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Foreword

It is only rarely realized how important the design of suitable, interesting
problems is in the educational process. This is true for the professor — who
periodically makes up exams and problem sets which test the effectiveness
of his teaching — and also for the student — who must match his skills
and acquired knowledge against these same problems. There is a great need
for challenging problems in all scientific fields, but especially so in physics.
Reading a physics paper requires familiarity and control of techniques which
can only be obtained by serious practice in solving problems. Confidence
in performing research demands a mastery of detailed technology which
requires training, concentration, and reflection — again, gained only by
working exercises.

In spite of the obvious need, there is very little systematic effort made
to provide balanced, doable problems that do more than gratify the ego of
the professor. Problems often are routine applications of procedures men-
tioned in lectures or in books. They do little to force students to reflect
seriously about new situations. Furthermore, the problems are often ex-
cruciatingly dull and test persistence and intellectual stamina more than
insight, technical skill, and originality. Another rather serious shortcoming
is that most exams and problems carry the unmistakable imprint of the
teacher. (In some excellent eastern U.S. universities, problems are cata-
logued by instructor, so that a good deal is known about an exam even
before it is written.)

In contrast, A Guide to Physics Problems, Part 2 not only serves an
important function, but is a pleasure to read. By selecting problems from
different universities and even different scientific cultures, the authors have
effectively avoided a one-sided approach to physics. All the problems are
good, some are very interesting, some positively intriguing, a few are crazy;
but all of them stimulate the reader to think about physics, not merely to
train you to pass an exam. I personally received considerable pleasure in
working the problems, and I would guess that anyone who wants to be a
professional physicist would experience similar enjoyment. I must confess

v



Forewordvi

with some embarrassment that some of the problems gave me more trouble
than I had expected. But, of course, this is progress. The coming generation
can do with ease what causes the elder one trouble. This book will be a
great help to students and professors, as well as a source of pleasure and
enjoyment.

Max Dresden
Stanford



Preface

Part 2 of A Guide to Physics Problems contains problems from written
graduate qualifying examinations at many universities in the United States
and, for comparison, problems from the Moscow Institute of Physics and
Technology, a leading Russian Physics Department. While Part 1 presented
problems and solutions in Mechanics, Relativity, and Electrodynamics, Part
2 offers problems and solutions in Thermodynamics, Statistical Physics, and
Quantum Mechanics.

The main purpose of the book is to help graduate students prepare for
this important and often very stressful exam (see Figure P.1). The difficulty
and scope of the qualifying exam varies from school to school, but not too
dramatically. Our goal was to present a more or less universal set of problems
that would allow students to feel confident at these exams, regardless of the
graduate school they attended. We also thought that physics majors who are
considering going on to graduate school may be able to test their knowledge
of physics by trying to solve some of the problems, most of which are not
above the undergraduate level. As in Part 1 we have tried to provide as many
details in our solutions as possible, without turning to a trade expression of
an exhausted author who, after struggling with the derivation for a couple of
hours writes, “As it can be easily shown....”

Most of the comments to Part 1 that we have received so far have come not
from the students but from the professors who have to give the exams. The
most typical comment was, “Gee, great, now I can use one of your problems
for our next comprehensive exam.” However, we still hope that this does not
make the book counterproductive and eventually it will help the students to
transform from the state shown in Figure P.1 into a much more comfortable
stationary state as in Figure P.2. This picture can be easily attributed to the
present state of mind of the authors as well, who sincerely hope that Part 3
will not be forthcoming any time soon.

Some of the schools do not have written qualifying exams as part of their
requirements: Brown, Cal-Tech, Cornell, Harvard, UT Austin, University
of Toronto, and Yale. Most of the schools that give such an exam were
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Prefaceviii

happy to trust us with their problems. We wish to thank the Physics Depart-
ments of Boston University (Boston), University of Colorado at Boulder (Col-
orado), Columbia University (Columbia), University of Maryland (Mary-
land), Massachusetts Institute of Technology (MIT), University of Michi-
gan (Michigan), Michigan State University (Michigan State), Michigan Tech-
nological University (Michigan Tech), Princeton University (Princeton),
Rutgers University (Rutgers), Stanford University (Stanford), State Univer-
sity of New York at Stony Brook (Stony Brook), University of Tennessee at
Knoxville (Tennessee), and University of Wisconsin (Wisconsin-Madison).
The Moscow Institute ofPhysics and Technology (Moscow Phys-Tech) does
not give this type of qualifying exam in graduate school. Some of their prob-
lems came from the final written exam for the physics seniors, some of the
others, mostly introductory problems, are from their oral entrance exams or



Sidney Cahn
New York

Gerald Mahan
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Boris Nadgorny
Washington,  D.C.

magazines such as Kvant. A few of the problems were compiled by the authors
and have never been published before.

We were happy to hear many encouraging comments about Part 1 from
our colleagues, and we are grateful to everybody who took their time to re-
view the book. We wish to thank many people who contributed some of the
problems to Part 2, or discussed solutions with us, in particular Dmitri Averin
(Stony Brook), Michael Bershadsky (Harvard), Alexander Korotkov (Stony
Brook), Henry Silsbee (Stony Brook), and Alexei Stuchebrukhov (UC Davis).
We thank Kirk McDonald (Princeton) and Liang Chen (British Columbia)
for their helpful comments to some problems in Part 1; we hope to include
them in the second edition of Part 1, coming out next year. We are indebted
to Max Dresden for writing the Foreword, to Tilo Wettig (Münich) who read
most, of the manuscript, and to Vladimir Gitt and Yair Minsky who drew the
humorous pictures.
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Introductory Thermodynamics

4.1 Why Bother? (Moscow Phys-Tech)

A physicist and an engineer find themselves in a mountain lodge where
the only heat is provided by a large woodstove. The physicist argues that

3

4
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they cannot increase the total energy of the molecules in the cabin, and
therefore it makes no sense to continue putting logs into the stove. The
engineer strongly disagrees (see Figure P.4.1), referring to the laws of ther-
modynamics and common sense. Who is right? Why do we heat the room?

Space Station Pressure (MIT)

A space station consists of a large cylinder of radius      filled with air. The
cylinder spins about its symmetry axis at an angular speed providing an
acceleration at the rim equal to If the temperature is constant inside
the station, what is the ratio of air pressure at the center of the station
to the pressure at the rim?

4.3 Baron von Münchausen and Intergalactic Travel
(Moscow Phys-Tech)

Recently found archives of the late Baron von Münchausen brought to light
some unpublished scientific papers. In one of them, his calculations indi-
cated that the Sun’s energy would some day be exhausted, with the sub-
sequent freezing of the Earth and its inhabitants. In order to avert this
inevitable outcome, he proposed the construction of a large, rigid balloon,
empty of all gases, 1 km in radius, and attached to the Earth by a long, light

4.2
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rope of extreme tensile strength. The Earth would be propelled through
space to the nearest star via the Archimedes’ force on the balloon, trans-
mitted through the rope to the large staple embedded in suitable bedrock
(see Figure P.4.3). Estimate the force on the rope (assuming a massless
balloon). Discuss the feasibility of the Baron’s idea (without using any
general statements).

4.4 Railway Tanker (Moscow Phys-Tech)

A long, cylindrical tank is placed on a carriage that can slide without
friction on rails (see Figure P.4.4). The mass of the empty tanker is

Initially, the tank is filled with an ideal gas of mass kg
at a pressure atm at an ambient temperature Then
one end of the tank is heated to 335 K while the other end is kept fixed at
300 K. Find the pressure in the tank and the new position of the center of
mass of the tanker when the system reaches equilibrium.

4.5 Magic Carpet (Moscow Phys-Tech)

Once sitting in heavy traffic, Baron von Münchausen thought of a new kind
of “magic carpet” type aircraft (see Figure P.4.5). The upper surface of the
large flat panel is held at a constant temperature and the lower surface
at a temperature He reasoned that, during collision with the
hot surface, air molecules acquire additional momentum and therefore will
transfer an equal momentum to the panel. The back of the handkerchief
estimates he was able to make quickly for of such a panel showed that
if and = 373 K (air temperature 293 K) this panel would be
able to levitate itself and a payload (the Baron) of about kg. How did
he arrive at this? Is it really possible?



PROBLEMS6

4.6 Teacup Engine (Princeton, Moscow Phys-Tech)

The astronaut from Problem 1.13 in Part I was peacefully drinking tea
at five o’clock galactic time, as was his wont, when he had an emergency
outside the shuttle, and he had to do an EVA to deal with it. Upon leaving
the ship, his jetpack failed, and nothing remained to connect him to the
shuttle. Fortunately, he had absentmindedly brought his teacup with him.
Since this was the only cup he had, he did not want to throw it away in
order to propel him back to the shuttle (besides, it was his favorite cup).
Instead, he used the sublimation of the frozen tea to propel him back to
the spaceship (see Figure P.4.6). Was it really possible? Estimate the time
it might take him to return if he is a distance m from the ship.
Assume that the sublimation occurs at a constant temperature
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The vapor pressure at this temperature is and the total mass
of the astronaut

4.7 Grand Lunar Canals (Moscow Phys-Tech)

In one of his novels, H. G. Wells describes an encounter of amateur earthling
astronauts with a lunar civilization living in very deep caverns beneath the
surface of the Moon. The caverns are connected to the surface by long
channels filled with air. The channel is dug between points A and B on
the surface of the Moon so that the angle (see Figure P.4.7).
Assume that the air pressure in the middle of a channel is atm.
Estimate the air pressure in the channel near the surface of the Moon. The
radius of the Moon The acceleration due to gravity on the
surface of the Moon where is the acceleration due to gravity
on the surface of the Earth.

4.8 Frozen Solid (Moscow Phys-Tech)

Estimate how long it will take for a small pond of average depth m
to freeze completely in a very cold winter, when the temperature is al-
ways below the freezing point of water (see Figure P.4.8). Take the ther-
mal conductivity of ice to be the latent heat of fusion
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and the density Take the outside
temperature to be a constant

4.9 Tea in Thermos (Moscow Phys-Tech)

One liter of tea at 90° C is poured into a vacuum-insulated container (ther-
mos). The surface area of the thermos walls The volume
between the walls is pumped down to atm pressure (at room
temperature). The emissivity of the walls and the thermal capacity
of water Disregarding the heat leakage through the
stopper, estimate the

a) Net power transfer
b)  Time for the tea to cool from 90°C to 70°C.

4.10 Heat Loss (Moscow Phys-Tech)

An immersion heater of power W is used to heat water in a
bowl. After 2 minutes, the temperature increases from to
90°C. The heater is then switched off for an additional minute, and the
temperature drops by Estimate the mass of the water in the
bowl. The thermal capacity of water c = 4.2 •
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4.11 Liquid-Solid-Liquid (Moscow Phys-Tech)

A small amount of water of mass in a container at temperature
K is placed inside a vacuum chamber which is evacuated rapidly.

As a result, part of the water freezes and becomes ice and the rest becomes
vapor.

What amount of water initially transforms into ice? The latent heat
of fusion (ice/water) and the latent heat of vaporization
(water/vapor)
A piece of heated metal alloy of mass g and original volume

is placed inside the calorimeter together with the ice
obtained as a result of the experiment in (a). The density of metal
at K is The thermal capacity is

and the coefficient oflinear expansion
How much ice will have melted when equilibrium is reached?

Hydrogen Rocket (Moscow Phys-Tech)4.12

The reaction chamber of a rocket engine is supplied with a mass flow rate
m of hydrogen and sufficient oxygen to allow complete burning of the fuel.
The cross section of the chamber is A, and the pressure at the cross section
is P with temperature T. Calculate the force that this chamber is able to
provide.

4.13 Maxwell-Boltzmann Averages (MIT)

Write the properly normalized Maxwell–Boltzmann distribution
for finding particles of mass with magnitude of velocity in the
interval at a temperature
What is the most likely speed at temperature
What is the average speed?
What is the average square speed?

a)

b)
c)
d)

b)

a)

4.14 Slowly Leaking Box (Moscow Phys-Tech, Stony
Brook (a,b))

An ideal gas of atoms of number density  at an absolute temperature  is
confined to a thermally isolated container that has a small hole of area A in
one of the walls (see Figure P.4.14). Assume a Maxwell velocity distribution



PROBLEMS10

for the atoms. The size of the hole is much smaller than the size of the
container and much smaller than the mean free path of the atoms.

Calculate the number of atoms striking the wall of the container per
unit area per unit time. (Express your answer in terms of the mean
velocity of the atoms.)
What is the ratio of the average kinetic energy of atoms leaving the
container to the average kinetic energy of atoms initially occupying
the container? Assume that there is no flow back to the container.
Give a qualitative argument and compute this ratio.
How much heat must you transfer to/from the container to keep the
temperature of the gas constant?

a)

b)

c)

Surface Contamination (Wisconsin-Madison)4.15

A surface scientist wishes to keep an exposed surface “clean” ad-
sorbed monolayer) for an experiment lasting for times h at a temper-
ature  Estimate the needed data and calculate a value for the
required background pressure in the apparatus if each incident molecule
sticks to the surface.

4.16 Bell Jar (Moscow Phys-Tech)

A vessel with a small hole of diameter in it is placed inside a high-vacuum
chamber (see Figure P.4.16). The pressure is so low that the mean free path

The temperature of the gas in the chamber is and the pressure
is The temperature in the vessel is kept at a constant What
is the pressure inside the vessel when steady state is reached?
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4.17 Hole in Wall (Princeton)

A container is divided into two parts, I and II, by a partition with a small
hole of diameter Helium gas in the two parts is held at temperatures

K and respectively, through heating of the walls (see
Figure P.4.17).

