

∂η

)(
ξx
∂v

∂ξ
+ ηx

∂v

∂η

)
= ξ2

x

∂2v

∂ξ2
+ 2ξxηx

∂2v

∂ξ∂η
+ η2

x

∂2v

∂η2

+ ξx
∂ξx

∂ξ

∂v

∂ξ
+ ηx

∂ξx

∂η

∂v

∂ξ
+ ξx

∂ηx

∂ξ

∂v

∂η
+ ηx

∂ηx

∂η

∂v

∂η
.

There are similar expressions for
∂2u

∂x∂y
and

∂2u

∂y2
.

Since the nature of a second-order PDE is determined purely by the sign of

B2−4AC , for the purposes of this exercise we need only consider terms containing

second derivatives (mixed or otherwise) of v, i.e. only three terms in each of
∂2u

∂x2
,

∂2u

∂x∂y
and

∂2u

∂y2
and no terms at all for

∂u

∂x
,
∂u

∂y
and u.
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The relevant terms and their origins are thus

∂2u

∂x2
: ξ2

x

∂2v

∂ξ2
+ 2ξxηx

∂2v

∂ξ∂η
+ η2

x

∂2v

∂η2
,

∂2u

∂x∂y
: ξxξy

∂2v

∂ξ2
+ (ξxηy + ξyηx)

∂2v

∂ξ∂η
+ ηxηy

∂2v

∂η2
,

∂2u

∂y2
: ξ2

y

∂2v

∂ξ2
+ 2ξyηy

∂2v

∂ξ∂η
+ η2

y

∂2v

∂η2
.

The coefficients A′, B′ and C ′ of the transformed equations are therefore

A′ = Aξ2
x + Bξxξy + Cξ2

y ,

B′ = 2Aξxηx + B(ηxξy + ηyξx) + 2Cξyηy,

C ′ = Aη2
x + Bηxηy + Cη2

y.

We now face the (messy) task of evaluating D′ = B′2 − 4A′C ′.

D′ = 4A2ξ2
xη

2
x + 4C2ξ2

yη
2
y + B2(ηxξy + ηyξx)

2

+ 4ABξxηx(ηxξy + ηyξx) + 4BCξyηy(ηxξy + ηyξx)

+ 8ACξxηxξyηy − 4A2ξ2
xη

2
x − 4ABξxξyη

2
x − 4ACξ2

yη
2
x

− 4ABξ2
xηxηy − 4B2ξxξyηxηy − 4CBξ2

yηxηy

− 4ACξ2
xη

2
y − 4BCξxξyη

2
y − 4C2ξ2

yη
2
y

= B2(ηxξy + ηyξx)
2 + 8ACξxηxξyηy

− 4ACξ2
yη

2
x − 4B2ξxξyηxηy − 4ACξ2

xη
2
y

= B2(ηxξy − ηyξx)
2 − 4AC(η2

xξ
2
y − 2ξxηxξyηy + ξ2

xη
2
y)

= (B2 − 4AC)(ηxξy − ηyξx)
2

= (B2 − 4AC)

[
∂(ξ, η)

∂(x, y)

]2

.

Since the square of the Jacobian is positive, D′ has the same sign as B2 − 4AC ,

showing that the equation type is not altered by the change of independent

variables.
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Partial differential equations:
separation of variables and other

methods

21.2 A cube, made of material whose conductivity is k, has as its six faces the

planes x = ±a, y = ±a and z = ±a, and contains no internal heat sources. Verify

that the temperature distribution

u(x, y, z, t) = A cos
πx

a
sin

πz

a
exp

(
−2κπ2t

a2

)
obeys the appropriate diffusion equation. Across which faces is there heat flow?

What is the direction and rate of heat flow at the point (3a/4, a/4, a) at time

t = a2/(κπ2)?

The diffusion equation is

κ

(
∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2

)
=
∂u

∂t
.

Substituting the given expression

u(x, y, z, t) = A cos
πx

a
sin

πz

a
exp

(
−2κπ2t

a2

)
into the equation gives

κ

(
−π2

a2
+ 0 − π2

a2

)
u = −2κπ2

a2
u,

which is satisfied, i.e. the given temperature distribution obeys the relevant diffu-

sion equation.

Heat will flow across a face if, at any point on it, the temperature gradient ∂u/∂n,

is not equal to zero; here n is the (local) outward normal to the face.
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For the faces x = ±a:

∂u

∂n
= ±∂u

∂x
= ±

(
−π

a

)
A sin

πx

a
sin

πz

a
exp

(
−2κπ2t

a2

)
= 0 at x = ±a.

Thus, although in general there is some heat flow in the x- direction, at the

surfaces of the cube the rate of flow is zero.

Since u does not depend upon y, all derivatives with respect to y are zero. This

means that there is no heat flow in the y-direction, not even in the body of the

cube. In particular, for the faces y = ±a:

∂u

∂n
= ±∂u

∂y
= 0 for all x and z ,

and no heat flows across any part of these two faces.

For the faces z = ±a:

∂u

∂n
= ±∂u

∂z
= ±

(π
a

)
A cos

πx

a
cos

πz

a
exp

(
−2κπ2t

a2

)
�= 0 for general x.

In summary, on the surface of the cube there is heat flow only across the faces

z = ±a.

For the point (x, y, z) = 1
4
(3a, a, 4a), which lies in the face z = a, at time t =

a2/(κπ2),

∂u

∂n
= +

∂u

∂z
=
(π
a

)
A

(
cos

3π

4

)
(cos π) exp

(
−2κπ2

a2

a2

κπ2

)

and the heat flow is

−k ∂u
∂n

= −kAπ

a

(
− 1√

2

)
(−1)e−2.

The heat flux into the cube is therefore
kAπe−2

√
2a

.

Note that k and κ are related by κ = k/c where c is the specific heat (thermal

capacity) of the material from which the cube is made.
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21.4 Schrödinger’s equation for a non-relativistic particle in a constant potential

region can be taken as

− �
2

2m

(
∂2u

∂x2
+
∂2u

∂y2
+
∂2u

∂z2

)
= i�

∂u

∂t
.

(a) Find a solution, separable in the four independent variables, that can be

written in the form of a plane wave,

ψ(x, y, z, t) = A exp[i(k · r − ωt)].

Using the relationships associated with de Broglie (p = �k) and Einstein

(E = �ω), show that the separation constants must be such that

p2
x + p2

y + p2
z = 2mE.

(b) Obtain a different separable solution describing a particle confined to a box

of side a (ψ must vanish at the walls of the box). Show that the energy of

the particle can only take the quantised values

E =
�

2π2

2ma2
(n2
x + n2

y + n2
z),

where nx, ny and nz are integers.

(a) Take u(x, y, z, t) = X(x)Y (y)Z(z)T (t). After substituting and dividing through

by u, we obtain

− �
2

2m

(
X ′′

X
+
Y ′′

Y
+
Z ′′

Z

)
= i�

T ′

T
(∗).

For a solution that can be written both as a plane wave and in the separable

form (∗) we must have

ψ(x, y, z, t) = A exp[ i(k · r − ωt) ]

= Aeikxxeikyyeikzz e−iωt.

This then implies that the separation constants ki and ω satisfy

− �
2

2m
(−k2

x − k2
y − k2

z ) = i�(−iω),

⇒ 1

2m
(p2

x + p2
y + p2

z) = �ω = E,

where we have used the de Broglie (p = �k) and Einstein (E = �ω) relationships.

(b) For solutions that vanish on any of the walls of the box x = 0, x = a, etc., we

must have a product of sine waves of the form

u(x, y, z, t) = A sin
(nxπx

a

)
sin
(nyπy

a

)
sin
(nzπz

a

)
e−iωt,
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where the ni are integers.

For this solution of (∗) it follows that

− �
2

2m

[
−
(nxπ
a

)2

−
(nyπ
a

)2

−
(nzπ
a

)2
]

= i�(−iω),

�
2π2

2ma2
(n2
x + n2

y + n2
z) = �ω = E.

This shows that the possible values of E are quantised, since nx, ny and nz can

only take discrete integer values.

21.6 Prove that the expression

Pm
� (µ) = (1 − µ2)|m|/2 d

|m|

dµ|m|P�(µ), (∗)

for the associated Legendre function Pm
� (µ) satisfies the appropriate equation,

d

dµ

[
(1 − µ2)

dM

dµ

]
+

[
�(�+ 1) − m2

1 − µ2

]
M = 0, (∗∗)

as follows.

(a) Evaluate dPm
� (µ)/dµ and d2Pm

� (µ)/dµ2 using the form given in (∗) and sub-

stitute them into (∗∗).

(b) Differentiate Legendre’s equation m times using Leibnitz’ theorem.

(c) Show that the equations obtained in (a) and (b) are multiples of each other,

and hence that the validity of (b) implies that of (a).

To save space (and clutter) we will omit all references for (ordinary) Legendre

functions to the fixed subscript � and denote
dm[P�(µ)]

dµm
by dmP . Further, we will

take m > 0.

(a) From the given definition

Pm
� (µ) = (1 − µ2)m/2dmP ,

(Pm
� )′ = −mµ(1 − µ2)(m/2)−1dmP + (1 − µ2)m/2dm+1P

(Pm
� )′′ = m(m− 2)µ2(1 − µ2)(m/2)−2dmP − m(1 − µ2)(m/2)−1dmP

− 2mµ(1 − µ2)(m/2)−1dm+1P + (1 − µ2)m/2dm+2P .

We now substitute these forms into the associated Legendre equation

d

dµ

[
(1 − µ2)

dM

dµ

]
+

[
�(�+ 1) − m2

1 − µ2

]
M = 0,
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divide through by a factor (1 − µ2)m/2 and collect together the terms involving

each particular derivative dnP .

[
m(m− 2)µ2(1 − µ2)−1 − m+ 2mµ2(1 − µ2)−1

+ �(�+ 1) − m2(1 − µ2)−1
]
dmP

+ (−2mµ− 2µ)dm+1P + (1 − µ2)dm+2P = 0,[
m2µ2 − 2mµ2 + 2mµ2 − m2

1 − µ2
− m+ �(�+ 1)

]
dmP

− 2µ(m+ 1)dm+1P + (1 − µ2)dm+2P = 0,

(1 − µ2)dm+2P − 2µ(m+ 1)dm+1P + [ �(�+ 1) − m(m+ 1) ]dmP = 0.

This is an equation that must be valid if the given prescription generates associated

Legendre functions, the latter being defined as being the solutions to the associated

Legendre equation.

We now proceed to show that it is valid, taking Legendre’s equation,

(1 − µ2)P ′′ − 2µP ′ + �(�+ 1) = 0.

as our starting point.

(b) Using Leibnitz’ theorem, we differentiate Legendre’s equation m times and

obtain

(1 − µ2)dm+2P + m(−2µ)dm+1P + 1
2
m(m− 1)(−2)dmP

−2µdm+1P − 2mdmP + �(�+ 1)dmP = 0,

(1 − µ2)dm+2P − 2µ(m+ 1)dm+1P + [ �(�+ 1) − m(m+) ]dmP = 0.

(c) We now note that the final equation obtained in part (b) is the same as the

putative one obtained in part (a) and so, from the line of reasoning given in (a),

we conclude that

Pm
� (µ) = (1 − µ2)|m|/2 d

|m|

dµ|m|P�(µ),

does indeed generate associated Legendre functions.

The solutions for negative m have the same forms as those for positive m but

their signs and normalisations are defined by convention. As the equation is

homogeneous they are still solutions of it.
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21.8 The motion of a very viscous fluid in the two-dimensional (wedge) region

−α < φ < α can be described in (ρ, φ) coordinates by the (biharmonic) equation

∇2∇2ψ ≡ ∇4ψ = 0,

together with the boundary conditions ∂ψ/∂φ = 0 at φ = ±α, which represent

the fact that there is no radial fluid velocity close to either of the bounding walls

because of the viscosity, and ∂ψ/∂ρ = ±ρ at φ = ±α, which impose the condition

that azimuthal flow increases linearly with r along any radial line. Assuming a

solution in separated-variable form, show that the full expression for ψ is

ψ(ρ, φ) =
ρ2

2

sin 2φ− 2φ cos 2α

sin 2α− 2α cos 2α
.

The conditions to be met are

∇4ψ = 0 with ψ(r, θ) = R(ρ)Φ(φ),

∂ψ

∂φ
= 0,

∂ψ

∂ρ
= −ρ, at φ = −α,

∂ψ

∂φ
= 0,

∂ψ

∂ρ
= ρ, at φ = α.

Since
∂ψ

∂ρ
∝ ρ, we need R(ρ) ∝ ρ2; let R(ρ) = ρ2, with any multiplicative constant

being absorbed into Φ(φ).

With this choice of R(ρ), ∇2ψ takes the form

∇2ψ = Φ
1

ρ

∂

∂ρ
(ρ 2ρ) +

ρ2

ρ2

∂2Φ

∂φ2

= 4Φ +
d2Φ

dφ2
,

and ∇4ψ = 0 is

0 = ∇4ψ = 0 +
1

ρ2

d2

dφ2
(4Φ + Φ′′).

After this equation has been integrated twice we obtain

Φ′′ + 4Φ = kφ+ c,

which has a CF of C cos 2φ+ D sin 2φ and a PI of 1
4
(kφ+ c).

The general solution for Φ is therefore

Φ = C cos 2φ+ D sin 2φ+ Aφ+ B.
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The boundary condition
∂ψ

∂φ
= 0 requires Φ′ to be zero at φ = ±α, i.e.

−2C sin 2φ+ 2D cos 2φ+ A = 0 at both φ = α and φ = −α.

These two conditions jointly imply that

C = 0 and A = −2D cos 2α.

Correspondingly, after substituting for A, the boundary condition on
∂ψ

∂ρ
requires

that both the equations

2ρ(D sin 2φ− 2D cos 2αφ+ B) = ±ρ at φ = ±α,

are satisfied and so determines B and D as

B = 0 and D =
1

2(sin 2α− 2α cos 2α)
.

Thus, finally,

ψ(ρ, φ) =
ρ2

2

sin 2φ− 2φ cos 2α

sin 2α− 2α cos 2α
.

21.10 Consider possible solutions of Laplace’s equation inside a circular domain,

as follows:

(a) Find the solution in plane polar coordinates ρ, φ that takes the value +1

for 0 < φ < π and the value −1 for −π < φ < 0, when ρ = a.

(b) For a point (x, y) on or inside the circle x2 + y2 = a2, identify the angles α

and β defined by

α = tan−1 y

a+ x
and β = tan−1 y

a− x
.

Show that u(x, y) = (2/π)(α + β) is a solution of Laplace’s equation that

satisfies the boundary conditions given in (a).

(c) Deduce a Fourier series expansion for the function

tan−1 sinφ

1 + cosφ
+ tan−1 sinφ

1 − cosφ
.

(a) The prescribed boundary values give an antisymmetric square-wave function

for −π < φ ≤ π. The sinusoidal terms in the general solution of the Laplace

equation in plane polars are those used in a Fourier expansion. The required
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α β

(x, y)

ρ = a

Figure 21.1 The angles α and β defined in exercise 21.10.

solution is thus one that becomes a Fourier sine series on the circle ρ = a. In

anticipation of part (b) we take a solution valid inside the circle, namely

u(ρ, φ) =

∞∑
n=1

Anρ
n sin nφ.

The Fourier sine series for a square-wave,

u(ρ, φ) =
4

π

∞∑
n odd

1

n
sin nφ,

can be found in almost any textbook and the calculation will not be repeated

here.

For the presumed form of u(ρ, φ) to coincide with the Fourier series on ρ = a, it

is necessary that

An =
4

πnan
for n odd and An = 0 for n even.

The required solution is thus

u(ρ, φ) =
4

π

∞∑
n odd

ρn

nan
sin nφ.

(b) As is clear from figure 21.1, the acute angles α and β are those made with the

x-axis by the lines joining (x, y) to the extremes of the diameter of the circle that

coincides with that axis. When (x, y) lies anywhere on the circle, α + β = 1
2
π (by
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the usual ‘angle in a semi-circle’ property) and

u(x, y) =
2(α+ β)

π
=

2

π

π

2
= 1.

Further,

∂α

∂x
=

1

1 +

(
y

a+ x

)2

−y
(a+ x)2

= − y

(a+ x)2 + y2
,

∂2α

∂x2
=

2(a+ x)y

[ (a+ x)2 + y2 ]2
, and similarly

∂2β

∂x2
=

2(a− x)y

[ (a− x)2 + y2 ]2
,

∂α

∂y
=

1

1 +

(
y

a+ x

)2

1

a+ x
=

a+ x

(a+ x)2 + y2
,

∂2α

∂y2
=

−(a+ x)2y

[ (a+ x)2 + y2 ]2
, and similarly

∂2β

∂y2
= − (a− x)2y

[ (a− x)2 + y2 ]2
.

Hence ∇2α = 0 and ∇2β = 0, clearly showing that ∇2

[
2

π
(α+ β)

]
= 0. Thus

u(x, y) solves the Laplace equation and takes the values ±1 on the upper and

lower halves of the circle ρ = a, i.e. takes the boundary values given in part (a).

(c) Since the solution to Laplace’s equation with a given set of Dirichlet boundary

values is unique, the answers to (a) and (b) must coincide. Hence,

2

π

(
tan−1 ρ sinφ

a+ ρ cosφ
+ tan−1 ρ sinφ

a− ρ cosφ

)
=

4

π

∞∑
n odd

ρn

nan
sin nφ.

Finally, setting ρ = a, we have

tan−1 sinφ

1 + cosφ
+ tan−1 sinφ

1 − cosφ
=

∞∑
n odd

2

n
sin nφ.

21.12 A membrane is stretched between two concentric rings of radii a and b

(b > a). If the smaller ring is transversely distorted from the planar configuration

by an amount c|φ|, −π ≤ φ ≤ π, show that the membrane then has a shape given

by

u(ρ, φ) =
cπ

2

ln(b/ρ)

ln(b/a)
− 4c

π

∑
m odd

am

m2(b2m − a2m)

(
b2m

ρm
− ρm

)
cosmφ.
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A stationary membrane obeys the wave equation with the time derivative term

set to zero, i.e. it obeys Laplace’s equation ∇2u = 0.

The most general single-valued solution of ∇2u = 0 in plane-polar coordinates is

T (ρ, φ) = C lnρ+ D +

∞∑
n=1

(An cos nφ+ Bn sin nφ)(Cnρ
n + Dnρ

−n),

Since the given problem is symmetric in φ about φ = 0, the solution will not

contain any sinφ terms. Further, on ρ = b the average value of u is zero, implying

that 0 = C ln b + D. In the same way, on ρ = a the average value of u is cπ/2,

implying that cπ/2 = C ln a+ D. Thus the first two terms of the solution can be

written together as

u1 = C lnρ− C ln b = C ln(ρ/b) =
cπ

2(ln a− ln b)
ln(ρ/b) =

cπ

2

ln(b/ρ)

ln(b/a)
.

The remainder of the solution is

u2 =

∞∑
n=1

(
Cnρ

n + Dnρ
−n) cos nφ.

Using the mutual orthogonality of the cosmφ functions for integer m, we may

now obtain two equations linking Cm with Dm; one from ρ = a, the other from

ρ = b.

Cma
m + Dma

−m =
2

2π

∫ π

−π
c|φ| cosmφdφ

=
2c

π

∫ π

0

φ cosmφdφ

=
2c

π

{[
φ sinmφ

m

] π
0

−
∫ π

0

sinmφ

m
dφ

}
=

2c

π

[
cosmφ

m2

] π
0

= − 4c

πm2
for m odd, = 0 for m even,

Cmb
m + Dmb

−m =
2

2π

∫ π

−π
0 cosmφdφ = 0.

Thus Dm = −Cmb2m and Cma
m − Cmb

2ma−m = − 4c

πm2
for m odd.

Hence

u2 =
∑
n odd

(
−4c

πn2

)(
1

an − b2na−n

)(
ρn − b2nρ−n) cos nφ

= −4c

π

∑
n odd

an

n2(b2n − a2n)

(
b2n

ρn
− ρn

)
cos nφ,

335



PDES: SEPARATION OF VARIABLES

and u = u1 + u2 is as given in the question.

21.14 A conducting spherical shell of radius a is cut round its equator and the

two halves connected to voltages of +V and −V . Show that an expression for the

potential at the point (r, θ, φ) anywhere inside the two hemispheres is

u(r, θ, φ) = V

∞∑
n=0

(−1)n(2n)!(4n+ 3)

22n+1n!(n+ 1)!

( r
a

)2n+1

P2n+1(cos θ).

This problem is almost identical to the last worked example in the subsection

Laplace’s equation in polar coordinates, page 735. The only difference is that the

two halves of the sphere are at potentials V and −V , rather than v0 and 0. We

can therefore take over that result by the change v0 → 2V and then subtracting

V from the complete solution; this latter change has the effect of removing the

constant term and leaving a sum that contains only odd Legendre polynomials.

Their expansion coefficients are evaluated using the result from exercise 18.3;

thus,

A2n+1a
2n+1 =

2(2n+ 1) + 1

2
2V

(−1)n (2n)!

22n+1 n! (n+ 1)!
,

giving

u(r, θ, φ) = V

∞∑
n=0

(−1)n(2n)!(4n+ 3)

22n+1n!(n+ 1)!

( r
a

)2n+1

P2n+1(cos θ).

21.16 A slice of biological material of thickness L is placed into a solution of

a radioactive isotope of constant concentration C0 at time t = 0. For a later time

t find the concentration of radioactive ions at a depth x inside one of its surfaces

if the diffusion constant is κ.

The concentration is governed by the diffusion law

κ
∂2u

∂x2
=
∂u

∂t
.

Ultimately the concentration will be C0 everywhere; this is formally, but trivially,

a solution of the equation. To this must be added time-dependent solutions of

the diffusion equation that represent the (decaying) transients and → 0 as t → ∞.
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Writing u(x, t) = C0 +X(x)T (t) we obtain the usual separated variable equations

X ′′

X
=

T ′

κT
= −µ

κ
, µ > 0,

with the sign of acceptable separation constants chosen so as to ensure solutions

decaying with time.

The solution for the time variation is trivial, T (t) = T (0)e−µt. That for the spatial

variation is of the form

X(x) = A sin

√
µ

κ
x+ B cos

√
µ

κ
x.

At all times u(0, t) = u(L, t) = C0 and so X(0) = X(L) = 0. This determines that

B = 0 (whatever the value of µ) and imposes the condition that
√
µL = nπ

√
κ

where n is an integer.

At this stage all positive integer values of n are possible and thus the general

solution is a linear superposition of them:

u(x, t) = C0 +

∞∑
n=1

An sin
nπx

L
exp

(
−n2π2κ

L2
t

)
.

At t = 0, before any diffusion has taken place, u(x, 0) = 0 and so

∞∑
n=1

An sin
nπx

L
= −C0.

This is, in fact, a Fourier expansion and we determine the coefficients An in the

usual way, using the mutual orthogonality of sinusoidal functions. Multiplying

both sides by sin(mπx/L) and integrating from 0 to L gives

Am
1

2
L =

∫ L

0

(−C0) sin
mπx

L
dx

= C0

[
L

mπ
cos

mπx

L

]L
0

=

 −2C0L

mπ
for m odd,

0 for m even.

Inserting these values yields

u(x, t) = C0 − 4C0

π

∑
n odd

1

n
sin

nπx

L
exp

(
−n2π2κt

L2

)
,

so giving the concentration at a general place and time.
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21.18 A sphere of radius a and thermal conductivity k1 is surrounded by an

infinite medium of conductivity k2 in which far away the temperature tends to

T∞. A distribution of heat sources q(θ) embedded in the sphere’s surface establish

steady temperature fields T1(r, θ) inside the sphere and T2(r, θ) outside it. It can

be shown, by considering the heat flow through a small volume that includes part

of the sphere’s surface, that

k1
∂T1

∂r
− k2

∂T2

∂r
= q(θ) on r = a.

Given that

q(θ) =
1

a

∞∑
n=0

qnPn(cos θ),

find complete expressions for T1(r, θ) and T2(r, θ). What is the temperature at the

centre of the sphere?

The general azimuthally symmetric solution in spherical polar coordinates of the

time-independent diffusion equation, i.e. of Laplace’s equation, is

T (r, θ) =

∞∑
�=0

(
A�r

� + B�r
−�−1

)
P�(cos θ).

Since T1 covers a region including the origin, it must contain no inverse powers

of r. Likewise, since T2 covers a region including r → ∞, it must not contain any

positive powers of r. Thus

T1(r, θ) =

∞∑
n=0

Anr
nPn(cos θ) and T2(r, θ) =

∞∑
n=0

Bn

rn+1
Pn(cos θ) + T∞P0.

The boundary conditions on r = a are

T1 = T2 and k1
∂T1

∂r
− k2

∂T2

∂r
=

1

a

∞∑
n=0

qnPn(cos θ),

the RHS of the second one representing a ‘Legendre expansion’ of the distribution

of heat sources, analogous to a Fourier series.

Since the Pn are mutually orthogonal we may equate their coefficients on the two

sides of an equation. The first boudary condition therefore yields

A0 =
B0

a
+ T∞ and Ana

n =
Bn

an+1
.

The second condition (for n ≥ 0) is

k1nAna
n−1 + k2

(n+ 1)Bn
an+2

=
qn

a
,

⇒ [ k1n+ k2(n+ 1) ]Ana
n = qn.
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These simultaneous equations give all the An and Bn and the temperatures in the

two regions as

T1(r, θ) =

∞∑
n=0

qn

k1n+ k2(n+ 1)

( r
a

)n
Pn(cos θ) + T∞,

T2(r, θ) =

∞∑
n=0

qn

k1n+ k2(n+ 1)

(a
r

)n+1

Pn(cos θ) + T∞.

The temperature at the centre of the sphere is T1(0, θ) =
q0

k2
+ T∞. Perhaps

surprisingly, this depends only on q0 and k2, and not on k1. However, since q0 is

the only component-source that has a net non-zero output of heat (averaged over

all directions), it is this and the rate at which the heat it produces is conducted

to infinity that determine the level to which the temperature at the centre rises;

hence k2 is the controlling factor. How quickly the equilibrium state would be

established starting from (say) a uniform temperature of T∞ would be affected by

the value of k1, but that is not asked for here.

21.20 Working in spherical polar coordinates r = (r, θ, φ), but for a system that

has azimuthal symmetry around the polar axis, consider the following gravitational

problem.

(a) Show that the gravitational potential due to a uniform disc of radius a and

mass M, centred at the origin, is given for r < a by

2GM

a

[
1 − r

a
P1(cos θ) +

1

2

( r
a

)2

P2(cos θ) − 1

8

( r
a

)4

P4(cos θ) + · · ·
]
,

and for r > a by

GM

r

[
1 − 1

4

(a
r

)2

P2(cos θ) +
1

8

(a
r

)4

P4(cos θ) − · · ·
]
,

where the polar axis is normal to the plane of the disc.

(b) Reconcile the presence of a term P1(cos θ), which is odd under θ → π − θ,

with the symmetry with respect to the plane of the disc of the physical system.

(c) Deduce that the gravitational field near an infinite sheet of matter of constant

density ρ per unit area is 2πGρ.

We tackle this problem by first calculating directly the potential at a general

point on the polar axis, i.e. on the central normal to the disc, and then choosing

the constants in the general solution of Laplace’s equation to make the two
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expressions match. Finally (though it is often not explicitly stated) we appeal to

the uniqueness theorem to claim that the solution so found is the correct one.

(a) An annulus of the disc of radius ρ and width dρ produces a potential du(z)

at a point on the polar axis distant z from the disc given by

du =
2πρ σG

(ρ2 + z2)1/2
dρ,

where σ is the area density of the disc. The total potential at the point is thus

u(z) =

∫ a

0

2πσGρ

(ρ2 + z2)1/2
dρ = 2πσG

[
(ρ2 + z2)1/2

] a
0

= 2π
M

πa2
G[ (a2 + z2)1/2 − z ].

For r < a, we now expand this function in positive powers of z and then replace

zn by rnPn(cos θ), these two expressions being the same for θ = 0. The resulting

expression u(r, θ) will be valid for all r < a and all θ, not just on the axis:

u(z) =
2MGa

a2

(
1 +

1

2

z2

a2
− 1

8

z4

a4
+ · · · − z

a

)
,

u(r, θ) =
2MG

a

(
1 +

1

2

r2

a2
P2(cos θ) − 1

8

r4

a4
P4(cos θ) + · · · − r

a
P1(cos θ)

)
.

For r > a, the function has to be expanded in negative powers of z and then

z−n−1 has to be replaced by r−n−1Pn(cos θ), these two expressions being the same

for θ = 0. The resulting expression u(r, θ) will be valid for all r > a and all θ, not

just on the axis:

u(z) =
2MG

a2

(
z +

1

2

a2

z
− 1

8

a4

z3
+

1

16

a6

z5
· · · − z

)
,

u(r, θ) =
2MG

a2

a2

2r

(
1 − 1

4

a2

r2
P2(cos θ) +

1

8

a4

r4
P4(cos θ) − · · ·

)
.

(b) Under the change θ → π−θ, z becomes negative and the appropriate form for[
(ρ2 + z2)1/2

] a
0

is (a2 + z2)1/2 − (−z), i.e. (a2 + z2)1/2 + z. When this is expressed in

polar coordinates, P1(cos θ) changes sign under the interchange but r does not;

neither do any of the Pn(cos θ) when n is even. The derived expression is therefore

still valid when θ > π/2.

(c) The gravitational field is given by −∂u/∂r in the direction θ = 0, where all

Pn = 1. An infinite sheet of matter is equivalent to a finite r and a → ∞. Clearly

the r < a form is needed and M must be expressed as M = πa2ρ:

∂u

∂r
=

2Gπa2ρ

a

(
−1

a
P1(1) +

r

a2
P2(1) + · · ·

)
.
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O

PQ

R
S

a

b

θ

a2

b

− a
b
q q

Figure 21.2 The charges as described in exercise 21.22 and the resulting

spherical surface on which the potential is zero.

It then follows that

g = − lim
a→∞

∂u

∂r
= 2πGρ

is the gravitational field near an infinite sheet of constant-density matter.

21.22 Point charges q and −qa/b (with a < b) are placed, respectively, at a

point P , a distance b from the origin O, and a point Q between O and P , a distance

a2/b from O. Show, by considering similar triangles QOS and SOP , where S is

any point on the surface of the sphere centred at O and of radius a, that the net

potential anywhere on the sphere due to the two charges is zero.

Use this result (backed up by the uniqueness theorem) to find the force with which

a point charge q placed a distance b from the centre of a spherical conductor of

radius a (< b) is attracted to the sphere (i) if the sphere is earthed, and (ii) if the

sphere is uncharged and insulated.

As can be seen from figure 21.2,

φS =
q

4πε0|PS | − (a/b)q

4πε0|QS | .

Now, the triangles QOS and SOP have sides in the ratio

OQ

OS
=

(a2/b)

a
=
a

b
=
OS

OP
;

they also have the same included angle θ. This shows that they are similar
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triangles and therefore that the ratio QS/PS is also equal to a/b. It now follows

that φS = 0.

(i) The potential at a general point R outside the earthed sphere must be given

by

φ(r) =
q

4πε0

(
1

|rR − rP | − a

b|rR − rQ|

)
.

This is so because each term is a solution of Laplace’s equation, φ(r) = 0 for r

anywhere on the sphere and φ(r) → 0 as r → ∞; the uniqueness theorem shows

that there is only one such solution and so this must be it.

A deduction from this is that a charge of −aq/b placed at rQ is the appropriate

image charge for this situation. Since it produces the same potential distribution

outside the sphere as the actual induced charge on the sphere does, it will also

produce the same electrostatic field there. Consequently, the force with which the

real charge at P will be attracted to the sphere is the same as that between the

real charge and its image, i.e.

F1 =
(a/b)q q

4πε0 |PQ |2

=
aq2

4πε0b

(
b− a2

b

)2
=

abq2

4πε0(b2 − a2)2
.

(ii) With the sphere uncharged and insulated it must still be an equipotential

surface (though not necessarily at zero potential). However, it must now also

have the property that zero net charge is contained in any surface that surrounds

it.

These two requirements can be met by adding a further image charge at O, equal

in magnitude but opposite in sign to that at Q. The additional charge affects all

parts of the sphere equally, leaving it as an equipotential surface, but increases

its potential by (a/b)q/(4πε0a). The new force of attraction will be

F2 = F1 − (a/b)q2

4πε0b2
= F1 − aq2

4πε0b3
.

Although we have not explicitly said so, the uniqueness theorem has again been

invoked in arriving at this result.
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21.24 Electrostatic charge is distributed in a sphere of radius R centred on

the origin. Determine the form of the resultant potential φ(r) at distances much

greater than R, as follows.

(a) Express in the form of an integral over all space the solution of

∇2φ = −ρ(r)

ε0
.

(b) Show that, for r � r′,

|r − r′| = r − r · r′

r
+ O

(
1

r

)
.

(c) Use results (a) and (b) to show that φ(r) has the form

φ(r) =
M

r
+

d · r
r3

+ O

(
1

r3

)
.

Find expressions for M and d, and identify them physically.

(a) The formal expression for the integral solution of Poisson’s equation is

φ(r) =

∫
V

ρ(r′)

4πε0| r − r′ | dr
′,

where V is the sphere r′ ≤ R. (b) When r � r′ we may expand the expression for

|r − r′| in powers of r′/r using the binomial theorem:

| r − r′ | = [ (r − r′) · (r − r′) ]1/2

= (r2 − 2r · r′ + r′2)1/2

= r

(
1 − 2r · r′

r2
+
r′2

r2

)1/2

= r − r · r′

r
+ O

(
1

r

)
.

(c) Putting this into the integral in part (a) and again using the binomial theorem:

φ(r) =

∫
V

ρ(r′)

4πε0 r

[
1 − r · r′

r2
+ O

(
1

r2

)]−1

dr′

=
M

r
+

d · r
r3

+ O

(
1

r3

)
,

where

M =
1

4πε0

∫
ρ(r′) dr′ and d =

1

4πε0

∫
ρ(r′)r′ dr′.
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The first term M is (4πε0)
−1 times the total charge contained in the region of

space bounded by the sphere of radius R, showing that from far enough away

the charge appears like a point charge. The second term is similarly related to the

dipole moment of the charge, and measures the grosser aspects of any deviation

from spherical symmetry of the charge distribution.

21.26 Find the Green’s function for the three-dimensional Neumann problem

∇2φ = 0 for z > 0 and
∂φ

∂z
= f(x, y) on z = 0.

Determine φ(x, y, z) if

f(x, y) =

{
δ(y) for |x| < a,

0 for |x| ≥ a.

The general solution to the Poisson equation with Neumann boundary conditions

is

u(r0) =

∫
V

G(r, r0)ρ(r) dV (r) + 〈u(r)〉S −
∫
S

G(r, r0)f(r) dS(r),

where 〈u(r)〉S is the average of u over the surface S .

In the present case the charge density ρ is zero (Laplace, rather than the more

general Poisson), except of course at r0. Further, as one of the bounding surfaces

is the hemisphere at infinity in the region z > 0 and u = 0 there, as well as on the

plane z = 0, 〈u(r)〉S = 0. Thus we are left with only the third term on the RHS

and

u(r0) = −
∫
S

G(r, r0)f(r) dS(r).

Now, guided by the solution to the corresponding Dirichlet problem, we are able

place an image charge outside the region (i.e. an image charge with z < 0) and

so write a suitable form for the Green’s function. One fundamental difference,

however, is that the image charge must have the same sign as the charge at r0;

this is because it is the normal derivative of G (rather than G itself) that must

vanish on S1, the plane z = 0. The explicit form of the Green’s functions reads

G(r, r0) = − 1

4π|r − r0| − 1

4π|r + r0| (∗)

= − 1

4π

{
1

[ (x− x0)2 + (y − y0)2 + (z − z0)2 ]1/2

+
1

[ (x− x0)2 + (y − y0)2 + (z + z0)2 ]1/2

}
.
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Differentiating with respect to z then gives

∂G

∂z
= − 1

4π

{
− 2(z − z0)

2[. . .+ (z − z0)2]3/2
− 2(z + z0)

2[. . .+ (z + z0)2]3/2

}
,

∂G

∂z

∣∣∣∣
z=0

=
1

4π

{
−z0

[. . .+ z2
0]

3/2
+

z0

[. . .+ z2
0]

3/2

}
= 0.

To find the dominant term in the normal derivative of G over the hemisphere S2

at infinity, we may neglect r0 when differentiating (∗) and obtain

∂G

∂r
= − 1

4π

∂

∂r

(
1

|r − r0| +
1

|r + r0|

)
r→∞

� − 1

4π

∂

∂r

(
2

|r|

)
r→∞

=
1

2πr2
.

It follows that the surface integral over the hemisphere of this normal derivative

is simply ∫
S2

∂G

∂r
dS =

∂G

∂r
2πr2 = 1.

When this is added to the zero contribution arising from the integration of the

zero derivative over S1, a sum of unity is obtained, showing that the consistency

condition for a Neumann Green’s function is satisfied.

We now calculate φ(x, y, z) for the given distribution of ∂φ/∂z on z = 0.

φ(x0, y0, z0) =

∫ a

−a

∫ ∞

−∞

1

4π

{
δ(y)

[ (x− x0)2 + (y − y0)2 + (0 − z0)2 ]1/2

+
δ(y)

[ (x− x0)2 + (y − y0)2 + (0 + z0)2 ]1/2

}
dy dx

=
2

4π

∫ a

−a

dx

[ (x− x0)2 + y2
0 + z2

0 ]1/2
.

Now transform the integral by setting x− x0 =
√
y2

0 + z2
0 sinh θ ≡ µ sinh θ.

φ(x0, y0, z0) =
1

2π

∫ θ2

θ1

µ cosh θ dθ

µ(sinh2 θ + 1)1/2
,
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where µ sinh θ1 = −a− x0 and µ sinh θ2 = a− x0.

φ(x0, y0, z0) =
1

2π

∫ θ2

θ1

dθ

=
1

2π
(θ2 − θ1)

=
1

2π

sinh−1 a− x0√
y2

0 + z2
0

+ sinh−1 a+ x0√
y2

0 + z2
0

 .
This could, of course, be equally well written in terms of unsubscripted variables

x, y and z. The subscript 0 is an artefact of the notation used to indicate

which quantities were to be held constant during the integration over the Green’s

function; unsubscripted variables were used for the integration.

21.28 Consider the PDE Lu(r) = ρ(r), for which the differential operator L is

given by

L = ∇ · [ p(r)∇ ] + q(r),

where p(r) and q(r) are functions of position. By proving the generalised form of

Green’s theorem,∫
V

(φLψ − ψLφ) dV =

∮
S

p(φ∇ψ − ψ∇φ) · n̂ dS,

show that the solution of the PDE is given by

u(r0) =

∫
V

G(r, r0)ρ(r) dV (r)

+

∮
S

p(r)

[
u(r)

∂G(r, r0)

∂n
− G(r, r0)

∂u(r)

∂n

]
dS(r),

where G(r, r0) is the Green’s function satisfying LG(r, r0) = δ(r − r0).

First, consider the divergence of the quantity in parentheses appearing in the

integrand on the RHS of the supposed generalised form of Green’s theorem:

divergence = ∇ · (pφ∇ψ − pψ∇φ)

= pφ∇2ψ + ∇ψ · ∇(pφ) − pψ∇2φ− ∇φ · ∇(pψ)

= pφ∇2ψ + p∇ψ · ∇φ+ φ(∇ψ · ∇p )

− pψ∇2φ− p∇φ · ∇ψ − ψ(∇φ · ∇p )

= pφ∇2ψ + φ(∇ψ · ∇p ) − pψ∇2φ− ψ(∇φ · ∇p ).

From the divergence theorem it follows that the surface integral on the RHS
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must be equal to the volume integral of the expression in the last line of this

equation.

Next, consider the LHS of the supposed equation:

LHS =

∫
V

(φLψ − ψLφ) dV

=

∫
V

{φ(∇ · [ p∇ ] + q )ψ − ψ(∇ · [ p∇ ] + q )φ} dV

=

∫
V

{φ(∇ · [ p∇ψ ] − ψ∇ · [ p∇φ ]} dV

=

∫
V

{φ(∇p · ∇ψ) + φp∇2ψ − ψ(∇p · ∇φ) − ψp∇2φ} dV .

Comparison of this result with that of the previous paragraph establishes the

generalised form of Green’s theorem.

Now, taking φ(r) = u(r) with Lu(r) = ρ(r) and ψ(r) = G(r, r0) with LG(r, r0) =

δ(r − r0), we have∫
V

u(r)δ(r − r0) dV −
∫
V

G(r, r0)ρ(r) dV (r)

=

∮
S

p(r)

[
u(r)

∂G(r, r0)

∂n
− G(r, r0)

∂u(r)

∂n

]
dS(r),

from which the stated result,

u(r0) =

∫
V

G(r, r0)ρ(r) dV (r)

+

∮
S

p(r)

[
u(r)

∂G(r, r0)

∂n
− G(r, r0)

∂u(r)

∂n

]
dS(r),

follows immediately.
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22.2 Show that the lowest value of the integral∫ B

A

(1 + y′2)1/2

y
dx,

where A is (−1, 1) and B is (1, 1), is 2 ln(1+
√

2). Assume that the Euler–Lagrange

equation gives a minimising curve.

If the integrand F(y′, y, x) does not contain x explicitly then a first integral of the

E–L equation is that F − y′ ∂F

∂y′ is equal to a constant. Here,

(1 + y′2)1/2

y
− y′

[
y′

y(1 + y′2)1/2

]
= C,

1

y(1 + y′2)1/2
= C.

On rearrangement, this gives

dy

dx
= ± (1 − C2y2)1/2

Cy
,

which can now be integrated:∫
y dy√

1 − C2y2
= ±

∫
dx

C
,√

1 − C2y2

C2
= ∓ x

C
+ D.

Since the curve must pass through (−1, 1) and (1, 1), D = 0 and

√
1 − C2 1 = ∓C ⇒ C = ± 1√

2
.
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Re-substituting these values and squaring both sides of the final equation shows

that x2 + y2 = 2 is the minimising curve, with 2x + 2yy′ = 0 and hence that

y′ = −x/y.

The minimal integral has the value V given by

V =

∫ 1

−1

[ 1 + (x/y)2 ]1/2

y
dx

=

∫ 1

−1

(x2 + y2)1/2

y2
dx

=

∫ 1

−1

√
2

2 − x2
dx

=
1

2

∫ 1

−1

(
1√

2 − x
+

1√
2 + x

)
dx

=
1

2

[
ln

√
2 + x√
2 − x

] 1

−1

= 2 ln(
√

2 + 1),

as stated in the question.

22.4 The Lagrangian for a π-meson is given by

L(x, t) = 1
2
(φ̇2 − |∇φ|2 − µ2φ2),

where µ is the meson mass and φ(x, t) is its wavefunction. Assuming Hamilton’s

principle find the wave equation satisfied by φ.

This is a situation in which there are four independent variables, x, y, z and t

and so we apply the E–L equation

∂L

∂φ
=

∂

∂x

(
∂L

∂φx

)
+

∂

∂y

(
∂L

∂φy

)
+

∂

∂z

(
∂L

∂φz

)
+
∂

∂t

(
∂L

∂φt

)
,

where φx =
∂φ

∂x
, etc. and φt = φ̇.