How does the diameter d determine the physical process by which the
gases come to steady state?
What is the ratio of the mean free paths between the two parts
when
What is the ratio when

a)

b)

c)

4.18 Ballast Volume Pressure (Moscow Phys-Tech)

Two containers, I and II, filled with an ideal gas are connected by two
small openings of the same area, A, through a ballast volume B (see Fig-
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ure P.4.18). The temperatures and pressures in the two containers are
kept constant and equal to P, and P, respectively. The volume B is
thermally isolated. Find the equilibrium pressure and temperature in the
ballast volume, assuming the gas is in the Knudsen regime.

Rocket in Drag (Princeton)

A rocket has an effective frontal area A and blasts off with a constant
acceleration a straight up from the surface of the Earth (see Figure P.4.19).

Use either dimensional analysis or an elementary derivation to find out
how the atmospheric drag on the rocket should vary as some power(s)
of the area A, the rocket velocity and the atmospheric density
(assuming that we are in the region of high Reynolds numbers).
Assume that the atmosphere is isothermal with temperature T. De-
rive the variation of the atmospheric density with height Assume
that the gravitational acceleration is a constant and that the density
at sea level is

a)

b)

4.19
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c) Find the height at which the drag on the rocket is at a maximum.

4.20 Adiabatic Atmosphere (Boston, Maryland)

The lower 10–15 km of the atmosphere, the troposphere, is often in a con-
vective steady state with constant entropy, not constant temperature
is independent of the altitude, where

Find the change of temperature in this model with altitude
Estimate in K/km. Consider the average diatomic molecule
of air with molar mass

4.21 Atmospheric Energy (Rutgers)

The density of the Earth’s atmosphere, varies with height above
the Earth’s surface. Assume that the “thickness” of the atmosphere is
sufficiently small so that it is in a uniform gravitational field of strength

Write an equation to determine the atmospheric pressure given
the function
In a static atmosphere, each parcel of air has an internal energy
and a gravitational potential energy To a very good approxima-
tion, the air in the atmosphere is an ideal gas with constant specific
heat. Using this assumption, the result of part (a), and classical
thermodynamics, show that the total energy in a vertical column of
atmosphere of cross-sectional area A is given by

and that the ratio of energies is

where T is the temperature,  is the pressure at the Earth’s surface,
is the molar mass, is the molar specific heat at constant pres-

sure, and is the ratio of specific heats.
Hint: The above results do not depend on the specific way in which

and vary as a function of (e.g., isothermal, adia-
batic, or something intermediate). They depend only on the fact that

is monotonically decreasing. At some step of the derivation, you
might find it useful to do an integration by parts.

a)

b)

a)
b)
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4.22 Puncture (Moscow Phys-Tech)

A compressed ideal gas flows out of a small hole in a tire which has a
pressure inside.

Find the velocity of gas outside the tire in the vicinity of the hole if
the flow is laminar and stationary and the pressure outside is
Estimate this velocity for a flow of molecular hydrogen into a vacuum
at a temperature Express this velocity in terms of the
velocity of sound inside the tire,

a)

b)

Heat and Work

4.23 Cylinder with Massive Piston (Rutgers, Moscow
Phys-Tech)

Consider moles of an ideal monatomic gas placed in a vertical cylinder.
The top of the cylinder is closed by a piston of mass M and cross section
A (see Figure P.4.23). Initially the piston is fixed, and the gas has volume

and temperature Next, the piston is released, and after several
oscillations comes to a stop. Disregarding friction and the heat capacity
of the piston and cylinder, find the temperature and volume of the gas at
equilibrium. The system is thermally isolated, and the pressure outside the
cylinder is
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4.24 Spring Cylinder (Moscow Phys-Tech)

One part of a cylinder is filled with one mole of a monatomic ideal gas at
a pressure of 1 atm and temperature of 300 K. A massless piston separates
the gas from the other section of the cylinder which is evacuated but has
a spring at equilibrium extension attached to it and to the opposite wall
of the cylinder. The cylinder is thermally insulated from the rest of the
world, and the piston is fixed to the cylinder initially and then released
(see Figure P.4.24). After reaching equilibrium, the volume occupied by
the gas is double the original. Neglecting the thermal capacities of the
cylinder, piston, and spring, find the temperature and pressure of the gas.

4.25 Isothermal Compression and Adiabatic
Expansion of Ideal Gas (Michigan)

An ideal gas is compressed at constant temperature from volume to
volume (see Figure P.4.25).

a) Find the work done on the gas and the heat absorbed by the gas.
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The gas now expands adiabatically to volume What is the final
temperature (derive this result from first principles)?
Estimate for K for air.

b)

c)

4.26 Isochoric Cooling and Isobaric Expansion
(Moscow Phys-Tech)

An ideal gas of total mass and molecular weight is isochorically (at con-
stant volume) cooled to a pressure times smaller than the initial pressure

The gas is then expanded at constant pressure so that in the final state
the temperature coincides with the initial temperature Calculate
the work done by the gas.

4.27 Venting (Moscow Phys-Tech)

A thermally insulated chamber is pumped down to a very low pressure.
At some point, the chamber is vented so that it is filled with air up to
atmospheric pressure, whereupon the valve is closed. The temperature of
the air surrounding the chamber is What is the temperature
T of the gas in the chamber immediately after venting?

4.28 Cylinder and Heat Bath (Stony Brook)

Consider a cylinder 1 m long with a thin, massless piston clamped in such
a way that it divides the cylinder into two equal parts. The cylinder is in
a large heat bath at The left side of the cylinder contains 1
mole of helium gas at 4 atm. The right contains helium gas at a pressure
of 1 atm. Let the piston be released.

What is its final equilibrium position?
How much heat will be transmitted to the bath in the process of
equilibration? (Note that

a)
b)

4.29 Heat Extraction (MIT, Wisconsin-Madison)

a) A body of mass M has a temperature-independent specific heat C. If
the body is heated reversibly from a temperature to a temperature

what is the change in its entropy?
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Two such bodies are initially at temperatures of 100 K and 400 K.
A reversible engine is used to extract heat with the hotter body as a
source and the cooler body as a sink. What is the maximum amount
of heat that can be extracted in units of MC?
The specific heat of water is and its density is
Calculate the maximum useful work that can be extracted, using as
a source of water at 100°C and a lake of temperature 10°C as
a sink.

c)

b)

4.30 Heat Capacity Ratio (Moscow Phys-Tech)

To find  of a gas, one sometimes uses the following method. A
certain amount of gas with initial temperature pressure and volume

is heated by a current flowing through a platinum wire for a time The
experiment is done twice: first at a constant volume with the pressure
changing from  to and then at a constant pressure with the volume
changing from The time t is the same in both experiments. Find
the ratio (the gas may be considered ideal).

4.31 Otto Cycle (Stony Brook)

The cycle of a highly idealized gasoline engine can be approximated by the
Otto cycle (see Figure P.4.31).          and are adiabatic compression
and expansion, respectively;           and are constant-volume pro-
cesses. Treat the working medium as an ideal gas with constant

a) Compute the efficiency of this cycle for and compression ratio
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Calculate the work done on the gas in the compression process
assuming initial volume and atm.

b)

4.32 Joule Cycle (Stony Brook)

Find the efficiency of the Joule cycle, consisting of two adiabats and two
isobars (see Figure P.4.32). Assume that the heat capacities of the gas
and are constant.

Diesel Cycle (Stony Brook)4.33

Calculate the efficiency of the Diesel cycle, consisting of two adiabats,
and one isobar and one constant-volume process (see
Figure P.4.33). Assume and are constant.
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4.34 Modified Joule–Thomson (Boston)

Figure P.4.34 shows container A of variable volume V controlled by a fric-
tionless piston, immersed in a bath at temperature This container is
connected by a pipe with a porous plug to another container, B, of fixed
volume Container A is initially occupied by an ideal gas at pressure P
while container B is initially evacuated. The gas is allowed to flow through
the plug, and the pressure on the piston is maintained at the constant value
P. When the pressure of the gas in B reaches P, the experiment is ter-
minated. Neglecting any heat conduction through the plug, show that the
final temperature of the gas in B is where and are
the molar heats at constant pressure and volume of the gas.

Ideal Gas and Classical Statistics

4.35 Poisson Distribution in Ideal Gas (Colorado)

Consider a monatomic ideal gas of total molecules in a volume Show
that the probability, for the number N of molecules contained in a
small element of V is given by the Poisson distribution



PROBLEMS20

where is the average number of molecules found in the volume
V.

4.36 Polarization of Ideal Gas (Moscow Phys-Tech)

Calculate the electric polarization of an ideal gas, consisting of molecules
having a constant electric dipole moment in a homogeneous external
electric field E at temperature What is the dielectric constant of this
gas at small fields?

4.37 Two-Dipole Interaction (Princeton)

Two classical dipoles with dipole moments and are separated by a
distance R so that only the orientation of the magnetic moments is free.
They are in thermal equilibrium at a temperature Compute the mean
force between the dipoles for the high-temperature limit
Hint: The potential energy of interaction of two dipoles is

4.38 Entropy of Ideal Gas (Princeton)

A vessel of volume contains N molecules of an ideal gas held at temper-
ature and pressure The energy of a molecule may be written in the
form

where denotes the energy levels corresponding to the internal states of
the molecules of the gas.

Evaluate the free energy F. Explicitly display the dependence on the
volume

a)

Now consider another vessel, also at temperature containing the same
number of molecules of the identical gas held at pressure

Give an expression for the total entropy of the two gases in terms of

The vessels are then connected to permit the gases to mix without
doing work. Evaluate explicitly the change in entropy of the system.
Check whether your answer makes sense by considering the special
case

c)

b)
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4.39 Chemical Potential of Ideal Gas (Stony Brook)

Derive the expression for the Gibbs free energy and chemical potential of
N molecules of an ideal gas at temperature pressure P, and volume
V. Assume that all the molecules are in the electronic ground state with
degeneracy At what temperature is this approximation valid?

4.40 Gas in Harmonic Well (Boston)

A classical system of N distinguishable noninteracting particles of mass
is placed in a three-dimensional harmonic well:

Find the partition function and the Helmholtz free energy.
Regarding V as an external parameter, find the thermodynamic force

conjugate to this parameter, exerted by the system; find the equa-
tion of state and compare it to that of a gas in a container with rigid
walls.
Find the entropy, internal energy, and total heat capacity at constant
volume.

Ideal Gas in One-Dimensional Potential
(Rutgers)

An ideal gas of particles, each of mass at temperature is sub-
jected to an external force whose potential energy has the form

with and Find the average potential
energy per particle.
What is the average potential energy per particle in a gas in a uniform
gravitational field?

Equipartition Theorem (Columbia, Boston)4.42

a) For a classical system with Hamiltonian

b)

a)

4.41

a)
b)

c)
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at a temperature show that

Using the above, derive the law of Dulong and Petit for the heat
capacity of a harmonic crystal.
For a more general Hamiltonian,

b)

c)

prove the generalized equipartition theorem:

where You will need
to use the fact that U is infinite at
Consider a system of a large number of classical particles and assume
a general dependence of the energy of each particle on the generalized
coordinate or momentum component given by where

Show that, in thermal equilibrium, the generalized equipartition the-
orem holds:

What conditions should be satisfied for to conform to the equipar-
tition theorem?

Diatomic Molecules in Two Dimensions
(Columbia)

4.43

You have been transported to a two-dimensional world by an evil wizard
who refuses to let you return to your beloved Columbia unless you can
determine the thermodynamic properties for a rotating heteronuclear di-
atomic molecule constrained to move only in a plane (two dimensions).
You may assume in what follows that the diatomic molecule does not un-
dergo translational motion. Indeed, it only has rotational kinetic energy

d)
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about its center of mass. The quantized energy levels of a diatomic in two
dimensions are

with degeneracies for J not equal to zero, and when J = 0.
As usual, where I is the moment of inertia.
Hint: For getting out of the wizard’s evil clutches, treat all levels as having
the same degeneracy and then... . Oh, no! He’s got me, too!

Assuming derive the partition function for an individ-
ual diatomic molecule in two dimensions.
Determine the thermodynamic energy E and heat capacity in the
limit, where for a set of indistinguishable, independent,
heteronuclear diatomic molecules constrained to rotate in a plane.
Compare these results to those for an ordinary diatomic rotor in three
dimensions. Comment on the differences and discuss briefly in terms
of the number of degrees of freedom required to describe the motion
of a diatomic rotor confined to a plane.

Diatomic Molecules in Three Dimensions (Stony
Brook, Michigan State)

4.44

Consider the free rotation of a diatomic molecule consisting of two atoms
of mass and respectively, separated by a distance Assume that
the molecule is rigid with center of mass fixed.

a) Starting from the kinetic energy where

derive the kinetic energy of this system in spherical coordinates and
show that

where I is the moment of inertia. Express I in terms of and

Derive the canonical conjugate momenta and Express the
Hamiltonian of this system in terms of and I.
The classical partition function is defined as

b)

c)

a)

b)
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Calculate Calculate the heat capacity for a system of N
molecules.
Assume now that the rotational motion of the molecule is described
by quantum mechanics. Write the partition function in this case,
taking into account the degeneracy of each state. Calculate the heat
capacity of a system of N molecules in the limit of low and high
temperatures and compare them to the classical result.

d)

4.45 Two-Level System (Princeton)

Consider a system composed of a very large number N of distinguishable
atoms at rest and mutually noninteracting, each of which has only two
(nondegenerate) energy levels: Let E / N be the mean energy per
atom in the limit

What is the maximum possible value of E / N if the system is not
necessarily in thermodynamic equilibrium? What is the maximum
attainable value of E / N if the system is in equilibrium (at positive
temperature)?
For thermodynamic equilibrium compute the entropy per atom S/N
as a function of E / N.