With

L =
1

2

[
φ̇2 −

(
∂φ

∂x

)2

−
(
∂φ

∂y

)2

−
(
∂φ

∂z

)2

− µ2φ2

]
,
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the function that makes
∫
Ldx dy dz dt stationary satisfies

−µ2φ = − ∂

∂x

(
∂φ

∂x

)
− ∂

∂y

(
∂φ

∂y

)
− ∂

∂z

(
∂φ

∂z

)
+
∂

∂t

(
∂φ

∂t

)
µ2φ = ∇2φ− ∂2φ

∂t2
.

This is the equation satisfied by the meson’s wavefunction. It is known as the

Klein–Gordon equation; here it is expressed in units in which � = c = 1, where

� is the Planck constant and c is the speed of light in vacuo.

22.6 For a system specified by the coordinates q and t, show that the equation

of motion is unchanged if the Lagrangian L(q, q̇, t) is replaced by

L1 = L+
dφ(q, t)

dt
,

where φ is an arbitrary function. Deduce that the equation of motion of a particle

that moves in one dimension subject to a force −dV (x)/dx (x being measured

from a point O) is unchanged if O is forced to move with a constant velocity v (x

still being measured from O).

We start with the Lagrangian L(q, q̇, t) giving an equation of motion

∂L

∂q
=

d

dt

(
∂L

∂q̇

)
. (∗)

Now consider

d

dt

(
∂L1

∂q̇

)
=

d

dt

(
∂L

∂q̇

)
+
d

dt

[
∂

∂q̇

(
dφ

dt

)]
=

d

dt

(
∂L

∂q̇

)
+
d

dt

[
∂

∂q̇

(
∂φ

∂q
q̇ +

∂φ

∂t

)]
=

d

dt

(
∂L

∂q̇

)
+
d

dt

[
∂φ

∂q
+ 0 + 0

]
, (∗∗)

since φ and
∂φ

∂t
do not contain q̇.

Now, since φ = φ(q, t),

d

dt

(
∂φ

∂q

)
=
∂2φ

∂q2
q̇ +

∂2φ

∂t∂q
=
∂2φ

∂q2
q̇ +

∂2φ

∂q∂t
=

∂

∂q

(
dφ

dt

)
.

Consequently, using (∗) to replace the first term on the RHS of (∗∗),

d

dt

(
∂L1

∂q̇

)
=
∂L

∂q
+

∂

∂q

(
dφ

dt

)
=
∂L1

∂q
.
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Thus, the equation of motion is unchanged by the addition to the Lagrangian.

When the point O is moved with constant velocity v, the potential function V (x)

is unchanged (as x is still measured from O) but the kinetic energy term, T , in

the Lagrangian becomes

T1 = 1
2
m(ẋ+ v)2

= 1
2
mẋ2 + mvẋ+ 1

2
mv2

= T +
d

dt
(mvx+ 1

2
mv2t).

And so the new Lagrangian is

L1 = L+
d

dt
(mvx+ 1

2
mv2t).

The additional term is of the form dφ(x, t)/dt previously considered and therefore

the equations of motion are not changed.

22.8 Derive the differential equations for the plane-polar coordinates r, φ of a

particle of unit mass moving in a field of potential V (r). Find the form of V if the

path of the particle is given by r = a sinφ.

In plane polar coordinates the kinetic energy of a particle of unit mass is

T = 1
2
(ṙ2 + r2φ̇2) and so the Lagrangian is

L = 1
2
(ṙ2 + r2φ̇2) − V (r).

Hamilton’s principle, that the integral of L with respect to time t (the independent

variable) is stationary, gives the E–L equations for the two dependent variables r

and φ in their usual form:

d

dt

(
∂L

∂q̇i

)
=
∂L

∂qi
,

which in this case implies that

d

dt
(ṙ) = rφ̇2 − ∂V

∂r
and

d

dt
(r2φ̇) = 0.

The second of these expresses angular momentum conservation as r2φ̇ = k, whilst

the first can be interpreted physically as saying that the actual radial acceleration

is the difference between the outward centripetal acceleration and the inward one

due to the potential field.

If the actual path is r = a sinφ, then this must be a solution of these coupled

equations. The path in this form does not give the time dependence of either
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variable and so we must aim to eliminate time and differentiations with respect

to it. In particular, we need an expression for r̈ that does not contain time.

ṙ = a cosφ φ̇ =
ak

r2
cosφ,

r̈ = −2ak cosφ

r3
ṙ +

ak(− sinφ)

r2
φ̇

= −2a2k2 cos2 φ

r5
− kr

r2
k

r2

= −2(a2 − r2)k2

r5
− k2

r3
.

Substitution in the radial equation now gives

−2(a2 − r2)k2

r5
− k2

r3
= r

k2

r4
− ∂V

∂r
⇒ ∂V

∂r
=

2k2a2

r5
.

From this we conclude that

V (r) = −k2a2

2r4
+ c

and that the potential is an inverse fourth-power law. This (admittedly unphysical)

situation is of interest because the particle’s orbit passes through the centre of

force, and with infinite speed, in theory. This raises the question of relativistic

effects . . . .

22.10 Extend to the case of several dependent variables yi(x), the standard result

about the first integral of the E–L equation when x does not appear explicitly in

the general integrand F(y′
i , yi, x). In particular, show that the first integral is

F −
n∑
i=1

y′
i

∂F

∂y′
i

= constant.

For each of the dependent variables yi, i = 1, 2, . . . , n, we have

∂F

∂yi
=

d

dx

(
∂F

∂y′
i

)
.

These n equations can be manipulated as follows.

y′
i

∂F

∂yi
= y′

i

d

dx

(
∂F

∂y′
i

)
=

d

dx

(
y′
i

∂F

∂y′
i

)
− y′′

i

∂F

∂y′
i

,

y′′
i

∂F

∂y′
i

+ y′
i

∂F

∂yi
=

d

dx

(
y′
i

∂F

∂y′
i

)
,

n∑
i=1

(
y′′
i

∂F

∂y′
i

+ y′
i

∂F

∂yi

)
=

d

dx

[
n∑
i=1

(
y′
i

∂F

∂y′
i

)]
.
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But, since F �= F(x), the LHS is the total derivative of F , i.e.
dF

dx
. Thus

dF

dx
=

d

dx

[
n∑
i=1

(
y′
i

∂F

∂y′
i

)]
,

⇒ F −
n∑
i=1

(
y′
i

∂F

∂y′
i

)
= k,

is the first integral of the E–L equations.

22.12 Light travels in the vertical xz-plane through a slab of material which

lies between the planes z = z0 and z = 2z0 and in which the speed of light v(z) =

c0z/z0. Using Fermat’s principle in the form that the travel time is minimised, show

that the ray paths are arcs of circles.

Deduce that, if a ray enters the material at (0, z0) at an angle to the vertical,

π/2 − θ, of more than 30◦ then it does not reach the far side of the slab.

We start with the three defining equations

v(z) = c0
z

z0
, (ds)2 = (dx)2 + (dz)2

and

t =

∫
ds

v
=

∫
(1 + z′2)1/2

v(z)
dx =

z0

c0

∫
(1 + z′2)1/2

z
dx.

The independent variable x is not present in the integrand F and so a first integral

of the E–L equation is F − z′ ∂F

∂z′ = k:

(1 + z′2)1/2

z
− z′

z

z′

(1 + z′2)1/2
= k,

1

z(1 + z′2)1/2
= k,

z dz

(A− z2)1/2
= dx, where A = k−1,

⇒ −(A− z2)1/2 = x+ B,

(x+ B)2 + z2 = (
√
A)2.

This is a circle of radius
√
A centred on (−B, 0).

If the ray enters the slab at (0, z0) with
dz

dx
= tan θ, then

B2 + z2
0 = A and

A− z2
0

z2
0

=

(
dz

dx

)2

x=0

= tan2 θ.
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From these it follows that
√
A = z0 sec θ and B = z0 tan θ.

The ray is horizontal when z′ = 0, i.e. when z2 = A, i.e. when z = z0 sec θ. This

will be below the top of the slab if z0 sec θ < 2z0, i.e. if cos θ > 1
2
. This requires

θ < 60◦ and π/2 − θ to be more than 30◦. When this happens the ray will not

reach the far side of the slab.

22.14 In the brachistochrone problem of subsection 22.3.4 show that if the upper

end-point can lie anywhere on the curve h(x, y) = 0 then the curve of quickest

descent y(x) meets h(x, y) = 0 at right angles.

The slope mh of the curve h(x, y) = 0 is given by

∂h

∂x
dx+

∂h

∂y
dy = 0 ⇒ mh =

dy

dx
= − ∂h

∂x

/
∂h

∂y
.

For the brachistochrone,

F(y, y′, x) = F(y, y′) =

√
1 + y′2

y
,

giving

∂F

∂y′ =
1

√
y

y′√
1 + y′2

and

F − y′ ∂F

∂y′ =

√
1 + y′2
√
y

− y′2

√
y
√

1 + y′2
=

1
√
y
√

1 + y′2
.

The end-point condition, equation (22.20), is(
F − y′ ∂F

∂y′

)
∂h

∂y
− ∂F

∂y′
∂h

∂x
= 0,

1
√
y
√

1 + y′2
∂h

∂y
− 1

√
y

y′√
1 + y′2

∂h

∂x
= 0,

∂h

∂y
− y′ ∂h

∂x
= 0,

y′ =
∂h

∂y

/
∂h

∂x
= − 1

mh
.

The condition for curves of slopes m1 and m2 to meet at right angles is m1m2 = −1.

This condition is satisfied here and we conclude that the curves y = y(x) and

h(x, y) = 0 meet at right angles at the upper end point.
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22.16 Use the result ∫ b

a

(y′
jpy

′
i − yjqyi) dx = λiδij

to evaluate

J =

∫ 1

−1

(1 − x2)P ′
m(x)P ′

n(x) dx,

where Pm(x) is a Legendre polynomial of order m.

The result ∫ b

a

(y′
jpy

′
i − yjqyi) dx = λiδij , (∗)

applies to normalised eigenfunctions of a Sturm–Liouville equation. Legendre’s

equation is such an equation, with p(x) = (1 − x2), q(x) = 0 and ρ(x) = 1. The

limits are a = −1 and b = 1.

The normalised Legendre function corresponding to eigenvalue m(m+ 1) is

ym(x) =

√
2m+ 1

2
Pm(x),

and so (∗) reads∫ 1

−1

[√
2m+ 1

2
P ′
m(x)(1 − x2)

√
2n+ 1

2
P ′
n(x) − 0

]
dx = m(m+ 1)δmn.

From this it follows immediately that

J =

∫ 1

−1

(1 − x2)P ′
m(x)P ′

n(x) dx =
2m(m+ 1)

2m+ 1
δmn.

22.18 Show that y′′ − xy+ λx2y = 0 has a solution for which y(0) = y(1) = 0

and λ ≤ 147/4.

The equation is already in S–L form with p = 1, q = −x and ρ = x2. The

boundary conditions require y(0) = y(1) = 0. The simplest polynomial that

satisfies these conditions is y(x) = x(1 − x) and so we use this as a trial function.

For any trial function the lowest eigenvalue λ0 must satisfy

λ0 ≤
∫

(py′2 − qy2) dx∫
ρy2 dx

.
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With the trial function we have chosen, this means that

λ0 ≤
∫ 1

0 [ (1)(1 − 2x)2 − (−x)x2(1 − x)2 ] dx∫ 1

0 x
2x2(1 − x)2 dx

=

∫ 1

0
(x5 − 2x4 + x3 + 4x2 − 4x+ 1) dx∫ 1

0 (x6 − 2x5 + x4) dx

=
1
6

− 2
5

+ 1
4

+ 4
3

− 2 + 1
1
7

− 2
6

+ 1
5

=
10 − 24 + 15 + 80 − 120 + 60

60

210

30 − 70 + 42

=
21

60

210

2
=

147

4
.

Thus, there must be a solution of the differential equation for which y(0) =

y(1) = 0 and λ ≤ 147/4. In fact, the inequality sign must hold since the trial

function used is not a solution to the given equation, as can be easily verified by

substitution.

22.20 Estimate the lowest eigenvalue λ0 of the equation

d2y

dx2
− x2y + λy = 0, y(−1) = y(1) = 0,

using a quadratic trial function.

Following the normal procedure for an S–L equation with, in this case, p = 1,

q = −x2, ρ = 1 and a quadratic trial function y(x) = 1 − x2 chosen to fit the

boundary conditions, we obtain

λ0 ≤
∫ 1

−1[ 4x2 + x2(1 − x2)2 ] dx∫ 1

−1(1 − x2)2 dx

=

∫ 1

−1
(5x2 − 2x4 + x6) dx∫ 1

−1(1 − 2x2 + x4) dx

=
10
3

− 4
5

+ 2
7

2 − 4
3

+ 2
5

=
350 − 84 + 30

105

15

30 − 20 + 6

=
296

105

15

16
=

37

14
.

We also note that this problem can be recast to use the Rayleigh–Ritz principle
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by writing the integrand in the numerator as y(x)

(
− d2

dx2
+ x2

)
y(x). With the

same trial function, the same upper bound is obtained.

22.22 Consider the problem of finding the lowest eigenvalue λ0 of the equation

(1 + x2)
d2y

dx2
+ 2x

dy

dx
+ λy = 0, y(±1) = 0.

(a) Recast the problem in variational form, and derive an approximation λ1 to

λ0 by using the trial function y1(x) = 1 − x2.

(b) Show that an improved estimate λ2 is obtained by using y2(x) = cos(πx/2).

(c) Prove that the estimate λ(γ) obtained by taking y1(x) + γy2(x) as the trial

function is

λ(γ) =
64/15 + 64γ/π − 384γ/π3 + (π2/3 + 1/2)γ2

16/15 + 64γ/π3 + γ2
.

Investigate λ(γ) numerically as γ is varied, or, more simply, show that

λ(−1.80) = 3.668, an improvement on both λ1 and λ2.

The given equation is already in S–L form with p(x) = 1 + x2, q = 0 and ρ = 1.

We therefore take

I =

∫ 1

−1

(1 + x2)y′2 dx and J =

∫ 1

−1

y2 dx,

where y(x) must satisfy y(±1) = 0, to estimate λ0 as I/J .

(a) With trial function y1(x) = 1 − x2, we have as a first approximation

λ1 =

∫ 1

−1
(1 + x2)4x2 dx∫ 1

−1(1 − 2x2 + x4) dx

=
4
(

2
3

+ 2
5

)
2 − 4

3
+ 2

5

=
4(10 + 6)

30 − 20 + 6
= 4.

(b) The corresponding calculation for trial function y2(x) = cos(πx/2) is

λ2 =

∫ 1

−1(1 + x2) π
2

4
sin2

(
πx
2

)
dx∫ 1

−1 cos2
(
πx
2

)
dx

=
π2

4

(
1 + 1

3
+ 2

π2

)
1

=
π2

3
+

1

2
= 3.79, (an improvement).
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To evaluate the integral we used∫ 1

−1

x2 sin2
(πx

2

)
dx =

1

2

∫ 1

−1

x2(1 − cosπx) dx

=
1

3
− 1

2

[
x2 sinπx

π

] 1

−1

+

∫ 1

−1

2x sinπx

2π
dx

=
1

3
+ 0 +

1

π

[−x cosπx

π

] 1

−1
+

1

π2

∫ 1

−1

cosπx dx

=
1

3
+

2

π2
+ 0.

(c) Taking as a third trial function the linear combination of y3 = y1 + γy2, where

γ is an adjustable parameter, we have

y3(x) = 1 − x2 + γ cos
(πx

2

)
and y′

3 = −2x− πγ

2
sin
(πx

2

)
.

To evaluate the integrals I and J we will need the following additional results.∫ 1

−1

cos
(πx

2

)
dx =

[
2

π
sin
(πx

2

)] 1

−1

=
4

π
,∫ 1

−1

x sin
(πx

2

)
dx =

[
−2x

π
cos
(πx

2

)] 1

−1

+

∫ 1

−1

2

π
cos
(πx

2

)
dx

= 0 +
2

π

4

π
=

8

π2
,∫ 1

−1

x2 cos
(πx

2

)
=

[
2x2

π
sin
(πx

2

)] 1

−1

−
∫ 1

−1

4x

π
sin
(πx

2

)
dx

=
4

π
− 4

π

8

π2
,∫ 1

−1

x3 sin
(πx

2

)
=

[
−2x3

π
cos
(πx

2

)] 1

−1

+

∫ 1

−1

6x2

π
cos
(πx

2

)
dx

= 0 +
6

π

(
4

π
− 32

π3

)
.

We can now calculate I as

I =

∫ 1

−1

(1 + x2)

[
4x2 + 2πγx sin

(πx
2

)
+
π2γ2

4
sin2

(πx
2

)]
dx

= 4

(
2

3
+

2

5

)
+ 2πγ

8

π2
+ 2πγ

6

π

(
4

π
− 32

π3

)
+
π2γ2

4

(
1 +

1

3
+

2

π2

)
=

64

15
+

64γ

π

(
1 − 6

π2

)
+ γ2

(
π2

3
+

1

2

)
.
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The corresponding calculation for J is

J =

∫ 1

−1

[
(1 − x2)2 + 2γ(1 − x2) cos

(πx
2

)
+ γ2 cos2

(πx
2

) ]
dx

= 2 − 4

3
+

2

5
+ 2γ

4

π
− 2γ

(
4

π
− 32

π3

)
+ γ2

=
16

15
+

64γ

π3
+ γ2.

Inserting numerical values, we find that the estimate of λ0 is

I

J
=

4.2667 + 7.9872γ + 3.7898γ2

1.0667 + 2.0641γ + γ2
.

This reproduces results (a) and (b) for γ = 0 and γ � 1 respectively, as expected.

However some numerical experimentation shows that the ratio drops to 3.6653

when γ = −1.694, thus providing a better upper limit than either (a) or (b).

22.24 This is an alternative approach to the example in section 22.8. Using the

notation of that section, the expectation value of the energy of the state ψ is given

by
∫
ψ∗Hψ dv. Denote the eigenfunctions of H by ψi, so that Hψi = Eiψi, and,

since H is Hermitian,
∫
ψ∗
j ψi dv = δij .

(a) By writing any function ψ as
∑
cjψj and following an argument similar to

that in section 22.7, show that

E =

∫
ψ∗Hψ dv∫
ψ∗ψ dv

≥ E0,

the energy of the lowest state. This is the Rayleigh–Ritz principle.

(b) Using the same trial function as in section 22.8, ψ = exp(−αx2), show that

the same result is obtained.

In order to find the energy E0 of the lowest state, we seek to minimise

〈H〉 =

∫
ψ∗Hψ dv subject to

∫
ψ∗ψ dv = 1.

(a) We begin by writing the trial function ψ as a linear combination of the

eigenfunctions ψi of the Hamiltonian H; they satisfy Hψi = Eiψi and
∫
ψ∗
j ψi dv =

δij . Thus

ψ =
∑
j

cjψj,
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where the cj , as well as the ψj , can be complex. This results in an expression for

〈H〉 that is a double summation:

〈H〉 =

∫ ∑
j

c∗
jψ

∗
j

H (∑
i

ciψi

)
dv

=
∑
i j

∫
c∗
j ci ψ

∗
j Eiψi dv, using Hψi = Eiψi,

=
∑
i j

c∗
j ci Eiδij

=
∑
i

|ci|2Ei.

We also have for the normalisation integral of ψ that

∫
ψ∗ψ dv =

∫ ∑
j

c∗
jψ

∗
j

(∑
i

ciψi

)
dv

=
∑
i j

∫
c∗
j ci ψ

∗
j ψi dv,

=
∑
i j

c∗
j ci δij

=
∑
i

|ci|2.

Now, since E0 is the energy of the lowest state, Ei ≥ E0 for all i. Consequently

E =

∫
ψ∗Hψ dv∫
ψ∗ψ dv

=

∑
i |ci|2Ei∑
i |ci|2

≥
∑

i |ci|2E0∑
i |ci|2

= E0.

(b) In section 22.8 the Hamiltonian operator has the form

H = − �
2

2m

d2

dx2
+
kx2

2
.

Denote the integral
∫ ∞

−∞ x
2 exp(−2αx2) dx by J . Then, for the trial function ψ =

exp(−αx2),

〈H〉 = − �
2

2m

∫ ∞

−∞
e−αx2 d2

dx2
(e−αx2

) dx+
k

2

∫ ∞

−∞
x2e−2αx2

dx

= − �
2

2m

∫ ∞

−∞
e−αx2

(4α2x2 − 2α)e−αx2

dx+
k

2
J

= −4�
2α2J

2m
+

�
2α

m

∫ ∞

−∞
e−2αx2

dx+
k

2
J.
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Now, from integrating the definition of J by parts,

J =

∫ ∞

−∞
x2e−2αx2

dx

=
[

− x

4α
e−2αx2

]∞

−∞
+

1

4α

∫ ∞

−∞
e−2αx2

dx,

⇒
∫ ∞

−∞
e−2αx2

dx = 4αJ.

We can now conclude that

E =
〈H〉∫
ψ∗ψ dv

=
1

4αJ

(
−2�

2α2J

m
+

4�
2α2J

m
+
kJ

2

)
=

�
2α

2m
+

k

8α
.

This is exactly the same expression for E as that obtained in equation (22.34) and

so when it is minimised with respect to α it gives the same result, 1
2
�(k/m)1/2, for

the upper limit on the ground state energy.

22.26 The Hamiltonian H for the hydrogen atom is

− �
2

2m
∇2 − q2

4πε0r
.

For a spherically symmetric state, as may be assumed for the ground state, the

only relevant part of ∇2 is that involving differentiation with respect to r.

(a) Define the integrals Jn by

Jn =

∫ ∞

0

rne−2βr dr

and show that, for a trial wavefunction of the form exp(−βr) with β > 0,∫
ψ∗Hψ dv and

∫
ψ∗ψ dv can be expressed as aJ1 −bJ2 and cJ2 respectively,

where a, b, c are factors which you should determine.

(b) Show that the Rayleigh–Ritz estimate of E is minimised when β takes the

value mq2/(4πε0�
2).

(c) Hence find an upper limit for the ground-state energy of the hydrogen atom.

In fact, exp(−βr) is the correct form for the wavefunction and the limit gives

the actual value.

Working in spherical polar coordinates, the expression for Hψ, where ψ is a

spherically symmetric state, takes the form

− �
2

2m

1

r2
d

dr

(
r2
dψ

dr

)
− q2ψ

4πε0r
.
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If ψ(r) = e−βr ,

〈H〉 = − �
2

2m

∫ ∞

0

4πr2
e−βr

r2
d

dr
[ r2(−β)e−βr ] dr

− q2

4πε0

∫ ∞

0

4πr2e−2βr

r
dr

=
2π�

2β

m

∫ ∞

0

e−βr(2r − r2β)e−βr dr − q2

ε0
J1

=
2π�

2β

m
(2J1 − βJ2) − q2

ε0
J1.

Thus a =
4π�

2β

m
− q2

ε0
and b =

2π�
2β2

m
. Also

∫
ψ∗ψ dv =

∫ ∞

0

4πr2e−2βr dr = 4πJ2 ⇒ c = 4π.

(b) The estimate of E is

〈H〉∫
ψ∗ψ dv

=

(
�

2β

m
− q2

4πε0

)
J1

J2
− �

2β2

2m
.

Now, integration by parts gives the relationship

J2 =

∫ ∞

0

r2e−2βr dr =

[
r2e−2βr

−2β

]∞

0

− 2

∫ ∞

0

re−2βr

−2β
dr =

1

β
J1.

Hence,

Eestim =
�

2β2

m
− q2β

4πε0
− �

2β2

2m
=

�
2β2

2m
− q2β

4πε0
.

This is minimised when the parameter β is chosen to satisfy

0 =
∂Eestim

∂β
=

�
2β

m
− q2

4πε0
⇒ β =

q2m

4πε0�2
.

(c) The upper limit on the ground-state energy of the hydrogen atom provided

by this form of trial function is therefore

�
2

2m

q4m2

(4πε0)2�4
− q4m

(4πε0)2�2
= − q4m

2(4πε0�)2
.

As noted in the question, the trial wavefunction happens to be of the correct form

and the estimate obtained for the ground state energy is the actual one (within

the limits of the model Hamiltonian used).

362



CALCULUS OF VARIATIONS

22.28 A particle of mass m moves in a one-dimensional potential well of the

form

V (x) = −µ�
2α2

m
sech 2αx,

where µ and α are positive constants. The expectation value 〈E〉 of the energy of

the system is
∫
ψ∗Hψ dx, where the self-adjoint operator H = −(�2/2m)d2/dx2 +

V (x). Using trial wavefunctions of the form y = A sech βx, show the following:

(a) for µ = 1 there is an exact eigenfunction of H , with a corresponding 〈E〉 of

half of the maximum depth of the well;

(b) for µ = 6 the ‘binding energy’ of the ground state is at least 10�
2α2/(3m).

[ You will find it useful to note that for u, v ≥ 0, sech u sech v ≥ sech (u+ v). ]

To test for an exact eigenfunction we need to consider the relevant differential

equation (here the Schrödinger equation). This is

− �
2

2m

d2ψ

dx2
− µ

�
2α2

m
sech 2(αx)ψ = Eψ.

With y = A sech βx as a trial function,

ψ(x) = A sech βx,

ψ′(x) = −Aβ sech βx tanhβx,

ψ′′(x) = Aβ2sech βx tanh2 βx− Aβ2sech 3βx.

So ψ will be a solution provided (cancelling sech βx throughout)

β2 tanh2 βx− β2sech 2βx+ 2µα2sech 2αx = −2mE

�2
,

β2 − 2β2sech 2βx+ 2µα2sech 2αx = −2mE

�2
.

(a) For µ = 1 this equation is satisfied if β = α and E = −�
2α2

2m
. The binding

energy, which is the negative of the total energy, is therefore
�

2α2

2m
, i.e. half the

maximum depth of the well,
�

2α2

m
sech 2(0).

(b) For µ = 6 an exact solution of the given form is not possible, but an upper

limit can be placed on the ground state energy.

First, ∫
ψ∗ψ dx =

∫ ∞

−∞
A2sech 2βx dx = A2

[
tanhβx

β

]∞

−∞
=

2A2

β
.
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Next, writing H = T + V , we have from the previous expression for ψ′′ that

〈T 〉 = − �
2

2m

∫ ∞

−∞
A sech βx(Aβ2sech βx tanh2 βx− Aβ2sech 3βx) dx

= −�
2β2

2m
A2

∫ ∞

−∞
sech 2βx(tanh2 βx− sech 2βx) dx

= −�
2β2

2m
A2

∫ ∞

−∞
sech 2βx(2 tanh2 βx− 1) dx

= −�
2β2

2m
A2

[
2

3β
tanh3 βx− 1

β
tanhβx

]∞

−∞

= −�
2β

2m
A2

(
4

3
− 2

)
=

�
2β

3m
A2.

For the expectation of the contribution to H from the potential term we have

〈V 〉 = −6�
2α2

m

∫ ∞

−∞
A2sech 2αx sech 2βx dx

= −12�
2α2

m

∫ ∞

0

A2(sech αx sech βx)2 dx

≤ −12�
2α2

m

∫ ∞

0

A2sech 2[ (α+ β)x ] dx, using hint and 〈V 〉 < 0,

= −12�
2α2

m
A2

[
tanh[ (α+ β)x ]

α+ β

]∞

0

= − 12�
2α2

m(α+ β)
A2.

Thus, recalling that

∫
ψ∗ψ dx =

2A2

β
,

E =
〈T 〉 + 〈V 〉∫
ψ∗ψ dx

≤ �
2β2

6m
− 6�

2α2β

m(α+ β)
.

The upper limit is minimised with respect to β when β satisfies

β

3
− 6α2

α+ β
+

6α2β

(α+ β)2
= 0,

β(α+ β)2 − 18α2(α+ β) + 18α2β = 0,

β3 + 2αβ2 + α2β − 18α3 = 0,

(β − 2α)(β2 + 4αβ + 9α2) = 0.

Thus β = 2α or β = −2α± i
√

5α; only the first is a real turning point. With this

choice

E ≤ 4�
2α2

6m
− 12�

2α3

3mα
= −10

3

�
2α2

m
.
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Since this gives an upper limit on the ground state energy, and V (x) → 0 as

x → ±∞, the binding energy of the ground state must be at least
10

3

�
2α2

m
.
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Integral equations

23.2 Solve ∫ ∞

0

f(t) exp(−st) dt =
a

a2 + s2
.

Although this is an integral equation, we note that its LHS is also the definition

of the Laplace transform of f(t).

The solution to the equation is therefore the inverse Laplace transform of
a

a2 + s2
.

This is given in standard tables, which show that f(t) = sin at.

23.4 Use the fact that its kernel is separable to solve for y(x) the integral

equation

y(x) = A cos(x+ a) + λ

∫ π

0

sin(x+ z)y(z) dz.

[ This equation is an inhomogeneous extension of the homogeneous Fredholm equa-

tion (23.13), and is similar to equation (23.57). ]

The kernel is separable because the equation can be written

y(x) = A cos(x+ a) + λ

∫ π

0

sin(x+ z)y(z) dz

= A cos(x+ a) + λ

∫ π

0

[ sinx cos z y(z) + cosx sin z y(z) ] dz,

i.e. the kernel consists of a sum of terms each of which is the direct product of a

function of x and a function of z.
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So, we take y(x) as a linear sum of the functions of x that appear in the integrand,

explicitly y(x) = c1 sinx+ c2 cosx. When this form is substituted into both sides

of the integral equation (with z as its argument on the RHS), we obtain

c1 sinx+ c2 cosx = A cosx cos a− A sinx sin a

+ λ sinx

∫ π

0

(c1 cos z sin z + c2 cos2 z) dz

+ λ cosx

∫ π

0

(c1 sin2 z + c2 sin z cos z) dz.

Equating the coefficients of sinx and cosx, and recalling that the average value

of the square of a sinusoid over a whole number of half periods is 1
2
, gives

c1 = −A sin a+ 1
2
λπc2,

c2 = A cos a+ 1
2
λπc1.

Solving this pair of simultaneous equations then yields

c1

(
1 − λ2π2

4

)
= A

(
λπ

2
cos a− sin a

)
,

and c2

(
1 − λ2π2

4

)
= A

(
cos a− λπ

2
sin a

)
.

Thus, the final solution is

y(x) =
A
(
λπ
2

cos a− sin a
)
sinx+ A

(
cos a− λπ

2
sin a

)
cosx

1 − (λπ/2)2

= A
(λπ/2) sin(x− a) + cos(x+ a)

1 − (λπ/2)2
.

We note that setting α = a+ 1
2
π in equation (23.57) converts that integral equation

into the current one with A = 1. Doing the same in its solution gives

y(x) =
(λπ/2) cos(x− a− 1

2
π) + cos(x+ a)

1 − (λπ/2)2

=
(λπ/2) sin(x− a) + cos(x+ a)

1 − (λπ/2)2
,

in agreement with the current solution.
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23.6 Consider the inhomogeneous integral equation

f(x) = g(x) + λ

∫ b

a

K(x, y)f(y) dy.

for which the kernel K(x, y) is real, symmetric and continuous in a ≤ x ≤ b,

a ≤ y ≤ b.

(a) If λ is one of the eigenvalues λi of the homogeneous equation

fi(x) = λi

∫ b

a

K(x, y)fi(y) dy,

prove that the inhomogeneous equation can only a have non-trivial solution

if g(x) is orthogonal to the corresponding eigenfunction fi(x).

(b) Show that the only values of λ for which

f(x) = λ

∫ 1

0

xy(x+ y)f(y) dy

has a non-trivial solution are the roots of the equation

λ2 + 120λ− 240 = 0.

(c) Solve

f(x) = µx2 +

∫ 1

0

2xy(x+ y)f(y) dy.

(a) Suppose f(x) is a solution of

f(x) = g(x) + λ

∫ b

a

K(x, y)f(y) dy

with λ = λi, then∫ b

a

fi(x)f(x) dx =

∫ b

a

fi(x)g(x) dx+ λi

∫ b

a

fi(x) dx

∫ b

a

K(x, y)f(y) dy

=

∫ b

a

fi(x)g(x) dx+

∫ b

a

[
λi

∫ b

a

K(y, x)fi(x) dx

]
f(y) dy,

since K(x, y) = K(y, x). Thus∫ b

a

fi(x)f(x) dx =

∫ b

a

fi(x)g(x) dx+

∫ b

a

fi(y)f(y) dy,

⇒
∫ b

a

fi(x)g(x) dx = 0.

i.e. g(x) being orthogonal to the eigenfunction fi(x) is a necessary condition for
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the inhomogeneous equation to have a solution whenever λ is equal to one of the

eigenvalues λi.

(b) The kernel, K(x, y) = yx2 + y2x, is both symmetric and degenerate. To solve

the equation we set f(x) = a1x
2 + a2x giving

a1x
2 + a2x = λ

∫ 1

0

(x2y + y2x)(a1y
2 + a2y) dy

= λ

(
a1x

2 1

4
+ a1x

1

5
+ a2x

2 1

3
+ a2x

1

4

)
.

Equating coefficients gives

a1 =
λa1

4
+
λa2

3
and a2 =

λa1

5
+
λa2

4
.

For a non-trivial solution for a1 and a2 we need∣∣∣∣∣∣∣
1 − λ

4
−λ

3

−λ

5
1 − λ

4

∣∣∣∣∣∣∣ = 0,

1 − λ

2
+
λ2

16
− λ2

15
= 0,

240 − 120λ− λ2 = 0, as stated.

(c) As in part (b), the kernel is both symmetric and degenerate. Further, in the

notation of part (a), λ = 2; but this is not a root of the equation derived in part

(b). We therefore set f(x) = µx2 + a1x
2 + a2x and obtain [ in the same way as in

(b) ]

a1x
2 + a2x = 2

[
x2(a1 + µ)

1

4
+ x(a1 + µ)

1

5
+ x2a2

1

3
+ xa2

1

4

]
.

Equating the coefficients of x2 and x and rationalising, we obtain

6a1 − 3a1 − 4a2 = 3µ,

−4a1 + 10a2 − 5a2 = 4µ,

yielding a1 = −31µ and a2 = −24µ and the solution as

f(x) = −30µx2 − 24µx = −6µx(5x+ 4).

This can be checked by substitution.
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23.8 By taking its Laplace transform, and that of xne−ax, obtain the explicit

solution of

f(x) = e−x
[
x+

∫ x

0

(x− u)euf(u) du

]
.

Verify your answer by substitution.

Integrating by parts, we find the Laplace transform

L
[
xne−ax] =

∫ ∞

0

xne−axe−sx dx =
n(n− 1) · · · 2 1

(a+ s)n+1
=

n!

(a+ s)(n+1)
.

Setting exf(x) = p(x) and x = q(x), we can write the equation (after multiplying

through by ex) as

p(x) = q(x) +

∫ x

0

q(x− u)p(u) du,

in which the integral is a convolution. Thus, when the equation is Laplace trans-

formed, the convolution theorem can be invoked and the transformed equation

written in the form

p̄(s) = q̄(s) + p̄(s)q̄(s),

⇒ p̄(s) =
q̄(s)

1 − q̄(s)
.

Now q̄(s) = L [x] = s−2 and so

p̄(s) =
1

s2 − 1
=

1

2

(
1

s− 1
− 1

s+ 1

)
,

⇒ p(x) =
1

2

(
x0ex

0!
− x0e−x

0!

)
= sinhx,

⇒ f(x) = 1
2
(1 − e−2x).

This is the solution to the integral equation.

Verification:

1
2
(1 − e−2x) = e−x

[
x+

∫ x

0

(x− u)eu 1
2
(1 − e−2u) du

]
,

sinhx = x+

∫ x

0

(x− u) sinh u du

= x+ [ x cosh u ]x0 − [ u cosh u ]x0 +

∫ x

0

cosh u du

= x+ x coshx− x− x coshx+ 0 + sinhx− 0

= sinhx, as expected.
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23.10 Show that the equation

f(x) = x−1/3 + λ

∫ ∞

0

f(y) exp(−xy) dy

has a solution of the form Axα + Bxβ . Determine the values of α and β and show

that those of A and B are

1

1 − λ2Γ( 1
3
)Γ( 2

3
)

and
λΓ(2

3
)

1 − λ2Γ( 1
3
)Γ( 2

3
)
,

where Γ(z) is the gamma function.

We first find the Laplace transform of x−n when n < 1 but is not necessarily

integral. With s > 0,

L
[
x−n] =

∫ ∞

0

x−ne−sx dx, set y = sx,

=

∫ ∞

0

y−n

s−n
e−y dy

s

= sn−1

∫ ∞

0

y−ne−y dy

= sn−1Γ(1 − n), provided n < 1.

Next, we substitute the trial solution f(x) = Axα + Bxβ into the given equation:

Axα + Bxβ = x−1/3 + λ

∫ ∞

0

(Ayα + Byβ)e−xy dy (change variable to u = xy)

= x−1/3 + λ
[
AΓ(1 + α)x−α−1 + BΓ(1 + β)x−β−1

]
,

assuming that α, β > −1. For this equation to be valid, one of α and β must be

− 1
3

and

either α = −α− 1, β = −β − 1

or α = −β − 1, β = −α− 1.

The first of these, which requires both α and β to have the value − 1
2
, is inconsistent

with the other condition, but both it and the second are satisfied if α = − 1
3

and

β = − 2
3

(or vice versa). The assumption that α, β > −1 is then also justified.

Thus, with the choice α = − 1
3
,

A = 1 + λBΓ(1
3
), and B = λAΓ(2

3
),

yielding

A =
1

1 − λ2Γ( 1
3
)Γ( 2

3
)

and B =
λΓ(2

3
)

1 − λ2Γ( 1
3
)Γ( 2

3
)
.
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23.12 By considering functions of the form h(x) =
∫ x

0
(x− y)f(y) dy, show that

the solution f(x) of the integral equation

f(x) = x+ 1
2

∫ 1

0

|x− y|f(y) dy

satisfies the equation f′′(x) = f(x).

By examining the special cases x = 0 and x = 1, show that

f(x) =
2

(e+ 3)(e+ 1)
[(e+ 2)ex − ee−x].

To deal with the modulus sign we divide the integral into two parts:

f(x) = x+ 1
2

∫ 1

0
|x− y|f(y) dy

= x+ 1
2

∫ x
0
(x− y)f(y) dy + 1

2

∫ 1

x
(y − x)f(y) dy.

Thus the first and second derivatives of f(x) are given by

f′(x) = 1 + 1
2

[
(x− x)f(x) +

∫ x
0 f(y) dy

]
+ 1

2

[
−(x− x)f(x) −

∫ 1

x
f(y) dy

]
= 1 + 1

2

∫ x
0 f(y) dy − 1

2

∫ 1

x
f(y) dy,

f′′(x) = 1
2
f(x) − [ − 1

2
f(x) ] = f(x).

It follows from this differential equation that f(x) must have the form f(x) =

Aex + Be−x.

Considering the integral equation in the special case x = 0:

A+ B = 0 +
1

2

∫ 1

0

y(Aey + Be−y) dy

=
A

2

{
[ yey ] 1

0 −
∫ 1

0

ey dy

}
+
B

2

{[
−ye−y ] 1

0
+

∫ 1

0

e−y dy

}
=
A

2
(e− 0 − e+ 1) +

B

2
(−e−1 + 0 − e−1 + 1)

=
A

2
+
B

2
(1 − 2e−1),

which gives the first relationship between A and B as

A = −B(1 + 2e−1).

372



INTEGRAL EQUATIONS

Now considering the case x = 1:

Ae+ Be−1 = 1 +
1

2

∫ 1

0

(1 − y)(Aey + Be−y) dy,

2Ae+ 2Be−1 − 2 = A

{
e− 1 − [ yey ] 1

0 +

∫ 1

0

ey dy

}
+ B

{
1 − e−1 −

[
−ye−y ] 1

0
−
∫ 1

0

e−y dy

}
= A(e− 1 − e+ 0 + e− 1) + B(1 − e−1 + e−1 − 0 + e−1 − 1)

= A(e− 2) + Be−1,

which gives the second relationship between A and B as

−2 = −(e+ 2)A− Be−1.

Solving the two derived relationships as a pair of simultaneous equations, we

obtain

A =
2(1 + 2e−1)e

(e+ 1)(e+ 3)
=

2(e+ 2)

(e+ 1)(e+ 3)
,

and B =
−2

e+ 4 + 3e−1
=

−2e

(e+ 1)(e+ 3)
.

Thus, finally,

f(x) =
2

(e+ 3)(e+ 1)
[(e+ 2)ex − ee−x].

23.14 For the integral equation

y(x) = x−3 + λ

∫ b

a

x2z2y(z) dz,

show that the resolvent kernel is 5x2z2/[5−λ(b5−a5)] and hence solve the equation.

For what range of λ is the solution valid?

We use the recurrence relation

Kn(x, z) =

∫ b

a

K(x, z1)Kn−1(z1, z) dz1

to build up the terms of the infinite series representing the resolvent kernel

R(x, z : λ) =

∞∑
n=0

λnKn+1(x, z).
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For this problem y0(x) = x−3 and K(x, z) = x2z2.

K1(x, z) = x2z2,

K2(x, z) =

∫ b

a

x2u2 u2z2 du =
b5 − a5

5
x2z2,

K3(x, z) =

∫ b

a

x2u2

(
b5 − a5

5

)
u2z2 du =

(
b5 − a5

5

)2

x2z2.

Clearly,

Kn(x, z) =

(
b5 − a5

5

)n−1

x2z2,

and R(x, z; λ) =

∞∑
n=0

λnKn+1(x, z) =

∞∑
n=0

λn
(
b5 − a5

5

)n
x2z2 =

5x2z2

5 − λ(b5 − a5)
,

provided |λ| |b5 − a5| < 5 (so that the series is convergent).

The solution to the integral equation, has the general form

y(x) = y0(x) + λ

∫ b

a

R(x, z; λ)y0(z) dz,

and, in this particular case,

y(x) = x−3 + λ

∫ b

a

5x2z2z−3

5 − λ(b5 − a5)
dz = x−3 +

5λ ln(b/a)x2

5 − λ(b5 − a5)
.

23.16 This exercise shows that following formal theory is not necessarily the

best way to get practical results!

(a) Determine the eigenvalues λ± of the kernel K(x, z) = (xz)1/2(x1/2 +z1/2) and

show that the corresponding eigenfunctions have the forms

y±(x) = A±(
√

2x1/2 ±
√

3x),

where A2
± = 5/(10 ± 4

√
6).

(b) Use Schmidt–Hilbert theory to solve

y(x) = 1 + 5
2

∫ 1

0

K(x, z)y(z) dz.

(c) As will have been apparent, the algebra involved in the formal method used

in (b) is long and error-prone, and it is in fact much more straightforward

to use a trial function 1 + αx1/2 + βx. Check your answer by doing so.
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(a) To find the eigenvalues, given the (supposed) forms of the eigenfunctions, we

may substitute y(x) = a1x+ a2x
1/2 and require consistency.

a1x+ a2x
1/2 = λ

∫ 1

0

(xz1/2 + zx1/2)(a1z + a2z
1/2) dz

⇒ a1 = 2
5
λa1 + 1

2
λa2,

a2 = 1
3
λa1 + 2

5
λa2.

These two equations have a non-trivial solution if(
1 − 2λ

5

)2

=
λ2

6
⇒ λ =

5
√

6

2
√

6 ± 5
= ±25

√
6 − 60.

To find the corresponding eigenfunctions, set a1 = 1, say. Then

a2 =
2

λ

(
1 − 2λ

5

)
=

2

±25
√

6 − 60
− 4

5

=
2 ∓ 20

√
6 + 48

±25
√

6 − 60

=
(50 ∓ 20

√
6)(±25

√
6 + 60)

3750 − 3600

=
±50

√
6

150
= ±

√
2

3
.

Thus the normalised eigenfunctions are

y±(x) = A±(
√

3x±
√

2x1/2),

with

1 =

∫ 1

0

y2
± dx

=

∫ 1

0

A2
±(

√
3x±

√
2x1/2)2dx

= A2
±

(
3

1

3
± 2

√
6

2

5
+ 2

1

2

)

= A2
±

(
10 ± 4

√
6

5

)
= A2

±

(
2 ±

√
6√

5

)2

,

giving the stated values for A2
±.
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(b) We first need to calculate

〈y±|f〉 =

∫ 1

0

A±(
√

3x±
√

2x1/2) 1 dx

=

√
5

2 ±
√

6

3
√

3 ± 4
√

2

6

=

√
5(3

√
3 ± 4

√
2)(2 ∓

√
6)

6(4 − 6)
=

√
5

12
(2

√
3 ±

√
2).

The solution is given by

y(x) = f + λ
∑
i

〈y±|f〉
λi − λ

yi

= 1 +
5

2

√
5

12

2
√

3 +
√

2

25
√

6 − 60 − 5
2

√
5

2 +
√

6
(
√

3x+
√

2x1/2)

+
5

2

√
5

12

2
√

3 −
√

2

−25
√

6 − 60 − 5
2

√
5

2 −
√

6
(
√

3x−
√

2x1/2).

The coefficient of x in this expression is

25

24

√
3

[
2(2

√
3 +

√
2)

(50
√

6 − 125)(2 +
√

6)
+

2(2
√

3 −
√

2)

(−50
√

6 − 125)(2 −
√

6)

]

=

√
3

12

[
2
√

3 +
√

2

2 −
√

6
+

2
√

3 −
√

2

2 +
√

6

]

=

√
3

12

4
√

3 + 2
√

2 + 6
√

2 + 2
√

3 + 4
√

3 − 2
√

2 − 6
√

2 + 2
√

3

4 − 6
= −3

2
.

A similar (tedious) calculation shows that the coefficient of x1/2 is −4/3, making

the final solution

y(x) = 1 − 3
2
x− 4

3
x1/2.

(c) Substituting the trial solution 1 + αx1/2 + βx directly into the equation gives

1 + αx1/2 + βx = 1 + 5
2

∫ 1

0

(xz1/2 + zx1/2) (1 + αz1/2 + βz) dz.

Carrying out the integrations and equating the coefficients of x and x1/2 then

leads to

α = 5
2

(
1
2

+ 2
5
α+ 1

3
β
)

⇒ β = − 3
2
,

β = 5
2

(
2
3

+ 1
2
α+ 2

5
β
)

⇒ α = − 4
3
,

⇒ y(x) = 1 − 4
3
x1/2 − 3

2
x.

This is as in part (b) — but with much less effort!
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Complex variables

24.2 Find a function f(z), analytic in a suitable part of the Argand diagram,

for which

Re f =
sin 2x

cosh 2y − cos 2x
.

Where are the singularities of f(z)?

Let the required function be f(z) = u + iv, with u = sin 2x/(cosh 2y − cos 2x).

Since y appears less often than x in the given expression, it will probably be

easier to consider ∂u/∂y rather than ∂u/∂x. This indicates that the relevant

Cauchy–Riemann equation is

∂u

∂y
=

−2 sin 2x sinh 2y

(cosh 2y − cos 2x)2
= − ∂v

∂x
.

Having differentiated w.r.t y, we now integrate w.r.t x:

v =

∫
2 sin 2x sinh 2y

(cosh 2y − cos 2x)2
dx = − sinh 2y

cosh 2y − cos 2x
+ f(y).

By inspection, or by substitution in the other C–R equation, f(y) can be seen to

be an ignorable constant. The required function is therefore

f(z) =
sin 2x− i sinh 2y

cosh 2y − cos 2x
.

To determine what function of z this is, consider its form on the real axis where

y = 0,

f(x) =
sin 2x

1 − cos 2x
=

2 sinx cosx

2 sin2 x
= cot x ⇒ f(z) = cot z.
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This can be checked as follows.

f(z) =
cos(x+ iy)

sin(x+ iy)

=
cosx cosh y − i sinx sinh y

sinx cosh y + i cosx sinh y

=
(cosx cosh y − i sinx sinh y)(sin x cosh y − i cosx sinh y)

sin2 x cosh2 y + cos2 x sinh2 y

=
sinx cosx(cosh2 y − sinh2 y) − i cosh y sinh y(cos2 x+ sin2 x)

cos2 x(sinh2 y − cosh2 y) + cosh2 y

=
sinx cosx− i cosh y sinh y

cosh2 y − 1
2

− cos2 x+ 1
2

=
sin 2x− i sinh 2y

cosh 2y − cos 2x
.

Since f(z) = cot z the poles can only occur at the zeros of sin z, i.e at z = nπ

where n is an integer; cos nπ �= 0 and so there will be a (simple) pole at each

such point. The same conclusion is reached by studying cosh 2y − cos 2x. Since

cosh 2y ≥ 1 and cos 2x ≤ 1, this denomiator can only vanish if both terms equal

1; this requires y = 0 and x = nπ.

24.4 Find the Taylor series expansion about the origin of the function f(z)

defined by

f(z) =

∞∑
r=1

(−1)r+1 sin
(p z
r

)
where p is a constant. Hence verify that f(z) is a convergent series for all z.

Because every term in the series is a sine function, all of its even derivatives will

also be sine functions and therefore vanish at z = 0. The odd derivatives will

consist entirely of cosine functions and the (2n+ 1)th derivative of a typical term

will be

f(2n+1)
r (z) = (−1)r+1(−1)n

(p
r

)2n+1

cos
(p z
r

)
,

with

f(2n+1)
r (0) = (−1)n+r+1

(p
r

)2n+1

.

The Taylor series expansion is therefore

f(z) =

∞∑
n=0

z2n+1

(2n+ 1)!

∞∑
r=1

(−1)n+r+1
(p
r

)2n+1

.
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giving the expansion coefficients as

a2n+1 =
(−1)n+1p2n+1

(2n+ 1)!

∞∑
r=1

(−1)r

r2n+1
,

with a2n = 0.

As n → ∞ the sum appearing in a2n+1 tends (rapidly) to −1 (only the r = 1 term

contributing) and so the radius of convergence R is given by

1

R2
= lim

n→∞

∣∣∣∣−p2n+3(2n+ 1)!

p2n+1(2n+ 3)!

∣∣∣∣ = 0.

Thus R = ∞ and the series is convergent for all z.

24.6 Identify the zeroes, poles and essential singularities of the following

functions:

(a) tan z, (b) [(z − 2)/z2] sin[1/(1 − z)], (c) exp(1/z),

(d) tan(1/z), (e) z2/3.

(a) This function tan z =
sin z

cos z
has zeroes when

sin z =
1

2i
(eix−y − e−ix+y) = 0 ⇒ eixe−y = e−ixey.

The two terms can only be equal if they have equal magnitudes, i.e. | e−y | =

| ey | ⇒ y = 0. We also need eix = e−ix ⇒ x = nπ, where n is an integer.

Thus the zeroes of tanx occur at z = nπ.

The poles of tan z will occur at the zeroes of cos z. By a similar argument to that

above, this needs y = 0 and eix = − e−ix = ei(−x+π+2nπ) ⇒ 2x = (2n + 1)π.

Thus, the (simple) poles of tan z occur at z = (n+ 1
2
)π.

We note that both sin u and cos u have Maclaurin series that contain arbitrarily

large powers of u and that they are not multiples of each other; we can conclude

that their ratio will also have a Maclaurin series containing arbitrarily large

powers of u. The same conclusion is reached by differentiating tan u and so

constructing its Maclaurin series directly. Thus, when z → ∞ is replaced by

z = 1/ξ with ξ → 0, there will be arbitrarily large inverse powers of ξ in the

series expansion; this establishes that ξ = 0 (i.e. z = ∞) is an essential singularity

of tan z.

For the remaining exercises we will not give such a detailed justification of our

conclusions; most features are obvious and only the less obvious ones will be treated

in any detail.
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(b) This function,
z − 2

z2
sin

1

1 − z
, has obvious zeroes at z = 2 and z = ∞. Equally

clearly, at z = 0 it has a 2nd-order pole. Further zeroes will occur when the sine

term factor is zero; from the analysis in part (a), this will be when (1− z)−1 = nπ,

i.e. at z = 1 − (nπ)−1. The remaining singularity to classify is that at z = 1. By a

similar argument to that given in part (a), the Laurent expansion of the function

about the point will have no largest negative power of 1−z; the point is therefore

an essential singularity.

(c) Since exp(0) = 1, the function is well behaved and analytic at ∞. The only non-

analytic point is the origin, z = 0, where the defining series for the exponential

function generates a Laurent expansion with no largest negative power of z; the

point is therefore an essential singularity.

(d) The singularities of tan(z−1) follow from those of tan z in part (a). They are

therefore zeroes at z = ∞ and (nπ)−1, simple poles at z = (nπ + 1
2
π)−1 and an

essential singularity at z = 0.

(e) The origin, z = 0 is both a zero and a branch point of the function z2/3.

To determine its behavior at ∞ we have to consider 1/ξ2/3 near ξ = 0. There is

clearly a singularity there, and, since the function cannot even be expressed as a

Laurent series, the singularity is an essential singularity.

24.8 Show that the transformation

w =

∫ z

0

1

(ζ3 − ζ)1/2
dζ

transforms the upper half-plane into the interior of a square that has one corner

at the origin of the w-plane and sides of length L, where

L =

∫ π/2

0

cosec 1/2 θ dθ.

This transformation is a Schwarz-Christoffel transformation of the upper half of

the z-plane into a closed polygon. It can be written

w =

∫ z

0

ζ−1/2(ζ − 1)−1/2(ζ + 1)−1/2 dζ.

Since each factor is raised to the same power, the interior angles at the corners of

the polygon are all the same and given by (φ/π) − 1 = − 1
2
, i.e. each φ = π/2. To

close the polygon a fourth vertex is needed (also with φ = π/2); this must arise

from transforming the point x = ±∞, y = 0. Thus the four points on the x-axis

that transform into the vertices of what is (for now) a rectangle are x1 = −1,

x2 = 0, x3 = 1 and x4 = ±∞.
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From the definition of the transform, the image of x2 (z = 0) is clearly w2 = 0.

Thus one corner of the rectangle is at the origin in the w-plane. Further,

w3 − w2 =

∫ 1

0

1

ζ1/2(ζ2 − 1)1/2
dζ.

Setting ζ =
1

u
with dζ = − 1

u2
du,

w3 − w2 =

∫ 1

∞

u1/2

(u−2 − 1)1/2

(
−1

u2

)
du

=

∫ ∞

1

u3/2

(1 − u2)1/2u2
du

=

∫ ∞

1

1

(1 − u2)1/2u1/2
du

= ±i(w4 − w3).

Thus we have a rectangle with adjacent sides of equal length, i.e. a square.

The length of a side is given in magnitude by

L =

∫ ∞

1

1

u1/2(u2 − 1)1/2
du.

Setting u = cosec θ with du = −cosec θ cot θ dθ and u2 − 1 = cot2 θ, gives

L =

∫ 0

π/2

−cosec θ cot θ

cosec 1/2θ cot θ
dθ

=

∫ π/2

0

cosec 1/2θ dθ,

as stated in the question.

Many of the remaining exercises in this chapter involve contour integration and the choice of

a suitable contour. In order to save the space taken by drawing several broadly similar figures

that differ only in notation, the positions of poles, the values of lengths or angles, or other

minor details, we show in figure 24.1 a number of typical contour types to which reference

can be made.

24.10 Show that, if a is a positive real constant, the function exp(iaz2) is

analytic and → 0 as |z| → ∞ for 0 < arg z ≤ π/4. By applying Cauchy’s theorem

to a suitable contour prove that∫ ∞

0

cos(ax2) dx =

√
π

8a
.
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Figure 24.1 Typical contours for use in contour integration.

The function is explicitly a function of z and has no poles in the finite plane.

By Cauchy’s theorem, its integral around a closed loop will be zero. Writing z as

r eiθ , we have

eiaz
2

= eiar
2(cos 2θ+i sin 2θ) = eiar

2 cos 2θe−ar2 sin 2θ.

The real part of this, when θ = 0, is the required integrand. Further, the function

→ 0 as r → ∞ provided a sin 2θ is positive. Since a is positive, this requires sin 2θ

to be positive, i.e. 0 < θ < π/2.

To apply Cauchy’s theorem we therefore need a closed contour which includes

the positive real axis, 0 ≤ x < ∞, and some part of the semi-circle at infinity in

the first quadrant; from the above result, this part of the contour will contribute

nothing. The contour needs to be completed by a path along which the line

integral is known or can be evaluated by means other than contour integration.
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In view of the i and the square of z appearing in the exponent in the integrand

we consider a contour such as that shown in 24.1(a) with α = π/4. On the closing

part of the contour, z = ueiπ/4. Cauchy’s theorem now reads:∫ ∞

0

eiax
2

dx+ 0 +

∫ 0

∞
exp[ ia(ueiπ/4)2 ] eiπ/4 du = 0,∫ ∞

0

eiax
2

dx−
∫ ∞

0

eia(u
2i) 1 + i√

2
du = 0.

Taking the real parts of both sides gives the equality∫ ∞

0

cos(ax2) dx =
1√
2

∫ ∞

0

e−au2

du

=
1√
2

1

2

√
π

a
=

√
π

8a
.

In the last line we have used the standard result for the infinite integral of

exp(−ax2), which can be found in any textbook if not already known. Apart

from a change of scale, the overall result is a special case of a Fresnel integral

C(x) in which the argument x = ∞

24.12 By considering the real part of∫ −izn−1 dz

1 − a(z + z−1) + a2
,

where z = exp iθ and n is a non-negative integer, evaluate∫ π

0

cos nθ

1 − 2a cos θ + a2
dθ,

for a real and > 1.

The integrand can be rewritten in a form that establishes the positions of any

poles it possesses:

−izn−1

1 − a(z + z−1) + a2
=
i

a

zn

z2 − (a+ a−1)z + 1
=
i

a

zn

(z − a)(z − a−1)
.

We use a contour C of type (c) in figure 24.1 with R = 1 (i.e. the unit circle)

and integrate f(z) around it. As the above form shows, the integrand has poles

at z = a (outside the contour) and z = a−1 (inside it) and so we need the residue

only at the latter (simple) pole. It is

i

a
lim
z→a−1

(
zn

z − a

)
=
i

a

1

an(a−1 − a)
=
i

a

1

an−1(1 − a2)
.
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From the residue theorem it now follows that∫
C

i

a

zn dz

(z − a)(z − a−1)
. =

i

a

2πi

an−1(1 − a2)
.

On the unit circle, z = eiθ and dz = i eiθ dθ. Making this change of variable gives

−2π

an(1 − a2)
=
i

a

∫ 2π

0

einθi eiθ dθ

( eiθ − a)( eiθ − a−1)

=

∫ 2π

0

einθ dθ

( eiθ − a)( e−iθ − a)

=

∫ 2π

0

einθ dθ

a2 − 2a cos θ + 1
.

On equating real parts,

2π

an(a2 − 1)
=

∫ 2π

0

cos nθ dθ

a2 − 2a cos θ + 1
.

Finally, we note that the integrand is an even function of θ and so for the given

limits of 0 and π the value of the integral is one-half of that calculated above, i.e.

π/(an+2 − an).

24.14 Prove that, for α > 0, the integral∫ ∞

0

t sin αt

1 + t2
dt

has the value (π/2) exp(−α).

We wish to evaluate

I =

∫ ∞

0

t sin αt

1 + t2
dt =

1

2

∫ ∞

−∞

t sin αt

1 + t2
dt =

1

2
Im

∫ ∞

−∞

t eiαt

1 + t2
dt.

The complex function f(z) =
z

1 + z2
has the properties:

(i) it is analytic in the upper half-plane except for a pole at z = i, and

(ii) |f(z)| ∼ |z−1| → 0 as |z| → ∞ in the upper half-plane.

Since α > 0, all the conditions for Jordan’s lemma are satisfied and we can

usefully consider the integral

J =

∫
C

z eiαz

1 + z2
dz,

where C is contour (d) in figure 24.1 with R → ∞.
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Jordan’s lemma ensures that the integral along the semi-circle Γ goes to 0 as

R → ∞. The residue theorem then reads∫ ∞

−∞

x eiαx

1 + x2
dx+ 0 = 2πi(residue at z = i)

= 2πi lim
z→i

(z − i)z eiαz

(z − i)(z + i)

= 2πi
ie−α

2i
.

Equating the imaginary parts of both side of the equation shows that∫ ∞

−∞

x sinx

1 + x2
dx = πe−α

and I = 1
2
πe−α, as stated in the question.

24.16 Show that the principal value of the integral∫ ∞

−∞

cos(x/a)

x2 − a2
dx

is −(π/a) sin 1.

The complex form of the integrand is

f(z) =
eiz/a

z2 − a2
;

this has two poles on the real axis, at z = ±a. Consequently we need to work

with a contour that has semicircular indentations into the upper half-plane at

these points (see contour (e) in figure 24.1).

With this choice of contour, no poles are enclosed and the integral around the

complete contour will be zero. However, the contributions from the separate

parts of the contour are not individually zero. Since the conditions for Jordan’s

lemma are satisfied, the contribution from Γ is zero, but that still leaves the

contributions from the indented semicircles as well as the principal value that we

wish to evaluate.

Each semicircle contributes −πi × the residue at the corresponding (simple) pole,

the minus sign arising from the fact that the semicircle is traversed in the negative

sense. The residues are

lim
z→−a

(z + a)eiz/a

(z + a)(z − a)
=

e−i

−2a
and lim

z→a

(z − a)eiz/a

(z + a)(z − a)
=

ei

2a
.
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The residue theorem (Cauchy’s theorem in this case) then reads

− πi

2a
(ei − e−i) + P

∫ ∞

−∞

cos(x/a)

x2 − a2
dx+ iP

∫ ∞

−∞

sin(x/a)

x2 − a2
dx = 0.

Equating the real parts of the two sides of this equation yields the stated result,

P

∫ ∞

−∞

cos(x/a)

x2 − a2
dx = −π

a
sin 1.

24.18 By applying the residue theorem around a wedge-shaped contour of angle

2π/n, with one side along the real axis, prove that the integral∫ ∞

0

dx

1 + xn
,

where n is real and ≥ 2, has the value (π/n)cosec (π/n).

The contour needed is that shown in figure 24.1 (a) with α = 2π/n. The denomi-

nator of the complex integrand has zeroes when

z = exp

[
(2m+ 1)iπ

n

]
, for m = 0, 1, . . . , n− 1.

Only one of these zeroes, the one at z = eiπ/n with m = 0, lies within the sector

contour, and none lie on it.

On OA, z = x and dz = dx.

On AB, z = R eiθ for 0 ≤ θ ≤ 2π/n and dz = iR eiθ dθ.

On BO, z = ye2πi/n and dz = e2πi/n dy.

Applying the residue theorem to the contour integral gives∫ R

0

dx

1 + xn
+

∫ 2π/n

0

iR eiθ dθ

1 + Rneinθ
dθ

+

∫ 0

R

e2πi/n dy

1 + yne2πi
= 2πi(residue at z = eiπ/n).

Letting R → ∞ shows that the required integral I satisfies

I(1 − e2πi/n) = 2πi(residue at z = eiπ/n).

Now, since it is a simple pole at z = eiπ/n, the residue there is given by the inverse

of the derivative of 1 + zn, i.e.

residue =
1

nzn−1
=

1

ne[iπ(n−1)]/n
= −eiπ/n

n
.
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Thus,

I(1 − e2πi/n) =
−2πi

n
eiπ/n,

I
1

2i
(e−iπ/n − eiπ/n) = −π

n
, after dividing through by 2ieiπ/n,

⇒ I sin
π

n
=
π

n
,

⇒ I =
π

n
cosec

π

n
,

as stated in the question.

24.20 Show that ∫ ∞

0

lnx

x3/4(1 + x)
dx = −

√
2π2.

Denote the required integral by I . The complex form of the integrand f(z) is not

single-valued and by choosing contour (f) of figure 24.1 we can capitalise on that

fact. We first consider the behaviour of the integrand on the various parts of the

contour.

(i) Around γ, |zf(z)| ∼ z1/4 ln z

1
→ 0 as |z| → 0.

(ii) Around Γ, |zf(z)| ∼ ln z

z3/4
→ 0 as |z| → ∞.

(iii) On γ1, z = x and f(z) =
ln x

x3/4(1 + x)
.

(iv) On γ2, z = xe2πi and f(z) =
lnx+ i2π

x3/4e3πi/2(1 + xe2πi)
.

The only pole inside the contour is a simple one at z = eiπ; that at z = 0 is

excluded by the contour and its (non-) contribution is that calculated for γ. The

residue at z = eiπ is (0 + iπ)e−3iπ/4.

The residue theorem therefore reads [ Note that e−3πi/2 = i ]

0 + I + 0 − Ie−3πi/2 −
∫ ∞

0

2πi e−3πi/2

x3/4(1 + x)
dx = 2πi(iπe−3πi/4),

I(1 − i) +

∫ ∞

0

2π

x3/4(1 + x)
dx = −2π2

(
−1 − i√

2

)
.

Equating imaginary parts, − I =
√

2π2.

As a bonus, we also deduce that∫ ∞

0

1

x3/4(1 + x)
dx =

1

2π
(
√

2π2 − I) =
√

2π.
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24.22 The equation of an ellipse in plane polar coordinates r, θ, with one of its

foci at the origin, is

�

r
= 1 − ε cos θ,

where � is a length (that of the latus rectum) and ε (0 < ε < 1) is the eccentricity

of the ellipse. Express the area of the ellipse as an integral around the unit circle

in the complex plane, and show that the only singularity of the integrand inside

the circle is a double pole at z0 = ε−1 − (ε−2 − 1)1/2.

By setting z = z0 +ξ and expanding the integrand in powers of ξ, find the residue

at z0 and hence show that the area is equal to π�2(1 − ε2)−3/2.

[ Note: In terms of the semi-axes a and b of the ellipse, � = b2/a and ε2 =

(a2 − b2)/a2. ]

The area A is given by

A =

∫ 2π

0

1

2
r2 dθ =

� 2

2

∫ 2π

0

dθ

(1 − ε cos θ)2
.

Now, if we set z = eiθ , with dz = i eiθ dθ = iz dθ, the integral becomes a contour

integral around the unit circle C [ contour (c) in figure 24.1 with R = 1 ]. The

area integral is then given by

2A

� 2
=

∫
C

−iz−1 dz

[ 1 − 1
2
ε(z + z−1) ]2

=
4

ε2

∫
C

−iz dz
(z2 − 2ε−1z + 1)2

Aε2

2� 2
=

∫
C

−iz dz
(z − z0)2(z − z1)2

, where z1, 0 =
1

ε
±
√

1

ε2
− 1.

Since 0 < ε < 1, ε−1 > 1 and only the pole at z0 = ε−1 − (ε−2 − 1)1/2 lies inside

the circle |z| = 1. Clearly it is a double pole of the integrand.

To determine the residue at z0 we set z = z0 + ξ:

−iz
(z − z0)2(z − z1)2

=
−i(z0 + ξ)

ξ2(z0 − z1 + ξ)2

=
−i(z0 + ξ)

ξ2(z0 − z1)2

[
1 − 2ξ

z0 − z1
+

6ξ2

2! (z0 − z1)2
− · · ·

]
.

The residue, equal to the coefficient of ξ−1, is

−i
(z0 − z1)2

(
1 − 2z0

z0 − z1

)
=
i(z0 + z1)

(z0 − z1)3
=

2iε−1

−8(ε−2 − 1)3/2
.
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Thus, by the residue theorem,

Aε2

2� 2
= 2πi

iε−1

−4(ε−2 − 1)3/2
,

giving the area A as

A =
π� 2ε−1

ε2(ε−2 − 1)3/2
=

π� 2

(1 − ε2)3/2
.
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25

Applications of complex variables

Many of the exercises in this chapter involve contour integration and the choice of a suitable

contour. In order to save the space taken by drawing several broadly similar figures that differ

only in notation, the positions of poles, the values of lengths or angles, or other minor details,

we showed in figure 24.1 of the previous chapter a number of typical contour types to which

reference can be made.

25.2 A long straight fence made of conducting wire mesh separates two fields

and stands 1 metre high. Sometimes, on fine days, there is a vertical electric field

over flat open countryside. Well away from the fence the strength of the field is

E0. By considering the effect of the transformation w = (1−z2)1/2 on the real and

imaginary z-axes, find the strengths of the field (a) at a point one metre directly

above the fence, (b) at ground level one metre to the side of the fence, and (c) at

a point that is level with the top of the fence but one metre to the side of it. What

is the direction of the field in case (c)?

We first consider the situation of a uniform vertical field (conventionally in the

positive y-direction) of strength E0. The corresponding potential is φ = −E0y and,

as this is the real part of iE0z, the appropriate complex potential is f(z) = iE0z.

Now consider what happens to the real z-axis (y = 0) under the transformation

w = (1 − z2)1/2. For −1 < x < 1, w = u + iv is real and covers 0 < u < 1 twice,

once in each direction. For −∞ < x < −1 and 1 < x < ∞, w is imaginary and

covers the v-axis in its entirety. Under the same transformation, the imaginary

z-axis maps (twice) onto the part of the positive real w-axis given by 1 < u < ∞.

Thus, apart from a rotation of the whole coordinate system through π/2, the

transformation maps the equipotential (ground) surface y = 0 into another

equipotential (ground) surface u = 0, but this time with a unit height ‘fence’

situated at v = 0, the fence being at the same potential as the surface.
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Under the transformation, w = (1 − z2)1/2, or equivalently z = (1 − w2)1/2, the

potential

f(z) = iE0z → F(w) = iE0(1 − w2)1/2 = −E0(w
2 − 1)1/2.

The magnitude of the derivative F ′ = dF/dw gives the strength of the field in

the tranformed situation; the field’s direction makes an angle π − argF ′ with the

u-axis, which corresponds to the upward vertical directly above the fence. The

derivative is
dF

dw
= − w E0

(w2 − 1)1/2
.

Its magnitude, and hence the strength of the field, is

(a) for w = 2 + 0i,

∣∣∣∣− 2E0

(4 − 1)1/2

∣∣∣∣ = 2E0√
3
,

(b) for w = 0 + 1i,

∣∣∣∣− iE0

(−1 − 1)1/2

∣∣∣∣ = E0√
2
,

(c) for w = 1 + 1i,

∣∣∣∣− (1 + i)E0

(2i− 1)1/2

∣∣∣∣ =
√

2E0

51/4
.

In case (c),

arg

[
− (1 + i)E0

(2i− 1)1/2

]
= π +

π

4
− 1

2
tan−1 2

−1
=

5π

4
− 1.017.

Thus the direction of the field at 1 + i makes an angle π − ( 5π
4

− 1.017) = 0.232

radians with the upward vertical.

Finally, we note that the equipotential surfaces are closely packed just above the

top of the fence but separate as they spread out to become asymptotically parallel

to the ground (without, of course, ever crossing each other).

25.4 Find a complex potential in the z-plane appropriate to a physical situation

in which the half-plane x > 0, y = 0 has zero potential and the half-plane x < 0,

y = 0 has potential V .

By making the transformation w = a(z + z−1)/2, with a real and positive, find

the electrostatic potential associated with the half-plane r > a, s = 0 and the

half-plane r < −a, s = 0 at potentials 0 and V respectively.

We require a function whose real or imaginary part takes the value 0 whenever

y = 0 and x > 0, and takes a constant non-zero value whenever y = 0 but x < 0.

The argument of z does this but, unfortunately, arg z is not an analytic function.
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However arg z is (within a constant multiplier) the imaginary part of ln z, which

is an analytic function over (nearly all of) the complex plane. To get the scale

correct and avoid problems with discontinuities across the negative x-axis, we

need to take as the solution of Laplace’s equation

either φ(x, y) = Im

(
V

π
ln z

)
or φ(x, y) = Re

(
−iV
π

ln z

)
with z = | z |eiθ restricted by 0 ≤ θ ≤ π. The solution for the half-space y < 0 is to

be given by symmetry, rather than by continuing the function into −π < θ < 0.

Now consider the conformal transformation

r + is = w =
a

2

(
z +

1

z

)
.

The half-plane y = 0, 0 < x < ∞ becomes

r + is =
a

2

(
x+

1

x

)
⇒ s = 0 and a < r < ∞.

Similarly the half-plane y = 0, −∞ < x < 0 becomes

r + is =
a

2

(
−|x| − 1

|x|

)
⇒ s = 0 and − ∞ < r < −a.

Thus the transformation maps the original half-planes (virtually touching at the

origin) into two half-planes symmetrically separated about the origin by 2a. This

is as neeeded. To find the corresponding complex potential we must express

(V/π) ln z in terms of w. We start by inverting the transformation,

z2 − 2w

a
z + 1 = 0,

z =
w

a
±
√
w2

a2
− 1,

and then substitute for z,

F(w) =
V

π
ln

(
w ±

√
w2 − a2

a

)
.

This, or −i times it, (depending upon whether the imaginary or real part of the

complex potential is taken as the physical potential) is the appropriate complex

potential. Consideration of the particular case w = is with s > 0, which must

yield +1
2
V for the physical potential, shows that the + sign for the square root

is the correct choice. [ Choosing the minus sign would make the expression in

parentheses both imaginary and negative, and lead to a physical potential of

− 1
2
V . ]
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25.6 For the equation 8z3 + z + 1 = 0:

(a) show that all three roots lie between the circles |z| = 3/8 and |z| = 5/8;

(b) find the approximate location of the real root, and hence deduce that the

complex ones lie in the first and fourth quadrants and have moduli greater

than 0.5.

(a) We start by considering h(z) = 8z3 + z + 1 as f(z) + g(z) where f(z) = 8z3

and g(z) = z + 1. Now, on the circle |z| = 5
8
,

|8z3| =
1000

512
=

125

64
and |z + 1| ≤ 5

8
+ 1 =

104

64
.

Thus |f(z)| > |g(z)| at all points on the circle. It then follows from Rouché’s

theorem that h(z) and f(z) have the same number of zeroes inside the circle; f(z)

clearly has three (all at the origin), implying that all three zeroes of h(z) lie within

the same circle.

We next consider h(z) = 8z3+z+1 as f(z)+g(z) where f(z) = 1 and g(z) = 8z3+z.

On the circle |z| = 3
8
,

|1| = 1 and |8z3 + z| ≤ 216

512
+

3

8
=

51

64
.

Thus |f(z)| > |g(z)| at all points on the circle. As before, it follows that h(z) and

f(z) have the same number of zeroes inside the circle; f(z) clearly has no zeroes

inside the circle, and so, therefore, neither has h(z).

Combining these results shows that all roots of the equation lie between the circles

|z| = 3/8 and |z| = 5/8.

(b) Since the order of the cubic h(z) is odd, the equation must have at least one

real root; further, since the signs of all the coefficients in the cubic are the same,

the real root must be negative. Let it be at x and write the equation in the form

8z3 + z + 1 = 8(z − x)(z − α− iβ)(z − α+ iβ) = 0.

Considering the coefficients of z2 gives −x − 2α = 0, showing that, since x is

negative, α must be positive, i.e. the complex roots occur in the first and fourth

quadrants.

At x = − 3
8
, h(z) = 13

64
, whilst at z = − 1

2
, h(z) = − 1

2
. Thus the real root lies

between these two negative values of x. From the constant terms in the above

expression of h(z) = 0 we deduce that −8x(α2 + β2) = 1. Since |x| < 1
2

it follows

that α2 + β2 > 1
4

and that the modulus of either complex root
√
α2 + β2 > 0.5.
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25.8 The following is a method of determining the number of zeroes of an

nth-degree polynomial f(z) inside the contour C given by |z| = R:

(a) put z = R(1 + it)/(1 − it), with t = tan(θ/2) in the range −∞ ≤ t ≤ ∞;

(b) obtain f(z) as

A(t) + iB(t)

(1 − it)n
(1 + it)n

(1 + it)n
;

(c) it follows that arg f(z) = tan−1(B/A) + n tan−1 t;

(d) and that ∆C[arg f(z)] = ∆C[tan−1(B/A)] + nπ;

(e) determine ∆C[tan−1(B/A)] by evaluating tan−1(B/A) at t = ±∞ and finding

the discontinuities in B/A by inspection or using a sketch graph.

Then, by the principle of the argument, the number of zeroes inside C is given by

the integer (2π)−1∆C [arg f(z)].

It can be shown that the zeroes of z4+z+1 lie one in each quadrant. Use the above

method to show that the zeroes in the second and third quadrants have |z| < 1.

(a) and (b). In this exercise we are concerned with the contour |z| = 1 and so we

set

z =
1 + it

1 − it
=

(1 + it)2

(1 − it)(1 + it)
=

1 − t2

1 + t2
+ i

2t

1 + t2
, t = tan

θ

2
, −∞ < t < ∞.

As θ increases from 0 to 2π, z = cos θ + i sin θ and prescribes the unit circle, as

can be verified from the half-angle identities. In terms of t increasing from −∞
to +∞, it is easier to think of θ increasing from −π to +π, but the result is the

same, as the circle is traversed once in the positive direction in either case.

The expression for f(z) in terms of t is

g(t) =
1

(1 − it)4
[ (1 + it)4 + (1 + it)(1 − it)3 + (1 − it)4 ]

=
1

(1 − it)4
[ t4(1 − 1 + 1) + t3(−4i+ i− 3i+ 4i)

+ t2(−6 − 3 + 3 − 6) + t(4i− 3i+ i− 4i) + (1 + 1 + 1) ]

=
1

(1 − it)4
(t4 − 2it3 − 12t2 − 2it+ 3)

=
A(t) + iB(t)

(1 − it)4
(1 + it)4

(1 + it)4
,

where A(t) = t4 − 12t2 + 3 and B(t) = −2t3 − 2t.
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(c) Since its denominator is real and its numerator contains two factors, the

argument of g(t) is the sum of the arguments of these two factors.

arg g(t) = arg[A(t) + iB(t) ] + arg[ (1 + it)4 ]

= tan−1 B

A
+ 4 arg(1 + it)

= tan−1 B

A
+ 4 tan−1 t

= tan−1 B

A
+ 4

θ

2
.

(d) The change in arg g around C is therefore

∆C(arg g) = ∆C

(
tan−1 B

A

)
+ 4∆C

(
θ

2

)
= ∆C

(
tan−1 B

A

)
+ 4π

= ∆C

(
tan−1 −2t3 − 2t

t4 − 12t2 + 3

)
+ 4π − ∞ < t < ∞,

≡ ∆C(α) + 4π, thus defining α.

(e) Taking account of the magnitude of α and the signs of the numerator and

denominator of tan α separately, we deduce that as t → −∞, α → 0+ and as

t → ∞, α → 0−. We also note that, for real t, the numerator of tan α is zero

only when t = 0 and that the denominator is zero when t2 = 6 ±
√

33. Thus, as

t increases from −∞ through −(6 +
√

33)1/2, a graph of α increases from 0 and

passes through π/2. However, it decreases through π/2 at −(6 −
√

33)1/2 without

reaching π in between. It then passes through 0 at t = 0. The rest of the graph is

the antisymmetric reflection in the line t = 0 of the first half.

Thus there are no discontinuities in α and, as it starts and ends at 0, ∆C(α) = 0.

It follows that ∆C(arg g) = 4π and that there are 2 zeroes inside |z| = 1.

To determine in which quadrants the two zeroes of f(z) = z4+z+1 occur requires

some numerical work. On the circle |z| = 1,

arg f(z) = tan−1 sin 4θ + sin θ

cos 4θ + cos θ + 1
.

For a contour such as (b) in figure 24.1 with R = 1, ∆OA(arg f) = 0 since z, and

hence f, is purely real. On BO, where z = iy, with 1 ≥ y ≥ 0, the argument of

f is equal to tan−1[ y/(y4 + 1) ] and varies smoothly from tan−1 1
2

to 0. On AB

it is given by the above expression. Numerical investigation (using a spreadsheet,

say) shows that the variation from 0 at θ = 0 to tan−1 1
2

at θ = π/2, whilst

having several turning points, has no discontinuities. [ By contrast, there is a

discontinuity at θ ≈ 2.095 in the second quadrant. ]
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Putting these observations together shows that ∆OABO[ arg f(z) ] = 0 and that

the contour of unit radius encloses no zeroes. Since the zeroes of polynomials

with real coefficients occur in complex conjugate pairs, it follows that a similar

contour in the fourth quadrant also encloses no zeroes. Hence the two zeroes

inside |z| = 1 must lie in the second and third quadrants.

25.10 This exercise illustrates a method of summing some infinite series.

(a) Determine the residues at all the poles of the function

f(z) =
π cotπz

a2 + z2
,

where a is a positive real constant.

(b) By evaluating, in two different ways, the integral I of f(z) along the straight

line joining −∞ − ia/2 and +∞ − ia/2, show that

∞∑
n=1

1

a2 + n2
=
π coth πa

2a
− 1

2a2
.

(c) Deduce the value of
∑∞

1 n
−2.

(a) This function has simple poles at z = n whenever n is an integer. At each one

the residue is

π cosπz

d(sin πz)/dz

1

a2 + z2
=
π cosπz

π cosπz

1

a2 + n2
=

1

a2 + n2
.

There are two other poles, at z = ±ia, and they have (equal) residues of

π cot(±iπa)
±2ia

= −π coth(πa)

2a
.

(b) As |z| → ∞, cotπz is bounded in both the upper and lower half-planes (i.e.

away from the real axis) and so the integrals along the semicircular paths Γ1 and

Γ2 shown in figure 25.1 tend to zero as the radius of the circle → ∞. Now take

as a closed contour the line L, joining −∞ − ia/2 and +∞ − ia/2, together with

Γ1 and apply the residue theorem

I + 0 = 2πi

[
2

∞∑
n=1

1

a2 + n2
+

1

a2
− π coth(πa)

2a

]
.

Next take a closed contour consisting of L and Γ2 and again apply the theorem

(taking account of the sense of integration)

−I + 0 = 2πi

[
−π coth(πa)

2a

]
.
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ia

−ia
L

Γ1

Γ2

Figure 25.1 The contours used in exercise 25.10.

Adding these results gives

2

∞∑
n=1

1

a2 + n2
+

1

a2
− 2π coth(πa)

2a
= 0,

i.e.
∞∑
n=1

1

a2 + n2
=
π coth(πa)

2a
− 1

2a2
.

(c) To deduce the value of S =
∑∞

n=1 n
−2 we need to evaluate

lim
a→0

(
π coth(πa)

2a
− 1

2a2

)
.

For this we employ l’Hôpital’s rule.

S = lim
a→0

aπ cosh(aπ) − sinh(aπ)

2a2 sinh(aπ)

= lim
a→0

π cosh(aπ) + aπ2 sinh(aπ) − π cosh(aπ)

4a sinh(aπ) + 2a2π cosh(aπ)

= lim
a→0

π2 sinh(aπ) + aπ3 cosh(aπ)

4 sinh(aπ) + 8πa cosh(aπ) + 2a2π2 sinh(aπ)

= lim
a→0

2π3 cosh(aπ) + aπ4 sinh(aπ)

4π cosh(aπ) + 8π cosh(aπ) + 12π2a sinh(aπ) + 2a2π3 cosh(aπ)

=
2π3

12π
=
π2

6
.

Not the most straightforward way to derive this particular result!
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25.12 Use the Bromwich inversion, and contours similar to that shown in fig-

ure 24.1(g) to find the functions of which the following are the Laplace transforms:

(a) s(s2 + b2)−1;

(b) n!(s− a)−(n+1), with n a positive integer and s > a;

(c) a(s2 − a2)−1, with s > |a|.

Compare your answers with those given in a table of standard Laplace transforms.

(a) Inside the suggested contour s(s2 + b2)−1 has simple poles at s = ±ib. At

s = ib, the residue of sesx(s2 + b2)−1 is ib eibx/(ib + ib) = 1
2
eibx. At s = −ib, the

residue of sesx(s2 + b2)−1 is −ib e−ibx/(−ib− ib) = 1
2
e−ibx. Thus the function f(x)

whose Laplace transform is s(s2 + b2)−1 is 1
2
( eibx + e−ibx) = cos bx.

(b) For the inverse Laplace transform of
n!

(s− a)n+1
the contour formed by closing

the Bromwich line in the left half-plane contains a pole in the right half-plane, at

z = a. We therefore make a change of variable to t = s− a with t > 0 and again

use a closed contour such as (g) in figure 24.1. The integrand becomes

n!ex(t+a)

tn+1
=
n!eax

tn+1

∞∑
r=0

(xt)r

r!
.

The only pole enclosed by the new contour is at t = 0 and the coefficient of t−1

in the Taylor expansion about that point is

a−1 =
n! eax xn

n!
= eaxxn.

This is the residue at that point and also the required function f(x) = eaxxn; note

that the given function of s is its Laplace transform only for s > a.

(c) As in part (b), the integrand, in this case aesx(s2 − a2)−1, has a pole in the

right half-plane. The same formal device as in part (b) could be used to convert

the integral to one of type (g) with λ = ε > 0 for any small ε. However, we

can obtain the correct result by ignoring this ‘nicety’ and merely noting that the

integrand has simple poles with residues

aeax

a+ a
at s = a and

ae−ax

−a− a
at s = −a.

The function of which a(s2 − a2)−1 is the Laplace transform is therefore f(x) =
1
2
(eax − e−ax) = sinh ax. This conclusion is, however, valid only for s > |a|.
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25.14 A function f(t) has the Laplace transform

F(s) =
1

2i
ln

(
s+ i

s− i

)
,

the complex logarithm being defined by a finite branch cut running along the imag-

inary axis from −i to i.

(a) Convince yourself that, for t > 0, f(t) can be expressed as a closed contour

integral that encloses only the branch cut.

(b) Calculate F(s) on either side of the branch cut, evaluate the integral and

hence determine f(t).

(c) Confirm that the derivative with respect to s of the Laplace transform inte-

gral of your answer is the same as that given by dF/ds.

From the standard Bromwich integral representation, f(t) can be written

f(t) =
1

2πi

∫ λ+i∞

λ−i∞

1

2i
ln

(
s+ i

s− i

)
est ds.