Zipper (Boston)4.46

A zipper has N links; each link has a state in which it is closed with energy
0 and a state in which it is open with energy We require that the zipper
only unzip from one side (say from the left) and that the link can only open
if all links to the left of it (1 ,2, . . . , are already open. (This model is
sometimes used for DNA molecules.)

Find the partition function.
Find the average number of open links and show that for low
temperatures  is independent of N.

a)
b)

4.47 Hanging Chain (Boston)

The upper end of a hanging chain is fixed while the lower end is attached
to a mass M. The (massless) links of the chain are ellipses with major axes

and minor axes and can place themselves only with either the
major axis or the minor axis vertical. Figure P.4.47 shows a four-link chain
in which the major axes of the first and fourth links and the minor axes of

a)

b)
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the second and third links are vertical. Assume that the chain has N links
and is in thermal equilibrium at temperature

Find the partition function.
Find the average length of the chain.

Molecular Chain (MIT, Princeton, Colorado)4.48

Consider a one-dimensional chain consisting of N molecules which exist in
two  configurations, with corresponding energies and lengths
and The chain is subject to a tensile force

a)
b)
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Write the partition function for the system.
Calculate the average length as a function of and the tempera-
ture
Assume that and Estimate the average length
in the absence of the tensile force as a function of tempera-
ture. What are the high- and low-temperature limits, and what is the
characteristic temperature at which the changeover between the two
limits occurs?
Calculate the linear response function

Produce a general argument to show that

Nonideal Gas

Heat Capacities (Princeton)

Consider a gas with arbitrary equation of state at a temper-
ature where is a critical temperature of this gas.

Calculate for this gas in terms of Does always
have the same sign?
Using the result of (a), calculate for one mole of a van der
Waals gas.

a)

b)

4.50 Return of Heat Capacities (Michigan)

In a certain range of temperature and pressure the specific volume
of a substance is described by the equation

where are positive constants. From this information, determine
(insofar as possible) as a function of temperature and pressure the following
quantities:

a)
b)

c)

d)

a)
b)
c)

4.49
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4.51 Nonideal Gas Expansion (Michigan State)

A gas obeys the equation of state

where is a function of the temperature only. The gas is initially at
temperature and volume and is expanded isothermally and reversibly
to volume

Find the work done in the expansion.
Find the heat absorbed in the expansion.

Some Maxwell relations:

van der Waals (MIT)4.52

A monatomic gas obeys the van der Waals equation

and has a heat capacity in the limit

Prove, using thermodynamic identities and the equation of state, that

Use the preceding result to determine the entropy of the van der Waals
gas, to within an additive constant.
Calculate the internal energy to within an additive constant.
What is the final temperature when the gas is adiabatically com-
pressed from to final volume
How much work is done in this compression?

a)
b)

b)

c)
d)

e)

a)
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4.53 Critical Parameters (Stony Brook)

Consider a system described by the Dietrici equation of state

where A, B, R are constants and P, V, and are the pressure, volume,
temperature, and number of moles. Calculate the critical parameters, i.e.,
the values of P, V, and at the critical point.

Mixtures and Phase Separation

Entropy of Mixing (Michigan, MIT)4.54

A 2-L container is divided in half: One half contains oxygen at 1
atm, the other nitrogen at the same pressure, and both gases may
be considered ideal. The system is in an adiabatic enclosure at a
temperature K. The gases are allowed to mix. Does the
temperature of the system change in this process? If so, by how
much? Does the entropy change? If so, by how much?
How would the result differ if both sides contained oxygen?
Now consider one half of the enclosure filled with diatomic molecules
of oxygen isotope and the other half with Will the answer
be different from parts (a) and (b)?

Leaky Balloon (Moscow Phys-Tech)4.55

Sometimes helium gas in a low-temperature physics lab is kept temporarily
in a large rubber bag at essentially atmospheric pressure. A physicist left a
40-L bag filled with He floating near the ceiling before leaving on vacation.
When she returned, all the helium was gone (diffused through the walls of
the bag). Find the entropy change of the gas. Assume that the atmospheric
helium concentration is approximately . What is the minimum
work needed to collect the helium back into the bag?

4.56 Osmotic Pressure (MIT)

Consider an ideal mixture of monatomic molecules of type A and
monatomic molecules of type B in a volume V.

b)
c)

a)
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a) Calculate the free energy Calculate the Gibbs poten-
tial G is the Legendre transform of F with respect
to V.

b)  If the molecules of type A are called the solvent, and those
of type B the solute. Consider two solutions with the same solvent
(type A) and different concentrations of solute (type B molecules)
separated by a partition through which solvent molecules can pass but
solute molecules cannot (see Figure P.4.56). There are particles in
volume V (or in volume 2V), and and particles in volume
V on the left and right of the membrane, respectively. Calculate the
pressure difference across the membrane at a given temperature and
volume. Assume that the concentrations of the solutions are small;
i.e.,

and

Clausius–Clapeyron (Stony Brook)4.57

Derive the Clausius–Clapeyron equation for the equilibrium of two
phases of a substance. Consider a liquid or solid phase in equilibrium
with its vapor.
Using part (a) and the ideal gas law for the vapor phase, show that the
vapor pressure follows the equation ln Make reasonable
assumptions as required. What is B?

a)

b)
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4.58 Phase Transition (MIT)

The curve separating the liquid and gas phases ends in the critical point
where Using arguments based on thermodynamic

stability, determine

at the critical point.

Hydrogen Sublimation in Intergalactic Space
(Princeton)

4.59

A lump of condensed molecular hydrogen in intergalactic space would tend
to sublimate (evaporate) because the ambient pressure of hydrogen is well
below the equilibrium vapor pressure. Find an order-of-magnitude estimate
of the rate of sublimation per unit area at The latent heat of
sublimation is and the vapor pressure at the triple point

is of Hg.

Gas Mixture Condensation (Moscow Phys-Tech)4.60

A mixture of of nitrogen and some oxygen is isothermally
compressed at The result of this experiment is plotted as the
pressure dependence of the mixture versus volume in arbitrary units (see
Figure P.4.60). Find the mass of oxygen and the oxygen saturation vapor
pressure at this temperature.
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Hint: K is the boiling temperature of liquid nitrogen at
atmospheric pressure. Oxygen boils at a higher temperature.

4.61 Air Bubble Coalescence (Moscow Phys-Tech)

A tightly closed jar is completely filled with water. On the bottom of the
jar are two small air bubbles (see Figure P.4.61a) which sidle up to each
other and become one bubble (see Figure P.4.61b). The pressure at the top
of the jar is the radius of each original bubble is and the coefficient
of surface tension is Consider the process to be isothermal. Evaluate
the change of pressure inside the jar upon merging of the two bubbles.

4.62 Soap Bubble Coalescence (Moscow Phys-Tech)

Two soap bubbles and of radii and become one bubble of
radius Find the surface tension coefficient for the soap solution. The
ambient pressure is

4.63 Soap Bubbles in Equilibrium (Moscow
Phys-Tech)

Two soap bubbles of radius are connected by a thin “straw” of negli-
gible volume compared to the volume of the bubbles (see Figure P.4.63).
The ambient pressure is the temperature is and the surface tension
coefficient is

Is this system in stable equilibrium? What is the final state?
Calculate the entropy change between the final-state configuration
and the configuration in Figure P.4.63. Assume

a)
b)
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Quantum Statistics

4.64 Fermi Energy of a 1D Electron Gas
(Wisconsin-Madison)

Calculate the Fermi energy for a one-dimensional metal with one free elec-
tron per atom and an atomic spacing of 2.5 Å at T = 0.

4.65 Two-Dimensional Fermi Gas (MIT,
Wisconson-Madison)

Consider a noninteracting nonrelativistic gas of N spin-1/2 fermions at
T = 0 in a box of area A.

c) Qualitatively discuss the behavior of the heat capacity of this system
at low temperatures.

4.66 Nonrelativistic Electron Gas (Stony Brook,
Wisconsin-Madison, Michigan State)

Derive the relation between pressure and volume of a free nonrela-
tivistic electron gas at zero temperature.
The formula obtained in (a) is approximately correct for sufficiently
low temperatures (the so-called strongly degenerate gas). Discuss the
applicability of this formula to common metals.

Find the Fermi energy.
Show that the total energy is given by

a)
b)

a)

b)



33THERMODYNAMICS AND STATISTICAL PHYSICS

4.67 Ultrarelativistic Electron Gas (Stony Brook)

Derive the relation between pressure and volume of a free ultrarelativistic
electron gas at zero temperature.

4.68 Quantum Corrections to Equation of State
(MIT, Princeton, Stony Brook)

Consider a noninteracting, one-component quantum gas at temperature
with a chemical potential in a cubic volume V. Treat the separate cases
of bosons and fermions.

a)

b)

For a dilute system derive the equation of state in terms of tem-
perature pressure P, particle density and particle mass Do
this derivation approximately by keeping the leading and next-leading
powers of Interpret your results as an effective classical system.
At a given temperature, for which densities are your results valid?

4.69 Speed of Sound in Quantum Gases (MIT)

The sound velocity in a spin-1/2 Fermi gas is given at by

where is the mass of the gas particles, and is the number
density.

a) Show that

where is the chemical potential.
b) Calculate the sound velocity in the limit of zero temperature. Express

your answer in terms of
c) Show that

in a Bose gas below the Bose–Einstein temperature.
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4.70 Bose Condensation Critical Parameters (MIT)

Consider an ideal Bose gas of N particles of mass and spin zero in a
volume V and temperature above the condensation point.

a)  What is the critical volume below which Bose–Einstein condensa-
tion occurs? An answer up to a numerical constant will be sufficient.

b) What is the answer to (a) in two dimensions?

4.71 Bose Condensation (Princeton, Stony Brook)

Consider Bose condensation for an arbitrary dispersion law in D dimensions
(see Figure P.4.71). Assume a relation between energy and momentum of
the form Find a relation between D and for Bose condensation
to occur.

4.72 How Hot the Sun? (Stony Brook)

The total radiant energy flux at the Earth from the Sun, integrated over
all wavelengths, is observed to be approximately erg
The distance from the Earth to the Sun, is cm and the solar
radius, is Treating the Sun as a “blackbody,” make a
crude estimate of the surface temperature of the Sun (see Figure P.4.72).
To make the numerical estimate, you are encouraged to ignore all factors of
2’s and to express any integrals that you might have in dimensionless
form, and to take all dimensionless quantities to be unity.
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4.73 Radiation Force (Princeton, Moscow Phys-Tech,
MIT)

Consider an idealized Sun and Earth, both blackbodies, in otherwise empty
flat space. The Sun is at a temperature and heat transfer by
oceans and atmosphere on the Earth is so effective as to keep the Earth’s
surface temperature uniform. The radius of the Earth is
the radius of the Sun is and the Earth–Sun distance is

The mass of Sun

a)
b)
c)

d)

Find the temperature of the Earth.
Find the radiation force on the Earth.
Compare these results with those for an interplanetary “chondrule” in
the form of a spherical, perfectly conducting blackbody with a radius

cm, moving in a circular orbit around the Sun at a radius
equal to the Earth–Sun distance
At what distance from the Sun would a metallic particle melt (melting
temperature
For what size particle would the radiation force calculated in (c) be
equal to the gravitational force from the Sun at a distance  ?

4.74 Hot Box and Particle Creation (Boston, MIT)

The electromagnetic radiation in a box of volume V can be treated as a
noninteracting ideal Bose gas of photons. If the cavity also contains atoms
capable of absorbing and emitting photons, the number of photons in the
cavity is not definite. The box is composed of a special material that can
withstand extremely high temperatures of order

e)
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Derive the average number of photons in the box.a)
Hint:

b)
c)
d)

e)

What is the total energy of the radiation in the box for
What is the entropy of the radiation for
Assume that photons can create neutral particles of mass  and zero
spin and that these neutral particles can create photons by anni-
hilation or some other mechanism. The cavity now contains photons
and particles in thermal equilibrium at a temperature Find the
particle density Consider only the process where a single
photon is emitted or absorbed by making a single particle.
Hint: Minimize the free energy.

Now, instead of neutral particles, consider the creation of electron-positron
pairs.