For t < 0 the contour has to be closed, as usual, in the right half-plane [ contour

(h) of figure 24.1 ]. There are no poles with Re s > λ and so the integral, and

hence f(t), are both zero for t < 0.

(a) For t > 0 the contour has to be closed in the left half-plane [ contour (g) ].

The integrand is

1

2i

{
ln

∣∣∣∣ s+ i

s− i

∣∣∣∣ est + i[ arg(s+ i) − arg(s− i) ]est
}
.

This has no singularities in the left half-plane (excluding the imaginary axis) and

so, by Cauchy’s theorem, the contour can be deformed to be a line z = −λ′ + iy

for any real λ′ > 0. There are no poles on the imaginary axis beyond the cut and

so the contour can be further deformed (shrunk) to one that just encloses the cut.

(b) We introduce plane-polar angles θ1 and θ2 centred respectively on the points

s = −i and s = i. Each is restricted to a range of 2π but where the zero of each

is taken does not matter. Let a point P close to the cut but to the right of it, and

given by s = ε + iy, where ε > 0 and −1 < y < 1, correspond to θ1 = φ1 and

θ2 = φ2. Then

F(ε+ iy) =
1

2i

[
ln

(
1 + y

1 − y

)
+ iφ1 − iφ2

]
.

As P moves (upward) along a path beside the cut, rounds the point s = i and

moves (downwards) beside, but to the left of, the cut to reach s = −ε + iy, the
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value of θ1 hardly changes and is finally the same as it started. However, θ2

increases by 2π (as P rounds s = i). The new value of F(s) is

F(−ε+ iy) =
1

2i

[
ln

(
1 + y

1 − y

)
+ iφ1 − i(φ2 + 2π)

]
.

In the evaluation of the integral y runs from −1 to 1 on the right of the cut

and from 1 to −1 on the left. The two contributions from the terms containing

logarithms clearly cancel and we are left with∫ 1

−1

1

2
(φ1 − φ2)e

iyti dy +

∫ −1

1

1

2
(φ1 − φ2 − 2π) eiyti dy.

The integrals involving φ1 and φ2 cancel and leave as the only contribution to

the Bromwich integral

J =

∫ 1

−1

π eiyti dy = πi
eit − e−it

it
= 2πi

sin t

t
.

Hence f(t), which is equal to J/(2πi), has the form sin t/t.

(c) Firstly, the derivative with respect to s of the Laplace transform of the solution

just obtained is

d

ds

∫ ∞

0

e−st sin t

t
dt = −

∫ ∞

0

e−st sin t dt

= −Im

∫ ∞

0

e−st eit dt

= −Im

[
e−st+it

−s+ i

]∞

0

= −Im

(
1

s− i

)
= − 1

1 + s2
.

Secondly, the corresponding derivative of the given form for F(s) is

dF(s)

ds
=

1

2i

d

ds
[ ln(s+ i) − ln(s− i) ]

=
1

2i

(
1

s+ i
− 1

s− i

)
=

1

2i

−2i

s2 + 1
= − 1

s2 + 1
.

Thus,
d

ds

∫ ∞

0

e−st sin t

t
dt =

dF(s)

ds
, confirming the result stated in the question.
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25.16 Transverse vibrations of angular frequency ω on a string stretched with

constant tension T are described by u(x, t) = y(x) e−iωt where

d2y

dx2
+
ω2 m(x)

T
y(x) = 0.

Here, m(x) = m0f(x) is the mass per unit length of the string and, in the general

case, is a function of x. Find the first-order W.K.B. solution for y(x).

Due to imperfections in its manufacturing process, a particular string has a small

periodic variation in its linear density of the form m(x) = m0[ 1 + ε sin(2πx/L) ],

where ε � 1. A progressive wave (i.e. one in which no energy is lost) travels in the

positive x-direction along the string. Show that its amplitude fluctuates by ± 1
4
ε of

its value A0 at x = 0 and that, to first order in ε, the phase of the wave is

εω L

2π

√
m0

T
sin2 πx

L

ahead of what it would be if the string were uniform with m(x) = m0.

We first write α2 = m0ω
2/T and assume that α � 1, so that the W.K.B. method

is appropriate. We now try as a solution to

d2y

dx2
+ α2f(x)y = 0 (∗)

the form y(x) = A(x)eiαφ(x). The necessary derivatives are

y′ = A′eiαφ + iαAφ′eiαφ,

y′′ = A′′eiαφ + 2iαA′φ′eiαφ + iαAφ′′eiαφ − α2A(φ′)2eiαφ.

Substituting these into (∗) and cancelling a factor of eiαφ throughout, yields

A′′ + iα(2A′φ′ + Aφ′′) + α2[Af − A(φ′)2 ] = 0.

The first W.K.B. approximations is obtained by setting the coefficients of α2 and

α (both � 1, but of different orders of magnitude) separately equal to zero (and

assuming that A′′ can be ignored).

(φ′)2 = f ⇒ φ(x) =

∫ x

0

√
f(u) du,

2A′φ′ + Aφ′′ = 0 ⇒ 2A′

A
+
φ′′

φ′ = 0 ⇒ ln(A2φ′) = k1

⇒ A2 =
k2

f1/2
⇒ A(x) =

c

[m(x) ]1/4
.

Collecting these results together gives the first-order W.K.B. solution as

y(x) =
c

[m(x) ]1/4
exp

[
iα

∫ x

0

√
f(u) du

]
,
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with α as defined above.

We now substitute m(x) = m0[ 1 + ε sin(2πx/L) ] in the above general result and

expand the expressions containing m(x) up to first order in ε:

y(x) =
c

[m(x) ]1/4
exp

(
iα

∫ x

0

√
1 + ε sin

2πu

L
du

)
,

=
c

m
1/4
0

(1 + ε sin
2πx

L
)−1/4 exp

[
iα

∫ x

0

(
1 +

ε

2
sin

2πu

L

)
du

]
=

c

m
1/4
0

(1 − ε

4
sin

2πx

L
) exp

{
iα

[
x+

εL

4π

(
1 − cos

2πx

L

)]}
.

Thus, the amplitude at x = 0 is A0 = c/m
1/4
0 and its variation at other values of

x is up to ± 1
4
εA0.

With m(x) = m0, the phase would be φ = αx but, with the variation in linear

density, it is ahead of this by

α
εL

4π

(
1 − cos

2πx

L

)
=
εω L

2π

√
m0

T
sin2 πx

L
.

25.18 A W.K.B. solution of Bessel’s equation of order zero,

d2y

dz2
+

1

z

dy

dz
+ y = 0, (∗)

valid for large |z| and −π/2 < arg z < 3π/2 is y(z) = Az−1/2eiz . Obtain an

improvement on this by finding a multiplier of y(z) in the form of an asymptotic

expansion in inverse powers of z as follows.

(a) Substitute for y(z) in (∗) and show that the equation is satisfied to O(z−5/2).

(b) Now replace the constant A by A(z) and find the equation that must be

satisfied by A(z). Look for a solution of the form A(z) = zσ
∑∞

n=0 anz
−n

where a0 = 1. Show that σ = 0 is the only acceptable solution to the indicial

equation and obtain a recurrence relation for the an.

(c) To within a (complex) constant, the expression y(z) = A(z)z−1/2eiz is the

asymptotic expansion of the Hankel function H (1)
0 (z). Show that it is a di-

vergent expansion for all values of z and estimate, in terms of z, the value

of N such that
∑N

n=0 anz
−n−1/2eiz gives the best estimate of H (1)

0 (z).
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(a) We first calculate the required derivatives appearing in Bessel’s equation,

which are given by

dy

dz
= − A

2z3/2
eiz +

iA

z1/2
eiz,

d2y

dz2
=

(3/2)A

2z5/2
eiz − 2

iA

2z3/2
eiz +

i2A

z1/2
eiz .

Substituting these into (∗), and cancelling common factors A and eiz , gives(
3

4z5/2
− i

z3/2
− 1

z1/2

)
+

(
− 1

2z5/2
+

i

z3/2

)
+

1

z1/2
= 0.

The equation is not satisfied exactly, the LHS having a value z−5/2/4. Thus the

error is O(z−5/2).

(b) The first task is to find the equation satisfied by A(z). We can make use of

the result of part (a) by denoting the new y(z) by y(z) = A(z)y1(z) ≡ A(z)z−1/2eiz ,

where

d2y1

dz2
+

1

z

dy1

dz
+ y1 =

eiz

4z5/2
.

Using Leibnitz’ theorem to calculate the LHS of (∗) gives

A′′y1 + 2A′y′
1 + Ay′′

1 + z−1(A′y1 + Ay′
1) + Ay1 = 0,

⇒ A′′y1 + 2A′y′
1 +

1

z
A′y1 +

Aeiz

4z5/2
= 0,

⇒ A′′

z1/2
+ A′

(
− 2

2z3/2
+

2i

z1/2
+

1

z3/2

)
+

A

4z5/2
= 0,

⇒ 4z2A′′ + 8iz2A′ + 1 = 0. (∗∗)

This is the equation to be satisfied by A(z) and so, setting A(z) = zσ
∑∞

n=0 anz
−n,

we have

4

∞∑
n=0

(σ − n)(σ − n− 1)anz
σ−n + 8i

∞∑
n=0

(σ − n)anz
σ−n+1 +

∞∑
n=0

anz
σ−n = 0.

The highest power of z present on the LHS is that of zσ−n+1 when n = 0. Its

coefficient is 8i(σ − 0)a0 and, since a0 �= 0, we must have σ = 0.

When this value is used the equation reduces to

4

∞∑
n=0

n(n+ 1)anz
−n − 8i

∞∑
n=0

nanz
−n+1 +

∞∑
n=0

anz
−n = 0.

Equating the coefficients of z−n gives

4n(n+ 1)an − 8i(n+ 1)an+1 + an = 0 ⇒ an+1 = −i (2n+ 1)2

8(n+ 1)
an.
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(c) Successive terms tn in the series (which has alternate real and imaginary terms

when z is real) are related by

tn+1 = an+1z
−(n+1) = −i (2n+ 1)2

8(n+ 1)
anz

−(n+1) = −i (2n+ 1)2

8(n+ 1)
z−1tn.

The numerator of the fraction on the RHS varies as n2 whilst the denominator is

linear in n. Consequently, no matter how large |z| is, |tn+1| > |tn| for sufficiently

large n, i.e. the expansion is divergent. The closest estimate to H
(1)
0 (z) given by a

sum of the form
∑N

n=0 anz
−n−1/2eiz is obtained when N is chosen so that

(2N + 1)2

8(N + 1)

1

|z| ≈ 1,

i.e. 4N2/8N ≈ |z|, or N ≈ 2|z|. For N larger than this, the additional terms, and

hence the uncertainty in the value of the function, begin to get bigger, rather

than smaller.

25.20 Use the method of steepest descents to show that an approximate value

for the integral

F(z) =

∫ ∞

−∞
exp[ iz( 1

5
t5 + t) ] dt,

where z is real and positive, is(
2π

z

)1/2

exp(−βz) cos(βz − 1
8
π),

where β = 4/(5
√

2).

Although this is an integral with respect to the real variable t, we will consider it

as one along the real axis in the complex t-plane and then distort its path so that

it passes from t = −∞ to t = +∞ via one or more of the saddle points ti of the

complex function.

The saddle points are situated where the gradient of the integrand is zero. The

values of t at which this happens are given by

0 =
d

dt
[ iz( 1

5
t5 + t) ] = iz(t4 + 1) ⇒ ti = ±eiπ/4 or ± e3iπ/4.

We will use the two in the upper half plane, t1 = e3iπ/4 and t2 = eiπ/4.
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The values of the exponents and their second derivatives at the saddles are

f1 = f(t1) = iz
(

1
5
e15iπ/4 + e3iπ/4

)
= 4

5
iz e3iπ/4,

f2 = f(t2) = iz
(

1
5
e5iπ/4 + eiπ/4

)
= 4

5
iz eiπ/4,

f′′
1 = f′′(t1) = 4izt31 = 4iz e9iπ/4

⇒ A1 = 4z and α1 = 9
4
π + 1

2
π = 3

4
π,

f′′
2 = f′′(t2) = 4izt32 = 4iz e3iπ/4

⇒ A2 = 4z and α2 = 3
4
π + 1

2
π = 5

4
π.

We now need to determine the directions of the l.s.d. at the saddles and the senses

in which they are traversed. At t = t1 the directions θ of the l.s.d. are given in

the usual way by sin(2θ + α1) = 0 and the appropriate pair of choices amongst

these by the requirement that cos(2θ + α1) is negative. With α1 = 3π/4, the two

acceptable values of θ are π/8 and 9π/8, with the contour, which starts at −∞,

clearly passing through the saddle and leaving it in the direction θ = π/8. Since

this lies in the range − 1
2
π < θ ≤ 1

2
π, the contribution to the approximate value

of the integral from this saddle point will be positive.

A similar analysis at t = t2 shows that the contour following the l.s.d. there

approaches the saddle from the direction θ = 7π/8 and leaves it in the direction

θ = −π/8, again making a positive contribution to the value of the integral.

Finally, we substitute these calculated data into the standard formula for the

steepest descents estimation,

±
(

2π

Ai

)1/2

exp(fi) exp[ 1
2
i(π − αi) ],

and obtain, with 4/(5
√

2) written as β,

F1(z) = +

(
2π

4z

)1/2

exp

[
4iz

5

(−1 + i)√
2

]
exp[ 1

2
i(π − 3

4
π) ]

=
( π

2z

)1/2

exp(−βz) exp

(
−iβz +

iπ

8

)
,

F2(z) = +

(
2π

4z

)1/2

exp

[
4iz

5

(1 + i)√
2

]
exp[ 1

2
i(π − 5

4
π) ]

=
( π

2z

)1/2

exp(−βz) exp

(
iβz − iπ

8

)
.

Adding these two contributions together gives the stated result

F(z) =

(
2π

z

)1/2

exp(−βz) cos(βz − 1
8
π).
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25.22 The Bessel function Jν(z) is given for | arg z| < 1
2
π by the integral around

a contour C of the function

g(z) =
1

2πi
t−(ν+1) exp

[
z

2

(
t− 1

t

)]
.

The contour starts and ends along the negative real t-axis and encircles the origin

in the positive sense. It can be considered as made up of two contours. One of

them, C2, starts at t = −∞, runs through the third quadrant to the point t = −i
and then approaches the origin in the fourth quadrant in a curve that is ultimately

anti-parallel to the positive real axis. The other contour, C1, is the mirror image

of this in the real axis; it is confined to the upper half plane, passes through t = i

and is anti-parallel to the real t-axis at both of its extremities. The contribution

to Jν(z) from the curve Ck is 1
2
H (k)
ν , the function H (k)

ν being known as a Hankel

function.

Using the method of steepest descents, establish the leading term in an asymptotic

expansion for H (1)
ν for z real, large and positive. Deduce, without detailed calcu-

lation, the corresponding result for H (2)
ν . Hence establish the asymptotic form of

Jν(z) for the same range of z.

We first note that, in the neighbourhood of any saddle point, we will treat that

part of the integrand that is not exponentiated, (2πi)−1t−(ν+1), by assigning it the

value (2πi)−1t
−(ν+1)
0 , where t0 is the location of that saddle point.

The ends of contour C1 are at t = −∞ and t = 0 and we next check the values

of the integrand at these two points, remembering that z is real and positive,

t = −∞, exp

[
z

2

(
t− 1

t

)]
= exp

[ z
2

(−∞ + 0)
]

= 0,

t = 0, exp
[ z

2
(0 − ∞)

]
= 0.

These are both satisfactory in so far as not invalidating the method is concerned.

The saddle points of the integrand f(t) are given by

d

dt

[
z

2

(
t− 1

t

)]
= 0 ⇒ 1 +

1

t2
= 0, i.e. t = ±i.

Clearly we need t = +i for the C1 contour; t = −i will be appropriate to the C2

contour giving H (2)
ν .
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The other derivatives and values needed at t0 = i are

d2

dt2

[
z

2

(
t− 1

t

)]
=
z

2

−2

t3
= − z

t3
= −iz, at t = i,

f0 ≡ f(t0) =
z

2

(
i− 1

i

)
= iz,

t
−(ν+1)
0 = i−(ν+1) = e−iπ(ν+1)/2.

In the standard notation, f′′(t0) ≡ Aeiα, we have A = z and α = 3π/2.

We now use the standard approach that if t− t0 = seiθ then∣∣∣∣ exp

[
z

2

(
t− 1

t

)] ∣∣∣∣ = | exp(f0)| exp[ 1
2
As2(cos 2θ + α) + O(s3) ].

and the line of steepest descents (l.s.d.) is given by the condition that the argument

of exp
[

1
2
z
(
t− t−1

) ]
is independent of s. This is sin(2θ + α) = 0, leading to

θ = ± 1
4
π or θ = ± 3

4
π.

It is not immediately apparent which pair of directions from these four is the

correct choice — for the contour to pass through the saddle point at t = i from

‘(i) top right to bottom left’ or ‘(ii) from bottom right to top left’. To determine

which is correct, we evaluate h(s) = 1
2
(t − t0)

2f′′(t0), where t − t0 = seiθ , in each

case

(i) t− to = seiπ/4 (approaching) or se−3iπ/4 (leaving)

⇒ h(s) = 1
2
s2eiπ/2(−iz) = 1

2
s2z, i.e. real and > 0,

(ii) t− to = se−iπ/4 (approaching) or se3iπ/4 (leaving)

⇒ h(s) = 1
2
s2e−iπ/2(−iz) = − 1

2
s2z, i.e. real and < 0.

For approximating the integral by a Gaussian with its maximum at the saddle

point, clearly we must have case (ii).

Finally, we use the standard form of the integral

I ≈ ±g(t0)
(

2π

A

)1/2

exp(f0) exp[ 1
2
i(π − α) ],

with the ± choice being resolved by the direction in which the l.s.d. passes

through the saddle-point; it is positive if |θ| < π/2 and negative otherwise. In this

particular case, as we have just shown, the l.s.d. traverses the saddle-point in the

direction 3π/4 and the minus sign is appropriate. Putting in the specific values

gives

1

2
H (1)
ν = − 1

2πi

(
2π

z

)1/2

exp(iz) exp[ 1
2
i(π − 3

2
π) ] e−iπ(ν+1)/2,

H (1)
ν =

(
2

πz

)1/2

eize−iπ/4e−iπν/2.
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For H (2)
ν we can deduce from symmetry/antisymmetry that t0 = −i, A = z,

α = π/2, that the contour C2 traverses the saddle point in the direction +iπ/4

and, consequently, that the contribution is a positive one.

H (2)
ν = +

1

πi

(
2π

z

)1/2

exp(−iz) exp[ 1
2
i(π − 1

2
π) ] eiπ(ν+1)/2

=

(
2

πz

)1/2

e−izeiπ/4eiπν/2.

Now adding together the asymptotic forms of 1
2
H (1)
ν and 1

2
H (2)
ν to form that for

Jν(z) gives

Jν(z) ∼ 1

2

(
2

πz

)1/2 (
eize−iπ/4e−iπν/2 + e−izeiπ/4eiπν/2

)
=

(
2

πz

)1/2

cos
(
z − π

4
− νπ

2

)
.
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Tensors

26.2 The components of two vectors A and B and a second-order tensor T are

given in one coordinate system by

A =

 1

0

0

 , B =

 0

1

0

 , T =

 2
√

3 0√
3 4 0

0 0 2

 .
In a second coordinate system, obtained from the first by rotation, the components

of A and B are

A′ =
1

2


√

3

0

1

 , B′ =
1

2

 −1

0√
3

 .
Find the components of T in this new coordinate system and hence evaluate, with

a minimum of calculation,

TijTji, TkiTjkTij , TikTmnTniTkm.

Since we must have x′
i = Lijxj and A and B have their components tranformed

into the given values, L must have the form

L =
1

2


√

3 −1 a

0 0 b

1
√

3 c

 .
We determine a, b and c by requiring that L is orthogonal and has |L| = +1.

LLT =
1

4


√

3 −1 a

0 0 b

1
√

3 c


√

3 0 1

−1 0
√

3

a b c

 = I,
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giving a = 0, b = ±2 and c = 0. The determinant of L is 1
8
(−3b − b + 0), thus

requiring that b = −2. Hence the required orthoganal matrix L is

L =
1

2


√

3 −1 0

0 0 −2

1
√

3 0

 .
The third column of L could have been obtained by considering A′ × B′. The

matrix product T′ = LTLT is given by

T′ =
1

4


√

3 −1 0

0 0 −2

1
√

3 0

 2
√

3 0√
3 4 0

0 0 2


√

3 0 1

−1 0
√

3

0 −2 0


=

1

4


√

3 −1 0

0 0 −2

1
√

3 0


√

3 0 5

−1 0 5
√

3

0 −4 0


=

 1 0 0

0 2 0

0 0 5

 .
As a check, we note that Tr T′ = 1 + 2 + 5 = 2 + 4 + 2 = Tr T.

In this new coordinate system T is diagonal – and therefore very convenient

for calculating the following invariants (tensors of order 0); their values are

independent of the frame in which they are calculated.

TijTji = T ′
ijT

′
ji = 1 + 4 + 25 = 30.

TkiTjkTij = TijTjkTki = T ′
ijT

′
jkT

′
ki = 1 + 8 + 125 = 134.

TikTmnTniTkm = TikTkmTmnTni = T ′
ikT

′
kmT

′
mnT

′
ni = 1 + 16 + 625 = 642.

26.4 Show how to decompose the Cartesian tensor Tij into three tensors,

Tij = Uij + Vij + Sij ,

where Uij is symmetric and has zero trace, Vij is isotropic and Sij has only three

independent components.

We start by writing Tij as the sum of its even and odd parts:

Tij = 1
2
(Tij + Tji) + 1

2
(Tij − Tji) ≡ 1

2
(Tij + Tji) + Sij .

Clearly Sij has zeroes on its leading diagonal and Sji = −Sij; it therefore has only

3 independent components, S12, S13 and S23.
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Now, if the trace Tii is written as T0, then 1
3
T0δij is an isotropic tensor Vij .

Subtracting this from the symmetric part of Tij leaves

Uij = 1
2
(Tij + Tji) − 1

3
T0δij .

Since Uij = Uji, Uij is symmetric. Further,

Tr Uij = 1
2
(T0 + T0) − 1

3
T03 = 0,

i.e. Uij is traceless. This completes the decomposition.

If Tij were a second-order tensor in n dimensions, Sij would have 1
2
n(n − 1)

independent components and the factor in Vij would be 1/n.

26.6 Use tensor methods to establish the following vector identities:

(a) (u × v) × w = (u · w)v − (v · w)u;

(b) curl (φu) = φ curl u + (gradφ) × u;

(c) div (u × v) = v · curl u − u · curl v;

(d) curl (u × v) = (v · grad)u − (u · grad)v + u div v − v div u;

(e) grad 1
2
(u · u) = u × curl u + (u · grad)u.

All of the expressions for vector operators in tensor notation are given in the text

and should be known but, for convenience, the principal ones and the double

epsilon identity are repeated here:

(a × b)i = εijkajbk,

∇ · a =
∂ai

∂xi
,

(∇ × a)i = εijk
∂ak

∂xj
,

εijkεklm = δilδjm − δimδjl .

In addition, it should be remembered that εijk is merely a number and can be

moved from under a differentiation sign.

Where the identity is a vector equation, our proofs will consider only its ith

component; but, as i is general, this will establish the full vector identity. Case (c)

is a scalar identity.
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(a) Consider the ith component:

[ (u × v) × w ]i = εijk(u × v)jwk

= εijkεjlmulvmwk

= (δklδim − δkmδil)ulvmwk

= viulwl − uivmwm

= [ (u · w)v − (v · w)u ]i

(b) Since ∇ is involved in this identity [ and in those in parts (c)-(e) ], we must

take particular care with the order in which we write the differential operator and

the functions (or products of functions) on which it might act. Again consider

the ith component:

[ ∇ × (φu) ]i = εijk
∂

∂xj
(φuk)

= εijkφ
∂uk

∂xj
+ εijkuk

∂φ

∂xj

= φ(∇ × u)i + (∇φ× u)i

(c) As noted above, this is a scalar quantity and any tensor expression for it must

have all of its indices contracted.

∇ · (u × v) =
∂

∂xi
(εijkujvk)

= εijk
∂uj

∂xi
vk + εijkuj

∂vk

∂xi
= vk(∇ × u)k − uj(∇ × v)j

= v · (∇ × u) − u · (∇ × v).

(d) For the ith component of this vector identity,

[ ∇ × (u × v) ]i = εijk
∂

∂xj
(u × v)k

= εijk
∂

∂xj
εklmulvm

= (δilδjm − δimδjl)

(
ul
∂vm

∂xj
+ vm

∂ul

∂xj

)
= ui

∂vj

∂xj
+ vj

∂ui

∂xj
− uj

∂vi

∂xj
− vi

∂uj

∂xj

= ui∇ · v + v · ∇ui − u · ∇vi − vi∇ · u
= [ u(∇ · v) + (v · ∇)u − (u · ∇)v − v(∇ · u) ]i

(e) Since simplification and reduction are usually easier to recognise than the best

way to make an expression more complicated but still valid, we start with the
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most complicated of the terms in the identity:

[ u × (∇ × u) ]i = εijkuj(∇ × u)k

= εijkuj εklm
∂um

∂xl
.

We can now employ the double ε formula to convert this expression into one

containing Kronecker deltas.

[ u × (∇ × u) ]i = (δilδjm − δimδjl)uj
∂um

∂xl

= uj
∂uj

∂xi
− uj

∂ui

∂xj

=
1

2

∂

∂xi
(ujuj) − (u · ∇)ui

= [ 1
2
∇(u · u) − (u · ∇)u ]i.

This completes the proof.

26.8 A column matrix a has components ax, ay, az and A is the matrix with

elements Aij = −εijkak .

(a) What is the relationship between column matrices b and c if Ab = c?

(b) Find the eigenvalues of A and show that a is one of its eigenvectors. Explain

why this must be so.

(a) The matrix equation Ab = c will have the explicit form

c = Ab =

 0 −az ay
az 0 −ax

−ay ax 0

 bx
by
bz

 =

 −azby + aybz
azbx − axbz

−aybx + axby

 = a × b,

i.e. c = a × b.

(b) The characteristic equation for A is

0 = |A − λI| =

∣∣∣∣∣∣
−λ −az ay
az −λ −ax

−ay ax −λ

∣∣∣∣∣∣
= −λ3 − a2

xλ− az(axay + λaz) + ay(azax − λay).

Thus λ = 0 or −λ2 − a2
x − a2

z − a2
y = 0. The second possibility gives λ =

±i(a2
x + a2

y + a2
z)

1/2 = ±i|a|.
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Now consider Aa. From part (a) this is 0 −az ay
az 0 −ax

−ay ax 0

 ax
ay
az

 =

 −azay + ayaz
azax − axaz

−ayax + axay

 =

 0

0

0

 = 0a.

Thus a is an eigenvector of A corresponding to eigenvalue 0. That this must be so

also follows from the general conclusion of part (a) that if c = Ab then c = a×b;

if b = a, then c = a × a = 0 = 0a.

26.10 A symmetric second-order Cartesian tensor is defined by

Tij = δij − 3xixj.

Evaluate the following surface integrals, each taken over the surface of the unit

sphere:

(a)

∫
Tij dS; (b)

∫
TikTkj dS; (c)

∫
xiTjk dS.

We will need the following integrals over the unit sphere U:∫
U

1 dS = 4π,

∫
U

xi dS = 0, on antisymmetry grounds,

∫
U

xixj dS = 0, on antisymmetry grounds for i �= j,

∫
U

x2
i dS =

1

3

∫
U

(x2
1 + x2

2 + x2
3) dS =

1

3

∫
U

1 dS =
4π

3
,

∫
U

x3
i dS = 0, on antisymmetry grounds.

Thus, combining the third and fourth of these,∫
U

xixj dS =
4π

3
δij .

We note that the integrands in (a) and (b) each have two uncontracted subscripts

and that that in (c) has three. As the integrations are with respect to the scalar

414



TENSORS

quantity S , our answers must have corresponding properties.

(a)

∫
U

Tij dS =

∫
U

δij dS −
∫

3xixj dS

= 4πδij − 3
4π

3
δij = 0 for all i and j.

(b)

∫
U

TikTkj dS =

∫
U

(δik − 3xixk)(δkj − 3xkxj) dS

=

∫
U

(δij − 3xixj − 3xixj + 9xixkxkxj) dS

=

∫
U

(δij + 3xixj) dS , since xkxk = 1 on U,

= 4πδij + 3
4π

3
δij = 8πδij .

(c)

∫
U

xiTjk dS =

∫
U

(xiδjk − 3xixjxk) dS

=


0 − 0 if i �= j �= k �= i, on antisymmetry grounds,

0 −
∫
U
xk dS = 0 if i = j �= k or j = k �= i or i = k �= j,

0 −
∫
U
x3
k dS = 0 if i = j = k.

26.12 In four dimensions define second-order antisymmetric tensors Fij and Qij
and a first-order tensor Si as follows:

(a) F23 = H1, Q23 = B1 and their cyclic permutations;

(b) Fi4 = −Di, Qi4 = Ei for i = 1, 2, 3;

(c) S4 = ρ, Si = Ji for i = 1, 2, 3.

Then, taking x4 as t and the other symbols to have their usual meanings in elec-

tromagnetic theory, show that the equations
∑

j ∂Fij/∂xj = Si and ∂Qjk/∂xi +

∂Qki/∂xj +∂Qij/∂xk = 0 reproduce Maxwell’s equations. In the latter i, j, k is any

set of three subscripts selected from 1, 2, 3, 4, but chosen in such a way that they

are all different.

We can write the defining equations for F and Q as

Fij = εijkHk and Qij = εijkBk,

where none of i, j, k is equal to 4.
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First, for i = 1, 2, 3,

Ji = Si =
∑
j

∂Fij

∂xj
=

∂

∂xj
(εijkHk) +

∂Fi4

∂t
= (∇ × H)i − ∂Di

∂t
.

Thus the given equation is the ith component of the Maxwell equation

∇ × H = J + Ḋ.

Second, for i = 4, and noting that, since F is antisymmetric, F44 = 0,

ρ = S4 =
∑
j

∂F4j

∂xj
= −

3∑
j=1

∂Fj4

∂xj
=

3∑
j=1

∂Dj

∂xj
.

This is the Maxwell equation ∇ · D = ρ.

For the equation involving Q, with i, j, k some non-repeating selection from 1, 2, 3,

we have, say,

∂Q23

∂x1
+
∂Q31

∂x2
+
∂Q12

∂x3
= 0,

⇒ ∂B1

∂x1
+
∂B2

∂x2
+
∂B3

∂x3
= 0,

∇ · B = 0.

This is one of Maxwell’s equations. Reassigning 1, 2, 3 amongst i, j, k produces the

same equation.

Finally, for k = 4 and i �= j with neither equal to 4,

∂Qj4

∂xi
+
∂Q4i

∂xj
+
∂Qij

∂t
= 0 ⇒ ∂Ej

∂xi
+
∂(−Ei)
∂xj

+
∂

∂t
(εijmBm) = 0.

We now contract this second equation with εijn and use the double epsilon

identity, remembering also that εijn∂Ej/∂xi is the nth component of ∇ × E:

(∇ × E)n − (−∇ × E)n + (δjjδnm − δjmδnj)
∂Bm

∂t
= 0,

2(∇ × E)n + (3δnm − δnm)
∂Bm

∂t
= 0,

⇒ (∇ × E)n + (Ḃ)n = 0, for n = 1, 2, 3.

This is the nth component of the Maxwell equation (∇ × E) + (Ḃ) = 0.
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26.14 Assuming that the current density j and the electric field E appearing in

equation (26.43), ji = σijEj , are first-order Cartesian tensors, show explicitly that

the electrical conductivity tensor σij transforms according to the law appropriate

to a second-order tensor.

The rate W at which energy is dissipated per unit volume, as a result of the current

flow, is given by E · j. Determine the limits between which W must lie for a given

value of |E| as the direction of E is varied.

This result follows immediately from the quotient law but to show it directly we

proceed as follows.

ji = σijEj, given,

j ′
i = σ′

ijE
′
j , in the transformed frame,

Lipjp = σ′
ijLjqEq, j and E are first-order tensors,

LipσpkEk = σ′
ijLjqEq, substituting for jp,

LirLipσpkEk = LirLjqσ
′
ijEq, multiply by Lir and sum,

(δrpσpk − LirLjkσ
′
ij)Ek = 0, L is orthogonal; relabel dummy suffix,

σrk = LirLjkσ
′
ij , since true for all Ek.

This is a sufficient proof, but to put the final result in the usual form we continue

with

LmrLnkσrk = LmrLnkLirLjkσ
′
ij = δmiδnjσ

′
ij = σ′

mn,

showing that σ is a second-order tensor.

The rate of dissipation is W = Eiji = EiσijEj . The problem is to extremise

this, subject to the constraint EkEk = |E|2, a constant. Introducing a Lagrange

multiplier, we consider the extremes of

W ′ = EiσijEj − λEkEk.

They are given by

∂W ′

∂Ej
= 0 ⇒ 2(σijEi − λEj) = 0.

This shows that the extremising directions of E are the eigenvectors Ê of σ. For

these directions

σijÊiÊj − λÊjÊj = 0 ⇒ Ŵ = λ|E|2.

Thus the maximum and minimum values of W are determined by the maximum

and minimum eigenvalues of σij .
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26.16 A rigid body consists of four particles of masses m, 2m, 3m, 4m, re-

spectively situated at the points (a, a, a), (a,−a,−a), (−a, a,−a), (−a,−a, a) and

connected together by a light framework.

(a) Find the inertia tensor at the origin and show that the principal moments of

inertia are 20ma2 and (20 ± 2
√

5)ma2.

(b) Find the principal axes and verify that they are orthogonal.

The masses are

m at a(1, 1, 1), 2m at a(1,−1,−1),

3m at a(−1, 1,−1), 4m at a(−1,−1, 1).

(a) The inertia tensor components (recall that the off-diagonal elements have an

intrinsic minus sign) are calculated as

I11 = ma2[ 1(2) + 2(2) + 3(2) + 4(2) ] = 20ma2,

I12 = I21 = ma2[ 1(−1) + 2(1) + 3(1) + 4(−1) ] = 0,

I13 = I31 = ma2[ 1(−1) + 2(1) + 3(−1) + 4(1) ] = 2ma2,

I22 = ma2[ 1(2) + 2(2) + 3(2) + 4(2) ] = 20ma2,

I23 = I32 = ma2[ 1(−1) + 2(−1) + 3(1) + 4(1) ] = 4ma2,

I33 = ma2[ 1(2) + 2(2) + 3(2) + 4(2) ] = 20ma2.

Thus,

I = 2ma2

 10 0 1

0 10 2

1 2 10

 ,
and the principal moments are given by 2ma2λ where

0 =

∣∣∣∣∣∣
10 − λ 0 1

0 10 − λ 2

1 2 10 − λ

∣∣∣∣∣∣
= (10 − λ)(λ2 − 20λ+ 96) − 10 + λ

= (10 − λ)(λ2 − 20λ+ 95).

Thus λ = 10 or λ = 10 ±
√

100 − 95 and the principal moments are 20ma2 and

(20 ± 2
√

5)ma2. It is clear that these add up to the trace of I (as a check).

(b) For λ = 10 the (unnormalised) axis vector, v1, satisfies 0 0 1

0 0 2

1 2 0

 x

y

z

 =

 0

0

0

 ⇒ v1 =

 2

−1

0

 .
418



TENSORS

For λ = 10 ±
√

5 the (unnormalised) axis vectors, v2, and v3 satisfy ∓
√

5 0 1

0 ∓
√

5 2

1 2 ∓
√

5

 x

y

z

 =

 0

0

0

 ⇒ v2,3 =

 ±1

±2√
5

 .
Further,

v1 · v2 = (2 − 2 + 0) = 0, v1 · v3 = (−2 + 2 + 0) = 0, v2 · v3 = (−1 − 4 + 5) = 0,

showing that the axes vectors are mutually orthogonal.

26.18 The paramagnetic tensor χij of a body placed in a magnetic field, in which

its energy density is − 1
2
µ0M · H with Mi =

∑
j χijHj , is 2k 0 0

0 3k k

0 k 3k

 .
Assuming depolarizing effects are negligible, find how the body will orientate itself

if the field is horizontal, in the following circumstances:

(a) the body can rotate freely;

(b) the body is suspended with the (1, 0, 0) axis vertical;

(c) the body is suspended with the (0, 1, 0) axis vertical.

The equilibrium orientation of the body will be such as to minimise the total

energy (per unit volume)

E = − 1
2
µ0M · H = − 1

2
µ0χijHiHj,

subject to any constraints imposed by the method of suspension. We therefore

need to maximise (assuming that k > 0) the quadratic form n̂Tχn̂. This could

be done by finding the eigenvalues and eigenvectors of χ or directly from the

quadratic form. We will adopt the latter approach (and omit the factor k which

is merely a scaling factor).

(a) If the body can rotate freely there are no constraints on the components ni
of the unit vector n̂ fixed in the body that aligns itself with the external field. We

therefore maximise

Q = (n1, n2, n3)

 2 0 0

0 3 1

0 1 3

 n1

n2

n3

 = 2n2
1 + 3n2

2 + 3n2
3 + 2n2n3,

subject to n2
1 + n2

2 + n2
3 = 1. Now, Q = 2 + (n2 + n3)

2 which is clearly maximal,

419



TENSORS

given the constraint, when n1 = 0 and n2 = n3 = 1/
√

2. Thus the body aligns

itself with the (0, 1, 1) direction parallel to the field.

(b) With the (1, 0, 0) axis vertical (and the field horizontal), n̂ must have the form

(0, n2, n3) with n2
2 + n2

3 = 1. We consider

Q = (0, n2, n3)

 2 0 0

0 3 1

0 1 3

 0

n2

n3

 = 3n2
2 + 3n2

3 + 2n2n3.

This is Q = 3 + 2n2n3 and, again, is clearly maximal, given the constraint, when

n2 = n3 = 1/
√

2. Thus the equilibrium orientation is as in part (a).

(c) With the (0, 1, 0) axis vertical (and the field horizontal), n̂ must have the form

(n1, 0, n3) with n2
1 + n2

3 = 1. We consider

Q = (n1, 0, n3)

 2 0 0

0 3 1

0 1 3

 n1

0

n3

 = 2n2
1 + 3n2

3,

This is Q = 2 + n2
3 and to obtain a maximum we must take n1 = 0 and n3 = 1.

Thus the body aligns itself with the (0, 0, 1) direction parallel to the field.

26.20 For tin, the conductivity tensor is diagonal, with entries a, a, and b when

referred to its crystal axes. A single crystal is grown in the shape of a long wire

of length L and radius r, the axis of the wire making polar angle θ with respect

to the crystal’s 3-axis. Show that the resistance of the wire is

L

πr2ab

(
a cos2 θ + b sin2 θ

)
.

Since the conductivity tensor σij is diagonal, the usual equation Ji = σijEj can

easily be inverted to read Ei = ρijJj where ρij , the ‘resistance tensor’, has the form a−1 0 0

0 a−1 0

0 0 b−1

 .
The potential difference between the ends of the wire is given by

V = L · E = LiρijJj ,

where L = L(sin θ cosφ, sin θ sinφ, cos θ). Now, although E is not necessarily

parallel to the wire, the current density J must be and can be written

J =
I

πr2
(sin θ cosφ, sin θ sinφ, cos θ).
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It follows that V = LTρJ can be expressed as

IL

πr2
(sin θ cosφ, sin θ sinφ, cos θ)

 a−1 0 0

0 a−1 0

0 0 b−1

 sin θ cosφ

sin θ sinφ

cos θ

 ,
and that the resistance of the wire is

R =
V

I
=

L

πr2

(
sin2 θ

a
+

cos2 θ

b

)
=

L

πr2ab
(b sin2 θ + a cos2 θ).

26.22 For an isotropic elastic medium under dynamic stress, at time t the

displacement ui and the stress tensor pij satisfy

pij = cijkl

(
∂uk

∂xl
+
∂ul

∂xk

)
and

∂pij

∂xj
= ρ

∂2ui

∂t2
,

where cijkl is the isotropic tensor given in equation (26.47) and ρ is a constant.

Show that both ∇ · u and ∇ × u satisfy wave equations and find the corresponding

wave speeds.

Using the given equations and the form of the most general isotropic fourth-order

tensor, we have

pij = (λδijδkl + ηδikδjl + νδilδjk)

(
∂uk

∂xl
+
∂ul

∂xk

)
= λδij2∇ · u + η

∂ui

∂xj
+ η

∂uj

∂xi
+ ν

∂uj

∂xi
+ ν

∂ui

∂xj

= 2λδij∇ · u + (η + ν)

(
∂ui

∂xj
+
∂uj

∂xi

)
.

We now differentiate this equation with respect to xj and sum over j. We also

abbreviate η + ν to µ.

∂pij

∂xj
= 2λ

∂(∇ · u)

∂xi
+ µ

(
∂2ui

∂xj∂xj
+
∂(∇ · u)

∂xi

)
,

⇒ ρ
∂2ui

∂t2
= 2λ

∂(∇ · u)

∂xi
+ µ

(
∂2ui

∂xj∂xj
+
∂(∇ · u)

∂xi

)
.

Next we differentiate this equation with respect to xi and sum over i to obtain

ρ
∂2(∇ · u)

∂t2
= 2λ∇2(∇ · u) + µ[ ∇2(∇ · u) + ∇2(∇ · u) ]

= 2(λ+ µ)∇2(∇ · u).

421



TENSORS

This is a wave equation for (∇ · u) with wave speed [ 2(λ+ η + ν)/ρ ]1/2.

To find a similar equation for ∇ × u, we start from an expression for its ith

component:

(∇ × u)i = εijk
∂uk

∂xj
,

∂2

∂t2
(∇ × u)i = εijk

∂

∂xj

(
∂2uk

∂t2

)
= εijk

∂

∂xj

(
1

ρ

∂pkl

∂xl

)
,

where the given time-dependent equation has been used to make the final step.

Now substituting the alternative expression for pij derived earlier, we have

ρ
∂2

∂t2
(∇ × u)i = εijk

∂2

∂xj∂xl

[
2λδkl∇ · u + µ

(
∂uk

∂xl
+
∂ul

∂xk

)]
= εijk

∂2

∂xj∂xk
[ 2λ∇ · u ] + µεijk

∂2

∂xj∂xl

(
∂uk

∂xl
+
∂ul

∂xk

)
= 0 + µ

∂2

∂xl∂xl

(
εijk

∂uk

∂xj

)
+ µεijk

∂2(∇ · u)

∂xj∂xk

= µ∇2(∇ × u)i + 0.

This is a wave equation for the ith component of (∇ × u) with a wave speed

[ (η+ ν)/ρ ]1/2 that is independent of i. To obtain the third and fourth lines of the

final derivation we twice used the fact that, because εijk is antisymmetric in j and

k whilst ∂2/∂xj∂xk is symmetric in them, the contracted expression containing

both is identically zero.

26.24 Working in cylindrical polar coordinates ρ, φ, z, parameterise the straight

line (geodesic) joining (1, 0, 0) to (1, π/2, 1) in terms of s, the distance along the

line. Show by substitution that the geodesic equations derived at the end of sec-

tion 26.22 are satisfied.

Clearly, the length of the line joining (1, 0, 0) to (1, π/2, 1) in cylindrical polars, i.e.

(1, 0, 0) to (0, 1, 1) in Caretesians, is
√

3. Points along the line are given in terms

of s, the distance along the line, by

x = 1 − s√
3
, y =

s√
3
, z =

s√
3
.

In cylindrical polars, z is as given and (defining the shorthand (∗∗) as in the first

line below)

ρ = (x2 + y2)1/2 =
1√
3

(3 − 2
√

3s+ 2s2)1/2 ≡ 1√
3

(∗∗)1/2,

φ = tan−1 y

x
= tan−1 s√

3 − s
.
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The required derivatives are

dρ

ds
=

1

2
√

3

4s− 2
√

3

(∗∗)1/2
,

d2ρ

ds2
=

1

2
√

3

(∗∗)1/2(4) − 2(2s−
√

3) 1
2
(∗∗)−1/2(4s− 2

√
3)

(∗∗)

=
1

2
√

3

12 − 8
√

3s+ 8s2 − 8s2 + 8
√

3s− 6

(∗∗)3/2
=

√
3

(∗∗)3/2
,

dφ

ds
=

1

1 + s2

(
√

3−s)2

(
√

3 − s)(1) − s(−1)

(
√

3 − s)2
=

√
3

(∗∗)
,

d2φ

ds2
=

−
√

3(4s− 2
√

3)

(∗∗)2
.

Using these results, the first equation,

d2ρ

ds2
− ρ

(
dφ

ds

)2

= 0,

reads
√

3

(∗∗)3/2
− (∗∗)1/2√

3

3

(∗∗)2
= 0, which is satisfied.

The second equation,

d2φ

ds2
+

2

ρ

dρ

ds

dφ

ds
= 0,

reads

−
√

3(4s − 2
√

3)

(∗∗)2
+

2
√

3

(∗∗)1/2
(4s− 2

√
3)

2
√

3(∗∗)1/2

√
3

(∗∗)
= 0, which is also satisfied.

The third equation
d2z

ds2
=

d2

ds2

(
s√
3

)
= 0 is trivially satisfied, thus completing

the verification.

26.26 By writing down the expression for the square of the infinitesimal arc

length (ds)2 in spherical polar coordinates, find the components gij of the metric

tensor in this coordinate system. Hence, using (26.97), find the expression for the

divergence of a vector field v in spherical polars. Calculate the Christoffel symbols

(of the second kind) Γi
jk in this coordinate system.
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Since (ds)2 = (dr)2 + r2(dθ)2 + r2 sin2 θ(dφ)2, we have that

gij =

 1 0 0

0 r2 0

0 0 r2 sin2 θ



and g = |gij | = r4 sin2 θ. Further, for an orthogonal system, gij = hiδij with

gij = h−1
i δij .

For the divergence, as given in equation (26.97), we have

∇ · v = vi;i =
1

√
g

∂

∂ui
(
√
g vi)

=
1

r2 sin θ

∂

∂ui
(r2 sin θ vi)

=
1

r2 sin θ

∂

∂ui
(r2 sin θ gikvk)

=
1

r2 sin θ

∂

∂ui
[r2 sin θ (vi/hi)], still summed over i,

=
1

r2 sin θ

[
∂

∂r
(r2 sin θ vr) +

∂

∂θ
(r sin θ vθ) +

∂

∂φ
(rvφ)

]
=

1

r2
∂

∂r
(r2vr) +

1

r sin θ

∂

∂θ
(sin θ vθ) +

1

r sin θ

∂vφ

∂φ
,

which recovers the familiar form.

The Christoffel symbols of the second kind are calculated from

Γm
ij =

1

2
gmk
(
∂gjk

∂ui
+
∂gki

∂uj
− ∂gij

∂uk

)
.

Because gmk is diagonal, only terms with m = k can contribute; g11 = 1, g22 = r2

and g33 = r2 sin2 θ. For each value of k we have gkk = (gkk)
−1. Further, in the

present case the only non-zero derivatives are

∂g22

∂u1
= 2r,

∂g33

∂u1
= 2r sin2 θ,

∂g33

∂u2
= 2r2 sin θ cos θ.
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Using these expressions in the general formula gives, for those cases in which

i = j,

Γm
11 =

1

2
gmm

(
∂g1m

∂u1
+
∂gm1

∂u1
− ∂g11

∂um

)
= 0, for all m,

Γm
22 =

1

2
gmm

(
∂g2m

∂u2
+
∂gm2

∂u2
− ∂g22

∂um

)
= 0, for m = 2, 3,

= 1
2
g11(0 + 0 − 2r) = −r, for m = 1.

Γm
33 =

1

2
gmm

(
∂g3m

∂u3
+
∂gm3

∂u3
− ∂g33

∂um

)
= 0, for m = 3,

= 1
2
g11(0 + 0 − 2r sin2 θ) = −r sin2 θ, for m = 1,

= 1
2
g22(0 + 0 − 2r2 sin θ cos θ) = − sin θ cos θ, for m = 2.

These account for 9 of the 27 possible Christoffel symbols. The other 18 are

those in which i and j are different, but since the symbols are symmetric under

i-j interchange, only 9 calculations are needed. They are as follows.

Γm
21 = Γm

12 =
1

2
gmm

(
∂g2m

∂u1
+
∂gm1

∂u2
− ∂g12

∂um

)
= 0, for m = 1, 3,

= 1
2
g22(2r + 0 − 0) = r−1, for m = 2,

Γm
31 = Γm

13 =
1

2
gmm

(
∂g3m

∂u1
+
∂gm1

∂u3
− ∂g13

∂um

)
= 0, for m = 1, 2,

= 1
2
g33(2r sin2 θ + 0 − 0) = r−1, for m = 3,

Γm
23 = Γm

32 =
1

2
gmm

(
∂g2m

∂u3
+
∂gm3

∂u2
− ∂g23

∂um

)
= 0, for m = 1, 2,

= 1
2
g33(0 + 2r2 sin θ cos θ − 0) = cot θ, for m = 3.

This completes the calculation of all 27 Christoffel symbols for this coordinate

system; only 9 of them are non-zero.
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26.28 A curve r(t) is parameterised by a scalar variable t. Show that the length

of the curve between two points, A and B, is given by

L =

∫ B

A

√
gij
dui

dt

du j

dt
dt.

Using the calculus of variations (see chapter 22), show that the curve r(t) that

minimises L satisfies the equation

d2ui

dt2
+ Γi

jk

du j

dt

duk

dt
=
s̈

ṡ

dui

dt
,

where s is the arc length along the curve, ṡ = ds/dt and s̈ = d2s/dt2. Hence, show

that if the parameter t is of the form t = as+b, where a and b are constants, then

we recover the equation for a geodesic (26.101).

[ A parameter which, like t, is the sum of a linear transformation of s and a trans-

lation is called an affine parameter. ]

Denoting derivatives with respect to t by a dot notation, the element of curve

length is given by

(ds)2 = gij du
i duj = gij u̇

i dt u̇j dt ⇒ ṡ2 = gij u̇
iu̇j .

Thus

L =

∫ B

A

ds =

∫ B

A

ṡ dt =

∫ B

A

(gij u̇
iu̇j)1/2 dt ≡

∫ B

A

F(ui, u̇i, t) dt.

The Euler–Lagrange equation for minimising L is

0 =
d

dt

(
∂F

∂u̇k

)
− ∂F

∂uk

=
d

dt

(
1

2

2gik u̇
i

ṡ

)
− u̇i u̇j

2ṡ

∂gij

∂uk

= − s̈

ṡ2
giku̇

i +
gik ü

i

ṡ
+
u̇i

ṡ

dgik

dt
− u̇i u̇j

2ṡ

∂gij

∂uk

= − s̈

ṡ2
giku̇

i +
gik ü

i

ṡ
+
u̇i

ṡ

∂gik

∂um
u̇m − u̇i u̇j

2ṡ

∂gij

∂uk
.

Now, in the double summation over dummy variables i and m in the third term

on the RHS, we can set

u̇iu̇m
∂gik

∂um
= u̇iu̇m

∂gmk

∂ui

and re-write the Euler–Lagrange equation as

0 = − s̈

ṡ2
giku̇

i +
gik ü

i

ṡ
+
u̇iu̇m

ṡ

1

2

(
∂gik

∂um
+
∂gmk

∂ui

)
− u̇i u̇j

2ṡ

∂gij

∂uk
.
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Next we multiply throughout by glk and contract over k to obtain

0 = − s̈

ṡ
δli u̇

i + δli ü
i +

1

2
u̇iu̇jglk

(
∂gik

∂uj
+
∂gjk

∂ui
− ∂gij

∂uk

)
= − s̈

ṡ
u̇l + ül + Γl

ij u̇
iu̇j ,

thus establishing the stated result.

If t = as + b, then ṡ = a−1 and s̈ = 0; further
d

dt
=

1

a

d

ds
. With this substitution

the minimising equation becomes

1

a2

d2ul

ds2
+ Γl

ij

1

a

dui

ds

1

a

duj

ds
= 0.

This is the equation for a geodesic as given in (26.101).
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Numerical methods

27.2 Using the Newton–Raphson procedure find, correct to three decimal places,

the root nearest to 7 of the equation 4x3 + 2x2 − 200x− 50 = 0.

The Newton–Raphson scheme has 2nd-order convergence and so we expect rapid

convergence if a reasonable first guess is made. The iteration scheme is

xn+1 = xn − f(xn)

f′(xn)

= xn − 4x3
n + 2x2

n − 200xn − 50

12x2
n + 4xn − 200

=
8x3

n + 2x2
n + 50

12x2
n + 4xn − 200

.

Starting with x1 = 7, x2 = 6.951923077 and x3 = x4 = · · · = 6.951436674 to 10

s.f. To 3 decimal places x = 6.951, a result achieved (but not verified) after only

one iteration; as can be seen, a result accurate to 9 decimal places is achieved

after only two iterations.

27.4 The square root of a number N is to be determined by means of the

iteration scheme

xn+1 = xn
[
1 −
(
N − x2

n

)
f(N)

]
.

Determine how to choose f(N) so that the process has second-order convergence.

Given that
√

7 ≈ 2.65, calculate
√

7 as accurately as a single application of the

formula will allow.

428



NUMERICAL METHODS

Writing the iteration scheme in the standard form xn+1 = F(xn), we see that F(x) =

x − x(N − x2)f(N). For second-order convergence we require that F ′(
√
N) = 0.

Now

F ′(x) = 1 − (N − x2)f(N) + 2x2f(N),

F ′(
√
N) = 0 ⇒ f(N) = − 1

2N
,

i.e an iteration scheme that has second-order convergence is

xn+1 = xn

(
1 +

N − x2
n

2N

)
.

With x1 = 2.65 as a first approximation to
√

7, the second approximation is

x2 = 2.65

(
1 +

7 − (2.65)2

14

)
= 2.645741071.

To the same 10-figure accuracy, the correct answer is 2.645751311.

27.6 The following table of values of a polynomial p(x) of low degree contains an

error. Identify and correct the erroneous value and extend the table up to x = 1.2.

x p(x) x p(x)

0.0 0.000 0.5 0.165

0.1 0.011 0.6 0.216

0.2 0.040 0.7 0.245

0.3 0.081 0.8 0.256

0.4 0.128 0.9 0.243

Since the function is a polynomial of low degree, we expect the n-th difference

of the entries to be constant, where n is a relatively low number. To test for this

we set out (in two overlapping parts) a table of calculable differences (working in

units of 0.001) as follows:

x 0.0 0.1 0.2 0.3 0.4 0.5

p(x) 0 11 40 81 128 165

1st diff 11 29 41 47 37

2nd diff 18 12 6 −10 14

3rd diff −6 −6 −16 24
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x 0.5 0.6 0.7 0.8 0.9

p(x) 165 216 245 256 243

1st diff 51 29 11 −13

2nd diff 14 −22 −18 −24

3rd diff −36 4 −6

Several of the 3rd differences are equal at −6, suggesting that the others should

have been but for the error in the given table. To test this we construct an inverted

table assuming that all third differences are in fact −6.

x 0.0 0.1 0.2 0.3 0.4 0.5

3rd diff −6 −6 −6 −6

2nd diff 18 12 6 0 −6

1st diff 11 29 41 47 47

p(x) 0 11 40 81 128 175

x 0.5 0.6 0.7 0.8 0.9

3rd diff −6 −6 −6

2nd diff −6 −12 −18 −24

1st diff 41 29 11 −13

p(x) 175 216 245 256 243

This has reconstructed the original table except for the value of p(0.5) which is

now 0.175, rather than the erroneous value of 0.165.

We continue the table up to x = 1.2 by starting from x = 0.8, where all values

and differences are known.

x 0.8 0.9 1.0 1.1 1.2

3rd diff −6 −6 −6 −6

2nd diff −24 −30 −36 −42

1st diff −13 −43 −79 −121

p(x) 256 243 200 121 0

The corrected and extended table now reads

x p(x) x p(x)

0.0 0.000 0.7 0.245

0.1 0.011 0.8 0.256

0.2 0.040 0.9 0.243

0.3 0.081 1.0 0.200

0.4 0.128 1.1 0.121

0.5 0.175 1.2 0.000

0.6 0.216
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27.8 A possible rule for obtaining an approximation to an integral is the

mid-point rule, given by∫ x0+∆x

x0

f(x) dx = ∆x f(x0 + 1
2
∆x) + O(∆x3).

Writing h for ∆x, and evaluating all derivates at the mid-point of the interval

(x, x + ∆x), use a Taylor series expansion to find, up to O(h5), the coefficients of

the higher-order errors in both the trapezium and mid-point rules. Hence find a

linear combination of these two rules that gives O(h5) accuracy for each step ∆x.

With all derivatives evaluated at x + 1
2
h the Taylor series up to terms in h5 for

f0 = f(x) and f1 = f(x+ h) are

f1, 0 = f ± h

2
f′ +

1

2!

(
h

2

)2

f′′ ± 1

3!

(
h

2

)3

f(3) +
1

4!

(
h

2

)4

f(4) ± 1

5!

(
h

2

)5

f(5),

with the upper sign corresponding to f1 and the lower to f0.

By definition, the midpoint rule gives

Imid = hf.

as the integral for the interval (x, x+ h). For the same interval the trapezium rule

is evaluated as

Itrap =
h

2
(f0 + f1) = h

[
f +

1

2!

h2

4
f′′ +

1

4!

h4

16
f(4) + O(h6)

]
.

The exact integral over the same interval is

Iex =

∫ h/2

−h/2

(
f + yf′ +

y2

2!
f′′ +

y3

3!
f(3) +

y4

4!
f(4) +

y5

5!
f(5) + · · ·

)
dy

= hf +
2

2!

1

3

h3

8
f′′ +

2

4!

1

5

h5

32
f(4) + · · · .

Thus, to O(h5),

Iex = hf +
1

24
h3f′′,

Imid = hf,

Itrap = hf +
1

8
h3f′′,

and the best linear combination of the trapezium and mid-point rules that

approximates the exact result to this order is I = 1
3
Itrap + 2

3
Imid.
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27.10 Using the points and weights given in table 27.9, answer the following

questions.

(a) A table of unnormalised Hermite polynomials Hn(x) has been spattered with

ink blots and gives H5(x) as 32x5−?x3 + 120x and H4(x) as ?x4−?x2 + 12,

where the coefficients marked ? cannot be read. What should they read?

(b) What is the value of the integral

I =

∫ ∞

−∞

e−2x2

1 + 4x2 + 3x
dx,

as given by a 7-point integration routine?

(a) Since the integration points for an n-point Gauss–Hermite integration are

those values of x that make Hn(x) = 0, the given sampling points for a 5-point

routine are those that give the expression 32x5 − ax3 + 120x zero value. Thus

a =
32x5 + 120x

x3
, where x is either of 0.95857 . . . and 2.0218 . . . .

As they must, both cases give the same value; that value is 160.

Let H4(x) = bx4 − cx2 +12. Then, since all four sampling points ±xi for a 4-point

Gauss–Hermite scheme must satisfy H4(xi) = 0, we can write

bx4
1 − cx2

1 + 12 = 0,

bx4
2 − cx2

2 + 12 = 0,

⇒ bx4
1x

2
2 − cx2

1x
2
2 + 12x2

2 = 0,

and bx4
2x

2
1 − cx2

2x
2
1 + 12x2

1 = 0,

⇒ bx2
1x

2
2(x

2
1 − x2

2) + 12(x2
2 − x2

1) = 0,

⇒ b =
12

x2
1x

2
2

, and c =
bx4

i + 12

x2
i

for both i = 1 and i = 2. The first equation gives b = 16 and the second pair

both yield c = 48.

(b) The denominator of the integrand is a quadratic form with ‘4ac > b2’. It

therefore has no real zeroes and we may use Gauss–Hermite integration. To cast

the exponential in the appropriate form, we need to make the change of variable

y =
√

2 x; the exponential then has the form e−y2

, as assumed in the quadrature

formula. The integral becomes

I =

∫ ∞

−∞

e−y2

2y2 + (3/
√

2)y + 1

dy√
2

=

∫ ∞

−∞

e−y2

2
√

2y2 + 3y +
√

2
dy.
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This is now in the form
∫ ∞

−∞ e
−y2

g(y) dy to which the Gauss-Hermite procedure

can be applied directly. Using the points and weights for a 7-point calculation

gives a value of 1.1642.

27.12 In normal use only a single application of n-point Gaussian quadrature is

made, using a value of n that is estimated from experience to be ‘safe’. However,

it is instructive to examine what happens when n is changed in a controlled way.

(a) Evaluate the integral

In =

∫ 5

2

√
7x− x2 − 10 dx

using n-point Gauss–Legendre formulae for n = 2, 3, . . . , 6. Estimate (to 4

s.f.) the value I∞ you would obtain for very large n and compare it with the

result I obtained by exact integration. Explain why the variation of In with

n is monotonically decreasing.

(b) Try to repeat the processes described in (a) for the integrals

Jn =

∫ 5

2

1√
7x− x2 − 10

dx.

Why is it very difficult to estimate J∞?

(a) Since the integral is not over the (finite) range −1 ≤ x ≤ 1, we must first

make the transformation

z =
2x− 5 − 2

5 − 2
⇒ x =

7

2
+

3z

2
.

This results in the integral being

I = 5−2
2

∫ 1

−1

g(z) dz

with g(z) = f(x).

Using the tables of points and weights given in the text, we obtain the following

results as n is varied.

n 2 3 4 5 6

In 3.674 3.581 3.556 3.546 3.541

Clearly, a constant value good to 4 s.f. has not been achieved but, either by rough

plotting (preferably versus an inverse power of n) or by extrapolating the rate of

change of the last two significant figures, we can estimate I∞ as lying in the range

3.533 to 3.535.
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To calculate the exact result, we note that 7x − x2 − 10 can be written (by

‘completing the square’) as 9
4

− (x − 7
2
)2 and so the substitution x = 7

2
+ 3

2
sin θ

gives

I =

∫ π/2

−π/2

3
2

√
1 − sin2 θ 3

2
cos θ dθ

= 9
4

∫ π/2

−π/2
cos2 θ dθ = 9

4
1
2
π = 3.5343

This does come within our estimated range, though, obviously, we could not be

more certain of the value at a level better than ±0.001 without using much higher

values of n. [ n = 20 gives I20 = 3.5345. ]

The monotonic behaviour of In with n comes about because the integrand starts

from zero, rises to a single maximum, and falls to zero again as x nears the end of

its range. This, coupled with the fact that as n increases the sampling points are

continually pushed further outwards from the middle of the range, means that

smaller actual values of the integrand gain increasing weight in the sum, thus

lowering it. Consequently, the series In approaches I monotonically from above.

(b) The procedure is exactly the same as in part (a); only the form of the integrand

is different. The results are:

n 2 3 4 5 6 20

Jn 2.449 2.646 2.755 2.825 2.874 3.057

This time the results are monotonically increasing. This is no surprise, as the

integrand now increases at the extremes of its range; indeed, it has an (integrable)

singularity at each end point. These do not make the Gauss–Legendre sum infinite

for any finite n since the sample points never include the end points of the range.

However, they do prevent the estimates from converging rapidly for small values

of n, thus making it virtually impossible to extrapolate to J∞.

The accurate value of J is obtained by making the same substitution as in part

(a) and produces

J =

∫ π/2

−π/2

3
2
cos θ

3
2

√
1 − sin2 θ

dθ =

∫ π/2

−π/2
dθ = π.

Thus we see that, even with n as high as 20, the second significant figure of the

value of J is not yet established with any certainty.
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A

B

C

S

P Q

R

x

y

1

1

2

2

3

3

4

4
0

Figure 27.1 The area to be estimated using the hit or miss Monte Carlo

method of exercise 27.14.

27.14 A, B and C are three circles of unit radius with centres in the xy-

plane at (1, 2), (2.5, 1.5) and (2, 3), respectively. Devise a hit or miss Monte Carlo

calculation to determine the size of the area that lies outside C but inside A and B,

as well as inside the square centred on (2, 2.5) that has sides of length 2 parallel

to the coordinate axes. You should choose your sampling region so as to make

the estimation as efficient as possible. Take the random number distribution to be

uniform on (0, 1) and determine the inequalities that have to be tested using the

random numbers chosen.

Figure 27.1 shows the three circles and the square, with the area whose size has

to be determined shown shaded. The same shaded area is repeated in the top

right-hand corner of the figure, but on a larger scale and labelled PQRS .

In order to make the estimation as efficient as possible, we sample in the minimal

rectangular region that encloses PQRS . We must therefore find the coordinates

of these ‘corners’. Those of P are determined by the circle B and the square as

P = (2.5 − 1, 2.5 − 1) = (1.5, 1.5). The x-coordinate of Q is determined by the

circle A as 1 +
√

1 − (2 − 1.5)2 = 1 +
√

3/2; its y-coordinate is 1.5. It is therefore

(1 +
√

3/2, 1.5). The circles A and C determine R as (2, 3 − 1) = (2, 2).

The coordinates of S are a little more difficult to find; they are determined by
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the circles B and C as follows:

(x− 2.5)2 + (y − 1.5)2 = 1,

(x− 2)2 + (y − 3)2 = 1,

−5x+ 4x+ 6.25 − 4 − 3y + 6y + 2.25 − 9 = 0, by subtraction,

−x+ 3y − 4.5 = 0, substitute this into C ,

(3y − 6.5)2 + (y − 3)2 = 1,

10y2 − 45y + 50.25 = 0,

y =
45 ±

√
2025 − 2010

20
= 2.056 (2.444, rejected),

x = (3 × 2.056) − 4.5 = 1.669.

The minimal enclosing rectangle is thus 1.5 ≤ x ≤ 2, 1.5 ≤ y ≤ 2.056. We

note that it is entirely contained within the square and so no subsequent test of

individual sample points will be needed in this regard.

The sampling scheme is to select a pair of random numbers, (ξ1, ξ2), and then

set x = 1.5 + αξ1 and y = 1.5 + βξ2. The optimal values for α and β are 0.5

and 0.556 respectively. These values of x and y are then tested to see if they lie

inside/outside the defining circles, using the inequalities:

(αξ1 + 1.5 − 1)2 + (βξ2 + 1.5 − 2)2 ≤ 1,

(αξ1 + 1.5 − 2.5)2 + (βξ2 + 1.5 − 1.5)2 ≤ 1,

(αξ1 + 1.5 − 2)2 + (βξ2 + 1.5 − 3)2 ≥ 1.

If all three conditions are satisfied for n out of N pairs of randomly chosen

numbers, (ξ1, ξ2), the area of PQRS can be estimated as nαβ/N.

27.16 Consider the application of the predictor–corrector method described near

the end of subsection 27.6.3 to the equation

dy

dx
= x+ y, y(0) = 0.

Show, by comparison with a Taylor series expansion, that the expression obtained

for yi+1 in terms of xi and yi by applying the three steps indicated (without any

repeat of the last two) is correct to O(h2). Using steps of h = 0.1, compute the

value of y(0.3) and compare it with the value obtained by solving the equation

analytically.

Since y′ = x+ y, y′′ = 1 + y′ = 1 + x+ y, the first few terms of the Taylor series
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expansion of y(x) are

y(x+ h) = y(x) + hy′(x) + 1
2
h2y′′(x) + · · ·

= y(x) + h(x+ y) + 1
2
h2(1 + x+ y) + · · · .

We now consider the predictor–corrector method and indicate intermediate (pre-

dicted) values by placing a bar over them. As in the main text, we denote the

function of x and y (here x+ y) that determines the derivative dy/dx by f(x, y).

yi+1 = yi + hfi,

fi+1 = xi+1 + yi+1 = xi+1 + yi + h(xi + yi).

Now, using yi+1 = yi +
1
2
h(fi + fi+1 ),

yi+1 = yi +
1
2
h[ xi + yi + xi+1 + yi + h(xi + yi) ]

= yi +
1
2
h(xi + xi+1) + hyi +

1
2
h2(xi + yi)

Now, since xi+1 = xi + h,

yi+1 = yi + hxi + hyi +
1
2
h2(1 + xi + yi).

This coincides with the Taylor series expansion up to O(h2) and proves the stated

result.

We calculate the required value of y(0.3) in the following table (in which each

column is completed before moving to the next and the last entry in each column

becomes the third entry in the next):

i 0 1 2

xi 0.0 0.1 0.2

yi 0.00000 0.00500 0.02103

h(xi + yi) 0.00000 0.01050 0.02210
1
2
h2(1 + xi + yi) 0.00500 0.00553 0.00611

yi+1 0.00500 0.02103 0.04924

The calculated value of y(0.3) is thus 0.04924.

For the marginally reorganised initial equation

dy

dx
− y = x,

we see by inspection that the CF is y(x) = Aex and that a PI is y(x) = −x − 1.

The given boundary condition, y(0) = 0, implies that A = 1 and that the exact

solution is y(x) = ex − x − 1. The correct value of y(0.3) to 4 s.f. is therefore

0.04986.
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27.18 If dy/dx = f(x, y) then show that

d2f

dx2
=
∂2f

∂x2
+ 2f

∂2f

∂x∂y
+ f2 ∂

2f

∂y2
+
∂f

∂x

∂f

∂y
+ f

(
∂f

∂y

)2

.

Hence verify, by substitution and the subsequent expansion of arguments in Taylor

series of their own, that the scheme given in (27.79) coincides with the Taylor

expansion (27.68), i.e.

yi+1 = yi + hy
(1)
i +

h2

2!
y

(2)
i +

h3

3!
y

(3)
i + · · · .

up to terms in h3.

The scheme (a third-order Runge–Kutta calculation) is

yi+1 = yi +
1
6
(b1 + 4b2 + b3),

where

b1 = hf(xi, yi),

b2 = hf(xi +
1
2
h, yi +

1
2
b1),

b3 = hf(xi + h, yi + 2b2 − b1),

To find the first and second total derivatives of f(x, y) with respect to x we use

the chain rule:

df

dx
=
∂f

∂x
+
∂f

∂y

dy

dx

=
∂f

∂x
+ f

∂f

∂y
,

d2f

dx2
=

(
∂

∂x
+ f

∂

∂y

)(
∂f

∂x
+ f

∂f

∂y

)
=
∂2f

∂x2
+ f

∂2f

∂y∂x
+ f

∂2f

∂x∂y
+
∂f

∂x

∂f

∂y
+ f2 ∂

2f

∂y2
+ f

(
∂f

∂y

)2

,

i.e. as stated.

The (accurate) Taylor expansion is

yi+1 = yi + hy
(1)
i +

h2

2!
y

(2)
i +

h3

3!
y

(3)
i + · · · (∗)

= yi + hfi +
h2

2!

(
∂f

∂x
+ f

∂f

∂y

)
+
h3

3!

[
∂2f

∂x2
+ 2f

∂2f

∂x∂y
+
∂f

∂x

∂f

∂y
+ f2 ∂

2f

∂y2
+ f

(
∂f

∂y

)2
]

+ · · ·
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We next need to find explicit expressions for the quantities b1, b2 and b3 in terms

of f and its various derivatives. The first is simple, b1 = hfi. For the other two,

with f evaluated at points other than (xi, yi), we expand in local Taylor series,

retaining only those terms that will be of order h3 or less in the final expression.

For b2:

b2 = hf(xi +
1
2
h, yi +

1
2
hfi)

= hfi + h2

(
1

2

∂fi

∂x
+

1

2
fi
∂fi

∂y

)
+ h3

(
1

2

1

4

∂2fi

∂x2
+

1

2

1

4

∂2fi

∂y2
f2
i +

1

2

1

2

1

2
2
∂2fi

∂x∂y
fi

)
.

For b3, still working to order h3:

b3 = h f( xi + h, yi + 2hf(xi +
1
2
h, yi +

1
2
hfi) − hfi )

= h f

(
xi + h, yi + 2h

[
fi +

1

2
h
∂fi

∂x
+

1

2
hfi

∂fi

∂y

]
− hfi

)
= h f

(
xi + h, yi + hfi + h2 ∂fi

∂x
+ h2fi

∂fi

∂y
+ O(h3)

)
.

We now need a two-variable Taylor expansion of this last function about (xi, yi).

The leading term is clearly hfi and the contributions from partial derivatives with

respect to x only are

h2 ∂fi

∂x
+

1

2
h3 ∂

2fi

∂x2
+ O(h4).

The contributions from partial derivatives with respect to y only are

h

[
hfi + h2

(
∂fi

∂x
+ fi

∂fi

∂y

)]
∂fi

∂y
+ O(h4) +

1

2
h(hfi)

2 ∂
2fi

∂y2
+ O(h4),

whilst, to order h3, the only contribution from the mixed derivatives is

h h hfi
∂2fi

∂x∂y
.

Collecting these together gives b3 as

b3 = hfi + h2

(
∂fi

∂x
+ fi

∂fi

∂y

)
+ h3

[
1

2

∂2fi

∂x2
+
∂fi

∂x

∂fi

∂y
+ fi

(
∂fi

∂y

)2

+
1

2
f2
i

∂2fi

∂y2
+ fi

∂2fi

∂x∂y

]
.

Finally we must form the sum 1
6
(b1 + 4b2 + b3) and check it against the accurate

Taylor expansion for yi+1 − yi. The collected multipliers of the three powers of h
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are:

h :
1

6
(fi + 4fi + fi) = fi,

h2 :
1

6

(
4

2

∂fi

∂x
+

4

2
fi
∂fi

∂y
+
∂fi

∂x
+ fi

∂fi

∂y

)
=

1

2

(
∂fi

∂x
+ fi

∂fi

∂y

)
,

h3 :
1

6

[
4

8

∂2fi

∂x2
+

4

8

∂2fi

∂y2
f2
i +

4

4

∂2fi

∂x∂y
fi +

1

2

∂2fi

∂x2
+
∂fi

∂x

∂fi

∂y

+ fi

(
∂fi

∂y

)2

+
1

2
f2
i

∂2fi

∂y2
+ fi

∂2fi

∂x∂y

]
.

These can now be compared with the expression given in the last line of (∗). The

multipliers of h and h2 have explicitly been shown to be equal and those of h3 are

also shown to be so when the final expression above is simplified; this establishes

the validity of this third-order Runge–Kutta scheme.

27.20 Set up a finite difference scheme to solve the ordinary differential equation

x
d2φ

dx2
+
dφ

dx
= 0

in the range 1 ≤ x ≤ 4 and subject to the boundary conditions φ(1) = 2 and

dφ/dx = 2 at x = 4. Using N equal increments, ∆x, in x, obtain the general

difference equation and state how the boundary conditions are incorporated into the

scheme. Setting ∆x equal to the (crude) value 1, obtain the relevant simultaneous

equations and so obtain rough estimates for φ(2), φ(3) and φ(4).

Finally, solve the original equation analytically and compare your numerical esti-

mates with the accurate values.

We will use central differences for both derivatives except at x = 4 where the

backward difference is used to fit the boundary condition on dφ/dx.

Defining ∆x by N∆x = 3 and denoting φ(1 + j∆x) by φj , we have as boundary

conditions, φ0 = 2 and φN = φN−1 + 2∆x. We thus have to calculate φj for

j = 1, 2, . . . , N − 2 using a difference representation of the differential equation

taking the form

(1 + j∆x)
φj+1 + φj−1 − 2φj

(∆x)2
+
φj+1 − φj−1

2∆x
= 0,

which can be re-arranged as

[ 2 + (2j + 1)∆x ]φj+1 − (4 + 4j∆x)φj + [ 2 + (2j − 1)∆x ]φj−1 = 0.
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Now setting ∆x = 1 (and consequently N = 3) we have, for j = 1, 2, in turn,

5φ2 − 8φ1 + 3 × 2 = 5φ2 − 8φ1 + 6 = 0,

7(φ2 + 2) − 12φ2 + 5φ1 = −5φ2 + 5φ1 + 14 = 0.

Solving this pair of simultaneous equations gives

φ1 =
20

3
= 6.67 and φ2 =

142

15
= 9.47.

Re-substitution of these values in the recurrence relation then gives the value of

φ at the upper boundary, where only its slope has been specified, as

φ3 = 11.47.

For an analytical solution we write the equation as

φ′′

φ′ +
1

x
= 0 ⇒ φ′x = k = 2 × 4 = 8, using φ′(4) = 2,

dφ

dx
=

8

x
⇒ φ = c+ 8 lnx = 2 + 8 lnx.

The boundary condition at x = 4 has already been incorporated into the first line

above and that at x = 1 is used in the second. The accurately calculated values

are therefore

φ(2) = φ1 = 7.55, φ(3) = φ2 = 10.79, φ(4) = φ3 = 13.09.

The estimated values follow the same trend as the accurate ones but are consis-

tently lower (except at x = 1 where they are forced to be equal). The major source

of inaccuracy arises from forcing the difference between the estimated values of

φ(4) = φ3 and φ(3) = φ2 to be 2; the accurate solution has an average slope in

this range of 8 ln(4/3) = 2.30, i.e. significantly higher than 2.

27.22 Use the isocline approach to sketch the family of curves that satisfies the

non-linear first-order differential equation

dy

dx
=

a√
x2 + y2

.

At each point in the xy-plane, the equation determines the slope of the solution.

A solution curve must therefore pass through a (continuous) series of points,

at each of which its tangent has the relevant slope. A computer-generated plot,

together with typical solution curves, is shown in figure 27.2.
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a

a

2a

2a

−a

−a

−2a

−2a

x

y

Figure 27.2 Typical solutions y = y(x), shown by solid lines, of dy/dx =

a(x2 + y2)−1/2. The short arrows give the direction that the tangent to any

solution must have at that point.

27.24 In the previous exercise (27.23) the difference scheme for solving

∂u

∂t
+
∂u

∂x
= 0,

in which A has been set equal to unity, was one-sided in both space (x) and

time (t). A more accurate procedure (known as the Lax–Wendroff scheme) is

u(p, n+ 1) − u(p, n)

∆t
+
u(p+ 1, n) − u(p− 1, n)

2∆x

=
∆t

2

[
u(p+ 1, n) − 2u(p, n) + u(p− 1, n)

(∆x)2

]
.

(a) Establish the orders of accuracy of the two finite difference approximations

on the LHS of the equation.

(b) Establish the accuracy with which the expression in the brackets approxi-

mates ∂2u/∂x2.

(c) Show that the RHS of the equation is such as to make the whole difference

scheme accurate to second order in both space and time.
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(a) and (b) We start with the (accurate) Taylor expansion in space for u(p± 1, n);

u(p± 1, n) = u(p, n) ± ∆x
∂u(p, n)

∂x
+

(∆x)2

2!

∂2u(p, n)

∂x2
± (∆x)3

3!

∂3u(p, n)

∂x3
+

The second term on the LHS of the Lax–Wendroff scheme is thus

u(p+ 1, n) − u(p− 1, n)

2∆x
=
∂u(p, n)

∂x
+ O

(
(∆x)2

)
,

whilst its RHS is

∆t

2

[
∂2u(p, n)

∂x2
+ O

(
(∆x)2

) ]
.

Both are accurate to second order in ∆x. We note at this point that the second

spatial derivative does not actually appear on the RHS of the original equation;

in the original equation the RHS is zero.

For the first term on the LHS we need a Taylor expansion in time:

u(p, n+ 1) = u(p, n) + ∆t
∂u(p, n)

∂t
+

(∆t)2

2!

∂2u(p, n)

∂t2
+ · · · .

Thus this term in the calculational scheme is

∂u(p, n)

∂t
+

∆t

2!

∂2u(p, n)

∂t2
+ · · · .

So far as a representation of ∂u/∂t in the original equation is concerned, this is

only accurate to first order in ∆t and to make it accurate to second order we

need to compensate for the term

∆t

2!

∂2u(p, n)

∂t2
.

(c) However, from differentiating the original equation separately with respect to

x and t, we have both

∂2u

∂t2
+

∂2u

∂t∂x
= 0 and

∂2u

∂x∂t
+
∂2u

∂x2
= 0,

implying that

∂2u

∂t2
=
∂2u

∂x2
.

This equality (multiplied through by ∆t/2) allows the unwanted terms on each

side of the original equation to be cancelled, leaving the equation accurate to

second order in both ∆x and ∆t.
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27.26 Consider the solution φ(x, y) of Laplace’s equation in two dimensions

using a relaxation method on a square grid with common spacing h. As in the main

text, denote φ(x0 + ih, y0 + jh) by φi,j . Further, define φ
m,n
i,j by

φ
m,n
i,j ≡ ∂m+nφ

∂xm ∂yn

evaluated at (x0 + ih, y0 + jh).

(a) Show that

φ
4,0
i,j + 2φ2,2

i,j + φ
0,4
i,j = 0.

(b) Working up to terms of order h5, find Taylor series expansions, expressed in

terms of the φ
m,n
i,j , for

S±,0 = φi+1,j + φi−1,j

S0,± = φi,j+1 + φi,j−1.

(c) Find a corresponding expansion, to the same order of accuracy, for φi±1,j+1+

φi±1,j−1 and hence show that

S±,± = φi+1,j+1 + φi+1,j−1 + φi−1,j+1 + φi−1,j−1

has the form

4φ0,0
i,j + 2h2(φ2,0

i,j + φ
0,2
i,j ) +

h4

6
(φ4,0

i,j + 6φ2,2
i,j + φ

0,4
i,j ).

(d) Evaluate the expression 4(S±,0+S0,±)+S±,± and hence deduce that a possible

relaxation scheme, good to the fifth order in h, is to recalculate each φi,j as

the weighted mean of the current values of its four nearest neighbours (each

with weight 1
5
) and its four next-nearest neighbours (each with weight 1

20
).

(a) In the notation given, Laplace’s equation takes the form

φ
2,0
i, j + φ

0,2
i, j = 0.

To save space and increase clarity we will omit subscripts that are i, j, but write

them explicitly when they are not. Thus φm, n ≡ φ
m, n
i, j .

Differentiating Laplace’s equation twice more with respect to x and y (separately)

yields

φ4,0 + φ2,2 = 0 and φ2,2 + φ0,4 = 0.

Adding these two equations yields the stated result, but we may, in addition,

deduce several equalities to be used later. We start from φ2, 0 = −φ0, 2 and obtain
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in an obvious way that

φ3, 0 = −φ1, 2, φ0, 3 = −φ2, 1,

and

φ3, 1 = −φ1, 3, φ4, 0 = φ0, 4 = −φ2, 2,

and

φ5, 0 = φ1, 4 = −φ3, 2, φ0, 5 = φ4, 1 = −φ2, 3.

(b) The general Taylor series expansion for φi±1, j is

φi±1, j =

∞∑
m=0

(±h)m
m!

φm, 0,

and, up to order h5,

S±, 0 = φi+1, j + φi−1, j

= 2φ0, 0 + h2φ2, 0 + 1
12
h4φ4, 0.

Similarly,

S0,± = 2φ0, 0 + h2φ0, 2 + 1
12
h4φ0, 4.

(c) The expansion of φi±1, j+1 requires a 2-variable Taylor series and up to order

h5 takes the form

φi±1, j+1 = φ0, 0 ± hφ1, 0 + hφ0, 1 +
h2

2!
(φ2, 0 ± 2φ1, 1 + φ0, 2)

+
h3

3!
(±φ3, 0 + 3φ2, 1 ± 3φ1, 2 + φ0, 3)

+
h4

4!
(φ4, 0 ± 4φ3, 1 + 6φ2, 2 ± 4φ1, 3 + φ0, 4)

+
h5

5!
(±φ5, 0 + 5φ4, 1 ± 10φ3, 2 + 10φ2, 3 ± 5φ1, 4 + φ0, 5).

Because of the equalities derived in part (a), this can be written more compactly

as

φi±1, j+1 = φ0, 0 ± hφ1, 0 + hφ0, 1 +
h2

2!
(±2φ1, 1)

+
h3

3!
(±2φ1, 2 + 2φ2, 1) +

h4

4!
(4φ2, 2) +

h5

5!
(±4φ3, 2 + 4φ2, 3).

For the corresponding expansion of φi±1, j−1 those terms for which the n in φm, n

is odd, will change sign. When the two expansions are added together, such terms

will cancel and leave

φi±1, j+1 + φi±1, j−1 = 2φ0, 0 ± 2hφ1, 0 ± 2h3

3
φ1, 2 +

h4

3
φ2, 2 ± h5

15
φ3, 2.
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Hence,

S±,± = φi+1, j+1 + φi+1, j−1 + φi−1, j+1 + φi−1, j−1

= 4φ0, 0 + 2
3
h4φ2, 2 + O(h6).

This is consistent with the stated expression since φ2, 0 + φ0, 2 = 0 and φ4, 0 +

6φ2, 2 + φ0, 4 = 4φ2, 2.

(d) Now consider the sum S given by

S = 4(S±, o + S0,±) + S±,±

= 4

[
4φ0, 0 + h2(φ0, 2 + φ2, 0) +

h4

12
(φ4, 0 + φ0, 4)

]
+ 4φ0, 0 + 2

3
h4φ2, 2 + O(h6)

= 20φ0, 0 + 4h2(φ0, 2 + φ2, 0) +
h4

3
(φ4, 0 + φ0, 4 + 2φ2, 2) + O(h6)

= 20φ0, 0 + 0 + 0 + O(h6).

Thus

φ0, 0 =
4

20
(S±, 0 + S0,±) +

1

20
S±,± + O(h6)

= 1
5
(φi+1, j + φi−1, j + φi, j+1 + φi, j−1)

+ 1
20

(φi+1, j+1 + φi+1, j−1 + φi−1, j+1φi−1, j−1) + O(h6)

= 1
5

∑
(nearest neighbours)

+ 1
20

∑
(next nearest neighbours) + O(h6).

This could form the basis of a relaxation scheme, as described in the question.
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Group theory

28.2 Which of the following relationships between X and Y are equivalence

relations? Give a proof of your conclusions in each case:

(a) X and Y are integers and X − Y is odd;

(b) X and Y are integers and X − Y is even;

(c) X and Y are people and have the same postcode;

(d) X and Y are people and have a parent in common;

(e) X and Y are people and have the same mother;

(f) X and Y are n × n matrices satisfying Y = PXQ, where P and Q are

elements of a group G of n× n matrices.