What is the total concentration of electrons and positrons inside the
box when
What is the total concentration of electrons and positrons when

4.75 D-Dimensional Blackbody Cavity (MIT)

Consider a D-dimensional hypercube blackbody cavity. What is the energy
density as a function of temperature? It is not necessary to derive the
multiplicative constant. Assume that the radiation is in quanta of energy

4.76 Fermi and Bose Gas Pressure (Boston)

For a photon gas the entropy is

where is the angular frequency of the mode. Using (P.4.76.1):

Hint:

f)
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a) Show that the isothermal work done by the gas is

b)
where is the average number of photons in the  mode.
Show that the radiation pressure is equal to one third of the energy
density:

c) Show that for a nonrelativistic Fermi gas the pressure is

4.77 Blackbody Radiation and Early Universe (Stony
Brook)

The entropy of the blackbody radiation in the early universe does not
change if the expansion is so slow that the occupation of each photon mode
remains constant (or the other way around). To illustrate this consider the
following problem. A one-dimensional harmonic oscillator has an infinite
series of equally spaced energy states, with where is a positive
integer or zero and is the classical frequency of the oscillator.

a) Show that for a harmonic oscillator the free energy is

b) Find the entropy S. Establish the connection between entropy and
occupancy of the modes by showing that for one mode of frequency

the entropy is a function of photon occupancy only:

4.78 Photon Gas (Stony Brook)

Consider a photon gas at temperature T inside a container of volume V.
Derive the equation of state and compare it to that of the classical ideal
gas (which has the equation Also compute the energy of
the photon gas in terms of PV. You need not get all the numerical factors
in this derivation.
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4.79 Dark Matter (Rutgers)

From virial theorem arguments, the velocity dispersions of bright stars in
dwarf elliptical galaxies imply that most of the mass in these systems is in
the form of “dark” matter - possibly massive neutrinos (see Figure P.4.79).
The central parts of the Draco dwarf galaxy may be modeled as an isother-
mal gas sphere, with a phase-space distribution of mass of the form

Here,  is the local mass density in the galaxy, is the velocity disper-
sion, and is the mass of a typical “particle” in the galaxy. Measurements
on Draco yield and light years). is
the “core” radius, where the density has decreased by close to a factor of 2
from its value at

a)

b)

c)

Using the virial theorem, write a very rough (order of magnitude)
relation between and
Assume that most of the mass in Draco resides in one species of
massive neutrino. Show how, if the Pauli exclusion principle is not to
be violated, the distribution function above sets a lower limit on the
mass of this neutrino.
Using the observations and the result of part (a), estimate this lower
limit (in units of and comment on whether current measure-
ments of neutrino masses allow Draco to be held together in the man-
ner suggested.
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4.80 Einstein Coefficients (Stony Brook)

You have two-state atoms in a thermal radiation field at temperature T.
The following three processes take place:

1) Atoms can be promoted from state 1 to state 2 by absorption of a
photon according to

2) Atoms can decay from state 2 to state 1 by spontaneous emission
according to

3) Atoms can decay from state 2 to state 1 by stimulated emission ac-
cording to

The populations and are in thermal equilibrium, and the radiation
density is

a)
b)
c)

What is the ratio
Calculate the ratios of coefficients            and
From the ratio of stimulated to spontaneous emission, how does the
pump power scale with wavelength when you try to make short-
wavelength lasers?

4.81 Atomic Paramagnetism (Rutgers, Boston)

Consider a collection of N identical noninteracting atoms, each of which
has total angular momentum J. The system is in thermal equilibrium at
temperature and is in the presence of an applied magnetic field
The magnetic dipole moment associated with each atom is given by

where is the gyromagnetic ratio and is the Bohr magneton.
Assume the system is sufficiently dilute so that the local magnetic field at
each atom may be taken as the applied magnetic field.

a) For a typical atom in this system, list the possible values of the
magnetic moment along the magnetic field, and the corresponding
magnetic energy associated with each state.
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Determine the thermodynamic mean value of the magnetic moment
and the magnetization of the system M, and calculate it for
and
Find the magnetization of the system in the limits and

and discuss the physical meaning of the results.

4.82 Paramagnetism at High Temperature (Boston)

a) Show that for a system with a discrete, finite energy spectrum the
specific heat per particle at high temperatures           for all is

where is the spectrum variance

b)

c)

Use the result of (a) to derive the high-temperature specific heat for
a paramagnetic solid treated both classically and quantum mechani-
cally.
Compare your quantum mechanical result for with the exact
formula for

4.83 One-Dimensional Ising Model (Tennessee)

Consider N spins in a chain which can be modeled using the one-
dimensional Ising model

where the spin has the values

4.84 Three Ising Spins (Tennessee)

Assume three spins are arranged in an equilateral triangle with each spin in-
teracting with its two neighbors (see Figure P.4.84). The energy expression
for the Ising model in a magnetic field                    is

b)

c)

a)
b)

Find the partition function.
Find the heat capacity per spin.
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Derive expressions for the

Partition function
Average spin
Internal energy

4.85 N Independent Spins (Tennessee)

Consider a system of N independent spin-1/2 particles. In a magnetic field
H, in the direction, they can point either up or down with energy
where is the magnetic moment. Derive expressions for the

Partition function
Internal energy
Entropy

4.86 N Independent Spins, Revisited (Tennessee)

Consider a system of N independent spin-1/2 particles. In a magnetic field
H, in the direction, they can point either up or down with energy
where is the magnetic moment and Derive expressions for the
entropy in the case of a microcanonical ensemble, where the number
of particles N and the magnetization are fixed.

4.87 Ferromagnetism (Maryland, MIT)

The spins of a regular Ising lattice interact by the energy

a)
b)
c)

a)
b)
c)
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where B is an external field, is the magnetic moment, and the prime
indicates that the summation is only over the nearest neighbors. Each spin

has nearest neighbors. The spins are restricted to equal The
coupling constant J is positive. Following Weiss, represent the effect on
of the spin–spin interaction in (P.4.87.1) by the mean field set up by the
neighboring spins Calculate the linear spin susceptibility using
this mean field approximation. Your expression should diverge at some
temperature What is the physical significance of this divergence?
What is happening to the spin lattice at

4.88 Spin Waves in Ferromagnets (Princeton,
Colorado)

Consider the quantum mechanical spin-1/2 system with Hamiltonian

where the summation is over nearest-neighbor pairs in three dimensions.

a)
b)

c)

d)

Fluctuations

4.89 Magnetization Fluctuation (Stony Brook)

Consider N moments with two allowed orientations in an external
field H at temperature Calculate the fluctuation of magnetization M,
i.e.,

Derive the equation of motion for the spin at site of the lattice.
Convert the model to a classical microscopic model by inserting the
classical spin field into the equation of motion. Express
to lowest order in its gradients, considering a simple cubic lattice with
lattice constant
Consider the ferromagnetic case with uniform magnetization

Derive the frequency-versus-wave vector relation of a small spin-
wave fluctuation
Quantize the spin waves in terms of magnons which are bosons. De-
rive the temperature dependence of the heat capacity.
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4.90 Gas Fluctuations (Moscow Phys-Tech)

A high-vacuum chamber is evacuated to a pressure of atm. Inside
the chamber there is a thin-walled ballast volume filled with helium gas
at a pressure  atm and a temperature On one wall
of this ballast volume, there is a small hole of area A
detector counts the number of particles leaving the ballast volume during
time intervals

a)
b)
c)

Find the average number of molecules counted by the detector.
Find the mean square fluctuation of this number.
What is the probability of not counting any particles in one of the
measurements?

4.91 Quivering Mirror (MIT, Rutgers, Stony Brook)

a) A very small mirror is suspended from a quartz strand whose elas-
tic constant is D. (Hooke’s law for the torsional twist of the strand
is where is the angle of the twist.) In a real-life ex-
periment the mirror reflects a beam of light in such a way that the
angular fluctuations caused by the impact of surrounding molecules
(Brownian motion) can be read on a suitable scale. The position of

for a strand with dyn.cm, it was found
that You may also use the universal gas constant

Calculate Avogadro’s number.
Can the amplitude of these fluctuations be reduced by reducing gas
density? Explain your answer.

b)

4.92 Isothermal Compressibility and Mean Square
Fluctuation (Stony Brook)

a) Derive the relation

where is the isothermal compressibility:

the equilibrium is One observes the average value and
the goal is to find Avogadro’s number (or, what is the same thing,
determine the Boltzmann constant). The following are the data: At
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b) From (a), find the relation between and the mean square fluctua-
tion of N in the grand canonical ensemble. How does this fluctuation
depend on the number of particles?

4.93 Energy Fluctuation in Canonical Ensemble
(Colorado, Stony Brook)

Show that for a canonical ensemble the fluctuation of energy in a system
of constant volume is related to the specific heat and, hence, deduce that
the specific heat at constant volume is nonnegative.

4.94 Number Fluctuations (Colorado (a,b), Moscow
Phys-Tech (c))

Show that for a grand canonical ensemble the number of particles N and
occupational number in an ideal gas satisfy the conditions:

4.95 Wiggling Wire (Princeton)

A wire of length and mass per unit length is fixed at both ends and
tightened to a tension What is the rms fluctuation, in classical statistics,
of the midpoint of the wire when it is in equilibrium with a heat bath at
temperature A useful series is

4.96 LC Voltage Noise (MIT, Chicago)

The circuit in Figure P.4.96 consists of a coil of inductance and a ca-
pacitor of capacitance C. What is the rms noise voltage across AB at
temperature in the limit where

a) is very large?
b) is very small?

a) quantum statistics
b) classical statistics

For an electron spin Fermi gas at temperature

c) Find
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Applications to Solid State

4.97 Thermal Expansion and Heat Capacity
(Princeton)

a) Find the temperature dependence of the thermal expansion coefficient
if the interaction between atoms is described by a potential

b)
where is a small parameter.
Derive the anharmonic corrections to the Dulong–Petit law for a po-
tential

where is a small parameter.

4.98 Schottky Defects (Michigan State, MIT)

N atoms from a perfect crystal of total number of atoms are displaced to
the surface of the crystal. Let be the energy needed to displace one atom
from the bulk of the crystal to the surface. Find the equilibrium number
of defects N at low temperatures assuming

4.99 Frenkel Defects (Colorado, MIT)

N atoms are arranged regularly to form a perfect crystal. If one replaces
atoms among them from lattice sites to interstices of the lattice, this
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becomes an imperfect crystal with defects (of the Frenkel type). The
number of interstitial sites into which an atom can enter is of the same
order as N. Let be the energy necessary to remove an atom from a
lattice site to an interstitial site. Show that, in the equilibrium state at
temperature such that the following relation is valid:

4.100 Two-Dimensional Debye Solid (Columbia,
Boston)

An atom confined to a surface may be thought of as an object “living” in a
two-dimensional world. There are a variety of ways to look at such an atom.
Suppose that the atoms adsorbed on the surface are not independent but
undergo collective oscillations as do the atoms in a Debye crystal. Unlike
the atoms in a Debye crystal, however, there are only two dimensions in
which these collective vibrations can occur.

a)

b)

Derive an expression for the number of normal modes between
and and, by thinking carefully about the total number of
vibrational frequencies for N atoms confined to a surface, rewrite it
in terms of N and the maximum vibration frequency allowed due
to the discreteness of the atoms.
Obtain an integral expression for the energy E for the two-dimensional
Debye crystal. Use this to determine the limiting form of the tempera-
ture dependence of the heat capacity (analogous to the Debye law)
as for the two-dimensional Debye crystal up to dimensionless
integrals.

4.101 Einstein Specific Heat (Maryland, Boston)

Derive an expression for the average energy at a temperature of a
quantum harmonic oscillator having natural frequency
Assuming unrealistically (as Einstein did) that the normal-mode vi-
brations of a solid all have the same natural frequency (call it
find an expression for the heat capacity of an insulating solid.
Find the high-temperature limit for the heat capacity as calculated
in (b) and use it to obtain a numerical estimate for the heat capacity
of a piece of an insulating solid having a number density
of Would you expect this to be a poor or a
good estimate for the high-temperature heat capacity of the material?
Please give reasons.

a)

b)

c)
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d) Find the low-temperature limit of the heat capacity and explain why
it is reasonable in terms of the model.

4.102 Gas Adsorption (Princeton, MIT, Stanford)

Consider a vapor (dilute monatomic gas) in equilibrium with a submono-
layer (i.e., less than one atomic layer) of atoms adsorbed on a surface.
Model the binding of atoms to the surface by a potential energy
Assume there are possible sites for adsorption, and find the vapor pres-
sure as a function of surface concentration (N is the number of
adsorbed particles).

4.103 Thermionic Emission (Boston)

a) Assume that the evaporation of electrons from a hot wire (Richard-
son’s effect) is thermodynamically equivalent to the sublimation of a
solid. Find the pressure of the electron gas, provided that the elec-
trons outside the metal constitute an ideal classical monatomic gas
and that the chemical potential of the electrons in the metal (the
solid phase) is a constant.

b) Derive the same result by using the Clausius–Clapeyron equation

where L is the latent heat of electron evaporation. Neglect the volume
occupied by the electrons in the metal.

4.104 Electrons and Holes (Boston, Moscow
Phys-Tech)

a)

b)

c)

Derive a formula for the concentration of electrons in the conduction
band of a semiconductor with a fixed chemical potential (Fermi level)

assuming that in the conduction band (nondegenerate
electrons).
What is the relationship between hole and electron concentrations in
a semiconductor with arbitrary impurity concentration and band gap

Find the concentration of electrons and holes for an intrinsic semi-
conductor (no impurities), and calculate the chemical potential if the
electron mass is equal to the mass of the hole:
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4.105 Adiabatic Demagnetization (Maryland)

A paramagnetic sample is subjected to magnetic cooling.

a) Show that

Assume is independent of H. Show that

where is the magnetization, is the isothermal magnetic
susceptibility per unit volume, H is the magnetic field, and is the
heat capacity at constant H.
For an adiabatic process, show that

c) Assume that can be approximated by Curie’s law and that
the heat capacity at zero magnetic field is given by

where and are constants. Show that

b)
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For an adiabatic process, show that the ratio of final and initial tem-
peratures is given by

d) Explain and indicate in the diagram given in Figure P.4.105 a
possible route for the adiabatic demagnetization cooling process to
approach zero temperature.

4.106 Critical Field in Superconductor (Stony Brook,
Chicago)

Consider a massive cylinder of volume V made of a type I superconducting
material in a magnetic field parallel to its axis.

a) Using the fact that the superconducting state displays perfect diamag-
netism, whereas the normal state has negligible magnetic susceptibil-
ity, show that the entropy discontinuity across the phase boundary is
at zero field H:

where is the critical H field for suppressing superconductivity
at a temperature
What is the latent heat when the transition occurs in a field?
What is the specific heat discontinuity in zero field?

b)
c)
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5

Quantum
Mechanics

One-Dimensional Potentials

5.1 Shallow Square Well I (Columbia)

A particle of mass moving in one dimension has a potential which
is a shallow square well near the origin:

where is a positive constant. Derive the eigenvalue equation for the state
of lowest energy, which is a bound state (see Figure P.5.1).