(a) Defining an odd integer as one that does not divide by 2 exactly to yield

another integer, this relationship fails to pass the reflexivity test. The equation

X ∼ X implies that X − X = 0 is odd. However, 0 does divide exactly by 2 and

so X �∼ X.

(b) With X − Y required to be even, this relationship satisfies the reflexivity

criterion. Further, since (i) 2n and −2n are both even and (ii) X−Z = (X−Y )+

(Y − Z) and the sum of two even integers is even, the symmetry and transitivity

requirements are also met. Thus this relationship is an equivalence relation. The

partition is that of the integers into odd and even integers.

(c) Clearly an equivalence relation. The classes consist of all the people, amongst

those considered, who have the same postcode.

(d) Although at first sight this may appear to be an equivalence relation, it is

not necessarily a transitive relationship. For three people X, Y and Z for whom
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X ∼ Y and Y ∼ Z , if Y ’s parents both re-marry and X and Z are children of

the two second marriages, then X �∼ Z .

(e) Assuming that there is an agreed single definition of mother (so that, for

example, a person cannot have two mothers, one natural and one the result of

adoption or parental re-marriage) then this is an equivalence relation.

(f) Since the identity I belongs G and X = IXI , X ∼ X, showing that the

relationship is reflexive.

If Y ∼ X then Y = PXQ ⇒ X = P−1Y Q−1. But as P and Q belong to G so

do P−1 and Q−1. Thus X ∼ Y and the relationship is symmetric.

If Y ∼ X and Z ∼ Y then Y = PXQ and Z = RY S , where R and S are also

elements of the group. Thus Z = RPXQS . However, as P , Q, R and S all belong

to G, so do RP and QS . It follows that Z ∼ X and that the relationship is

transitive.

These three results together show that the relationship is an equivalence relation.

28.4 Prove that the relationship X ∼ Y , defined by X ∼ Y if Y can be

expressed in the form

Y =
aX + b

cX + d
,

with a, b, c and d as integers, is an equivalence relation on the set of real numbers

�. Identify the class that contains the real number 1.

(i) Reflexivity is shown by writing X =
1X + 0

0X + 1
.

(ii) Symmetry is shown by rewriting the defining equation as

cXY + dY = aX + b ⇒ X =
−dY + b

cY − a
.

(iii) For transitivity, we have

Y =
aX + b

cX + d
and Z =

a′Y + b′

c′Y + d′

giving

Z =
a′(aX + b) + b′(cX + d)

c′(aX + b) + d′(cX + d)
=

(a′a+ b′c)X + (a′b+ b′d)

(c′a+ d′c)X + (c′b+ d′d)
.

All of these coefficients are integers and so transitivity is established.

Thus X ∼ Y satisfies the three requirements of an equivalence relation on �, the

set of real numbers.

By setting X = 1 in the defining relationship, we can see that Y must have the
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form of the ratio of (any) two integers. Thus the class to which 1 belongs is the

set of rational numbers.

28.6 Prove that the set M of matrices

A =

(
a b

0 c

)
,

where a, b, c are integers (mod 5) and a �= 0 �= c, forms a non-Abelian group

under matrix multiplication.

Show that the subset containing elements of M that are of order 1 or 2 do not

form a proper subgroup of M,

(a) using Lagrange’s theorem,

(b) by direct demonstration that the set is not closed.

Consider the product of two typical matrices in the set, A and B,

AB =

(
a b

0 c

)(
d e

0 f

)
=

(
ad ae+ bf

0 cf

)
.

Since 5 is prime, the product ad cannot equal 0 unless at least one of a and d is

0; but this is ruled out by the given form of the matrices. Similarly cf �= 0. Thus

the set is closed under matrix multiplication.

Matrix multiplication is associative.

The set has an obvious identity element I =

(
1 0

0 1

)
.

The inverse of the typical matrix A is found in the usual way:

A−1 =
1

ac

(
c −b
0 a

)
,

as is easily verified. We use the fact that a �= 0 �= c to deduce that |A| = ac �= 0

and hence justify the usual inversion calculation. We note that for x = 1, 2, 3, 4

the multiplicative inverses (mod 5) are 1, 3, 2, 4 respectively and are well-defined

and unique. In particular, this means that 1/ac is a well-defined integer (not the

fraction it may appear to be at first sight).

These four results establish the set M as a group.

There are four choices each for the values of a and c and five choices for b; the

group therefore has 4 × 4 × 5 = 80 elements.

The only difference between the products AB and BA is in the (1, 2) element. For
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an Abelian group the two products need to be equal, i.e. ae+ bf = bd+ ec (mod

5). But if, for example, b �= 0, a = c �= 0, d �= f and e = 0 then this needed

equality is not satisfied. This is sufficent to show that the group is non-Abelian.

(a) The only element of order 1 is the identity. An element of order 2, i.e. A2 = I,

must have a2 = c2 = 1 and ab + bc = 0. The only possibilities for a and c are

therefore 1 and 4.

If a = c = 1, then 2b = 0 (mod 5) ⇒ b = 0, A = I, already counted.

If a = c = 4, then 8b = 0 (mod 5) ⇒ b = 0, one such matrix.

If a = 1, c = 4, then 5b = 0 (mod 5) ⇒ b arbitrary, five such matrices.

If a = 4, c = 1, then 5b = 0 (mod 5) ⇒ b arbitrary, five such matrices.

Thus there is a total of 12 matrices of order 1 or 2 in the set.

But, by Lagrange’s theorem, the order of any subgroup must divide the order of

the group. As 12 does not divide 80, the subset cannot be a proper subgroup of

M.

(b) To find a counter-example to the closure of the set, consider the product of

two matrices of the third type found in part (a):

C =

(
1 b

0 4

)(
1 e

0 4

)
=

(
1 e+ 4b

0 1

)
.

In view of its diagonal elements, this product can only be a member of the set if

it is the identity [ as shown in part(a) ], thus requiring e + 4b = 0. So, to find a

counter-example, we are led to consider a specific case, b = 0 and e = 3, which

does not satisfy the requirement.

C =

(
1 0

0 4

)(
1 3

0 4

)
=

(
1 3

0 1

)
.

Now,

C2 =

(
1 3

0 1

)(
1 3

0 1

)
=

(
1 1

0 1

)
�=
(

1 0

0 1

)
.

Thus C has order > 2 and does not belong to the set; the set is not closed and

cannot form a subgroup of M.

28.8 Show that, under matrix multiplication, matrices of the form

M(a0, a) =

(
a0 + a1i −a2 + a3i

a2 + a3i a0 − a1i

)
,

where a0 and the components of column matrix a = (a1 a2 a3)
T are real num-

bers satisfying a2
0 + |a|2 = 1, constitute a group. Deduce that, under the transfor-

mation z → Mz, where z is any column matrix, | z |2 is invariant.
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As usual, we take the associativity of matrix multiplication for granted.

An identity element is provided by M(1, 0), i.e. a0 = 1, a1 = a2 = a3 = 0, which

satisfy a2
0 + | a |2 = 1.

We next note that if we write a typical matrix N in terms of complex numbers ni
as

N =

(
n1 −n∗

2

n2 n∗
1

)
with |N| = (a2

0 + a2
1) + (a2

2 + a2
3) = |n1|2 + |n2|2 = 1,

then the product P = NM of two such matrices is

P =

(
n1 −n∗

2

n2 n∗
1

)(
m1 −m∗

2

m2 m∗
1

)
=

(
n1m1 − n∗

2m2 −n1m
∗
2 − n∗

2m
∗
1

n2m1 + n∗
1m2 −n2m

∗
2 + n∗

1m
∗
1

)
.

This is of the form(
p1 −p∗

2

p2 p∗
1

)
with

{
p1 = n1m1 − n∗

2m2

p2 = n2m1 + n∗
1m2

.

Further |P| = |N| |M| = 1 × 1 = 1, i.e. p1p
∗
1 + p2p

∗
2 = 1. Thus the set is closed.

It just remains to establish the existence of an inverse N−1 for each N within the

set. The inverse is constructed in the normal way (recalling that |N| = 1) as

N−1 =

(
n∗

1 n∗
2

−n2 n1

)
.

This is of the given form, with n1 → n∗
1 and n2 → −n2. These changes correspond

to a0 → a0 and ai → −ai for i = 1, 2, 3, i.e. a → −a.

Clearly, |N−1| = |n1|2 + |n2|2. This expression was shown to be equal to unity when

we considered |N| earlier Thus, in summary,

[M(a0, a)]−1 = M(a0,−a).

The set of matrices have now been shown to satisfy all the conditions for forming

a group under matrix multiplication, and so they do so.

Under z → Mz,

| z |2 = z†z → z†M†Mz.
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But

M†M =

(
m1 −m∗

2

m2 m∗
1

)†(
m1 −m∗

2

m2 m∗
1

)

=

(
m∗

1 m∗
2

−m2 m1

)(
m1 −m∗

2

m2 m∗
1

)

=

(
|m1|2 + |m2|2 0

0 |m2|2 + |m1|2
)

=

(
1 0

0 1

)
= I.

It follows that under the transformation z → Mz for a general matrix z,

| z |2 → z† I z = | z |2,

i.e. is invariant.

28.10 The group of rotations (excluding reflections and inversions) in three

dimensions that take a cube into itself is known as the group 432 (or O in the

usual chemical notation). Show by each of the following methods that this group

has 24 elements.

(a) Identify the distinct relevant axes and count the number of qualifying rota-

tions about each.

(b) The orientation of the cube is determined if the directions of two of its body

diagonals are given. Consider the number of distinct ways in which one body

diagonal can be chosen to be ‘vertical’, say, and a second diagonal made to

lie along a particular direction.

(a) As always, the identity (do nothing) operation is one of the symmetries of the

cube.

About the three normals through the centres of opposite faces of the cube,

rotations of π take the cube into itself, as do the six rotations of ±π/2 about the

same normals.

Rotations of π about diagonals joining the centre points of opposite edges of the

cube are further symmetry operations on the cube; there are six of these.

Finally, there are eight rotations of ±2π/3 about the cube’s body diagonals.

These bring the total up to 1 + 3 + 6 + 6 + 8 = 24 symmetry operations.
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(b) The ‘vertical’ diagonal can be chosen in 4×2 ways (either end of each diagonal

can be ‘up’). There are then three equivalent rotational positions (notionally

rotations through 0 and ± 2
3
π) about the vertical, each bringing a different body

diagonal into any specified position. Thus there are 4 × 2 × 3 = 24 possibilities

altogether.

28.12 If A and B are two groups then their direct product, A × B, is defined

to be the set of ordered pairs (X,Y ), with X an element of A, Y an element of

B and multiplication given by (X,Y )(X ′, Y ′) = (XX ′, Y Y ′). Prove that A × B is

a group.

Denote the cyclic group of order n by Cn and the symmetry group of a regular

n-sided figure (an n-gon) by Dn – thus D3 is the symmetry group of an equilateral

triangle, as discussed in the text.

(a) By considering the orders of each of their elements, show (i) that C2 × C3 is

isomorphic to C6, and (ii) that C2 × D3 is isomorphic to D6.

(b) Are any of D4, C8, C2 × C4, C2 × C2 × C2 isomorphic?

We consider the four requirements for A × B to be a group.

(1) Closure:

X ∈ A and X ′ ∈ A ⇒ XX ′ ∈ A, since A is a group.

Similarly, Y Y ′ ∈ B. Hence (XX ′, Y Y ′) ∈ A × B, i.e the set is closed.

(2) Associativity holds since it does so in A and B separately.

(3) The identity:

IA ∈ A and IB ∈ B ⇒ (IA, IB) ∈ A × B,

and

(IA, IB)(X,Y ) = (IAX, IBY ) = (X,Y ).

Thus (IA, IB) is in A × B and is its identity.

(4) Inverse: If X ∈ A then X−1 ∈ A (since A is a group); similarly Y −1 ∈ B.

Thus

(X−1, Y −1) ∈ A × B, and (X,Y )(X−1, Y −1) = (XX−1, Y Y −1) = (IA, IB).

Thus each element of A × B has an inverse in the set.

These four results establish A × B as a group.
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(a)(i) In C6 with generator P (P 6 = I), I has order 1, P and P 5 have order 6, P 2

and P 4 have order 3, whilst P 3 has order 2.

How consider C2 ×C3 which has 2×3 = 6 elements (the same as C6). With X ∈ C2

and Y ∈ C3, the elements (X,Y ) and their orders are [X and Y are not the

identity except where explicitly stated ]:

(I, I) has order 1 1 element;

(I, Y ) has order 3 2 elements;

(X, I) has order 2 1 element;

(X,Y ) has order 6 1 × 2 = 2 elements.

Thus C6 and C2 × C3 both have six elements and have the same numbers of

elements of any particular order. Therefore they are isomorphic.

(ii) Consider first the set of symmetry operations on a regular hexagon (the group

D6). In addition to the identity, it includes five rotations of 2πk/6 (k = 1, 2, . . . , 5)

about an axis through the hexagon’s centre and perpendicular to its plane. The

two with k = 1, 5 have order 6, the two with k = 2, 4 have order 3, whilst that

with k = 3 has order 2.

Further there are 3 reflection symmetries with respect to diagonals joining op-

posite corners of the hexagon, and 3 more with respect to diagonals joining the

centres of opposite sides. Clearly, all of the reflection symmetries have order 2.

In summary, D6 has twelve elements: one of order 1, seven of order 2, and two

each of orders 3 and 6.

As shown in the text, the group D3 has six elements: one of order 1, two (rotations)

of order 3, and three (reflections) of order 2. With the same notation as in part

(a), the elements (X,Y ) of C2 × D3 and their orders are:

(I, I) has order 1 1 element;

(I, Yrot) has order 3 2 elements;

(I, Yref ) has order 2 3 elements;

(X, I) has order 2 1 element;

(X,Yrot) has order 6 1 × 2 = 2 elements;

(X,Yref ) has order 2 1 × 3 = 3 elements.

Again, in summary, C2 ×D3 has twelve elements: one of order 1, seven of order 2,

and two each of orders 3 and 6. Thus the groups D6 and C2 ×D3 are isomorphic.

(b) The groups D4, C8, C2 × C4, C2 × C2 × C2 each have eight elements [ see the

previous exercise (28.11) in the case of D4 ]. Thus each has the potential to be

isomorphic to any other. The same exercise showed that D4 has five elements of

order 2 and two of order 4, as well as the identity of order 1.
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However, each cyclic group Cn must contain at least one element of order n and

no element in any product cyclic group can have an order that is greater than the

LCM of the orders of the individual groups. Thus C8 has an element of order 8,

C2 ×C2 ×C2 has no element of order greater than 2, and C2 ×C4 has an element of

order 4, but no greater. These results, together with the above observations about

D4 mean that only C2 × C4 and D4 could possibly be isomorphic. These have to

be examined further.

C4 has one element of order 1, one of order 2 and two of order 4. (Elements of

order 3 are not possible since 3 does not divide 4 exactly.) Forming the elements

of C2 × C4, we obtain:

(I, I) has order 1 1 element;

(I, Y2) has order 2 1 element;

(I, Y4) has order 4 2 elements;

(X, I) has order 2 1 element;

(X,Y2) has order 2 1 element;

(X,Y4) has order 4 2 elements.

In summary, C2 × C4 has one element of order 1, three of order 2 and four of

order 4. This is not the same distribution as for D4 and so the two groups cannot

be isomorphic.

28.14 Show that if p is prime then the set of rational number pairs (a, b),

excluding (0, 0), with multiplication defined by

(a, b) • (c, d) = (e, f), where (a+ b
√
p)(c+ d

√
p) = e+ f

√
p,

forms an Abelian group. Show further that the mapping (a, b) → (a,−b) is an

automorphism.

From the given combination law

e = ac+ bdp and f = ad+ bc.

As a, b, c and d are all rational numbers, so are e and f. The set of rational

number pairs is therefore closed. Associativity and commutativity are obvious and

the number pair I = (1, 0) clearly has the property that IX = X for any rational

number pair X. The existence of inverses is the only requirement remaining to be

established in order to complete the proof that the set forms an Abelian group

under the given combination law.
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Now,

(c, d) • (a, b) = (1, 0) ⇒ c+ d
√
p =

1

a+ b
√
p

=
a− b

√
p

a2 − b2p
.

Further, since a and b are rational (and
√
p is not), a2 �= b2p. Although it is not

zero, a2 − b2p is rational, and so, therefore are c and d. To summarise,

(a, b)−1 = (c, d) =

(
a

a2 − b2p
,

−b
a2 − b2p

)
,

a rational number pair that is included in the set. The proof is now complete.

For the mapping (a, b) → (a,−b)

[ (a, b) • (c, d) ] ′ = (ac+ bdp, ad+ bc)′ = (ac+ bdp,−ad− bc),

whilst

(a, b)′ • (c, d)′ = (a,−b) • (c,−d) = (ac+ bdp,−bc− ad).

Hence

[ (a, b) • (c, d) ] ′ = (a, b)′ • (c, d)′,

showing that the mapping is a homomorphism. The mapping is clearly one-to-

one, making it an isomorphism and, finally, since the object and image sets are

the same, it is an automorphism.

28.16 For the group G with multiplication table 28.8 and proper subgroup

H = {I, A, B}, denote the coset {I, A, B} by C1 and the coset {C,D, E} by C2. Form

the set of all possible products of a member of C1 with itself, and denote this by

C1C1. Similarly compute C2C2, C1C2 and C2C1. Show that each product coset is equal

to C1 or to C2 and that a 2 × 2 multiplication table can be formed, demonstrating

that C1 and C2 are themselves the elements of a group of order 2. A subgroup like

H whose cosets themselves form a group is a normal subgroup.

The multiplication table is

I A B C D E

I I A B C D E

A A B I E C D

B B I A D E C

C C D E I A B

D D E C B I A

E E C D A B I

As can be seen, dividing the six elements into the two cosets based on the
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subgroup {I, A, B} corresponds to dividing the table into four quarters, as shown.

The first three rows and the first three columns are labelled by the elements of

C1 whilst the last three rows and columns are labelled by the elements of C2.

It is clear from inspection that the top LH quarter gives the set of products

denoted in the question by C1C1; it is equally clear that it contains only elements

that are in C1, thus C1 × C1 = C1. Similarly, in the top RH quarter, C1 × C2 = C2.

In the same way, C2 × C1 = C2 and C2 × C2 = C1.

Thus we can also draw up a multiplication table for the cosets themselves

C1 C2

C1 C1 C2

C2 C2 C1

This is the multiplication table of a group of order 2 in which C1 is the unit

element.

28.18 The group of reflection–rotation symmetries of a square is known as D4;

let X be one of its elements. Consider a mapping Φ : D4 → S4, the permutation

group on four objects, defined by Φ(X) = the permutation induced by X on the

set {x, y, d, d′}, where x and y are the two principal axes, and d and d′ the two

principal diagonals, of the square. For example, if R is a rotation by π/2, Φ(R) =

(12)(34). Show that D4 is mapped onto a subgroup of S4 and, by constructing

the multiplication tables for D4 and the subgroup, prove that the mapping is a

homomorphism.

This group of symmetries and its multiplication table were considered and derived

in exercise 28.11; we will use the same notation here.

Clearly, the set of principal axes and diagonals is left unchanged by both I and R2

and so these two symmetries are mapped onto the permutation (1). As explained

in the question, R interchanges the two principal axes and also interchanges

the two principal diagonals, i.e. it causes the change {x, y, d, d′} → {y, x, d′, d}; it

therefore maps onto (12)(34). The same is true of R3. The reflections m1 and m2

about the principal axes leave those axes unchanged but interchange d and d′;

they therefore both map onto the permutation (34). Similarly m3 and m4 are both

mapped onto (12).

In summary, D4 is mapped by a two-to-one mapping onto the subgroup

{(1), (12)(34), (34), (12)}
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of S4. The entries in the multiplication table for this subgroup,

(1) (12)(34) (34) (12)

(1) (1) (12)(34) (34) (12)

(12)(34) (12)(34) (1) (12) (34)

(34) (34) (12) (1) (12)(34)

(12) (12) (34) (12)(34) (1)

are straightforward and can be verified by inspection; for example, the product

[ (12)(34) ][ (34) ] interchanges the 3rd and 4th objects and then changes them back

again whilst at the same time interchanging the 1st and 2nd. The net result is

that the 1st and 2nd objects are interchanged and the 3rd and 4th are untouched,

i.e. equivalent to (12).

This 4 × 4 table and the 4 × 4 table produced by combining the elements of D4 in

appropriate pairs, according to their common effects on the axes and diagonals

of the square, clearly have the common structure

I A B C

I I A B C

A A I C B

B B C I A

C C B A I

.

Here (1), I and R2 are replaced by I; (12)(34), R and R3 are replaced by A; (34),

m1 and m2 are replaced by B; and (12), m3 and m4 are replaced by C . This shows

that the mapping Φ is a homomorphism. It is not, however, an isomorphism as

the mapping is not one-to-one; it is, in fact, an epimorphism.

28.20 In the quaternion group Q the elements form the set

{1,−1, i,−i, j,−j, k,−k},

with i2 = j2 = k2 = −1, ij = k and its cyclic permutations, and ji = −k and its

cyclic permutations. Find the proper subgroups of Q and the corresponding cosets.

Show that all of the subgroups are normal subgroups. Show further that Q cannot

be isomorphic to the group 4mm (C4v) considered in exercise 28.11.

In order to establish the subgroups of the quaternion group we draw up its
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multiplication table which reads as follows

1 −1 i −i j −j k −k
1 1 −1 i −i j −j k −k

−1 −1 1 −i i −j j −k k

i i −i −1 1 k −k −j j

−i −i i 1 −1 −k k j −j
j j −j −k k −1 1 i −i

−j −j j k −k 1 −1 −i i

k k −k j −j −i i −1 1

−k −k k −j j i −i 1 −1

From this table it can be seen that the proper subgroups are

{1, −1}, {1, −1, i, −i}, {1, −1, j, −j}, {1, −1, k, −k}.

The cosets of the subgroup {1,−1}, which has order 2, are immediately found to

be

C1 = {1, −1}, Ci = {i, −i}, Cj = {j, −j}, Ck = {k, −k}.

The multiplication table also shows that the product of two elements drawn one

each from C1 and Cn always belongs to Cn, i.e. C1 × Cn = Cn for n = 1, i, j, k. Simi-

larly Cn × Cn = C1. It is only slightly more complicated to see that Ci × Cj = Ck ,
and corresponding results obtained by interchanging any pair of subscripts, are

valid. The cosets themselves obey a group multiplication table of the form

C1 Ci Cj Ck
C1 C1 Ci Cj Ck
Ci Ci C1 Ck Cj
Cj Cj Ck C1 Ci
Ck Ck Cj Ci C1

With C1 as the identity, this is a group under coset multiplication and establishes

{1,−1} as a normal subgroup of Q. We note that, unlike Q itself, the group of

cosets is Abelian.

We now consider the three subgroups of order 4 and take {1,−1, i,−i} as typical.

Its cosets are Di = {1,−1, i,−i} and D′
i = {j,−j, k,−k}; these two cosets exhaust

the group.

If we select two elements, one from each coset, and multiply them together we

can only obtain one of the four quantities ±j and ±k (recall, that, for example,

(−i)(k) = j). In other words, Di×D′
i = D′

i . Similar, but even simpler, considerations

show that Di × Di = Di and that D′
i × D′

i = Di. Thus Di and D′
i form a group

of order 2 under coset multiplication, with Di as its identity. This shows that the
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subgroup {1,−1, i,−i} is a normal subgroup; corresponding considerations and

conclusions apply to the subgroups {1,−1, j,−j} and {1,−1, k,−k}.

Finally, as shown in exercise 28.11, the group 4mm has five elements of order

2 (rotation by π and the four reflection symmetries). The quaternion group Q
considered here has only one (−1); this rules out any possibility of isomorphism

between the two groups.

28.22 Show that the matrices

M(θ, x, y) =

 cos θ − sin θ x

sin θ cos θ y

0 0 1

 ,
where 0 ≤ θ < 2π, −∞ < x < ∞, −∞ < y < ∞, form a group under matrix

multiplication.

Show that those M(θ, x, y) for which θ = 0 form a subgroup and identify its cosets.

Show that the cosets themselves form a group.

We start by noting that matrix multiplication is associative.

Next consider  cos θ − sin θ x

sin θ cos θ y

0 0 1

 cosφ − sinφ x′

sinφ cosφ y′

0 0 1


=

 cos(θ + φ) − sin(θ + φ) X

sin(θ + φ) cos(θ + φ) Y

0 0 1

 ,
where X = x′ cos θ − y′ sin θ + x and Y = x′ sin θ + y′ cos θ + y. Written in terms

of matrices of the given form, this reads

M(θ, x, y) M(φ, x′, y′) = M(θ + φ,X, Y ),

showing that the set is closed.

Clearly, the unit matrix M(0, 0, 0) = I3 acts as an identity element.

To find an inverse for M(θ, x, y), set φ = −θ and X = Y = 0 in the above display
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equation. This requires that

0 = x′ cos θ − y′ sin θ + x,

0 = x′ sin θ + y′ cos θ + y,

⇒ 0 = x′(cos2 θ + sin2 θ) + x cos θ + y sin θ,

⇒ x′ = −x cos θ − y sin θ,

and 0 = −y′(cos2 θ + sin2 θ) + x sin θ − y cos θ,

⇒ y′ = x sin θ − y cos θ.

Thus M(θ, x, y)−1 = M(−θ,−x cos θ − y sin θ, x sin θ − y cos θ) and establishes the

existence of an inverse within the set.

This completes the proof that the set forms a group under matrix multiplication.

For the subset M(0, x, y), associativity is as before, the identity, M(0, 0, 0), is

included, M(0, x, y)−1 = M(0,−x,−y) is of the correct form and closure is shown

by M(0, x, y)M(0, x′, y′) = M(0, x+x′, y+y′). All four group conditions are satisfied

and the subset forms a subgroup N of the group {M(θ, x, y)}.

Since M(0, x, y)M(θ, x′, y′) = M(θ, x+ x′, y + y′), the cosets of N are

Cθ = {M(θ, x, y), for all −∞ < x, y < ∞},

i.e. all members of any coset have the same value for θ.

If M(θ1, x1, y1) is any member of Cθ1
and M(θ2, x2, y2) any member of Cθ2

, then

M(θ1, x1, y1) M(θ2, x2, y2)

= M(θ1 + θ2, x1 + x2 cos θ1 − y2 sin θ1, y1 + y2 cos θ1 + x2 sin θ1)

belongs to Cθ1+θ2
. In terms of coset multiplication, Cθ1

×Cθ2
= Cθ1+θ2

; the product

coset is contained in the set. The identity is C0 (= N itself) and C−1
θ = C2π−θ is

also in the set of cosets. The cosets therefore form a group.
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Representation theory

29.2 Using a square whose corners lie at coordinates (±1,±1), form a natural

representation of the dihedral group D4. Find the characters of the representation,

and, using the information (and class order) in table 29.4 (p. 1102), express the

representation in terms of irreps.

Now form a representation in terms of eight 2 × 2 orthogonal matrices, by consid-

ering the effect of each of the elements of D4 on a general vector (x, y). Confirm

that this representation is one of the irreps found using the natural representation.

As in figure 29.1, we mark the corners of the square as 1, 2, 3 and 4 and describe

the actions of the various symmetry operations by describing to which of the

four fixed points A = (1, 1), B = (1,−1), C = (−1,−1) and D = (−1, 1) each of

mx

my

mdmd′

A = (1, 1)

B = (1,−1)C = (−1,−1)

D = (−1, 1)
1

23

4

Figure 29.1 The coordinate system and notation used in exercise 29.2.
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the corners is carried. For example R, a clockwise rotation by π/2, carries corner

1 from A to B, corner 2 from B to C , etc. The corresponding matrix is

D(R) =


. 1 . .

. . 1 .

. . . 1

1 . . .


This matrix is traceless, as will be those of the matrices corresponding to R2 and

R3; thus the character for each of these is 0. The identity matrix is I4 which has

a trace, and hence a character, of 4.

The four matrices in the group corresponding to reflections are

D(mx) =


. 1 . .

1 . . .

. . . 1

. . 1 .

 D(my) =


. . . 1

. . 1 .

. 1 . .

1 . . .



D(md) =


1 . . .

. . . 1

. . 1 .

. 1 . .

 D(md′ ) =


. . 1 .

. 1 . .

1 . . .

. . . 1


The first two (in the same class) have character 0, whilst the class consisting of

md and md′ has character 2.

In summary the representation has characters (4, 0, 0, 0, 2), the five classes being

given in the same order as in table 29.4. Application of the standard formula

(29.18), or direct inspection, shows that the only combination of irreps that gives

the correct character totals for all classes is

A1 ⊕ B2 ⊕ E.

The relevant character sum is

(4, 0, 0, 0, 2) = (1, 1, 1, 1, 1) + (1, 1,−1,−1, 1) + (2,−2, 0, 0, 0).

If the combination is calculated from the formula, the expansion coefficients for

A2 and B1 are found to be zero; for each of the other three irreps they are unity.

As a second representation we consider what happens to a vector (x, y) under

each of the symmetries contained in D4. For example, the rotation R, considered

previously, takes (x, y) into (y,−x) and so is represented by

D(R) =

(
. 1

−1 .

)
.
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The full set of symmetries and corresponding matrices is

I R R2 R3(
1 .

. 1

)
,

(
. 1

−1 .

)
,

(
−1 .

. −1

)
,

(
. −1

1 .

)
,

mx my md md′(
−1 .

. 1

)
,

(
1 .

. −1

)
,

(
. 1

1 .

)
,

(
. −1

−1 .

)
.

As expected (and required), symmetries in the same class have matrices with

equal traces (i.e. have equal characters). The characters [ in the same order

(I, R2, R/R3, mx/my, md/md′) as earlier ] are (2,−2, 0, 0, 0). This is exactly the char-

acter set for irrep E, found earlier in the natural representation. This second

representation is two-dimensional but irreducible.

29.4 Construct the character table for the irreps of the permutation group S4

as follows.

(a) By considering the possible forms of its cycle notation, determine the number

of elements in each conjugacy class of the permutation group S4 and show

that S4 has five irreps. Give the logical reasoning that shows they must con-

sist of two three-dimensional, one two-dimensional, and two one-dimensional

irreps.

(b) By considering the odd and even permutations in the group S4 establish the

characters for one of the one-dimensional irreps.

(c) Form a natural matrix representation of 4 × 4 matrices based on a set of

objects {a, b, c, d}, which may or may not be equal to each other, and, by

selecting one example from each conjugacy class, show that this natural rep-

resentation has characters 4, 2, 1, 0, 0. In the four-dimensional vector space

in which each of the four coordinates takes on one of the four values a,

b, c or d, the one-dimensional subspace consisting of the four points with

coordinates of the form {a, a, a, a} is invariant under the permutation group

and hence transforms according to the invariant irrep A1. The remaining

three-dimensional subspace is irreducible; use this and the characters de-

duced above to establish the characters for one of the three-dimensional

irreps, T1.

(d) Complete the character table using orthogonality properties, and check the

summation rule for each irrep. You should obtain table 29.1.

(a) The group S4 has 4! = 24 elements; its possible cyclical forms and their
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Typical element and class size

Irrep (1) (12) (123) (1234) (12)(34)

1 6 8 6 3

A1 1 1 1 1 1

A2 1 −1 1 −1 1

E 2 0 −1 0 2

T1 3 1 0 −1 −1

T2 3 −1 0 1 −1

Table 29.1 The character table for the permutation group S4.

corresponding orders are

structure number order

(i) (1)(2)(3)(4) 4C0 = 1 1

(ii) (12)(3)(4) 4C2 = 6 2

(iii) (123)(4) 4C1
2C1 = 8 3

(iv) (1234) 3C1
2C1 = 6 4

(v) (12)(34) 3C1 = 3 2

Now, as shown in the solution to exercise 28.9, elements in the same class must

have the same order. This implies that here there are at least four classes. In fact,

there are five.

To see this, we note that a permutation structure (wx)(y)(z), involving only one

pair interchange, is an odd permutation, whilst one with structure (pq)(rs), which

involves two interchanges, is an even one. Thus, since any permutation P has the

same parity (odd or even) as its inverse P−1, a relationship of the form

[ (pq)(rs) ] = P−1[ (wx)(y)(z) ]P

would have even parity on the LHS and odd parity on the RHS; this is not

possible and no such relationship can exist. Hence (wx)(y)(z) and (pq)(rs) belong

to different classes, implying that there are five classes, and hence five irreps, in

all.

Let the five irreps have dimensions ni, (i = 1, 2, . . . , 5), with n1 = 1 as the

dimension of the identity irrep (which must be present). Then

5∑
i=2

n2
i = 24 − 1 = 23.

Since 4 × 22 = 16 < 23, at least one ni must be ≥ 3 (and clearly < 5). If one of

the ni were 4, we would require
∑4

i=2 n
2
i = 7 which has no integral solutions with

all ni ≥ 1. Thus, one ni, say n5, must be equal to 3, leaving
∑4

i=2 n
2
i = 14. Now,

since 3(22) < 14 < a second ni, n4 say, must equal 3. This now leaves
∑3

i=2 n
2
i = 5,

which has only one possible integral solution n3(say)= 2 and n2 = 1.
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(b) We have taken the first irrep as A1. A second one-dimensional irrep, D(2), will

be one in which the odd permutations in S4 [ cycle structures (ii) and (iv) ] have

−1 as their 1 × 1 matrix representation whilst the even permutations [ structures

(i), (iii) and (v) ] are represented by +1. Then, in the order of classes used above,

the character set for D(2) is (1,−1, 1,−1, 1). This irrep is normally denoted by A2.

(c) We now consider the action of a typical element of each class (i)-(iv) on the

set {a, b, c, d} and determine in each case how many of the set are unchanged;

this gives the trace of the corresponding (natural) permutation matrix and hence

its character. It is clear that this is equal to the number of cycles of length one in

the corresponding cycle notation. The character set is therefore (4, 2, 1, 0, 0).

As noted in the question, the vector space on which the permutations act con-

tains one invariant subspace and this must transform as the identity irrep A1

with character set (1, 1, 1, 1, 1). We are told that the subspace remaining when

this invariant subspace is removed is irreducible and must therefore transform

according to a three-dimensional irrep T1. The character set for this space must

be (4 − 1, 2 − 1, 1 − 1, 0 − 1, 0 − 1) = (3, 1, 0,−1,−1).

At this point we have a partial character table

Typical element and class size

Irrep (1) (12) (123) (1234) (12)(34)

1 6 8 6 3

A1 1 1 1 1 1

A2 1 −1 1 −1 1

E 2 a b c d

T1 3 1 0 −1 −1

T2 3 w x y z

Consider next the characters of E. From the summation rule,

4 + 6a2 + 8b2 + 6c2 + 3d2 = 24.

Since all the terms except 3d2 are necessarily even, 3d2 must be as well. Thus

d = 0 or d = ±2.

If d = 0, then orthogonality of the character set with those of A1 and A2 requires

2 + 6a+ 8b+ 6c = 0,

2 − 6a+ 8b− 6c = 0,

⇒ 4 + 16b = 0. Impossible, as b must be integral.

So d = ±2, and, from the summation rule,

4 + 6a2 + 8b2 + 6c2 + 12 = 24 ⇒ 6a2 + 8b2 + 6c2 = 8,
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for which the only integral solution is a = c = 0 with b = +1 or −1. From

orthogonality with A1

2 + 0 + 8b+ 0 + 3d = 0,

which has no integral solution if d = −2, but gives b = −1 if d = +2. This is the

only acceptable solution and, in summary, the characters for E are (2, 0,−1, 0, 2).

Finally we turn to the character set for T2 for which we have

9 + 6w2 + 8x2 + 6y2 + 3z2 = 24.

Since 24 − 9 is odd and 6w2 +8x2 +6y2 is even, z must be odd with |z| <
√

15/3,

i.e. z = +1 or −1. Hence 6w2 + 8x2 + 6y2 = 12, which can only have an integral

solution if x = 0 and |w| = |y| = 1. Now, orthogonality with the characters of A1

gives 3+6w+6y+3z = 0, and with those of A2 gives 3−6w−6y+3z = 0. Hence

z = −1 and w = −y. The remaining ambiguity is resolved using the orthogonality

with χ(T1):

9 + 6w − 6y + 3 = 0 ⇒ 12w + 12 = 0 ⇒ w = −1 and y = 1.

Hence χ(T2) = (3,−1, 0, 1,−1) and the table is complete.

The summation rule was used to establish χ(E) and χ(T2) and is easily verified for

A2 and T1.

29.6 Consider a regular hexagon orientated so that two of its vertices lie on the

x-axis. Find matrix representations of a rotation R through 2π/6 and a reflection

my in the y-axis by determining their effects on vectors lying in the xy-plane .

Show that a reflection mx in the x-axis can be written as mx = myR
3 and that the

12 elements of the symmetry group of the hexagon are given by Rn or Rnmy .

Using the representations of R and my as generators, find a two-dimensional rep-

resentation of the symmetry group, C6, of the regular hexagon. Is it a faithful

representation?

Under the rotation R,

(x, y) →
(
x cos π

3
− y sin π

3
, y cos π

3
+ x sin π

3

)
= 1

2

(
1 −

√
3√

3 1

)(
x

y

)
.

Under the reflection my

(x, y) → (−x, y) =

(
−1 0

0 1

)(
x

y

)
,
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whilst under the reflection mx

(x, y) → (x,−y) =

(
1 0

0 −1

)(
x

y

)
.

We now consider myR
3 whose matrix representation is

1
8

(
−1 0

0 1

)(
1 −

√
3√

3 1

)(
1 −

√
3√

3 1

)(
1 −

√
3√

3 1

)
= 1

8

(
−1

√
3√

3 1

)(
−2 −2

√
3

2
√

3 −2

)
= 1

8

(
8 0

0 −8

)
=

(
1 0

0 −1

)
,

i.e. equal to that for mx, which can also be written R3my since R3 and my commute.

Denoting the matrix (
cos θ − sin θ

sin θ cos θ

)
by M(θ), we see that the representation of R is M(π/3). Now,

M(θ)M(φ) =

(
cos θ − sin θ

sin θ cos θ

)(
cosφ − sinφ

sinφ cosφ

)
=

(
cos(θ + φ) − sin(θ + φ)

sin(θ + φ) cos(θ + φ)

)
= M(θ + φ).

It follows that Rn is represented by M(nπ/3) and that a rotation by nπ/3 is

generated by Rn. This accounts for all the rotational symmetries of the hexagon

including, formally, the identity I for which n = 0.

The reflection symmetries are of two kinds; three are in axes joining opposite

vertices of the hexagon and are exemplified by mx; three are in axes joining the

mid-points of opposite sides as in the case of my . In each case, the other two

reflections can be obtained by applying either R2 or R4 after the reflections.

Figure 29.2 summarises the situation. The label against each of the 12 dots (e.g.

R5my) shows the effect on the original ringed point, marked (x, y), of the 12

corresponding symmetry operations. In cases including a reflection, the effective

reflection axis for the whole operation is marked with the same symbol. Thus,

reflection in the axis (marked R5my) through the vertices in the first and third

quadrants carries (x, y) to the point marked R5my . Each of the 12 operations can

be expressed either as Rm or as Rnmy .
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mx = R3my
my

my

(x, y)

mx

Rmy

Rmy

R2my R2my

R4my

R4my
R5my

R5my

R

R2

R3

R4
R5

I

Figure 29.2 The rotation and reflection symmetries of a regular hexagon as

discussed in exercise 29.6. A point labelled by the name of any particular

symmetry shows the effect of that symmetry on the ringed point (x, y). The

axis labelled Rnmy is the reflection axis corresponding to the point marked

Rnmy .

To ease the calculation of the representation, we note that R3 = −I and obtain

R = 1
2

(
1 −

√
3√

3 1

)
= −R4,

R2 = 1
2

(
−1 −

√
3√

3 −1

)
= −R5,

Rmy = 1
2

(
1 −

√
3√

3 1

)(
−1 0

0 1

)
= 1

2

(
−1 −

√
3

−
√

3 1

)
= −R4my,

R2my = 1
4

(
1 −

√
3√

3 1

)(
−1 −

√
3

−
√

3 1

)
= 1

2

(
1 −

√
3

−
√

3 −1

)
= −R5my.

To these eight we must add

I =

(
1 0

0 1

)
, R3 =

(
−1 0

0 −1

)
,

my =

(
−1 0

0 1

)
, R3my =

(
1 0

0 −1

)
.

The twelve matrices are all distinct and so the representation is faithful.
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29.8 Sulphur hexafluoride is a molecule with the same structure as the crystalline

compound in exercise 29.7, except that a sulphur atom is now the central atom.

The following are the forms of some of the electronic orbitals of the sulphur atom,

together with the irreps according to which they transform under the symmetry

group 432 (or O).

Ψs = f(r) A1

Ψp1
= zf(r) T1

Ψd1
= (3z2 − r2)f(r) E

Ψd2
= (x2 − y2)f(r) E

Ψd3
= xyf(r) T2

The function x transforms according to the irrep T1. Use the above data to deter-

mine whether dipole matrix elements of the form J =
∫
φ1xφ2 dτ can be non-zero

for the following pairs of orbitals φ1, φ2 in a sulphur hexafluoride molecule: (a)

Ψd1
,Ψs; (b) Ψd1

,Ψp1
; (c) Ψd2

,Ψd1
; (d) Ψs,Ψd3

; (e) Ψp1
,Ψs.

For each dipole matrix element we need to determine whether the irrep A1 is

present in the reduction of the representation of the triple product of φ1, φ2 and

x; only if it is, can the dipole matrix element be non-zero. To do this we require

the character table for the group 432 produced in exercise 29.5, namely

Typical element and class size

Irrep I 2d 3 4z 2z
1 6 8 6 3

A1 1 1 1 1 1

A2 1 −1 1 −1 1

E 2 0 −1 0 2

T1 3 1 0 −1 −1

T2 3 −1 0 1 −1

We also need to use the formula

mµ =
1

g

∑
X

[
χ(µ)(X)

]∗
χ(X) =

1

g

∑
i

ci
[
χ(µ)(Xi)

]∗
χ(Xi)

with µ set to A1 [ for which all χ(µ)(X) = 1 ] in order to calculate whether or not

A1 is present.

In each case we obtain the character set for the dipole matrix element by

multiplying together, for each class, the corresponding characters of the two

orbitals and x. The resulting character set then has to be tested using the above

formula to see whether A1 is present.
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(a) Ψd1
,Ψs:

Orbital Irrep I 2d 3 4z 2z
1 6 8 6 3

Ψd1
E 2 0 −1 0 2

Ψs A1 1 1 1 1 1

x T1 3 1 0 −1 −1

6 0 0 0 −2

Thus, mA1
=

1(6) + 3(−2)

24
= 0 ⇒ No.

(b) Ψd1
,Ψp1

:

Orbital Irrep I 2d 3 4z 2z
1 6 8 6 3

Ψd1
E 2 0 −1 0 2

Ψp1
T1 3 1 0 −1 −1

x T1 3 1 0 −1 −1

18 0 0 0 2

Thus, mA1
=

1(18) + 3(2)

24
= 1 ⇒ Yes.

(c) Ψd2
,Ψd1

:

Orbital Irrep I 2d 3 4z 2z
1 6 8 6 3

Ψd1
E 2 0 −1 0 2

Ψd2
E 2 0 −1 0 2

x T1 3 1 0 −1 −1

12 0 0 0 −4

Thus, mA1
=

1(12) + 3(−4)

24
= 0 ⇒ No.

(d) Ψs,Ψd3
:

Orbital Irrep I 2d 3 4z 2z
1 6 8 6 3

Ψs A1 1 1 1 1 1

Ψd3
T2 3 −1 0 1 −1

x T1 3 1 0 −1 −1

9 −1 0 −1 1

Thus, mA1
=

1(9) + 6(−1) + 6(−1) + 3(1)

24
= 0 ⇒ No.
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(e) Ψp1
,Ψs:

Orbital Irrep I 2d 3 4z 2z
1 6 8 6 3

Ψp1
T1 3 1 0 −1 −1

Ψs A1 1 1 1 1 1

x T1 3 1 0 −1 −1

9 1 0 1 1

Thus, mA1
=

1(9) + 6(1) + 6(1) + 3(1)

24
= 1 ⇒ Yes.

In summary, only in cases (b) and (e) is there the possibility of a non-zero dipole

matrix element. Further calculation, involving data not provided here, would be

needed to determine whether these two matrix elements are in fact non-zero.

29.10 Investigate the properties of an alternating group and construct its

character table as follows.

(a) The set of even permutations of four objects (a proper subgroup of S4) is

known as the alternating group A4. List its twelve members using cycle

notation.

(b) Assume that all permutations with the same cycle structure belong to the

same conjugacy class. Show that this leads to a contradiction and hence

demonstrates that even if two permutations have the same cycle structure

they do not necessarily belong to the same class.

(c) By evaluating the products

p1 = (123)(4) • (12)(34) • (132)(4) and p2 = (132)(4) • (12)(34) • (123)(4)

deduce that the three elements of A4 with structure of the form (12)(34)

belong to the same class.

(d) By evaluating products of the form (1α)(βγ) • (123)(4) • (1α)(βγ), where α, β

and γ are various combinations of 2, 3 and 4, show that the class to which

(123)(4) belongs contains at least four members. Show the same for (124)(3).

(e) By combining results (b), (c) and (d), deduce that A4 has exactly four classes,

and determine the dimensions of its irreps.

(f) Using the orthogonality properties of characters and noting that elements of

the form (124)(3) have order 3, find the character table for A4.

(a) The twelve members of A4 are those permutations that involve an even number

(0 or 2) of pair interchanges. For future identification, and as a shorthand, we

list them, each with a label, as:
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I = (1)(2)(3)(4),

2A = (12)(34), 2B = (13)(24), 2C = (14)(23),

3A = (123)(4), 3B = (124)(3), 3C = (134)(2), 3D = (234)(1),

3E = (132)(4), 3F = (142)(3), 3G = (143)(2), 3H = (243)(1).

(b) If permutations with the same cycle structure all belonged to the same

conjugacy class there would be 3 classes in A4. This would imply that it has 3

irreps, one of which would have to be the identity irrep A1. The dimensions of

the other two would then have to satisfy

1 + n2
2 + n2

3 = 12.

This equation has no integral solutions for n2 and n3 and we conclude that the

assumption that permutations with the same cycle structure all belong to the

same conjugacy class leads to a contradiction and is therefore wrong.

(c) With the meaning of (pqr) as in the text, i.e. p is replaced by q, q is replaced by

r and r is replaced by p, we evaluate the following products of the form P−1XP :

p1 = (123)(4) • (12)(34) • (132)(4) abcd = (123)(4) • (12)(34) cabd

= (123)(4) acdb = cdab = (13)(24) abcd

p2 = (132)(4) • (12)(34) • (123)(4) abcd = (132)(4) • (12)(34) bcad

= (132)(4) cbda = dcba = (14)(23) abcd

Thus (13)(24) and (14)(23) both belong to the same conjugacy class as (12)(34)

and therefore to the same class as each other, i.e. all three permutations with

structure (pq)(rs) belong to the same class.

(d) These evaluations follow the same lines as in (c) and we summarise the results

using the labels allocated in (a).

(2A)−13A 2A = 3F, (2B)−13A 2B = 3C, (2C)−13A 2C = 3H.

Thus the class to which 3A=(123)(4) belongs also contains 3F, 3C and 3H, i.e. it

has at least four members. Further,

(2A)−13B 2A = 3E, (2B)−13B 2B = 3D, (2C)−13B 2C = 3G,

showing that the class containing 3B also contains at least three other members.

(e) As always, I is in a class by itself and, as we have shown, the class of

permutations with structure (pq)(rs) has 3 members. Permutations with structure

(pqr)(s) are contained in a maximum of two classes since we have already shown

that there exist two classes with at least four members each — and this exhausts

the group. These two sets of four cannot form one class of eight as this would

reduce the total number of classes to three, and we have shown in (b) that this

is not possible. We conclude that there are exactly four classes containing 1, 4, 4
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and 3 members. It also follows that there are four irreps, whose dimensions must

satisfy

1 + n2
2 + n2

3 + n2
4 = 12 ⇒ n4 = 3, n2 = n3 = 1,

as the only integer solution.

(f) The character set for A1 is, of course, (1, 1, 1, 1). Suppose that for the three-

dimensional irrep T it is (3, x, y, z). Then, firstly,

1|3|2 + 4|x|2 + 4|y|2 + 3|z|2 = 12 ⇒ x = y = 0, |z| = 1,

for an integer solution. Secondly, the orthogonality of the two irreps gives

1(1)(3) + 4(1)(0) + 4(1)(0) + 3(1)z = 0 ⇒ z = −1.

The character table thus takes the form

Typical element and class size

Irrep (1) (123) (132) (12)(34)

1 4 4 3

A1 1 1 1 1

A2 1 a b c

A3 1 d e f

T 3 0 0 −1

The orthogonality of T to each of A2 and A3 implies that c = f = 1.

This leaves only a, b, d and e to be determined. Since the elements in both the

classes of which they are the characters have order 3, each character can only be

the sum of a number of cube roots of unity (see the text). As they are further

restricted by summation rules of the form 1+4|a|2 + 4|b|2 + 3 = 12, |a| ≤
√

2 and

similarly for the other three characters.

The cube roots of unity are 1, ω = exp(2πi/3) and ω2, with 1 + ω + ω2 = 0.

There must be at least one character in each of the sets for A2 and A3 that is not

unity – otherwise they become A1. Let a = ω; then, from the orthogonality with

A1, 1 + 4ω + 4b + 3 = 0 implying that b = ω2. Since all the character sets must

be different, we must have for A3 that d = ω2 and e = ω, thus completing the

character table for the group A4 as

Typical element and class size

Irrep (1) (123) (132) (12)(34)

1 4 4 3

A1 1 1 1 1

A2 1 ω ω2 1

A3 1 ω2 ω 1

T 3 0 0 −1
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(a) (b) (c)

AAA B BB

CC C

30◦
30◦

Figure 29.3 The three normal vibration modes of the equilateral array. Mode

(a) is known as the ‘breathing mode’. Modes (b) and (c) transform according

to irrep E and have equal vibrational frequencies.

The orthogonality of the character sets for A2 and A3 may verified as follows:∑
X

[
χ(A2)(X)

]∗
χ(A3)(X) = 1(1)(1) + 4ω∗ω2 + 4(ω2)∗ω + 3(1)(1)

= 1 + 4e−i2π/3ei4π/3 + 4e−i4π/3ei2π/3 + 3

= 4 + 4[ 2 cos(2π/3) ] = 4 + 4(−1) = 0.

29.12 Demonstrate that equation (29.24) does indeed generate a set of vectors

transforming according to an irrep λ, by sketching and superposing drawings of an

equilateral triangle of springs and masses, based on that shown in figure 29.4.

(a) Make an initial sketch showing an arbitrary small mass displacement from,

say, vertex C . Draw the results of operating on this initial sketch with each

of the symmetry elements of the group 3m (C3v).

(b) Superimpose the results, weighting them according to the characters of irrep

A1 (table 29.1 in section 29.6) and verify that the resultant is a symmetrical

arrangement in which all three masses move symmetrically towards (or away

from) the centroid of the triangle. The mode is illustrated in figure 29.4(a).

(c) Start again, now considering a displacement δ of C parallel to the x-axis.

Form a similar superposition of sketches weighted according to the characters

of irrep E (note that the reflections are not needed). The resultant contains

some bodily displacement of the triangle, since this also transforms according

to E. Show that the displacement of the centre of mass is x̄ = δ, ȳ = 0.

Subtract this out and verify that the remainder is of the form shown in

figure 29.4(c).

(d) Using an initial displacement parallel to the y-axis, and an analogous pro-

cedure, generate the remaining normal mode, degenerate with that in (c) and

shown in figure 29.4(b).
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I

I

R

R

R2

R2

(i)

(ii)

m1

m1

m2

m2

m3

m3

=

Figure 29.4 The construction of the ‘breathing mode’ of an equilateral array

of equal springs and masses, as discussed in exercise 29.12.

(a) Part (i) of figure 29.4 shows the triangle with an initial displacement at vertex

C and the results of operating on this with rotations R and R2 and reflections m1,

m2 and m3. Of course, the original is also the result of operating with the identity

I .

(b) To use equation (29.24),

Ψ
(λ)
i =

∑
X

χ(λ)∗
(X)XΨi

with λ = A1 we need the character set for A1 which is (1, 1, 1). Thus the six

triangles shown in part (i) of the figure have to be superimposed, all with

equal weights. This has been done in part (ii) of the figure and, after the two

displacements at each vertex have been added vectorially, the result is shown to

be that of the ’breathing mode’. In this mode all movements are directed away

from (or towards) the centroid of the triangle.

(c) For the two-dimensional irrep E the character set is (2,−1, 0), showing that

476



REPRESENTATION THEORY

the projection operator will contain no contribution from the third class, namely

the reflections.

The original displacement δ parallel to the x-axis and the results of operating

on this with R and R2 are shown in part (i) of figure 29.5. These have to be

superimposed with the original (in the role of the result of I) having weight

2 and the results of the rotations having weight −1, i.e. the directions of the

displacements are reversed. This is done in part (ii) of the figure. The superposition

can be broken down into an overall bodily displacement of the triangle and

displacements about its centroid as follows:

(x̄, ȳ) = 1
3
(2δ + δ cos

π

3
+ δ cos

π

3
, 0 + δ sin

π

3
− δ sin

π

3
) = (δ, 0),

(x, y)C = (x̄, ȳ) + (δ, 0),

(x, y)A = (x̄, ȳ) + (−1

2
δ,−

√
3

2
δ),

(x, y)B = (x̄, ȳ) + (−1

2
δ,

√
3

2
δ).

This breakdown is also shown in part (ii). Note that all the vibrational displace-

ments are of magnitude δ.

(d) The final normal mode, degenerate with that in (c), is shown in part (iii) of

figure 29.5. The construction parallels that in (c) and so only the calculational

details are given. They are:

(x̄, ȳ) = 1
3
(δ cos

π

3
− δ cos

π

3
, 2δ + δ sin

π

3
+ δ sin

π

3
) = (0, δ),

(x, y)C = (x̄, ȳ) + (0, δ),

(x, y)A = (x̄, ȳ) + (

√
3

2
δ,−1

2
δ),

(x, y)B = (x̄, ȳ) + (−
√

3

2
δ,−1

2
δ).

This is mode (b) as given in the question.
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δ
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=

=

+

+

Figure 29.5 The construction of each of the two degenerate normal modes

of an equilateral array of equal springs and masses, as discussed in exercise

29.12. Construction of the first mode is shown in (i) and (ii); that of the

second mode is shown in (iii).
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30.2 Given that events X,Y and Z satisfy

(X ∩ Y ) ∪ (Z ∩X) ∪ (X̄ ∪ Ȳ ) = (Z ∪ Ȳ ) ∪ {[(Z̄ ∪ X̄) ∪ (X̄ ∩ Z)] ∩ Y },

prove that X ⊃ Y and either X ∩ Z = ∅ or Y ⊃ Z .

We start by simplifying both sides of the equation separately using the commu-

tativity and distributional properties of ∪ and ∩ and de Morgan’s laws. For the

LHS:

(X ∩ Y ) ∪ (Z ∩X) ∪ (X̄ ∪ Ȳ ) = [ (Y ∪ Z) ∩X ] ∪ (X ∩ Y )

= X ∩ (Y ∪ Z ∪ Y )

= X ∩ (Y ∪ Z).

For the RHS we have

(Z ∪ Ȳ ) ∪ {[(Z̄ ∪ X̄) ∪ (X̄ ∩ Z)] ∩ Y }
= (Z̄ ∩ Y ) ∪ {[ (Z ∩X) ∪ (X̄ ∩ Z) ] ∩ Y }
= (Z̄ ∩ Y ) ∪ [Z ∩ (X ∪ X̄) ∩ Y ]

= (Z̄ ∩ Y ) ∪ (Z ∩ Y )

= Y ∩ (Z̄ ∪ Z) = Y .

Thus the equation reduces to X ∩ (Y ∪ Z) = Y . This implies that X contains

everything that is in Y , i.e. X ⊃ Y , and that X contains no part of Z that is not

also in Y . This latter requirement means that either Z is wholly contained in Y ,

i.e. Y ⊃ Z or X and Z have no events in common, i.e. X ∩ Z = ∅.
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30.4 Use the method of induction to prove equation (30.16), the probability

addition law for the union of n general events.

We are required to prove that

Pr(A1 ∪ A2 ∪ · · · ∪ An) =
∑
i

Pr(Ai) −
∑
i,j

Pr(Ai ∩ Aj)

+
∑
i,j,k

Pr(Ai ∩ Aj ∩ Ak) − · · ·

· · · + (−1)n+1 Pr(A1 ∩ A2 ∩ · · · ∩ An). (∗)

We do so by first assuming that (∗) is true for some particular value of n and

use this to prove that this implies that it is true for n → n + 1. The relationship

is obvious for n = 1.

Let event B be the union of events A1, A2, . . . , An and apply

Pr(A ∪ B) = Pr(A) + Pr(B) − Pr(A ∩ B), (∗∗)

with event A as An+1. The probability Pr(A) is simply Pr(An+1) and Pr(B) is the

assumed result for the probability of the union of n events. This leaves only the

calculation of the final term Pr(A ∩ B). This is given by

Pr(B ∩ An+1) = Pr[ (A1 ∪ A2 ∪ · · · ∪ An) ∩ An+1 ]

= Pr[ (A1 ∩ An+1) ∪ (A2 ∩ An+1) ∪ · · · ∪ (An ∩ An+1) ]

≡ Pr(C1 ∪ C2 ∪ · · · ∪ Cn),

where we have defined the set of n events Ci as Ci = Ai ∩ An+1.

We now apply the result assumed valid for n events to the Ci and obtain

Pr(B ∩ An+1)

=

n∑
i

Pr(Ci) −
n∑
i,j

Pr(Ci ∩ Cj) + · · · + (−1)n+1 Pr(C1 ∩ C2 ∩ · · · ∩ Cn)

=

n∑
i

Pr(Ai ∩ An+1) −
n∑
i,j

Pr[ (Ai ∩ An+1) ∩ (Aj ∩ An+1) ] +

· · · + (−1)n+1 Pr[ (A1 ∩ An+1) ∩ (A2 ∩ An+1) ∩ · · · ∩ (An ∩ An+1) ]

=

n∑
i

Pr(Ai ∩ An+1) −
n∑
i,j

Pr[ (Ai ∩ Aj) ∩ An+1) ] +

· · · + (−1)n+1 Pr[ (A1 ∩ A2 ∩ · · · ∩ An) ∩ An+1) ].
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We now substitute for the various terms in (∗∗) and obtain

Pr(A1 ∪ A2 ∪ · · · ∪ An ∪ An+1)

= Pr(An+1) +

n∑
i

Pr(Ai) −
n∑
i,j

Pr(Ai ∩ Aj) +

· · · + (−1)n+1 Pr(A1 ∩ A2 ∩ · · · ∩ An)

−{
n∑
i

Pr(Ai ∩ An+1) −
n∑
i,j

Pr[ (Ai ∩ Aj) ∩ An+1) ] +

· · · + (−1)n+1 Pr[ (A1 ∩ A2 ∩ · · · ∩ An) ∩ An+1) ]
}
.

Finally, collecting together similar terms and noting that, for example, (P ∩ Q) ∩
R = P ∩ Q ∩ R, we obtain

Pr(A1 ∪ A2 ∪ · · · ∪ An ∪ An+1)

=

n+1∑
i

Pr(Ai) −
n+1∑
i,j

Pr(Ai ∩ Aj) +

n+1∑
i,j,k

Pr(Ai ∩ Aj ∩ Ak) −

· · · + (−1)n+2 Pr(A1 ∩ A2 ∩ · · · ∩ An+1).

All summations now run over i, j, . . . = 1, 2, . . . , n + 1 and this expression is

the same as (∗) but with n increased to n + 1. This, together with our earlier

observation that the formula is valid for n = 1 completes the proof by induction.

30.6 X1, X2, . . . , Xn are independent identically distributed random variables

drawn from a uniform distribution on [0, 1]. The random variables A and B are

defined by

A = min(X1, X2, . . . , Xn), B = max(X1, X2, . . . , Xn).

For any fixed k such that 0 ≤ k ≤ 1
2
, find the probability pn that both

A ≤ k and B ≥ 1 − k.

Check your general formula by considering directly the cases (a) k = 0, (b) k = 1
2
,

(c) n = 1 and (d) n = 2.

There are four possible situations, according as to whether A is less than or

greater than k and as to whether B is less than or greater than 1 − k. We need

to calculate the probability for just one of these combinations and we do so by

finding the probabilities for the other three and subtracting them from unity.

If A ≥ k then all Xi must lie in k ≤ Xi ≤ 1. This has probability (1−k)n. Similarly,

Pr(B ≤ 1 − k) = (1 − k)n and Pr(A ≥ k and B ≤ 1 − k) = (1 − 2k)n.
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Now,

Pr(A ≥ k) = Pr(A ≥ k and B ≤ 1 − k) + Pr(A ≥ k and B ≥ 1 − k),

(1 − k)n = (1 − 2k)n + Pr(A ≥ k and B ≥ 1 − k),

and, substituting from this result into

Pr(B ≥ 1 − k) = Pr(B ≥ 1 − k and A ≥ k) + Pr(B ≥ 1 − k and A ≤ k),

gives

1 − (1 − k)n = [ (1 − k)n − (1 − 2k)n ] + Pr(B ≥ 1 − k and A ≤ k).

Thus

pn = Pr(B ≥ 1 − k and A ≤ k) = 1 − 2(1 − k)n + (1 − 2k)n.

In retrospect, the structure of this answer is straightforward to understand. Its

RHS is

Pr(A and B have some values) − Pr(all the Xi lie in k < Xi < 1)

− Pr(all the Xi lie in 0 < Xi < 1 − k)

+ Pr(all the Xi lie in k < Xi < 1 − k),

the final term being added back in to account for the fact that the range

k < Xi < 1 − k has been subtracted out twice (instead of once) by the previous

two terms.

For the special cases given we have:

(a) k = 0, i.e A ≤ 0 and B ≥ 1. This clearly has zero probability, in agreement

with 1 − 2(1 − 0)n + (1 − 0)n = 0 for all n.

(b) k = 1
2
, i.e A ≤ 1

2
and B ≥ 1

2
. This outcome requires the avoidance of a

situation in which all the Xi are in one half of the range. For all of them to be

in one half has probability ( 1
2
)n; this has to be doubled as there are two possible

half ranges. The probability of A ≤ 1
2

and B ≥ 1
2

is therefore 1 − ( 1
2
)n−1. The

formula derived earlier gives 1 − 2(1 − 1
2
)n + (1 − 1)n = 1 − ( 1

2
)n−1, which is in

agreement with this direct calculation.

(c) n = 1. Clearly a single random variable, which has to act as both the minimum

and the maximum of its set, cannot satisfy both inequalities. The probability in

this case must be zero, as given by the general formula 1 − 2(1 − k)+ (1 − 2k) = 0

for any k.

(d) n = 2. In this case, the first of the two Xi has to be less than k or greater than

1 − k. This has probability 2k. The second then has to fall in a particular one of

these two ranges; this has probability k. The overall probability is therefore 2k2.

The derived formula gives 1 − 2(1 − 2k + k2) + (1 − 4k + 4k2) = 2k2, as expected.
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30.8 This exercise shows that the odds are hardly ever ‘evens’ when it comes

to dice rolling.

(a) Gamblers A and B each roll a fair six-faced die, and B wins if his score is

strictly greater than A’s. Show that the odds are 7 to 5 in A’s favour.

(b) Calculate the probabilities of scoring a total T from two rolls of a fair die

for T = 2, 3, . . . , 12. Gamblers C and D each roll a fair die twice and score

respective totals TC and TD , D winning if TD > TC . Realising that the odds

are not equal, D insists that C should increase her stake for each game. C

agrees to stake £1.10 per game, as compared to D’s £1.00 stake. Who will

show a profit?

(a) Out of the 36 equally likely outcomes for a single roll of each die, there are

6 in which the scores are equal and result in a win for A. The other 30 cases, in

which the scores are unequal, provide 15 wins for A and 15 wins for B. Thus A

wins in 6 + 15 = 21 of the 36 cases and B in only 15 cases, giving A favourable

odds of 7 to 5.

(b) The probability distribution p(T ) for the total T from two rolls of a die is

T 2 3 4 5 6 7 8 9 10 11 12

36p(T ) 1 2 3 4 5 6 5 4 3 2 1

The probability that TD > TC could be calculated for each TD by adding all

the probabilities for TC up to TD − 1 and the overall probability found by then

weighting each sum by the probability of TD . However, it is simpler to add up

the probabilities for the two totals being equal, subtract this from unity and then

take Pr(TD > TC ) as one-half of what is left, i.e.

Pr(TD > TC) =
1

2

{
1 − 1

(36)2
[ 2(12 + 22 + 32 + 42 + 52) + 62 ]

}
=

1

2

[
1 − 146

(36)2

]
= 0.4437.

This is the chance that D wins and so C ’s expected return for a £1 .10 stake is

£2 .10 (1 − 0 .4437 ) = £1 .168 , i.e. a profit of about 7 pence per game.

A straightforward calculation shows that C should stake just over £1 .25 to make

the game ‘fair’.
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30.10 As every student of probability theory will know, Bayesylvania is awash

with natives, not all of whom can be trusted to tell the truth, and lost and ap-

parently somewhat deaf travellers who ask the same question several times in an

attempt to get directions to the nearest village.

One such traveller finds himself at a T-junction in an area populated by the Asciis

and Bisciis in the ratio 11 to 5. As is well known, the Biscii always lie but the

Ascii tell the truth three quarters of the time, giving independent answers to all

questions, even to immediately repeated ones.

(a) The traveller asks one particular native twice whether he should go to the

left or to the right to reach the local village. Each time he is told ‘left’.

Should he take this advice, and, if he does, what are his chances of reaching

the village?

(b) The traveller then asks the same native the same question a third time and

for a third time receives the answer ‘left’. What should the traveller do now?

Have his chances of finding the village been altered by asking the third

question?

If the native is an Ascii then the chance of getting the same answer twice is

3

4

3

4
+

1

4

1

4
=

5

8
.

The same calculation shows that a repeated answer by an Ascii is 9 times more

likely to be the truth than a lie. If the native is a Biscii, then a repeated answer

is guaranteed; it is also guaranteed to be a lie.

With A denoting the event that the native is an Ascii and B that he/she is a

Biscii, let E be the event that the same answer is given twice by the native. Then,

by Bayes’ theorem,

Pr(A|E) =
Pr(E|A) Pr(A)

Pr(E|A) Pr(A) + Pr(E|B) Pr(B)

=
5
8

11
16

5
8

11
16

+ 1 5
16

=
55

95
.

The traveller can only be told the truth if the native is an Ascii and the two

identical responses are the truth. The combined probability for this is (55/95) ×
(9/10) = 99/190 = 52.11%. As this is more than 50%, the traveller should go

left.

(b) The corresponding calculations for the event F of the same answer of ‘left’
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being given three times are:

Pr(F|A) =

(
3

4

)3

+

(
1

4

)3

=
28

64
,

with the truth 27 times more likely than a lie;

Pr(A|F) =
28
64

11
16

28
64

11
16

+ 1 5
16

=
308

628
;

the overall probability of being told the truth is (308/628) × (27/28) = 297/628.

As this is less than half he should go right with a probability of 331/628 = 52.71%

of being correct — a very marginal improvement in his chances!

30.12 Villages A, B, C and D are connected by overhead telephone lines joining

AB, AC , BC , BD and CD. As a result of severe gales, there is a probability p

(the same for each link) that any particular link is broken.

(a) Show that the probability that a call can be made from A to B is

1 − p2 − 2p3 + 3p4 − p5.

(b) Show that the probability that a call can be made from D to A is

1 − 2p2 − 2p3 + 5p4 − 2p5.

We denote the probability that a link is intact by q, equal to 1 − p.

(a) Situations with a total n of breaks have a probability of occuring equal to

pnq5−n. For each value of n we need to identify the number m out of the 5Cn
possible combinations of breaks that will still allow a call to be made from A to

B. Denote an intact link AB by its name and a break in AB by AB.

n probability 5Cn acceptable break patterns m

0 q5 1 any (with 0 breaks) 1

1 pq4 5 any with 1 break 5

2 p2q3 10 all except AB + AC 9

3 p3q2 10 AB with any of 4C3 break patterns 4

AC + BC 1

4 p4q 5 only AB 1

5 p5 1 none 0
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The total probability of being able to make a call from A to B is

PAB = q5 + 5pq4 + 9p2q3 + 5p3q2 + p4q

= (p+ q)5 − p2q3 − 5p3q2 − 4p4q − p5

= 1 − p2(q3 + 5pq2 + 4p2q + p3)

= 1 − p2[ (q + p)3 + 2pq2 + p2q ]

= 1 − p2(1 + 2p− 4p2 + 2p3 + p2 − p3)

= 1 − p2 − 2p3 + 3p4 − p5.

(b) A similar count for a call from A to D gives

n probability 5Cn acceptable break patterns m

0 q5 1 any (with 0 breaks) 1

1 pq4 5 any with 1 break 5

2 p2q3 10 all except AB + AC and BD + CD 8

3 p3q2 10 only AB + BD and AC + CD 2

4 p4q 5 none 0

5 p5 1 none 0

The total probability of being able to make a call from A to D is

PAD = q5 + 5pq4 + 8p2q3 + 2p3q2

= (p+ q)5 − 2p2q3 − 8p3q2 − 5p4q − p5

= 1 − p2(2q3 + 8pq2 + 5p2q + p3)

= 1 − p2(2 − 6p+ 6p2 − 2p3 + 8p− 16p2 + 8p3 + 5p2 − 5p3 + p3)

= 1 − 2p2 − 2p3 + 5p4 − 2p5.

As they should, both calculations give unit probability if p = 0 and zero proba-

bility if p = 1.

30.14 A certain marksman never misses his target, which consists of a disc of

unit radius with centre O. The probability that any given shot will hit the target

within a distance t of O is t2 for 0 ≤ t ≤ 1. The marksman fires n independendent

shots at the target, and the random variable Y is the radius of the smallest circle

with centre O that encloses all the shots. Determine the PDF for Y and hence find

the expected area of the circle.

The shot that is furthest from O is now rejected and the corresponding circle

determined for the remaining n− 1 shots. Show that its expected area is

n− 1

n+ 1
π.
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Let the n shots be at distances ri (i = 1, 2, . . . , n) from O; Y is equal to the largest

of these. The cumulative distribution function for each shot is F(y) = y2 and

the probability that all n shots lie within y of the centre is y2n. But this is also

the CDF for Y , whose PDF must therefore be its derivative, i.e. 2ny2n−1. The

expected area for covering the n shots is thus

An =

∫ 1

0

πy2 2ny2n−1 dy = 2πn

∫ 1

0

y2n+1 dy =
2πn

2n+ 2
=

nπ

n+ 1
.

As already found, the probability that the worst shot lies in the range y to y+ dy

is 2ny2n−1 dy. The other n − 1 shots are individually distributed as given in the

question, but only over the region 0 < z < y. Their common CDF is therefore

z2/y2 (reaching unity at z = y). The CDF for all n − 1 shots is thus (z2/y2)n−1

and the corresponding PDF is its derivative, (2n− 2)z2n−3/y2n−2.

We now need to average the area of the circle covering the best n− 1 shots over

all values of the radius of the worst shot. This gives

An−1 =

∫ 1

0

2ny2n−1 dy

∫ y

0

πz2 (2n− 2)z2n−3

y2n−2
dz

= 2n(2n− 2)π

∫ 1

0

y dy

∫ y

0

z2n−1 dz

= 2n(2n− 2)π

∫ 1

0

y2n+1

2n
dy

= (2n− 2)π
1

2n+ 2
=
n− 1

n+ 1
π.

30.16 Kittens from different litters do not get on with each other and fighting

breaks out whenever two kittens from different litters are present together. A cage

initially contains x kittens from one litter and y from another. To quell the fighting,

kittens are removed at random, one at a time, until peace is restored. Show, by

induction, that the expected number of kittens finally remaining is

N(x, y) =
x

y + 1
+

y

x+ 1
.

This result is trivially true if either of x or y is zero, as no kittens need to be

removed. We therefore consider x, y ≥ 1. It is also clear that N(a, b) must be

equal to N(b, a), as this is only a matter of labelling the litters.

Let the cage contain x kittens from the first litter and y + 1 from the second

and consider the removal of one randomly chosen kitten. With probability (y +
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1)/(x+ y + 1) it will be from the second litter and the expected final number of

kittens will be N(x, y). Correspondingly, with probability x/(x+ y + 1) it will be

from the first litter and the expected final number of kittens will be N(x−1, y+1).

Thus we have the recurrence relation

N(x, y + 1) =
y + 1

x+ y + 1
N(x, y) +

x

x+ y + 1
N(x− 1, y + 1).

Now suppose that

N(x, y) =
x

y + 1
+

y

x+ 1
(∗)

for all x, y such that x + y = n and apply the assumption to the RHS of the

above equation.

N(x, y + 1) =
y + 1

x+ y + 1

(
x

y + 1
+

y

x+ 1

)
+

x

x+ y + 1

(
x− 1

y + 2
+
y + 1

x

)
=

1

x+ y + 1

(
x+

y2 + y

x+ 1
+
x2 − x

y + 2
+ y + 1

)
=

1

x+ y + 1

[(
x+

x2 − x

y + 2

)
+

(
y + 1 +

y2 + y

x+ 1

)]
=

1

x+ y + 1

(
xy + x+ x2

y + 2
+
xy + x+ 2y + 1 + y2

x+ 1

)
=

x

y + 2
+
yx+ y2 + y + x+ y + 1

(x+ y + 1)(x+ 1)

=
x

y + 2
+
y + 1

x+ 1
(∗∗)

=
x

(y + 1) + 1
+

(y + 1)

x+ 1
.

Either by interchanging x and y in (∗∗) to obtain N(y, x + 1) and then using

N(a, b) = N(b, a), or by a similar calculation to the above, we can also show that

N(x+ 1, y) =
(x+ 1)

y + 1
+

y

(x+ 1) + 1
.

Combining the two results then shows that the assumption that (∗) is valid for

x+ y = n implies that it is valid for x+ y = n+ 1.

However, it is valid by direct inspection for n = 2, since N(2, 0) = 2 = N(0, 2) (no

kitten need be removed) and N(1, 1) = 1 (one kitten must be removed). Thus (∗)

is valid for all n and hence for all x and y. It is formally valid, by inspection, for

n = 1, but the proof given then involves negative arguments of N, albeit with N

multiplied by zero.
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30.18 A particle is confined to the one-dimensional space 0 ≤ x ≤ a and

classically it can be in any small interval dx with equal probability. However,

quantum mechanics gives the result that the probability distribution is proportional

to sin2(nπx/a), where n is an integer. Find the variance in the particle’s position in

both the classical and quantum mechanical pictures and show that, although they

differ, the latter tends to the former in the limit of large n, in agreement with the

correspondence principle of physics.

Classical Mechanics

Here, since the probability is uniformly distributed throughout the interval 0 ≤
x ≤ a, we have

p(x) dx =
1

a
dx ⇒ x̄ =

a

2
.

The corresponding variance in the position of the particle is

V [X ] =

∫ a

0

(
x− a

2

)2 1

a
dx =

1

a

[
(x− 1

2
a)3

3

] a
0

=
a2

12
.

Quantum Mechanics

The probability density is

p(x) dx = A sin2 nπx

a
dx, where

∫ a

0

A sin2 nπx

a
dx = 1 ⇒ A =

2

a
.

The mean value of x is

x̄ =
2

a

∫ a

0

x sin2 nπx

a
dx =

a

2
, by symmetry.

We compute the variance as x2 − x̄2.

V (x) =
2

a

∫ a

0

x2 sin2 nπx

a
dx− a2

4

=
1

a

∫ a

0

x2

(
1 − cos

2nπx

a

)
dx− a2

4

=
1

a

a3

3
− 1

a

[
ax2

2nπ
sin

2nπx

a

] a
0

+
1

a

∫ a

0

a2x

2nπ
sin

2nπx

a
dx− a2

4

=
a2

12
− 0 +

1

nπ

[
− ax

2nπ
cos

2nπx

a

] a
0

+
1

nπ

∫ a

0

a

2nπ
cos

2nπx

a
dx

=
a2

12
− a2

2n2π2
+ 0 + 0.

The classical and quantum results differ by an amount that depends upon n, but

the latter tends to the former as n → ∞.
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30.20 For a non-negative integer random variable X, in addition to the proba-

bility generating function ΦX(t) defined in equation (30.71) it is possible to define

the probability generating function

ΨX(t) =

∞∑
n=0

gnt
n,

where gn is the probability that X > n.

(a) Prove that ΦX and ΨX are related by

ΨX(t) =
1 − ΦX (t)

1 − t
.

(b) Show that E[X] is given by ΨX(1) and that the variance of X can be ex-

pressed as 2Ψ′
X(1) + ΨX(1) − [ΨX(1)]2.

(c) For a particular random variable X, the probability that X > n is equal to

αn+1 with 0 < α < 1. Use the results in (b) to show that V [X] = α(1 − α)−2.

(a) We first note, from the definition of ΨX , that g0 = 1 − f0 and, for general n,

that gn = fn+1 + fn+2 + · · · . Now consider

(1 − t)ΨX (t) = (1 − t)

∞∑
n=0

gnt
n

=

∞∑
n=1

(gn − gn−1)t
n + g0

= −
∞∑
n=1

fnt
n + 1 − f0

= 1 −
∞∑
n=0

fnt
n

= 1 − ΦX (t),

thus establishing the given result.

(b) We wish to express the standard result that E[X] = Φ′
X (1) in terms of ΨX(t)

and to do so differentiate the equation derived in (a) with respect to t and then

set t = 1:

(1 − t)Ψ′
X (t) − ΨX(t) = 0 − Φ′

X(t) ⇒ ΨX(1) = Φ′
X (1) = E[X].

For the variance, we need to obtain alternative expressions for the terms that

appear in the general result

V [X] = Φ′′
X (1) + Φ′

X (1) − [ Φ′
X(1) ]2.
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The final two terms are already dealt with; for the first we differentiate the earlier

result a second time and obtain

(1 − t)Ψ′′
X(t) − Ψ′

X(t) − Ψ′
X(t) = −Φ′′

X(t).

Setting t = 1 shows that −Φ′′
X (1) = −2Ψ′

X(1). Substitution in the expression for

the variance then shows that V [X] = 2Ψ′
X(1) + ΨX(1) − [ΨX (1)]2.

(c) As the probability that X > n is equal to αn+1 with 0 < α < 1, gn = αn+1 and

so

ΨX(t) =

∞∑
n=0

αn+1tn =
α

1 − αt
,

Ψ′
X(t) =

α2

(1 − αt)2
.

The mean of the distribution is ΨX(1) =
α

1 − α
and the variance is given by

V [X] = 2Ψ′
X(1) + ΨX(1) − [ΨX(1)]2

=
2α2

(1 − α)2
+

α

1 − α
− α2

(1 − α)2

=
2α2 + α− α2 − α2

(1 − α)2

=
α

(1 − α)2
,

as stated in the question.

30.22 Use the formula obtained in subsection 30.8.2 for the moment generating

function of the geometric distribution to determine the CGF Kn(t) for the number

of trials needed to record n successes. Evaluate the first four cumulants and use

them to confirm the stated results for the mean and variance and to show that the

distribution has skewness and kurtosis given, respectively, by

2 − p√
n(1 − p)

and 3 +
6 − 6p+ p2

n(1 − p)
.

The MGF obtained in the text for the number of trials required to obtain the

first success is

M(t) =
pet

1 − qet
,
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and so it follows that the MGF for the number of trials needed to record n

successes is

Mn(t) =

(
pet

1 − qet

)n
.

The CGF of the distribution is therefore given by

Kn(t) = lnMn(t)

= n ln(pet) − n ln(1 − qet)

= n ln p+ nt+ n

∞∑
r=1

(qet)r

r

= n ln p+ nt+ n

∞∑
r=1

qr

r

∞∑
s=0

(tr)s

s!
.

This must be the same as

κ1t+ κ2
t2

2!
+ κ3

t3

3!
+ · · · ,

where κi is the ith cumulant.

The coefficient of t0 is

n ln p+ n

∞∑
r=1

qr

r

1

0!
= n ln p− n ln(1 − q) = 0,

as expected, since no CGF contains a constant term.

The coefficient of t1 is κ1 = µ1 = µ and given by

n+ n

∞∑
r=1

qr

r

r

1!
= n+

nq

1 − q
=

n

1 − q
=
n

p
,

in agreement with the stated result for n = 1.

The coefficient of t2 is κ2/(2!) with κ2 = ν2 = σ2 and given by

κ2

2!
= n

∞∑
r=1

qr

r

r2

2!
=

n

2!

∞∑
r=1

rqr =
nq

2!

d

dq

( ∞∑
r=1

qr

)

=
nq

2!

d

dq

(
q

1 − q

)
=
nq

2!

1 − q + q

(1 − q)2
,

κ2 =
nq

p2
,

again in agreement with the stated result for n = 1.

The coefficient of t3 is κ3/(3!) with κ3 = ν3 and given by

κ3

3!
= n

∞∑
r=1

qr

r

r3

3!
=

n

3!

∞∑
r=1

r2qr.
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To evaluate this sum we make further use of the result that we have just derived,

∞∑
r=1

rqr =
q

(1 − q)2
,

by differentiating both sides with respect to q. This gives

∞∑
r=1

r2qr−1 =
(1 − q)2 + 2q(1 − q)

(1 − q)4
=

1 + q

(1 − q)3
.

The sum on the LHS is closely related to the one appearing in the expression for

κ3 and substituting for it gives

κ3 =
nq(1 + q)

p3
.

The skewness, equal to ν3/(ν2)
3/2, therefore has the value

γ3 =
κ3

(κ2)3/2
=
nq(1 + q)

p3

p3

n3/2q3/2
=

1 + q
√
nq

=
2 − p√
n(1 − p)

.

The kurtosis γ4 of the distribution is given by γ4 = ν4/(ν2)
2 with ν4 = κ4 + 3(ν2)

2.

And so, to determine it, we need an explicit expression for κ4. This is obtained

from the coefficient of t4, which is κ4/(4!) and given by

κ4

4!
= n

∞∑
r=1

qr

r

r4

4!
=

n

4!

∞∑
r=1

r3qr.

Differentiating the result obtained for
∑∞

r=1 r
2qr when finding κ3, we deduce that

∞∑
r=1

r3qr−1 =
(1 − q)3(1 + 2q) + 3q(1 + q)(1 − q)2

(1 − q)6

=
1 + q − 2q2 + 3q + 3q2

(1 − q)4

=
1 + 4(1 − p) + (1 − p)2

p4
.

We conclude that

κ4 =
n(1 − p)(6 − 6p+ p2)

p4
,

⇒ γ4 = 3 +
n(1 − p)(6 − 6p+ p2)

n2(1 − p)2
= 3 +

6 − 6p+ p2

n(1 − p)
.
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30.24 As assistant to a celebrated and imperious newspaper proprietor, you are

given the job of running a lottery in which each of his five million readers will have

an equal independent chance p of winning a million pounds; you have the job of

choosing p. However, if nobody wins it will be bad for publicity, whilst, if more

than two readers do so, the prize cost will more than offset the profit from extra

circulation – in either case you will be sacked! Show that, however you choose p,

there is more than a 40% chance you will soon be clearing your desk.

The number of winners x will follow a Poisson distribution; let its mean be µ. I

will keep my job provided the number of winners is 1 or 2. The probability y(µ)

of this is

y(µ) =
µ

1!
e−µ +

µ2

2!
e−µ.

This is maximal when µ is chosen to satisfy

0 =
dy

dµ
= −( 1

2
µ2 + µ)e−µ + (1 + µ)e−µ ⇒ µ =

√
2.

The corresponding value of p is
√

2/(5 × 106) and the chance that I keep my job

is

y(
√

2) = (
√

2 + 1)e−
√

2 = 0.587,

i.e. a 41% chance that I will be clearing my desk.

30.26 In the game of Blackball, at each turn Muggins draws a ball at random

from a bag containing five white balls, three red balls and two black balls; after

being recorded, the ball is replaced in the bag. A white ball earns him $1 whilst

a red ball gets him $2; in either case he also has the option of leaving with his

current winnings or of taking a further turn on the same basis. If he draws a

black ball the game ends and he loses all he may have gained previously. Find an

expression for Muggins’ expected return if he adopts the strategy of drawing up

to n balls if he has not been eliminated by then.

Show that, as the entry fee to play is $3, Muggins should be dissuaded from

playing Blackball, but if that cannot be done what value of n would you advise

him to adopt?

Suppose that Muggins draws all of the n balls dictated by his strategy and let the
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respective numbers of the different colours be w, r and b, where w+ r+ b = n. If

b is non-zero, his winnings s, given otherwise by S = w + 2r, will be zero. Now,

Pr(S = 0) = 1 −
(

8

10

)n
and Pr(S = w + 2r = n+ r) =

(
8

10

)n [
nCr

(
3

8

)r (
5

8

)n−r ]
.

Thus his expected return is (noting that for non-zero contributions w+2r = n+r)

S(n) =

(
8

10

)n n∑
r=0

nCr

(
3

8

)r (
5

8

)n−r
(n+ r)

=

(
8

10

)n [
n

(
3

8
+

5

8

)n
+

n∑
r=0

nCr r

(
3

8

)r (
5

8

)n−r
]

=

(
8

10

)n [
n+

n∑
r=1

n!

(r − 1)! (n− r)!

(
3

8

)r (
5

8

)n−r
]

=

(
8

10

)n [
n+

3n

8

n∑
r=1

(n− 1)!

(r − 1)! [ n− 1 − (r − 1) ]!

×
(

3

8

)r−1 (
5

8

)[ n−1−(r−1) ]
]

=

(
8

10

)n [
n+

3n

8

n−1∑
s=0

(n− 1)!

s! [ n− 1 − s ]!