51
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5.2 Shallow Square Well II (Stony Brook)

A particle of mass is confined to move in one dimension by a potential
(see Figure P.5.2):

Derive the equation for the bound state.
From the results of part (a), derive an expression for the minimum
value of which will have a bound state.
Give the expression for the eigenfunction of a state with positive en-
ergy
Show that the results of (c) define a phase shift for the potential, and
derive an expression for the phase shift.

5.3 Attractive Delta Function Potential I (Stony
Brook)

A particle of mass moves in one dimension under the influence of an
attractive delta function potential at the origin. The Schrödinger equation

a)
b)

c)

d)
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is

Find the eigenvalue and eigenfunction of the bound state.
If the system is in the bound state and the strength of the potential is
changed suddenly what is the probability that the particle
remains bound?

a)
b)

5.4 Attractive Delta Function Potential II (Stony
Brook)

A particle of mass is confined to the right half-space, in one dimension,
by an infinite potential at the origin. There is also an attractive delta
function potential where (see Figure P.5.4).

Find the expression for the energy of the bound state.
What is the minimum value of required for a bound state?

a)
b)

QUANTUM MECHANICS
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5.5 Two Delta Function Potentials (Rutgers)

A particle of mass moves in a one-dimensional potential of the form

where P is a positive dimensionless constant and has units of length.
Discuss the bound states of this potential as a function of P.

5.6 Transmission Through a Delta Function Potential
(Michigan State, MIT, Princeton)

A particle of mass   moves in one dimension where the only potential
is at the origin with A free particle of wave vector

approaches the origin from the left. Derive an expression for the amplitude
T of the transmitted wave as a function of C, and

5.7 Delta Function in a Box (MIT)

A particle of mass is confined to a box, in one dimension, between
and the box has walls of infinite potential. An attractive delta
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function is at the center of the box.

a)
b)
c)

What are the eigenvalues of odd-parity states?
Find the value of C for which the lowest eigenvalue is zero.
Find the ground state wave function for the case that the lowest
eigenvalue is less than zero energy.

5.8 Particle in Expanding Box (Michigan State, MIT,
Stony Brook)

A particle of mass m is contained in a one-dimensional impenetrable box
extending from The particle is in its ground state.

a)
b)

Find the eigenfunctions of the ground state and the first excited state.
The walls of the box are moved outward instantaneously to form a
box extending from Calculate the probability that the
particle will stay in the ground state during this sudden expansion.
Calculate the probability that the particle jumps from the initial
ground state to the first excited final state.

5.9 One-Dimensional Coulomb Potential (Princeton)

An electron moves in one dimension and is confined to the right half-space
where it has a potential energy

where e is the charge on an electron. This is the image potential of an
electron outside a perfect conductor.

Find the ground state energy.
Find the expectation value in the ground state

5.10 Two Electrons in a Box (MIT)

Two electrons are confined in one dimension to a box of length A clever
experimentalist has arranged that both electrons have the same spin state.
Ignore the Coulomb interaction between electrons.

a) Write the ground state wave function for the two-electron
system.

b) What is the probability that both electrons are found in the same
half of the box?

c)

a)
b)

QUANTUM MECHANICS
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5.11 Square Well (MIT)

A particle of mass is confined to a space in one dimension by
infinitely high walls at At the particle is initially in the left
half of the well with constant probability

a) Find the time-dependent wave function
b) What is the probability that the particle is in the nth eigenstate?
c) Write an expression for the average value of the particle energy.

5.12 Given the Eigenfunction (Boston, MIT)

A particle of mass moves in one dimension. It is remarked that the exact
eigenfunction for the ground state is

where is a constant and A is the normalization constant. Assuming that
the potential vanishes at infinity, derive the ground state eigenvalue
and

5.13    Combined Potential (Tennessee)

A particle of mass is confined to in one dimension by the potential

where and are constants. Assuming there is a bound state, derive the
exact ground state energy.

Harmonic Oscillator

5.14   Given a Gaussian (MIT)

A particle of mass is coupled to a simple harmonic oscillator in one di-
mension. The oscillator has frequency  and distance constant

PROBLEMS
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At time the particle’s wave function is given by

The constant is unrelated to any other parameters. What is the proba-
bility that a measurement of energy at  finds the value of

5.15    Harmonic Oscillator ABCs (Stony Brook)

Consider the harmonic oscillator given by

Define

Show that
Show that
Show that
Show that if is an eigenstate of with eigenvalue

then are also eigenstates of N with eigenvalues
and respectively.
Define such that What is the energy eigenvalue of
How can one construct other eigenstates of H starting from
What is the energy spectrum of H? Are negative eigenvalues possible?

5.16   Number States (Stony Brook)

Consider the quantum mechanical Hamiltonian for a harmonic oscillator
with frequency

a)
b)
c)
d)

e)
f)
g)

QUANTUM MECHANICS
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and define the operators

a) Suppose we define a state to obey

Show that the states

are eigenstates of the number  operator, with eigenvalue n:

Show that is also an eigenstate of the Hamiltonian and compute
its energy.
Hint: You may assume
Using the above operators, evaluate the expectation value
in terms of and

5.17 Coupled Oscillators (MIT)

Two identical harmonic oscillators in one dimension each have mass and
frequency Let the two oscillators be coupled by an interaction term

where C is a constant and and are the coordinates of the two
oscillators. Find the exact spectrum of eigenvalues for this coupled system.

5.18 Time-Dependent Harmonic Oscillator I
(Wisconsin-Madison)

Consider a simple harmonic oscillator in one dimension:

At the wave function is

b)

c)

PROBLEMS
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where is the exact eigenstate of the harmonic oscillator with eigen-
value

a) Give
b) What is the parity of this state? Does it change with time?
c) What is the average value of the energy for this state? Does it change

with time?

5.19 Time-Dependent Harmonic Oscillator II
(Michigan State)

Consider a simple harmonic oscillator in one dimension. Introduce the
raising and lowering operators, and respectively. The Hamiltonian H
and wave function at are

where denotes the eigenfunction of energy

What is wave function at positive times?
What is the expectation value for the energy?
The position can be represented in operators by
where is a constant. Derive an expression for the
expectation of the time-dependent position

5.20 Switched-on Field (MIT)

Consider a simple harmonic oscillator in one dimension with the usual
Hamiltonian

a) The eigenfunction of the ground state can be written as

Determine the constants N and

You may need operator expressions such as a and

a)
b)
c)

QUANTUM MECHANICS
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b) What is the eigenvalue of the ground state?
c) At time an electric field is switched on, adding a perturba-

d) Assuming that the field is switched on in a time much faster than
what is the probability that the particle stays in the ground state?

5.21 Cut the Spring! (MIT)

A particle is allowed to move in one dimension. It is initially coupled to
two identical harmonic springs, each with spring constant K. The springs
are symmetrically fixed to the points so that when the particle is at

the classical force on it is zero.

a) What are the eigenvalues of the particle while it is connected to both
springs?

b) What is the wave function in the ground state?
c) One spring is suddenly cut, leaving the particle bound to only the

other one. If the particle is in the ground state before the spring is
cut, what is the probability it is still in the ground state after the
spring is cut?

Angular Momentum and Spin

5.22 Given Another Eigenfunction (Stony Brook)

A nonrelativistic particle of mass moves in a three-dimensional central
potential which vanishes at We are given that an exact
eigenstate is

where C and are constants.

a)
b)
c)

What is the angular momentum of this state?
What is the energy?
What is

5.23 Algebra of Angular Momentum (Stony Brook)

Given the commutator algebra

PROBLEMS

tion of the form What is the new ground state energy?
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5.24 Triplet Square Well (Stony Brook)

Consider a two-electron system in one dimension, where both electrons have
spins aligned in the same direction (say, up). They interact only through
the attractive square well in relative coordinates

What is the lowest energy of the two-electron state? Assume the total
momentum is zero.

5.25 Dipolar Interactions (Stony Brook)

Two spin-1/2 particles are separated by a distance and interact only
through the magnetic dipole energy

where is the magnetic moment of spin The system of two spins
consists of eigenstates of the total spin and total

a) Write the Hamiltonian in terms of spin operators.
b) Write the Hamiltonian in terms of and
c) Give the eigenvalues for all states.

5.26 Spin-Dependent            Potential (MIT)

Consider two identical particles of mass and spin 1/2. They interact only
through the potential

where and are Pauli spin matrices which operate on the spin of
particle

a) Construct the spin eigenfunctions for the two particle states. What
is the expectation value of V for each of these states?

b) Give the eigenvalues of all of the bound states.

Show that commutes with
Derive the spectrum of from the commutation relations.

a)
b)

QUANTUM MECHANICS
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5.27 Three Spins (Stony Brook)

Consider three particles of spin 1/2 which have no motion. The raising
and lowering operators of the individual

spins have the property

where the arrows indicate the spin orientation with regard to the
direction.

a) Write explicit wave functions for the four states:

b) Using the definition that construct the 4 × 4 matrices

which represent the and operators.
c) Construct the 4 × 4 matrices which represent and
d) Construct from the value of the matrix

5.28 Constant Matrix Perturbation (Stony Brook)

Consider a system described by a Hamiltonian

where and G are positive.

a) Find the eigenvalues and eigenvectors of this Hamiltonian.
b) Consider the two states

PROBLEMS
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At the system is in state  Derive the probability that at any
later time it is in state

5.29 Rotating Spin (Maryland, MIT)

A spin-1/2 particle interacts with a magnetic field through the
Pauli interaction where is the magnetic moment and

are the Pauli spin matrices. At a measurement determines
that the spin is pointing along the positive What is the probability
that it will be pointing along the negative  at a later time

5.30 Nuclear Magnetic Resonance (Princeton, Stony
Brook)

A spin-1/2 nucleus is placed in a large magnetic field in the
An oscillating field of radio frequency is applied in the
so the total magnetic field is

The Hamiltonian is where is the magnetic moment. Use the
notation

a) If the nucleus is initially pointing in the at what
is the probability that it points in the at later times?

b) Discuss why most NMR experiments adjust so that

Variational Calculations

5.31 Anharmonic Oscillator (Tennessee)

Use variational methods in one dimension to estimate the ground state
energy of a particle of mass in a potential

5.32 Linear Potential I (Tennessee)

A particle of mass is bound in one dimension by the potential
where F is a constant. Use variational methods to estimate the energy

of the ground state.

QUANTUM MECHANICS
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5.33 Linear Potential II (MIT, Tennessee)

A particle of mass moves in one dimension in the right half-space. It has
a potential energy given by

where F is a positive real constant. Use variational methods to obtain an
estimate for the ground state energy. How does the wave function behave
in the limits or

5.34 Return of Combined Potential (Tennessee)

A particle of mass moves in one dimension according to the potential

where and are both constants.

a) Show that the wave function must vanish at so that a particle
on the right of the origin never gets to the left.

b) Use variational methods to estimate the energy of the ground state.

5.35 Quartic in Three Dimensions (Tennessee)

A particle of mass is bound in three dimensions by the quartic potential
Use variational methods to estimate the energy of the ground

state.

5.36 Halved Harmonic Oscillator (Stony Brook,
Chicago (b), Princeton (b))

Consider a particle of mass moving in one dimension (see Figure P.5.36)
in a potential

PROBLEMS
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a) Using the normalized trial function

find the value of which minimizes the ground state energy and
the resulting estimate of the ground state energy. How is this value
related to the true ground state energy?
What is the exact ground state wave function and energy for this
system (neglect the normalization of the wave function)? Do not
solve the Schrödinger equation directly. Rather, state the answer and
justify it.
Hint: You may need the integral

b)

5.37 Helium Atom (Tennessee)

Do a variational calculation to estimate the ground state energy of the
electrons in the helium atom. The Hamiltonian for two electrons, assuming
the nucleus is fixed, is

QUANTUM MECHANICS
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Assume a wave function of the form

where is the Bohr radius, is the variational parameter, and is the
spin state of the two electrons.

Perturbation Theory

5.38 Momentum Perturbation (Princeton)

A particle of mass moves in one dimension according to the Hamiltonian

All eigenfunctions and eigenvalues are known. Suppose we add
a term to the Hamiltonian, where and are constants and is the
momentum operator:

Derive an expression for the eigenvalues and eigenstates of the new Hamil-
tonian H.

5.39 Ramp in Square Well (Colorado)

b) A small perturbation is added, Use perturbation
theory to calculate the change in the ground state energy to

5.40 Circle with Field (Colorado, Michigan State)

A particle with charge e and mass is confined to move on the circumfer-
ence of a circle of radius The only term in the Hamiltonian is the kinetic
energy, so the eigenfunctions and eigenvalues are

PROBLEMS

A particle of mass is bound in a square well where

a) What are the energy and eigenfunction of the ground state?
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where is the angle around the circle. An electric field is imposed in the
plane of the circle. Find the perturbed energy levels up to

5.41 Rotator in Field (Stony Brook)

Consider a rigid body with moment of inertia I, which is constrained to
rotate in the    and whose motion is given by the Schrödinger equa-
tion

a) Find the eigenfunctions and eigenvalues.
b) Assume the rotator has a fixed dipole moment p in the plane. An

electric field     is applied to the plane. Find the changes in the energy
levels to first and second order in the field.

5.42 Finite Size of Nucleus (Maryland, Michigan
State, Princeton, Stony Brook)

Regard the nucleus of charge Z as a sphere of radius with a uniform
charge density. Assume that where is the Bohr radius of the
hydrogen atom.

Derive an expression for the electrostatic potential between the
nucleus and the electrons in the atom. If is the
potential from a point charge, find the difference
due to the size of the nucleus.
Assume one electron is bound to the nucleus in the lowest bound
state. What is its wave function when calculated using the potential

from a point nucleus?
Use first-order perturbation theory to derive an expression for the
change in the ground state energy of the electron due to the finite
size of the nucleus.

a)

b)

c)

5.43 U and       Perturbation (Princeton)

A particle is moving in the three-dimensional harmonic oscillator with po-
tential energy A weak perturbation is applied:

QUANTUM MECHANICS
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The same small constant U occurs in both terms of Use perturbation
theory to calculate the change in the ground state energy to order

5.44 Relativistic Oscillator (MIT, Moscow
Phys-Tech, Stony Brook (a))

Consider a spinless particle in a one-dimensional harmonic oscillator poten-
tial:

a) Calculate leading relativistic corrections to the ground state to first
order in perturbation theory.

b) Consider an anharmonic classical oscillator with

For what values of will the leading corrections be the same as in
(a)?

5.45 Spin Interaction (Princeton)

Consider a spin-1/2 particle which is bound in a three-dimensional har-
monic oscillator with frequency The ground state Hamiltonian and
spin interaction are

where is a constant and are the Pauli matrices. Neglect
the spin–orbit interaction. Use perturbation theory to calculate the change
in the ground state energy to order

5.46 Spin–Orbit Interaction (Princeton)

Consider in three dimensions an electron in a harmonic oscillator potential
which is perturbed by the spin–orbit interaction

PROBLEMS
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What are the eigenvalues of the ground state and the lowest excited
states of the three-dimensional harmonic oscillator?
Use perturbation theory to estimate how these eigenvalues are altered
by the spin–orbit interaction.

a)

b)

5.47 Interacting Electrons (MIT)

Consider two electrons bound to a proton by Coulomb interaction. Neglect
the Coulomb repulsion between the two electrons.

a) What are the ground state energy and wave function for this system?
b) Consider that a weak potential exists between the two electrons of

the form

where is a constant and is the spin operator for electron (ne-
glect the spin–orbit interaction). Use first-order perturbation theory
to estimate how this potential alters the ground state energy.

5.48 Stark Effect in Hydrogen (Tennessee)

Consider a single electron in the state of the hydrogen atom. We ig-
nore relativistic corrections, so the and states are initially degenerate.
Then we impose a small static electric field Use perturbation
theory to derive how the energy levels are changed to lowest order in
powers of

5.49 Hydrogen with Electric and Magnetic
Fields (MIT)

Consider an electron in the state of the hydrogen atom. We ignore
relativistic corrections, so the and states are initially degenerate.

QUANTUM MECHANICS
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Then we impose two simultaneous perturbations: an electric field in
the and a magnetic field which is given by the
vector potential Ignore the magnetic moment of the
electron. Calculate how the states are altered by these simultaneous
perturbations.

5.50 Hydrogen in Capacitor (Maryland, Michigan
State)

A hydrogen atom in its ground state is placed between the parallel plates
of a capacitor. For times t < 0, no voltage is applied. Starting at an
electric field   is applied, where is a constant. Derive the
formula for the probability that the electron ends up in state due to this
perturbation. Evaluate the result for

a) a state
b) a state

5.51 Harmonic Oscillator in Field (Maryland,
Michigan State)

A particle of mass and charge moves in one dimension. It is attached
to a spring of constant and is initially in the ground state of the
harmonic oscillator. An electric field is switched on during the interval

where is a constant.

a) What is the probability of the particle ending up in the state?
b) What is the probability of the particle ending up in the state?

5.52 of Tritium (Michigan State)

Tritium is an isotope of hydrogen with one proton and two neutrons. A
hydrogen-like atom is formed with an electron bound to the tritium nucleus.
The tritium nucleus undergoes decay, and the nucleus changes its charge
state suddenly to and becomes an isotope of helium. If the electron is
initially in the ground state in the tritium atom, what is the probability
that the electron remains in the ground state after the sudden -decay?

PROBLEMS
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WKB

5.53 Bouncing Ball (Moscow Phys-Tech, Chicago)

A ball of mass acted on by uniform gravity (let be the acceleration
of gravity) bounces up and down elastically off a floor. Take the floor to
be at the zero of potential energy. Working in the WKB approximation,
compute the quantized energy levels of the bouncing ball system.

5.54 Truncated Harmonic Oscillator (Tennessee)

A truncated harmonic oscillator in one dimension has the potential

a) Use WKB to estimate the energies of the bound states.
b) Find the condition that there is only one bound state: it should de-

pend on and

5.55 Stretched Harmonic Oscillator (Tennessee)

Use WKB in one dimension to calculate the eigenvalues of a particle of
mass in the following potential (see Figure P.5.55):

QUANTUM MECHANICS
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5.56 Ramp Potential (Tennessee)

Use WKB in one dimension to find the eigenvalues of a particle of mass
in the potential where

5.57 Charge and Plane (Stony Brook)

A particle moving in one dimension feels the potential

(This potential would be appropriate for an electron moving in the presence
of a uniformly charged sheet where C is the transparency of the sheet.)

Using the WKB approximation, find the energy spectrum, for
this one-dimensional problem for all for
Find the energy spectrum,
Derive an equation that describes the energies for even wave func-
tions for an arbitrary value of C. What can you say about the energies

for odd wave functions?

a)

b)
c)

PROBLEMS
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5.58 Ramp Phase Shift (Tennessee)

Use WKB to calculate the phase shift in one dimension of a particle of mass
confined by the ramp potential

5.59 Parabolic Phase Shift (Tennessee)

Use WKB to calculate the phase shift in one dimension of a particle of mass
confined by the parabolic potential

5.60 Phase Shift for Inverse Quadratic (Tennessee)

A particle ofmass moves in one dimension in the right half-space
with the potential

where thedimensionless constant determines the strength of the potential.
Use WKB to calculate the phase shift as a function of energy.

Scattering Theory

5.61 Step-Down Potential (Michigan State, MIT)

A particle of mass obeys a Schrödinger equation with a potential

Since the potential is higher on the left of zero than on the right.
Find the reflection coefficient for a particle coming in from the left
with momentum (see Figure P.5.61).

QUANTUM MECHANICS
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5.62 Step-Up Potential (Wisconsin-Madison)

Consider a particle scattering in one dimension from a potential which
is a simple step at

where A particle with kinetic energy is incident from the
left (see Figure P.5.62).

a) Find the intensity of the reflected (R) and transmitted (T) waves.
b) Find the currents and the sum of the reflected and

transmitted waves.

PROBLEMS
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5.63 Repulsive Square Well (Colorado)

Consider in three dimensions a repulsive square well at the origin
of width The potential is

A particle of energy is incident upon the square well
(see Figure P.5.63).

a) Derive the phase shift for 
b) How does the phase shift behave as
c) Derive the total cross section in the limit of zero energy.

5.64 3D Delta Function (Princeton)

Consider a particle of mass which scatters in three dimension from a
potential which is a shell at radius

Derive the exact expression for the scattering cross section in the
limit of very low particle energy.

QUANTUM MECHANICS
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5.65 Two-Delta-Function Scattering (Princeton)

A free particle of mass traveling with momentum parallel to the
scatters off the potential

Calculate the differential scattering cross section, in the Born ap-
proximation. Does this approximation provide a reasonable description for
scattering from this potential? In other words, is it valid to use unperturbed
wave functions in the scattering amplitude?

5.66 Scattering of Two Electrons (Princeton)

Two electrons scatter in a screened environment where the effective poten-
tial is

where is a constant. Consider both electrons in the center-of-mass frame,
where both electrons have energy This energy is much larger than a
Rydberg but much less than so use nonrelativistic kinematics. Derive
an approximate differential cross section for scattering through an angle
when the two electrons are

a) in a total spin state of S = 0,
b)  in a total spin state of S =1.

5.67 Spin-Dependent Potentials (Princeton)

Consider the nonrelativistic scattering of an electron of mass and mo-
mentum through an angle Calculate the differential cross section in
the Born approximation for the spin-dependent potential

where are the Pauli spin matrices and are con-
stants. Assume the initial spin is polarized along the incident direction, and
sum over all final spins. (Note: Ignore that the potential violates parity.)

PROBLEMS



77

5.68 Rayleigh Scattering (Tennessee)

Rayleigh scattering is the elastic scattering of photons. Assume there is a
matrix element which describes the scattering from to It
has the dimensions of

Derive an expression for the differential cross section for
Rayleigh scattering. Ignore the photon polarization.
Assume the specific form for the matrix element

a)

b)

where is the polarizability tensor and are the polarization
vectors of the photons. What is the result if the initial photons are
unpolarized and the final photon polarizations are summed over? As-
sume the polarizability is isotropic: where is the unit tensor.

5.69 Scattering from Neutral Charge Distribution
(Princeton)

Consider the nonrelativistic scattering of a particle of mass m and charge e
from a fixed distribution of charge Assume that the charge distribu-
tion is neutral: it is spherically symmetric; and the second
moment, is defined as

Use the Born approximation to derive the differential cross section
for the scattering of a particle of wave vector k.

Derive the expression for forward scattering
Assume that is for a neutral hydrogen atom in its ground state.
Calculate A in this case. Neglect exchange effects and assume that
the target does not recoil.

a)

b)
c)

General

5.70 Spherical Box with Hole (Stony Brook)

A particle is confined to a spherical box of radius R. There is a barrier
in the center of the box, which excludes the particle from a radius So
the particle is confined to the region Assume that the wave
function vanishes at both and and derive an expression for the
eigenvalues and eigenfunctions of states with angular momentum

QUANTUM MECHANICS
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5.71 Attractive Delta Function in 3D (Princeton)

A particle moves in three dimensions. The only potential is an attractive
delta function at of the form

where D is a parameter which determines the strength of the potential.

a)

b)

What are the matching conditions at for the wave function and
its derivative?
For what values of D do bound states exist for

5.72 Ionizing Deuterium (Wisconsin-Madison)

The hydrogen atom has an ionization energy of when an
electron is bound to a proton. Calculate the ionization energy of deuterium:
an electron bound to a deuteron. Give your answer as the difference between
the binding energy of deuterium and hydrogen The
deuteron has unit charge. The three masses are, in atomic mass units,

5.73 Collapsed Star (Stanford)

In a very simple model of a collapsed star a large number  of
nucleons (N neutrons and protons) and electrons (to ensure electric
neutrality) are placed in a one-dimensional box (i.e., an infinite square
well) of length The neutron and proton have equal mass and
the electron has mass Assume the nucleon number density is

neglect all interactions between the
particles in the well, and approximate

Which particle species are relativistic?
Calculate the ground state energy of the system as a function of
for all possible configurations with fixed A.
What value of (assumed small) minimizes the total energy of the
system?

a)
b)

c)

PROBLEMS
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5.74 Electron in Magnetic Field (Stony Brook,
Moscow Phys-Tech)

An electron is in free space except for a constant magnetic field B in the

a)

b)

Show that the magnetic field can be represented by the vector poten-
tial
Use this vector potential to derive the exact eigenfunctions and eigen-
values for the electron.

5.75 Electric and Magnetic Fields (Princeton)

Consider a particle of mass m and charge e which is in perpendicular electric
and  magnetic fields:

Write the Hamiltonian, using a convenient gauge for the vector po-
tential.
Find the eigenfunctions and eigenvalues.
Find the average velocity in the for any eigenstate.

a)

b)
c)

5.76 Josephson Junction (Boston)

Consider superconducting metals I and II separated by a very thin insulat-
ing layer, such that that electron wave functions can overlap between the
metals (Josephson junction). A battery V is connected across the junction
to ensure an average charge neutrality (see Figure P.5.76). This situation
can be described by means of the coupled Schrödinger equations:

Here and are the probability amplitudes for an electron in I and
II, and are  the electric potential energies in I and II, K is the cou-
pling constant due to the insulating layer, and and
describe the battery as a source of electrons.

a) Show that are constant in time.
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b) Assuming (same metals) and expressing the probability
amplitudes in the form

find the differential equations for and
Show that the battery currentc)

oscillates, and find the frequency of these oscillations.
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Thermodynamics
and Statistical
Physics

Introductory Thermodynamics

4.1 Why Bother? (Moscow Phys-Tech)

The physicist is right in saying that the total energy of the molecules in the
room cannot be changed. Indeed, the total energy of an ideal gas is

where N is the number of molecules, is the heat capacity at constant
volume per particle, and is the absolute temperature in energy units. In
these units,

Since the pressure P in the room stays the same (as does the volume V)
and equal to the outside air pressure, we have
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So, the total energy of the gas does not change. However, the average
energy of each molecule does, of course, increase, and that is what defines
the temperature (and part of the comfort level of the occupants). At the
same time, the total number of molecules in the room decreases. In essence,
we burn wood to force some of the molecules to shiver outside the room
(this problem was first discussed in Nature 141, 908 (1938)).