(
3

8

)s (
5

8

)[ n−1−s ]
]

=

(
4

5

)n
11n

8
.

In hindsight, this should have been expected, since the average gain for a non-zero

return is n× [ (5 × 1) + (3 × 2) ]/8 = 11n/8. The bag could have been more easily

treated as one containing 2 black balls and 8 non-black balls, each of the latter

offering a return of $11/8 if drawn.

To optimise this return n should be chosen so that ln y, where y = n( 4
5
)n, is

optimised, i.e.

ln y = ln n+ n ln 4
5
,

0 =
dy

dn
=

1

n
+ ln

4

5
,

⇒ n =
1

ln 5
4

= 4.48.

Since n must be integral, we calculate S(4) = 2.2528 and S(5) = 2.2528. These are

equal as the calculated formula shows they must be. However, they are both less

than 3 and Muggins would be well advised to keep his $3 in his pocket; if he will
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not take this advice then he should probably choose n = 5 and lose his money

marginally more slowly.

30.28 A husband and wife decide that their family will be complete when

it includes two boys and two girls – but that this would then be enough! The

probability that a new baby will be a girl is p. Ignoring the possibility of identical

twins, show that the expected size of their family is

2

(
1

pq
− 1 − pq

)
,

where q = 1 − p.

The ‘experiment’ will end after n ‘trials’ if the previous n− 1 trials have produced

either n− 2 boys and 1 girl or n− 2 girls and one boy, and the nth trial produces

the girl or boy (respectively) needed to complete the desired family. These two

situations have respective probabilities

( n−1C1 pq
n−2)p and ( n−1C1 qp

n−2)q.

Thus the probability that the size of the family is n is

n−1C1 p
2qn−2 + n−1C1 q

2pn−2 = (n− 1)(p2qn−2 + q2pn−2).

Averaging this over all possible values of n (≥ 4) gives the expected size as

〈n〉 =

∞∑
n=4

n(n− 1)(p2qn−2 + q2pn−2).

Now, from the formula for the sum of a geometric series, we have

∞∑
n=0

rn =
1

1 − r
.

Differentiating this (twice) with respect to r gives

∞∑
n=1

nrn−1 =
1

(1 − r)2
,

∞∑
n=2

n(n− 1)rn−2 =
2

(1 − r)3
.
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So, as the minimum size of their family is 4,

〈n〉 =

∞∑
n=4

n(n− 1)(p2qn−2 + q2pn−2)

= p2

[
2

(1 − q)3
− (2)(1)q0 − (3)(2)q1

]
+ q2

[
2

(1 − p)3
− (2)(1)p0 − (3)(2)p1

]
= p2

[
2

p3
− 2 − 6q

]
+ q2

[
2

q3
− 2 − 6p

]
= 2

[
1

p
+

1

q
− p2 − q2 − 3pq(p+ q)

]
= 2

[
p+ q

pq
− (12 − 2pq) − 3pq(1)

]
= 2

[
1

pq
− 1 − pq

]
,

as given in the question.

30.30 A shopper buys 36 items at random in a supermarket where, because

of the sales tax imposed, the final digit (the number of pence) in the price is

uniformly and randomly distributed from 0 to 9. Instead of adding up the bill

exactly she rounds each item to the nearest 10 pence, rounding up or down with

equal probability if the price ends in a ‘5’. Should she suspect a mistake if the

cashier asks her for 23 pence more than she estimated?

The probability distribution for the rounding (in pence) is

Pr(i) = pi =

{
1
10

−4 ≤ i ≤ 4

1
20

i = 5, i = −5

This clearly has mean µ = 0 and the variance is given by

σ2 =

5∑
i=−5

i2pi − (µ)2 = 0 +
2

10
(12 + 22 + 32 + 42) +

2

20
52 − 0 =

17

2
.

The standard deviation for 36 items is therefore
√

36σ = 6
√

17/2 = 17.49. The

extra 23 pence asked for is therefore only 23/17.49 = 1.31 s.d. and, for such a

bill of items, this discrepancy can be expected to be exceeded (either way) about

20% of the time.
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30.32 In a certain parliament the government consists of 75 New Socialites and

the opposition consists of 25 Preservatives. Preservatives never change their mind,

always voting against government policy without a second thought; New Socialites

vote randomly, but with probability p that they will vote for their party leader’s

policies.

Following a decision by the New Socialites’ leader to drop certain manifesto com-

mitments, N of his party decide to vote consistently with the opposition. The

leader’s advisors reluctantly admit that an election must be called if N is such

that, at any vote on government policy, the chance of a simple majority in favour

would be less than 80%. Given that p = 0.8, estimate the lowest value of N that

would precipitate an election.

From interpolation in the tabulation of the CPF for the Gaussian distribution

the value of z for which Φ(z) = 0.8 is 0.841. It follows that the chance of a defeat

becomes more than 20% when the difference between 50 and the predictable

number of anti-government votes is reduced to 0.841 times the standard deviation

in the number of pro-government votes.

The number of assured anti-government votes is 25 + N whilst the remaining

number of unpredictable New Socialites is 75 −N. For these members of parlia-

ment, voting is a series of Bernoulli trials with a probability that they will vote

with the opposition of 1 − p. The mean number of votes they will cast with the

opposition is therefore (1 − p)(75 − N). The standard deviations of the number

of their votes cast either with or against the government are the same and equal

to
√

(75 −N)p(1 − p).

An election will be precipitated if

25 +N + (1 − p)(75 −N) + 0.841
√

(75 −N)p(1 − p) = 50

Setting p = 0.8 and rearranging gives

0.841
√

0.16(75 −N) = 10 − 0.8N,

(0.7073)(0.16)(75 −N) = 100 − 16N + 0.64N2,

0.64N2 − 15.89N + 91.51 = 0,

⇒ N = 9.08 or 15.75.

The second value corresponds to taking −0.841 standard deviations and is not

relevant here. The conclusion is that 10 rebel New Socialites would be enough to

precipitate an election.
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30.34 The random variables X and Y take integer values ≥ 1 such that

2x+y ≤ 2a, where a is an integer greater than 1. The joint probability within this

region is given by

Pr(X = x, Y = y) = c(2x+ y),

where c is a constant, and it is zero elsewhere.

Show that the marginal probability Pr(X = x) is

Pr(X = x) =
6(a− x)(2x+ 2a+ 1)

a(a− 1)(8a+ 5)
,

and obtain expressions for Pr(Y = y), (a) when y is even and (b) when y is odd.

Show further that

E[Y ] =
6a2 + 4a+ 1

8a+ 5
.

[ You will need the results about series involving the natural numbers given in

subsection 4.2.5. ]

Since the boundary of the region is 2x+ y ≤ 2a, the maximal value of y for any

fixed x will be even. The marginal probability Pr(X = x) is obtained by summing

over the probabilities for all the allowed values of y in the range 1 ≤ y ≤ 2a− 2x,

i.e.

Pr(X = x) =

2a−2x∑
y=1

c(2x+ y)

= 2cx(2a− 2x) + c 1
2
(2a− 2x)(2a− 2x+ 1)

= 2c(a− x)(2x+ a− x+ 1
2
)

= c(a− x)(2x+ 2a+ 1).

However, the overall normalisation requires that
∑a−1

x=1 Pr(X = x) must be equal

to unity:

1 =

a−1∑
x=1

Pr(X = x)

=

a−1∑
x=1

c(a− x)(2x+ 2a+ 1) = c

a−1∑
x=1

2a2 − 2x2 + a− x

= c [ 2a2(a− 1) − 2
6
(a− 1)(a)(2a − 1) + a(a− 1) − 1

2
(a− 1)a ]

= ca(a− 1)[ 2a− 1
3
(2a− 1) + 1 − 1

2
]

= 1
6
ca(a− 1)(8a+ 5).
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The normalisation condition therefore requires that

c =
6

a(a− 1)(8a+ 5)
,

⇒ Pr(X = x) =
6(a− x)(2x+ 2a+ 1)

a(a− 1)(8a+ 5)
.

(a) If y is even then, for the calculation of the marginal probability Pr(Y = y),

the largest value of x to be included in the sum over x lies on the boundary of

the region at x = 1
2
(2a− y). The sum is therefore

Pr(y) =

(2a−y)/2∑
x=1

c(2x+ y)

= 2c
1

2

2a− y

2

2a− y + 2

2
+ cy

2a− y

2

=
1

4
c(2a− y)(2a− y + 2 + 2y)

=
3(2a− y)(2a+ y + 2)

2a(a− 1)(8a+ 5)
.

(b) When y is odd the largest value of x does not lie on the boundary but is given

by 1
2
(2a− y − 1). Hence

Pr(y) =

(2a−y−1)/2∑
x=1

c(2x+ y)

= 2c
1

2

2a− y − 1

2

2a− y + 1

2
+ cy

2a− y − 1

2

=
1

4
c(2a− y − 1)(2a− y + 1 + 2y)

=
3(2a− y − 1)(2a+ y + 1)

2a(a− 1)(8a+ 5)
.

The mean value E[Y ] is equal to the sum
∑

y y Pr(Y = y), the minimum value of

y being 1 and the maximum value 2a− 2, i.e. there are an even number of terms.

We group the values in pairs, y = 2m − 1 and y = 2m, for m = 1, 2, . . . , a − 1.

Denoting by k the constant 3/[ 2a(a− 1)(8a+ 5) ], we have that

E[Y ] =

a−1∑
m=1

[ k(2a− 2m)(2a+ 2m)(2m− 1) + k(2a− 2m)(2a+ 2m+ 2)2m ]

= 4k

a−1∑
m=1

[ (a2 − m2)(2m− 1) + (a2 − m2 + a− m)2m ]

= 4k

a−1∑
m=1

[ −a2 + (4a2 + 2a)m− m2 − 4m3 ].
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This sum may be evaluated by using the formulae for the sums of the powers of

the natural numbers (see chapter 4), and reads

E[Y ] = 4k

[
−a2 (a− 1) + 2a(2a+ 1)

1

2
(a− 1)a

− 1

6
(a− 1)a(2a− 1) − 4

1

4
(a− 1)2a2

]
= 4k(a− 1)(−a2 + 2a3 + a2 − 1

3
a2 + 1

6
a− a3 + a2)

=
4k(a− 1)a

6
(6a2 + 4a+ 1)

=
3

2a(a− 1)(8a+ 5)

4(a− 1)a

6
(6a2 + 4a+ 1)

=
6a2 + 4a+ 1

8a+ 5
.

30.36 A discrete random variable X takes integer values n = 0, 1, . . . , N with

probabilities pn. A second random variable Y is defined as Y = (X−µ)2, where µ

is the expectation value of X. Prove that the covariance of X and Y is given by

Cov[X,Y ] =

N∑
n=0

n3pn − 3µ

N∑
n=0

n2pn + 2µ3.

Now suppose that X takes all its possible values with equal probability and hence

demonstrate that two random variables can be uncorrelated even though one is

defined in terms of the other.

The covariance of X and Y is given by

Cov[X,Y ] = E[XY ] − E[X]E[Y ]

=

N∑
n=0

([ n(n− µ)2pn ] − µ

N∑
n=0

(n− µ)2pn

=

N∑
n=0

n3pn − 2µ

N∑
n=0

n2pn + µ2
N∑
n=0

npn

− µ

N∑
n=0

n2pn + 2µ2
N∑
n=0

npn − µ3
N∑
n=0

pn.

But
∑N

n=0 npn = µ and
∑N

n=0 pn = 1, and so

Cov[X,Y ] =

N∑
n=0

n3pn − 3µ

N∑
n=0

n2pn + 2µ3.
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Now suppose that pn = (N + 1)−1 for all values of n. In this case, the mean

µ = N/2 and, using the sums of the first, second and third powers of the natural

numbers derived in subsection 4.2.5, we have

Cov[X,Y ] =
N2(N + 1)2

4(N + 1)
− 3N

2

N(N + 1)(2N + 1)

6(N + 1)
+

2N3

8

=
N2

4
[N + 1 − 2N − 1 +N ] = 0.

Thus, as their covariance is zero, the random variables X and Y are uncorrelated

– even though Y is defined in terms of X.

30.38 A continuous random variable X is uniformly distributed over the interval

[−c, c]. A sample of 2n + 1 values of X is selected at random and the random

variable Z is defined as the median of that sample. Show that Z is distributed

over [−c, c] with probability density function

fn(z) =
(2n+ 1)!

(n!)2(2c)2n+1
(c2 − z2)n.

Find the variance of Z .

For the median of the sample of 2n + 1 values of X to lie in the interval

z → z + dz we require that n values lie in the range −c ≤ X < z, n lie in the

range z + dz < X ≤ c and one is in the interval z ≤ X ≤ z + dz. We are thus

considering a multinomial distribution and, as all the sample values in any one

interval are equivalent, the probability density function is

fn(z) dz =
(2n+ 1)!

n! n! 1!

(
z + c

2c

)n (c− z

2c

)n (dz
2c

)1

=
(2n+ 1)!

(n!)2(2c)2n+1
(c2 − z2)n dz

≡ An(c
2 − z2)n dz,

where An is defined (for any n ≥ 1) by

An

∫ c

−c
(c2 − z2)n dz = 1.

Now, from symmetry, it is clear that E[Z] = 0 and so the variance of Z is given
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by

V [Z] = E[Z2] − (E[Z])2

= An

∫ c

−c
z2(c2 − z2)n dz − 0

= An

[
−z

2

(c2 − z2)n+1

n+ 1

] c
−c

+
An

2

∫ c

−c

(c2 − z2)n+1

n+ 1
dz

= 0 +
An

2(n+ 1)

1

An+1

=
(2n+ 1)!

2(n+ 1) (n!)2 (2c)2n+1

[ (n+ 1)! ]2 (2c)2n+3

(2n+ 3)!

=
(n+ 1)2 4c2

2(n+ 1)(2n+ 2)(2n+ 3)

=
c2

2n+ 3
.

We note that this result has been obtained without having to explicitly evaluate

the integrals involved.

30.40 The variables Xi, i = 1, 2, . . . , n, are distributed as a multivariate Gaussian,

with means µi and a covariance matrix V. If the Xi are required to satisfy the linear

constraint
∑n

i=1 ciXi = 0, where the ci are constants (and not all equal to zero),

show that the variable

χ2
n = (x − µ)TV−1(x − µ)

follows a chi-squared distribution of order n− 1.

As shown in the text, the PDF of the multivariate Gaussian can be written

f(x) =
1

(2π)n/2 |V |1/2
exp

[
−1

2
(x − µ)TV−1(x − µ)

]
.

Now let S be the orthogonal matrix whose normalised columns are the eigen-

vectors of V with corresponding eigenvalues λi and define new variables yi by

y = ST(x − µ). Using the fact that SST = I, the argument of the exponential

function becomes

−1

2
(x − µ)TV−1(x − µ) = −1

2
(x − µ)TS STV−1S ST(x − µ)

= −1

2
[ ST(x − µ) ]T STV−1S [ ST(x − µ) ]

= −1

2
yT diag(λ−1

i ) y.
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A further scaling of the variables, zi = yi/
√
λi, reduces the argument to − 1

2
χ2
n =

− 1
2

∑n
i=1 z

2
i and

f(z) dnz = f(z1, z2, . . . , zn) dz1 dz2 · · · dzn

=
1

(2π)n/2 |V |1/2
exp(−1

2
χ2
n) dVχ,

where dz1 dz2 · · · dzn is the infinitesimal volume enclosed by the intersection of

the n-dimensional spherical shell of radius χ2
n and thickness dχ2

n with the (n− 1)-

dimensional hyperplane
∑n

i=1 cixi = 0.

From the way each yi was constructed, both it and zi have zero means; the scaling

from yi to zi ensures that zi has unit variance.

Under the successive transformations the linear constraint
∑n

i=1 cixi = 0, with not

all ci = 0, will become another linear constraint
∑n

i=1 c
′
iZi = 0, again with not all

c′
i = 0 (since the λi are neither zero nor infinite).

The constraint can be incorporated by writing one zk for which c′
k �= 0 in terms

of the others:

χ2
n = z2

1 + z2
2 + . . .+

−
n∑
j �=k

cj

ck
zj

2

+ . . .+ z2
n .

A further transformation can then be made to carry this into the form

χ2
n = v21 + v22 + · · · + v2n−1,

which can be considered as the square of the distance from the origin in the

(n− 1)-dimensional V-space. In this space the element of volume is

dVχ = Aχn−2
n dχn = Aχn−2

n

d(χ2
n)

2χn
=
A

2
(χ2
n)

(n−3)/2 dχ2
n.

Collecting these results together gives

h(χ2
n) dχ

2
n ∝ (χ2

n)
(n−3)/2 exp(−1

2
χ2
n) dχ

2
n,

i.e. χ2
n follows a chi-squared distribution of order n− 1.
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Statistics

31.2 Measurements of a certain quantity gave the following values: 296, 316,

307, 278, 312, 317, 314, 307, 313, 306, 320, 309. Within what limits would you

say there is a 50% chance that the correct value lies?

Since all the other readings are within ±12 of 308 and the reading of 278 is 30

away from this value, it should probably be rejected, as erroneous rather than a

statistical fluctuation.

The other readings do not look as though they are Gaussian distributed and the

best estimate is probably obtained by considering the distribution as approximat-

ing to a uniform distribution and using the inter-quartile range of the remaining

11 readings. Arranged in order, they are

296, 306, 307, 307, 309, 312, 313, 314, 316, 317, 320,

and their mean is 310.6.

This number of readings does not divide into four equal-sized groups and the

perhaps over-cautious approach is to discard only two readings from each end of

the range i.e. give the range in which the correct value lies with 50% probability

as 307–316. An additional reading would probably have justified discarding three

reading from each end.
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31.4 Two physical quantities x and y are connected by the equation

y1/2 =
x

ax1/2 + b
,

and measured pairs of values for x and y are as follows:

x: 10 12 16 20

y: 409 196 114 94.

Determine the best values for a and b by graphical means and (either by hand

or by using a built-in calculator routine) by a least-squares fit to an appropriate

straight line.

We aim to put this equation into a ‘straight-line’ form. One way to do this is to

re-arrange it as

x

y1/2
= ax1/2 + b

and plot (x/y1/2) against x1/2. The slope of the graph will give a and its intercept

on the (x/y1/2)-axis will give b. We therefore tabulate the required quantities:

x 10 12 16 20

y 409 196 114 94

x1/2 3.16 3.46 4.00 4.47

x/y1/2 0.494 0.857 1.499 2.063

Plotting the graph over the range 3.0 ≤ x1/2 ≤ 4.5 gives a good straight line

of slope (2.09 − 0.31)/(4.50 − 3.00) = 1.19. Thus a = 1.19. The fit to the line is

sufficiently good that it is hard to estimate the uncertainty in a and a least-squares

fit would result in a small but virtually meaningless value.

However, the measured values of x1/2 are bunched in a range that is small

compared to their distance from the (x/y1/2)-axis, where the intercept is b. Such a

long graphical extrapolation could result in a serious error in the value of b. It is

better to calculate b using the straight-line values at one point (say x/y1/2 = 0.31

at x1/2 = 3.00) and the slope just found:

b = 0.31 − (1.19 × 3.00) = −3.26.

An alternative is to re-arrange the original equation as

x1/2

y1/2
= a+

b

x1/2

and then plot values from the following table,
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x 10 12 16 20

y 409 196 114 94

x−1/2 0.316 0.288 0.250 0.223

(x/y)1/2 0.156 0.247 1.375 2.461

over the range 0.200 ≤ x−1/2 ≤ 0.330. An equally good straight-line fit is obtained

with a slope, this time being equal to b (rather than a), of (0.110−0.534)/(0.330−
0.200) = −3.26. A similar calculation to that used earlier now determines a as

0.534 + (3.26 × 0.200) = 1.19.

31.6 Prove that the sample mean is the best linear unbiased estimator of the

population mean µ as follows.

(a) If the real numbers a1, a2, . . . , an satisfy the constraint
∑n

i=1 ai = C , where

C is a given constant, show that
∑n

i=1 a
2
i is minimised by ai = C/n for all i.

(b) Consider the linear estimator µ̂ =
∑n

i=1 aixi. Impose the conditions (i) that

it is unbiased, and (ii) that it is as efficient as possible.

(a) To minimise S =
∑n

i=1 a
2
i subject to the constraint

∑n
i=1 ai = C , we introduce

a Lagrange multiplier and consider

T =

n∑
i=1

a2
i − λ

n∑
i=1

ai,

0 =
∂T

∂ai
= 2ai − λ

⇒ ai =
1
2
λ, for all i.

Re-substitution in the constraint gives C = 1
2
nλ, leading to ai = C/n for all i. The

corresponding minimum value of S is C2/n.

(b) If the sample values xi are drawn from a population with mean µ and variance

σ2, consider the linear estimator µ̂ =
∑n

i=1 aixi. For the estimator to be unbiased

we require that

0 = 〈µ̂− µ〉 =

〈
n∑
i=1

aixi − µ

〉
=

n∑
i=1

ai〈xi〉 − µ

=

n∑
i=1

aiµ− µ = µ

(
n∑
i=1

ai − 1

)
.

Thus the first requirement is that
∑n

i=1 ai = 1.
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Now we add the further requirement of efficiency by minimising the variance of

µ̂. The expression for the variance is

〈(µ̂− µ)2〉 =

〈(
n∑
i=1

ai(µ+ zi) − µ

)2〉
, with 〈zi〉 = 0 and 〈z2

i 〉 = σ2,

=

〈(
n∑
i=1

aizi +

n∑
i=1

aiµ− µ

)2〉
,

=

〈(
n∑
i=1

aizi + µ− µ

)2〉
, since

n∑
i=1

ai = 1,

=

〈(
n∑
i=1

aizi

)2〉

=

n∑
i=1

a2
i σ

2, since 〈z2
i 〉 = σ2 and the zi are independent.

Now, from part (a), this expression is minimised subject to
∑n

i=1 ai = 1 when

ai = 1/n for all i, i.e. when µ̂ is taken as the mean of the sample. The minimum

value for the variance is σ2/n. This completes the proof that the sample mean is

the best linear unbiased estimator of the population mean µ.

31.8 Carry through the following proofs of statements made in subsections 31.5.2

and 31.5.3 about the ML estimators τ̂ and λ̂.

(a) Find the expectation values of the ML estimators τ̂ and λ̂ given respectively

in (31.71) and (31.75). Hence verify equations (31.76), which show that,

even though an ML estimator is unbiased, it does not follow that functions

of it are also unbiased.

(b) Show that E[τ̂2] = (N + 1)τ2/N and hence prove that τ̂ is a minimum-

variance estimator of τ.

(a) As shown in the text [ equation (27.67) ] the likelihood of the measured

intervals xk is

N∏
k=1

1

τ
exp
(

−xk

τ

)
=

1

τN
exp

[
−1

τ
(x1 + x2 + · · · + xN)

]
.

The expectation value E[ τ̂ ] of the estimator τ̂ = N−1
∑N

i=1 xi is therefore

1

N

N∑
i=1

∫
· · ·
∫
xi

1

τN
exp

[
−1

τ
(x1 + x2 + · · · + xN)

]
dx1 dx2 · · · dxN.
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In each term of the sum we can carry out the integrations over all the xk variables

except the one with k = i (each gives τ) thereby reducing the sum to

E[ τ̂ ] =
1

N

N∑
i=1

xi
1

τ
e−xi/τ dxi

=
1

N

N∑
i=1

([
−xi

τ
τ e−xi/τ

]∞

0
+

∫ ∞

0

e−xi/τ dxi

)

=
1

N

N∑
i=1

τ =
1

N
Nτ = τ, as expected.

We note that this estimator is unbiased and now turn to the expectation value of

the estimator

λ̂ =

(
1

N

N∑
i=1

xi

)−1

= x̄−1.

For typographical clarity we will omit explicit limits from the sum
∑N

i=1 xi where

it appears in the equations that follow.

E[ λ̂ ] =

∫
· · ·
∫ (

N∑
xi

)
λe−λx1 λe−λx2 · · · λe−λxN dx1 dx2 · · · dxN

=

∫
N∑
xi
λN e−λ

∑
xi dNxi.

To evaluate this integral we differentiate both sides of its definition with respect

to λ. The RHS is a product of two functions of λ; differentiating it produces one

term in which λN → NλN−1 and the other produces a factor that cancels the
∑
xi

in the denominator. The result is

dE[ λ̂ ]

dλ
=
N

λ
E[ λ̂ ] −N

∫
λN e−λ

∑
xi dNxi

=
N

λ
E[ λ̂ ] −N,

since the distribution function for each xi is normalised (they are all the same).

The integrating factor for this first-order equation is λ−N giving

d

dλ

(
E

λN

)
= − N

λN
⇒ E

λN
=

N

(N − 1)λN−1
+ c.

We must have E[ λ̂ ] → λ as N → ∞ and so c = 0, yielding

E[ λ̂ ] =
N

N − 1
λ.

Thus, although the bias tends to zero as N → ∞, λ̂ is a biased estimator of λ.

Since it is directly given as the reciprocal of τ̂, the two results obtained, taken
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together, show that even though an ML estimator is unbiased, it does not follow

that functions of it are also unbiased.

(b) We start by using the Fisher inequality to determine the minimum variance

that any estimator of τ could have; for this we need lnP (x|τ). This is given by

lnP (x|τ) = ln

[
N∏
i=1

(
e−xi/τ

τ

)]
= −

N∑
i=1

(
ln τ+

1

τ
xi

)
.

Hence,

E

[
− ∂2

∂τ2
lnP

]
= E

[
N∑
i=1

(
− 1

τ2
+

2

τ3
xi

)]

= −N

τ2
+

2Nτ

τ3
=
N

τ2
.

We have already shown that the estimator is unbiased; thus ∂b/∂τ = 0 and

Fisher’s inequality reads

V [ τ̂ ] ≥ 1

N/τ2
=
τ2

N
.

Next we compute

E[ τ̂2 ] =

∫
· · ·
∫

1

N2

(∑
xi

)2 1

τN
e−(

∑
xi)/τ dx1 dx2, · · · dxN.

We now separate off the N terms in the square of the sum that contain factors

typified by x2
i from the N(N − 1) terms containing factors typified by xixj with

i �= j. All integrals over sample values not involving i, or i and j, (as the case

may be) integrate to τ. Within each group all integrals have the same value and

so we can write

E[ τ̂2 ] =
1

N2

[
N

∫ ∞

0

x2

τ
e−x/τ dx

+ N(N − 1)

∫ ∞

0

∫ ∞

0

x1

τ

x2

τ
e−x1/τ e−x2/τ dx1 dx2

]
=

1

N2
[ 2Nτ2 +N(N − 1)τ2 ]

=
N + 1

N
τ2.

Finally, the variance of τ̂ is calculated as

V [ τ̂ ] = E[ τ̂2 ] − (E[ τ̂ ])2 =
N + 1

N
τ2 − τ2 =

τ2

N
.

This is equal to the minimum allowed by the Fisher inequality; thus τ̂ is a

minimum-variance estimator of τ.
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31.10 This exercise is intended to illustrate the dangers of applying formalised

estimator techniques to distributions that are not well behaved in a statistical sense.

The following are five sets of 10 values, all drawn from the same Cauchy distri-

bution with parameter a.

(i) 4.81 −1.24 1.30 −0.23 2.98

−1.13 −8.32 2.62 −0.79 −2.85

(ii) 0.07 1.54 0.38 −2.76 −8.82

1.86 −4.75 4.81 1.14 −0.66

(iii) 0.72 4.57 0.86 −3.86 0.30

−2.00 2.65 −17.44 −2.26 −8.83

(iv) −0.15 202.76 −0.21 −0.58 −0.14

0.36 0.44 3.36 −2.96 5.51

(v) 0.24 −3.33 −1.30 3.05 3.99

1.59 −7.76 0.91 2.80 −6.46

Ignoring the fact that the Cauchy distribution does not have a finite variance (or

even a formal mean), show that â, the ML estimator of a, has to satisfy

s(â) =

10∑
i=1

1

1 + x2
i /â

2
= 5. (∗)

Using a programmable calculator, spreadsheet or computer, find the value of â that

satisfies (∗) for each of the data sets and compare it with the value a = 1.6 used

to generate the data. Form an opinion regarding the variance of the estimator.

Show further that if it is assumed that (E[â])2 = E[â2] then E[â] = ν
1/2
2 , where

ν2 is the second (central) moment of the distribution, which for the Cauchy dis-

tribution is infinite!

The Cauchy distribution with parameter a has the form

f(x) =
a

π

1

a2 + x2
.

It follows that the likelihood function for 10 sample values is

L(x|a) =
( a
π

)10
10∏
i=1

1

a2 + x2
i

,

and that the log-likelihood function

lnL = −10 lnπ + 10 ln a−
10∑
i=1

ln(a2 + x2
i ).
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The equation satisfied by the ML estimator â is therefore

0 =
∂(lnL)

∂a
=

10

a
−

10∑
i=1

2a

a2 + x2
i

⇒ s(â) =

10∑
i=1

1

1 + x2
i /â

2
= 5.

Using a simple spread sheet to calculate the sum on the LHS for various assumed

values of a and then manual or automated interpolation to make the sum equal

to 5, the following values for â are obtained for the five sets of data:

(i) 1.85, (ii) 1.66, (iii) 2.46, (iv) 0.68, (v) 2.44.

Although the estimates have the correct order of magnitude, there is clearly a very

large (perhaps infinite) sampling variance. Even if all 50 samples are combined,

the resulting estimated value for a of 1.84 is 0.24 away from that used to generate

the data.

It is clear that for sets of N sample values (∗) reads

N∑
i=0

1

â2 + x2
i

=
N

2â2
,

and we take this as the definition of â. Multiplying both sides of this equation by∏N
k=1(â

2 + x2
k), we obtain

N

2â2

N∏
k=1

(â2 + x2
k) =

N∑
i=0

N∏
k �=i

(â2 + x2
k).

Now we take expectation values over all the xi, writing E[ xri ] = νr ,

N

2E[ â2 ]

(
E[ â2 ] + ν2

)N
= N

(
E[ â2 ] + ν2

)N−1

E[ â2 ] + ν2 = 2E[ â2 ] ⇒ E[ â ] = ν
1/2
2 ,

assuming that E[ â ]2 = E[â2 ]. As shown in exercise 31.8, this is not necessarily

so, but any possible fractional bias is typically O(N−1). However, for the Cauchy

distribution,

ν2 =

∫ ∞

−∞

a

π

x2

a2 + x2
dx = ∞.

This is rather more serious than an O(N−1) error and the statistically unsound

procedure used leads to the false conclusion that the expected value of the

estimator is infinite, when it ought to have a value equal to the finite parameter

a of the sample distribution.
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31.12 On a certain (testing) steeplechase course there are 12 fences to be

jumped and any horse that falls is not allowed to continue in the race. In a season

of racing a total of 500 horses started the course and the following numbers fell

at each fence:

Fence: 1 2 3 4 5 6 7 8 9 10 11 12

Falls: 62 75 49 29 33 25 30 17 19 11 15 12

Use this data to determine the overall probability of a horse’s falling at a fence,

and test the hypothesis that it is the same for all horses and fences as follows.

(a) Draw up a table of the expected number of falls at each fence on the basis

of the hypothesis.

(b) Consider for each fence i the standardised variable

zi =
estimated falls − actual falls

standard deviation of estimated falls

and use it in an appropriate χ2 test.

(c) Show that the data indicates that the odds against all fences being equally

testing are about 40 to 1. Identify the fences that are significantly easier or

harder than the average.

(a) The information as presented does not give statistically independent data for

each fence, as a horse that falls at an early fence cannot attempt a later one. To

extract the necessary data we extend the table by adding rows for the number of

attempts at each fence and the number of successful jumps there.

Fence: 1 2 3 4 5 6

Falls: 62 75 49 29 33 25

Clearances: 438 363 314 285 252 227

Attempts: 500 438 363 314 285 252

Fence: 7 8 9 10 11 12 Total

Falls: 30 17 19 11 15 12 377

Clearances: 197 180 161 150 135 123 2825

Attempts: 227 197 180 161 150 135 3202

On the hypothesis that all fences are equally difficult the best estimator of the

probability p of a fall at any particular fence i is 377/3202 = 0.1177, independent

of i. If the number of attempts at fence i is ni then the expected number of falls

at that fence is xi = pni. Since each attempt is a Bernoulli trial the s.d. of xi is

given by
√
nip(1 − p) = 0.3223

√
ni.

(b) We may now draw up a further table of the expected number of falls and of
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the standardised variable

zi =
estimated falls − actual falls

standard deviation of estimated falls

for each fence. The corresponding contribution to the overall χ2 statistic is χ2
i = z2

i .

Fence: 1 2 3 4 5 6

Falls: 62 75 49 29 33 25

Estimated Falls: 58.9 51.6 42.7 37.0 33.6 29.7

zi: -0.43 -3.47 -1.02 1.40 0.11 0.92

χ2
i : 0.2 12.0 1.0 2.0 0.0 0.8

Fence: 7 8 9 10 11 12 Total

Falls: 30 17 19 11 15 12 377

Estimated Falls: 26.7 23.2 21.2 19.0 17.7 15.9 377

zi: -0.68 1.37 0.51 1.96 0.68 1.04

χi: 0.5 1.9 0.3 3.8 0.5 1.1 24.1

Thus χ2 = 24.1 for 12 − 1 = 11 degrees of freedom. This is close to the 99%

limit and therefore it is exceedingly unlikely (odds of almost 100 to 1 against)

that all fences are equally difficult and that the variations in the success rate are

due to statistical fluctuations. Fence 2 is especially difficult, whilst fences 4, 8 and

(particularly) 10 are easier than average.

A similar (slightly erroneous) calculation treating the number of falls as governed

by a Poisson distribution (rather than each jump being a Bernoulli trial) gives a

χ2 value of 21.2 for 11 degrees of freedom and leads to the odds against uniform

difficulty of the jumps of about 40 to 1.

31.14 Three candidates X, Y and Z were standing for election to a vacant

seat on their college’s Student Committee. The members of the electorate (current

first-year students, consisting of 150 men and 105 women) were each allowed to

cross out the name of the candidate they least wished to be elected, the other two

candidates then being credited with one vote each. The following data are known.

(a) X received 100 votes from men, whilst Y received 65 votes from women.

(b) Z received five more votes from men than X received from women.

(c) The total votes cast for X and Y were equal.

Analyse this data in such a way that a χ2 test can be used to determine whether

voting was other than random (i) amongst men, and (ii) amongst women.

The numbers of votes cast for each candidate are not independent quantities
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since for each vote a candidate receives another candidate also receives a vote.

The independent quantities are the numbers of times each name has been crossed

out. We must first determine the latter quantities. Suppose that the correlation

table for crossings out is

Not X Not Y Not Z Total

Men a c e 150

Women b d f 105

Total ? ? ? 255

As the questions to be answered deal with men and women’s voting patterns

separately, we do not need to estimate overall percentages; the theoretical expec-

tation of the result of random voting is 1
3

× 150 = 50 crossings out by men and
1
3

× 105 = 35 by women for each candidate. The corresponding variances, for

what are essentially Bernoulii trials, are 1
3

× 2
3

× 150 and 1
3

× 2
3

× 105.

To determine the values in the table we know that a+c+e = 150 and b+d+f =

105. Further, from the information (a) - (c) provided:

(a) c+ e = 100 and b+ f = 65,

(b) a+ c = d+ f + 5,

(c) c+ d+ e+ f = a+ b+ e+ f.

From these it follows (in approximately deducible order) that a = 50, d = 40,

5 + c = f, c = b+ 10, (c− 10) + c+ 5 = 65 ⇒ c = 35, b = 25, f = 40 and e = 65.

To test for random voting amongst the men we calculate

χ2 =
(50 − a)2

33.3
+

(50 − c)2

33.3
+

(50 − e)2

33.3
= 13.5

for 3 − 1 = 2 d.o.f. Similarly for the women

χ2 =
(35 − b)2

23.3
+

(35 − d)2

23.3
+

(35 − f)2

23.3
= 6.4

for 2 d.o.f.

The χ2 value for the men is significantly greater, at almost the 0.1% level, than

would be expected for random voting, making the latter extremely unlikely. The

corresponding value for women voters is only significant at about the 5% level

and random voting cannot be ruled out.

Incidentally, X and Y , who each received 180 votes, tied for first place and a

(more conventional) run-off was needed!
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31.16 The function y(x) is known to be a quadratic function of x. The following

table gives the measured values and uncorrelated standard errors of y measured

at various values of x (in which there is negligible error):

x 1 2 3 4 5

y(x) 3.5 ± 0.5 2.0 ± 0.5 3.0 ± 0.5 6.5 ± 1.0 10.5 ± 1.0

Construct the response matrix R using as basis functions 1, x, x2. Calculate the

matrix RTN−1R and show that its inverse, the covariance matrix V, has the form

V =
1

9184

 12 592 −9708 1580

−9708 8413 −1461

1580 −1461 269

 .
Use this matrix to find the best values, and their uncertainties, for the coefficients

of the quadratic form for y(x).

As the measured data has uncorrelated, but unequal, errors, the covariance matrix

N, whilst being diagonal, will not be a multiple of the unit matrix; it will be

N = diag(0.25, 0.25, 0.25, 1.0, 1.0).

Using as base functions the three functions h1(x) = 1, h2(x) = x and h3(x) = x2,

we calculate the elements of the 5 × 3 response matrix Rij = hj(xi). To save space

we display its 3 × 5 transpose:

RT =

 1 1 1 1 1

1 2 3 4 5

1 4 9 16 25


Then

RTN−1R =

 4 4 4 1 1

4 8 12 4 5

4 16 36 16 25




1 1 1

1 2 4

1 3 9

1 4 16

1 5 25



=

 14 33 97

33 97 333

97 333 1273

 .
The determinant of the square matrix RTN−1R is

14[ (97 × 1273) − (333 × 333) ] + 33[ (333 × 97) − (33 × 1273) ]

+ 97[ (33 × 333) − (97 × 97) ]

= 14 × 12592 − 33 × 9708 + 97 × 1580 = 9184.

516



STATISTICS

This is non-zero and so the matrix has an inverse. It is tedious to calculate the

inverse V by the standard methods and it is just as good for practical purposes

to verify the given form for V, knowing that it is unique. The following matrix

equation, VRTN−1R = I3, can be verified numerically

1

9184

 12 592 −9708 1580

−9708 8413 −1461

1580 −1461 269

 14 33 97

33 97 333

97 333 1273

 =

 1 0 0

0 1 0

0 0 1

 .
The best estimators â1, â2 and â3 for the coefficients in the quadratic form are now

given by â = VRTN−1y, where y is the data column vector (3.5, 2.0, 3.0, 6.5, 10.5)T.

The column vector â is calculated as

 1.371 −1.057 0.1720

−1.057 0.9160 −0.1591

0.1720 −0.1591 0.0293

 4 4 4 1 1

4 8 12 4 5

4 16 36 16 25




3.5

2.0

3.0

6.5

10.5

 ,
yielding the three components as 6.73, −4.34 and 1.03. The corresponding stan-

dard errors in these coefficients are given by the square roots of the diagonal

elements of V, namely 1.17, 0.96 and 0.17.

Thus the best quadratic fit to the measured data, giving weight to the standard

errors in them, is

y(x) = (6.73 ± 1.17) − (4.34 ± 0.96)x+ (1.03 ± 0.17)x2.

The off-diagonal elements of V are not used here, but are closely related to the

correlations between the fitted parameters.

31.18 Prove that the expression given for the Student’s t-distribution in equation

(31.118) is correctly normalised.

The given expression is

P (t|H0) =
1√

(N − 1)π

Γ
(

1
2
N
)

Γ
(

1
2
N − 1

2
)
) (1 +

t2

N − 1

)−N/2

,

Denoting the product of constants multiplying the t-dependent parentheses by

A(N), we require that∫ ∞

−∞
P (t|H0) dt = A(N)

∫ ∞

−∞

(
1 +

t2

N − 1

)−N/2

dt = 1.
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Set t =
√
N − 1 tan θ for −π/2 ≤ θ ≤ π/2 giving∫ ∞

−∞
P (t|H0) dt = A(N)

∫ π/2

−π/2
(1 + tan2 θ)−N/2√

N − 1 sec2 θ dθ

= 2
√
N − 1A(N)

∫ π/2

0

sec−N+2 θ dθ

= 2
√
N − 1A(N)

∫ π/2

0

cosN−2 θ dθ.

Now, integrals of this form can be expressed in term of beta and gamma functions

by

Γ(m) Γ(n)

Γ(m+ n)
= B(m, n) = 2

∫ π/2

0

sin2m−1 θ cos2n−1 θ dθ.

It follows that ∫ π/2

0

cosN−2 θ dθ =
1

2
B( 1

2
, 1

2
N − 1

2
)

=
Γ(1

2
) Γ( 1

2
N − 1

2
)

2Γ( 1
2
N)

=

√
π Γ(1

2
N − 1

2
)

2Γ( 1
2
N)

.

Hence∫ ∞

0

P (t|H0) dt = 2
√
N − 1

Γ(1
2
N)

√
(N − 1)π Γ(1

2
N − 1

2
)

√
π Γ(1

2
N − 1

2
)

2Γ( 1
2
N)

= 1,

as expected.

31.20 It is claimed that the two following sets of values were obtained (a) by

randomly drawing from a normal distribution that is N(0, 1) and then (b) randomly

assigning each reading to one of two sets A and B:

Set A: −0.314 0.603 −0.551 −0.537 −0.160 −1.635 0.719

0.610 0.482 −1.757 0.058

Set B: −0.691 1.515 −1.642 −1.736 1.224 1.423 1.165

Make tests, including t- and F-tests, to establish whether there is any evidence that

either claims is, or both claims are, false.

(a) The mean and variance of the whole sample are −0.068 and 1.180, leading to

an estimated standard deviation, including the Bessel correction for 18 readings,
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of 1.12. These are obviously compatible with samples drawn from a N(0, 1)

distribution, without the need for statistical tests.

(b) The means and sample variances of the two sets are: A, −0.226 and 0.741;

B, 0.180 and 2.189, with estimated standard deviations of the populations from

which they are drawn of 0.861 and 1.480 respectively.

The best estimator of σ̂ for calculating t is

σ̂ =

[
(11 × 0.741) + (7 × 2.189)

11 + 7 − 2

]1/2

= 1.21.

On the null hypothesis that the two samples are drawn from the same distribution,

t is given by

t =
0.180 − (−0.226)

1.21

(
11 × 7

11 + 7

)1/2

= 0.694.

This is for 11 + 7 − 2 = 16 degrees of freedom. From the table C16(0.694) = 0.74.

Thus, this or a greater value of t (in magnitude) can be expected in marginally

more than half of all cases (recall that here a two-tailed distribution is needed)

and there is no evidence for a significant difference between the means of the two

samples.

The value of the estimated variance ratio of the parent populations is

F =
u2

v2
=

7 × 2.189

6

10

11 × 0.741
= 3.13.

For n1 = 6 and n2 = 10, this value is very close to the 95% confidence limit of

3.22. Thus it is rather unlikely that the allocation between the two groups was

made at random – set B has significantly more readings that are more than one

standard deviation from the mean for a N(0, 1) distribution than it should have.
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