4.2 Space Station Pressure (MIT)

The rotation of the station around its axis is equivalent to the appearance
of an energy where is the mass of an air particle and
R is the distance from the center. Therefore, the particle number density
satisfies the Boltzmann distribution (similar to the Boltzmann distribution
in a gravitational field):

where is the number density at the center and is the tem-
perature in energy units. The pressure is related to the number density
simply by So, at constant temperature,

Using the condition that the acceleration at the rim is we have

4.3 Baron von Münchausen and Intergalactic Travel
(Moscow Phys-Tech)

The general statement that a closed system cannot accelerate as a whole
in the absence of external forces is not usually persuasive to determined
inventors. In this case, he would make the point that the force on the rope
is real. To get an estimate of this force, assume that the balloon is just
above the surface of the Earth and that the density of air is approximately
constant to 2 km. Archimedes tells us that the force on the rope will equal
the weight of the air, mass excluded by the empty balloon (given a
massless balloon material). We then may use the ideal gas law

SOLUTIONS
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2 km; i.e., However, there will be no force acting on the
Earth. The system (Earth + surrounding air) is no longer symmetric (see
Figure S.4.3a). The symmetric system would be the one with no air on
the opposite side of the Earth (see Figure S.4.3b). Therefore, there will be
a force between this additional air, which can be treated as a “negative”
mass, and the Earth (see Figure S.4.3c):

where and are the mass and radius of the Earth, respectively, and
G is the gravitational constant. So, the Archimedes force is completely
canceled by the gravitational force from the air. Perhaps that is why the
Baron shelved his idea.

4.4 Railway Tanker (Moscow Phys-Tech)

The new equilibrium pressure of the gas will be the same throughout the
tanker, whereas the temperature across its length will vary: higher at the
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heated wall, and cooler at other end (see Problem 4.5). Expanding the
temperature T along the length of the tanker in a Taylor series and keeping
the first two terms (since the temperature difference between the walls is
small compared to we have

We may write the ideal gas law as a function of position in the tanker:

where is the gas concentration. Rearranging, we have

The total number N of molecules in the cylinder is given by

where A is the cross-sectional area of the tanker. Alternatively, we can
integrate (S.4.4.3) exactly and expand the resulting logarithm, which yields
the same result. The total number of molecules originally in the tank is

Since the total number of molecules in the gas before and after heating is
the same, (no phase transitions), we may equate (S.4.4.4) and
(S.4.4.5), yielding
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The center of mass (inertia) of the gas found with the same accuracy is
given by

As we have assumed that the tanker slides on frictionless rails, the center
of mass of the system will not move but the center of the tanker will move
by an amount such that

Substituting (S.4.4.7) into (S.4.4.8) and rearranging give

4.5 Magic Carpet (Moscow Phys-Tech)

First let us try to reproduce the line of reasoning the Baron was likely to
follow. He must have argued that in the z direction the average velocity of
a molecule of mass is

If we consider that during the collision the molecules thermalize, then the
average velocities after reflection from the upper and lower surfaces become
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The forces due to the striking of the molecules on the upper and lower
surfaces are, respectively, and (see Figure S.4.5):

where is the concentration of the air molecules, and we have used the
fact that the number of molecules colliding with 1 of the surface per
second is approximately (the exact number is see Problem
4.14). The net resulting force is

Substituting for we have

Unfortunately, this estimate is totally wrong since it assumes that the con-
centration of molecules is the same above and below the panel, whereas it
would be higher near the cold surface and lower near the hot surface (see
Problem 4.4) to ensure the same pressure above and below. That’s why
irons don’t fly.

SOLUTIONS
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4.6 Teacup Engine (Princeton, Moscow Phys-Tech)

If the cup were vacuum tight, the number of molecules leaving the surface
would be the same as the number of molecules returning to the surface.
The mass flow rate of the molecules hitting the surface (see Problem 4.14)
is

where is the vapor density corresponding to the saturation, is the
average velocity of the molecules, and A is the surface area of the ice. The
mass flow rate of the molecules actually returning to the surface is

where is the sticking coefficient (the probability that the molecule hitting
the surface will stick to it). Let us assume for now that (we will
see later that this is not true, but that actually gives us the lower limit
of the distance). If the cup is open we can assume that the number of
molecules leaving the surface is the same as in the closed cup, but there
are few returning molecules. We then find that the time for complete
evaporation of the ice is

where we take               g as the mass of the ice,                    and

from Problem 4.13. Substituting (S.4.6.4) into (S.4.6.3), we obtain

Once again using the ideal gas law, we may obtain

Substituting (S.4.6.6) into (S.4.6.5) yields
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During the sublimation of the ice, the acceleration of the astronaut is

where corresponds to the momentum transferred by the molecules
leaving the surface. Using the time calculated above, he will cover a
distance

Note that this is the lower limit because we assumed and that all the
molecules that are leaving go to infinity. So, it seems that the astronaut
can cover the distance to the ship by using his cup as an engine. Moreover,
the stickingcoefficient which is often assumed to be close to unity, could
be much smaller (for water, at 0°C). That explains why the
water in a cup left in a room does not evaporate in a matter of minutes
but rather in a few hours. For a detailed discussion see E. Mortensen
and H. Eyring, J. Phys. Chem. 64, 846 (1960). The physical reason for
such a small sticking coefficient in water is based on the fact that in the
liquid phase the rotational degrees of freedom are hindered, leading to a
smaller rotational partition function. So, the molecules whose rotation
cannot pass adiabatically into the liquid will be rejected and reflect back
into the gaseous phase. These effects are especially strong in asymmetric
polar molecules (such as water). The actual time the teacup engine will
be working is significantly longer (about 30 times, if we assume that the
sticking coefficient for ice is about the same as for water at

4.7 Grand Lunar Canals (Moscow Phys-Tech)

Consider the atmosphere to be isothermal inside the channel. The pres-
sure depends only on the distance from the center of the moon (see
Figure S.4.7), and as in Problem 4.19 we have

So
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The acceleration of gravity (see also Problem 1.10, Part I)

where M is the mass of the Moon and is the average density of the Moon
(which we consider to be uniform). Therefore,

where we have set Now, from (S.4.7.2) and (S.4.7.4), we have

where is the pressure on the surface of the Moon.

which implies that it is not impossible to have such cavities inside the Moon
filled with gas (to say nothing of the presence of lunars).
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4.8 Frozen Solid (Moscow Phys-Tech)

If the ice does not freeze too fast (which is usually the case with lakes),
we can assume that the temperature is distributed linearly across the ice.
Suppose that the thickness of the ice at a time is Then the heat balance
can be written in the form

where is the melting temperature of ice. The left side represents the
flow of heat through one square meter of ice surface due to the temperature
gradient, and the right side the amount of heat needed to melt (freeze) an
amount of ice Integrating (S.4.8.1), we obtain

where and are integration constants. If we assume that there is no ice
initially then and we find that the time to freeze

solid is

4.9 Tea in Thermos (Moscow Phys-Tech)

There are two main sources of power dissipation: radiation from the walls
of the thermos and thermal conductance of the air between the walls. Let
us first estimate the radiative loss. The power radiated from the hotter
inner wall minus the power absorbed from the outer wall is given by (see
Problem 4.73)

where T is the temperature of the tea, is room temperature, and the
Stefan–Boltzmann constant Initially,

So

The power dissipation due to the thermal conductivity of the air can be
estimated from the fact that, at that pressure, the mean free path of the
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air molecules is about Therefore, there are very few collisions
between the molecules that travel from one wall of the thermos to the other.
We can assume that we are in the Knudsen regime of ( is the distance
between the walls). In this regime the thermal conductance is proportional
to the pressure (if it is independent of the pressure). Let us assume
that after a molecule strikes the wall, it acquires the temperature of the
wall. Initially after it hits the wall, a molecule will take away the energy

where we can take for air The number of molecules striking
the inner wall per time interval dt is

where is the concentration of molecules and is their average velocity
(see Problem 4.14). The power due to the thermal conductance is

We can substitute  and

Then (S.4.9.4) becomes

So, we can see that radiation loss has about the same order of magnitude as
thermal conductance at these parameters. Therefore the properties of the
thermos can only be improved significantly by decreasing both the emissiv-
ity and the residual pressure between the walls. The energy dissipated is
equal to the energy change of the mass of the tea:
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So

where we used for an estimate the fact that T does not change significantly
and Then the time for the tea to cool from the
initial temperature to the final temperature is given by

4.10 Heat Loss (Moscow Phys-Tech)

Let min be the time the heater is operating. The energy added to
the water and bowl will heat the water as well as the environment. We
will assume that the heat loss to the surroundings is proportional to the
elapsed time and that the changing temperature difference between
the water and room temperature During this phase, we may
write

The heat loss is actually a time integral of some proportionality constant
times the temperature difference as the water heats up. However, only

varies by out of an average so we will ignore the variation. The
heat loss during the second phase is given by
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We may now eliminate from (S.4.10.1), yielding

4.11 Liquid–Solid–Liquid (Moscow Phys-Tech)

a) Since the evaporation is very rapid, the heat to vaporize can only be
obtained from the heat of fusion. Therefore, if of water becomes solid
and vaporizes, we may write

Since the total mass we have

If we continue pumping, the ice would, of course, gradually sublimate, but
this process takes much longer, so we can neglect it.

b) The metal cools from its initial temperature by transferring heat to
melt some ice:

where is the temperature change. This may be determined from the
sample’s density before it was placed in the calorimeter. Using the thermal
coefficient of volume expansion where we have

The temperature difference may be found from (S.4.11.4)
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Just as in the heating phase, the heat loss is proportional to the elapsed



96

Equating the amount of heat required to melt a mass of ice with the
heat available in the metal, we have

This mass exceeds the amount of ice from part (a), so all of it would melt.

4.12 Hydrogen Rocket (Moscow Phys-Tech)

Find the amount of water vapor produced in the reaction

One mole of hydrogen yields one mole of water, or in mass

Since is the mass of fuel intake per second, is the mass of water
ejected from the engine per second. If the water vapor density is this
rate may be expressed as

where is the velocity of the gas ejected from the engine. Therefore,

Express the density as

From (S.4.12.4) and (S.4.12.5), we then have

The mass ejected per second from the engine provides the momentum per
second which will be equal to the force  supplied by the
engine. Apart from this reactive force, there is a static pressure from the
engine providing a force so the total force

In real life the second term is usually small (P is not very high), so the
force by an engine is determined by the reactive force.
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4.13 Maxwell–Boltzmann Averages (MIT)

a) We may write the unnormalized Maxwell–Boltzmann distribution imme-
diately as

We would like to write (S.4.13.1) as so we must integrate over all
velocities in order to find the proper normalization:

Rewriting (S.4.13.2) in spherical coordinates we have

A variety of problems contain the definite integral (S.4.13.3) and its varia-
tions. A particularly easy way to derive it is to start by writing the integral
as

Now multiply I by itself, replacing by yielding

Rewriting (S.4.13.5) in polar coordinates gives

where we have substituted in (S.4.13.6). So we have
Integrating instead from 0 to then gives
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The integral required here may be found by differentiating (S.4.13.7) once
with respect to

Using (S.4.13.8) in (S.4.13.3), where gives

so

b) The most likely speed occurs when (S.4.13.11) is a maximum. This
may be found by setting its derivative or, simply the derivative of In
equal to 0:

c) The average speed is given by

SOLUTIONS
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d) The mean square speed of the atoms may be found immediately by
recalling the equipartition theorem (see Problem 4.42) and using the fact
that there is energy per degree of freedom. So

For completeness, though, the integral may be shown:

4.14 Slowly Leaking Box (Moscow Phys-Tech, Stony
Brook (a,b))

a) The number of atoms per unit volume moving in the direction normal
to the wall (in spherical coordinates) is

where is the azimuth angle, is the polar angle, is the number density
of atoms, and is the speed distribution function (Maxwellian). To
determine the number of atoms striking the area of the hole A on the wall
per time dt, we have to multiply (S.4.14.1) by dt (only the atoms
within a distance dt reach the wall). To obtain the total atomic flow
rate R through the hole, we have to integrate the following expression:

THERMODYNAMICS AND STATISTICAL PHYSICS



100

We integrate from 0 to since we only consider the atoms moving toward
the wall. On the other hand, by definition, the average velocity is given
by

Comparing (S.4.14.2) and (S.4.14.3), we see that

this energy For a Maxwellian distribution we have
where C is a normalizing constant:

The numerator is the total energy of the atoms leaving the container per
second, and the denominator is the total number of atoms leaving the con-
tainer per second. Define From part (a), we can express this
integral in terms of the average velocity Then we have

We know that (since it is a normalizing factor, see Problem
4.13), and

SOLUTIONS

This result applies for any type of distribution function We only con-
sider a flow from the inside to the outside of the container. Since the hole
is small, we can assume that the distribution function of the atoms inside
the container does not change appreciably.

b) The average kinetic energy of the atoms leaving the container should be
somewhat higher than the average kinetic energy in the container because
faster atoms strike the wall more often than the ones moving more slowly.
So, the faster atoms leave the container at a higher rate. Let us compute
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So is indeed higher than the average energy of the atoms:

c) From (b) we know that each atom leaving the container takes with it an
additional energy The flow rate of the atoms leaving
the container (from (a)) is

The energy flow rate from the container becomes

To keep the temperature of the atoms inside the container constant, we
have to transfer some heat to it at the same rate:

Equating the flow rate to the decrease of the number of atoms inside gives

Solving this differential equation, we can find the change in number density:

is the time constant and is the initial number density. Therefore, the
heat flow rate is

4.15 Surface Contamination (Wisconsin-Madison)

The number of molecules striking a unit area of the surface N during the
time of the experiment (see Problem 4.14) is given by

We then obtain



SOLUTIONS102

For an estimate we can assume that the adsorbed molecules are closely
packed and that the number of adsorption sites on a surface of area A is

where d is the average diameter of the adsorbed atoms, and we take
The total number of adsorption sites may actually be smaller (these data
can be obtained from the time to create one monolayer at lower pressure).
We may write

or, for 1 of surface,

Using the average velocity from Problem 4.13 at K gives

and

Thus,

So, we will have to maintain a pressure better than Torr, which can
be quite a technical challenge. In fact, at such low pressures the resid-
ual gas composition is somewhat different from room air, since it may be
more difficult to pump gases such as and He. Therefore, (S.4.15.3) and
(S.4.15.5) are only order-of-magnitude estimates.

4.16 Bell Jar (Moscow Phys-Tech)

The pressure inside the vessel

just
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where is the concentration of the molecules inside the vessel and is the
concentration of the molecules in the chamber. Disregarding the thickness
of the walls of the vessel, we can write the condition that the number of
molecules entering the vessel per second is equal to the number of molecules

where A is the area of the hole, and we used the result of Problem 4.14 for
the number of molecules striking a unit area per second. Actually, the only
important point here is that this number is proportional to the product of
concentration and average velocity. Therefore,

The average velocity So, from (S.4.16.3), we have

Substituting (S.4.16.4) into (S.4.16.1), we obtain

4.17 Hole in Wall (Princeton)

a) If the diameter of the hole is large compared to the mean free path in
both gases, we have regular hydrodynamic flow of molecules in which the
pressures are the same in both parts. If the diameter of the hole (and
thickness of the partition) is small compared to the mean free path, there
are practically no collisions within the hole and the molecules thermalize
far from the hole (usually through collisions with the walls).

b) In case there are two independent effusive flows from I
to II and from II to I. The number of particles and going through
the hole from parts I and II are, respectively (see Problem 4.14),

leaving it:
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where is the area of the hole. At equilibrium, so we
have

The mean free path is related to the volume concentration of the molecules

where is the effective cross section of the molecule, which depends only
on the type of molecule, helium in both halves. Substituting (S.4.17.3) into

or

c) When we have to satisfy the condition

or

which gives for the ratio of the mean free paths:

4.18 Ballast Volume Pressure (Moscow Phys-Tech)

The number of molecules per second entering the volume B from the left
container I is proportional to the density of the molecules in I, the
average velocity, and the area of the opening, A. The constant of
proportionality (see Problem 4.14) is unimportant for this problem. So,
equating the rate of molecular flow in and out of volume B, we can write
for flow rates in equilibrium (see Figure S.4.18)

or

(S.4.17.2) gives

by the formula
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The factor 2 appears for the flow rate since there are two portals from
region B. On the other hand, for an ideal gas, and therefore

We can rewrite (S.4.18.1) as

yielding

For the state of equilibrium, the energy in the volume B is constant. This
means that the total rate of energy transfer out of volumes I and II should
be equal to the rate of energy transfer out of volume B :

The average energy per particle is proportional to the temperature, so
(S.4.18.6) becomes

We then have

Dividing (S.4.18.8) by (S.4.18.5), we can obtain

and
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4.19 Rocket in Drag (Princeton)

Use dimensional analysis to derive the drag force F on the rocket:

We then have

So and

This formula is generally correct for high Reynolds numbers; for low
Reynolds numbers we have Stokes’ law:

where is the viscosity and is the radius.

b) For an isothermal atmosphere, take a column of air of height and area
A. The pressure difference between top and bottom should compensate the
weight of the column:

or

Using

where is the molar weight of the air, and substituting (S.4.19.6) into
(S.4.19.5), we obtain

a)
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Therefore,

c) At a height we have, from (S.4.19.3),

where we used for uniform acceleration. Now, the maximum force
is defined by

So, assuming that the average temperature for the isothermal atmosphere
we find

4.20 Adiabatic Atmosphere (Boston, Maryland)

a) Starting from the ideal gas law, we can express the temperature T as a
function of pressure P and the mass density

where P and are functions of the height above the surface of the Earth:
Taking the derivative of T with respect to we have

We need to express in terms of dP. The fact that is independent
of altitude allows us to write

where B is some constant. So
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Substituting (S.4.20.3) into (S.4.20.2), we obtain

Assuming that the acceleration of gravity is constant, using the hydrostatic
pressure formula

and substituting (S.4.20.5) into (S.4.20.4), we can write

b) For the atmosphere, using diatomic molecules with and
we have from (S.4.20.6),

This value of is about a factor of 2 larger than that for the actual
atmosphere.

4.21 Atmospheric Energy (Rutgers)

a) Again starting with the ideal gas law

we have

b) The gravitational energy of a slice of atmosphere of cross section A and
thickness at a height is simply

while the internal energy of the same slice is
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The total internal energy is given by the integral of (S.4.21.3):

Rearranging (S.4.21.5), we have

Substituting (S.4.21.6) into (S.4.21.4), we obtain

The total gravitational energy may be found by integrating (S.4.21.2):

Integrating by parts gives

The first term on the RHS of (S.4.21.9) is zero since at the limits of evalu-
ation either or so we have

We wish to change the integral over into an integral over P. To do so,
first consider the forces on the slice of atmosphere:
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The ratio of energies from (S.4.21.10) and (S.4.21.7) is

Finally,

4.22 Puncture (Moscow Phys-Tech)

a) Use Bernoulli’s equation (see, for instance, Landau and Lifshitz, Fluid
Mechanics, Chapter 5) for an arbitrary flow line with one point inside the
tire and another just outside it. We then have

where and are the enthalpy per unit mass inside and outside the
vessel, respectively, and and are the velocities of the gas. The velocity

is very small and can be disregarded. Then the velocity of the gas outside
is

For an ideal gas the heat capacity does not depend on temperature, so we
may write for the enthalpy

Therefore, the velocity is



111

The temperature may be found from the equation for adiabats and the
ideal gas law:

Rewriting gives

Substituting into (S.4.22.4) gives

The maximum velocity will be reached when flow into vacuum.

b) For one mole of an ideal gas

and, by definition,

From (S.4.22.9) and (S.4.22.10), we may express and through R
and

Then (S.4.22.8) becomes

For molecular hydrogen we have
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Note that this estimate implies that i.e., that the gas would cool to
absolute zero. This is, of course, not true; several assumptions would break
down long before that. The flow during expansion into vacuum is always
turbulent; the gas would condense and phase-separate and therefore would
cease to be ideal. The velocity of sound inside the vessel

or

Substituting (S.4.22.14) into (S.4.22.12) yields

Heat and Work

4.23 Cylinder with Massive Piston (Rutgers, Moscow
Phys-Tech)

When the piston is released, it will move in some, as yet unknown, direction.
The gas will obey the ideal gas law at equilibrium, so
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On the other hand, at equilibrium, there is no net force acting on the piston
(see Figure S.4.23), and we have

Substituting (S.4.23.2) into (S.4.23.1) gives

We can also use energy conservation in this thermally insulated system.
Then the work done to the gas equals its energy change For an ideal
gas

where is the heat capacity of one mole of the gas (for a monatomic gas,
The work done to the gas

where is the distance the piston moves, where downward
is positive. From (S.4.23.4) and (S.4.23.5), we have

Solving (S.4.23.3) and (S.4.23.6) yields

We may check that if i.e., that the piston was initially
balanced, (S.4.23.7) gives and

4.24 Spring Cylinder (Moscow Phys-Tech)

For a thermally insulated system (no heat transfer), the energy change
is given by
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where 0 and 1 correspond to the initial and final equilibrium states of the
system, with sets of parameters and respectively. In
this case, the gas is expanding, therefore some positive work is done by the
gas, which indicates that the energy change is negative, and the temperature
decreases. for an ideal gas depends only on the change in temperature:

where is the heat capacity of one mole of the gas at constant volume
(for a monatomic gas The work done by the gas goes into
compressing the spring:

where K is the spring constant and is the change of the piston position
(see Figure S.4.24). On the other hand, when equilibrium is reached, the
compression force of the spring

where A is the cross section of the piston. So

where we used the ideal gas law for one mole of gas. Substituting (S.4.24.5)
into (S.4.24.3), we have

Notice that is the volume change of the gas:
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Therefore,

Substituting (S.4.24.8) and (S.4.24.2) into (S.4.24.3), we obtain

and

The temperature indeed has decreased. As for the pressure, we have for
the initial state

Now so

and

4.25 Isothermal Compression and Adiabatic
Expansion of Ideal Gas (Michigan)

We can calculate the work as an integral, using the ideal gas law:a)

where is, as usual, the absolute temperature. Graphically, it is simply
the area under the curve (see Figure S.4.25). Alternatively, we can say that
the work done is equal to the change of free energy F of the system (see
Problem 4.38):
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The total energy of the ideal gas depends only on the temperature, which
is constant, so the heat absorbed by the gas is

i.e., heat is rejected from the gas into the reservoir. Alternatively, since

the same result as in (S.4.25.3).

For an adiabatic expansion the entropy is conserved, so

On the other hand,

where is the specific heat for an ideal gas at constant volume. From
(S.4.25.5) and (S.4.25.6), and using the ideal gas law, we obtain

b)
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where the specific heat per one molecule. Integrating (S.4.25.7)
yields

c) For air we may take (in regular units, it is mostly
diatomic). Therefore,

Isochoric Cooling and Isobaric Expansion
(Moscow Phys-Tech)

4.26

The process diagram is shown in Figure S.4.26. The work W done by the
gas occurs only during the leg since there is no work done during the

leg. The work is given by

Using the ideal gas law, we may relate and
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since the initial and final temperatures are the same. Substituting into
(S.4.26.1) we find

Venting (Moscow Phys-Tech)4.27

The air surrounding the chamber may be thought of as a very large reservoir
of gas at a constant pressure and temperature The process of venting
is adiabatic, so we can assume that there is no energy dissipation. We then
find that the energy of the gas admitted to the chamber equals the sum
of its energy in the reservoir plus the work done by the gas of the
reservoir at to expel the gas into the chamber. This may be calculated
by considering the process of filling a cylinder by pushing a piston back,
where the piston offers a resistant force of A being the cross section
of the cylinder. The total energy E is then given by

where is the volume of the gas needed to fill the volume of the chamber
V (note that V does not coincide with because the temperature of the
gas in the chamber T presumably is not the same as see Figure S.4.27).
On the other hand.

where is the heat capacity of the gas, is the heat capacity per
molecule, and is the number of molecules. From (S.4.27.1) and
(S.4.27.2), we have
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Using the ideal gas law

we have

So

The air is mostly nitrogen and oxygen (78% nitrogen and 21% oxygen
diatomic gases, so that

and therefore Thus, the temperature of the gas in the chamber
will increase. Note that the result does not depend on the outside pressure

the volume of the chamber V, or whether it is filled to

Cylinder and Heat Bath (Stony Brook)4.28

a) Since the process takes place at constant temperature, PV is constant
for each side of the piston. When the piston is released, we can write

where and are the initial pressures on the left and right sides of the
cylinder, respectively, P is the final pressure on both sides of the cylinder,
and and are the final volumes. From S.4.28.1 we have

or

Therefore,

So, the piston winds up 20 cm from the right wall of the cylinder.

b) The energy of the ideal gas does not change in the isothermal process,
so all the work done by the gas goes into heating the reservoir. Denoting
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by and the number of moles on the left and right sides of the cylinder,
respectively, and using we obtain the total work and, hence,
heat given by the integral

4.29 Heat Extraction (MIT, Wisconsin-Madison)

a) For a mass of fixed volume we have

So, by the definition of C,

Since C is independent of T, we may rewrite (S.4.29.2) and integrate:

The change in entropy is then

b) The maximum heat may be extracted when the entropy remains con-
stant. Equating the initial and final entropies yields the final temperature
of the two bodies:

SOLUTIONS
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The heat extracted, is then equal to the difference in initial and final
internal energies of the bodies:

c) Here we may calculate the maximum useful work by using the Carnot
efficiency of a reversible heat engine operating between two reservoirs, one
starting at a high temperature (100°C) and the other fixed (the lake) at
10°C. The efficiency may be written for a small heat transfer as

where the heat transferred from the hot reservoir equals its change in
internal energy –MC dT. We may then find the total work by integrating
dW as follows:

We may also use the method of part (b) and the fact that the entropy is
conserved. Denote the mass of the hot water M and the lake Equating
the initial and final entropies gives

Writing the final temperature T as where is small (it’s a big lake),
and expanding the logarithm, we obtain

Substituting (S.4.29.10) back into (S.4.29.9) gives
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As before, the work extracted equals the change in internal energy of the
bodies, so

which is the same as above.

4.30 Heat Capacity Ratio (Moscow Phys-Tech)

If the gas is heated at constant volume, then the amount of heat trans-
ferred to the gas is

where is the heat capacity by weight of the gas, is the mass, and T is
the temperature at pressure Using the ideal gas law at the beginning
and end of heating gives

where is the number of moles of the gas. From (S.4.30.1) and (S.4.30.2),

and

For heating at constant pressure,

Similarly,

SOLUTIONS
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So

and

Since the time during which the current flows through the wire is the
same in both experiments, the amount of heat transferred to the gas is also
the same: Equating (S.4.30.4) and (S.4.30.8), we obtain

4.31 Otto Cycle (Stony Brook)

a) The efficiency of the cycle is where W is the work done by
the cycle and is the amount of heat absorbed by the gas. Because the
working medium returns to its initial state where is the
amount of heat transferred from the gas, therefore

Let us calculate and Since both processes are at constant volume
(see Figure S.4.31), we may write
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and

We know that for an adiabatic process

So

Using

we find

and therefore the efficiency is

For and  the efficiency is

b) The work done on the gas in the compression process is

For L and . atm,

or

and

SOLUTIONS
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4.32 Joule Cycle (Stony Brook)

The efficiency  of the cycle is given by the work W during the cycle divided
by the heat absorbed in path (see Figure S.4.32). W is defined
by the area enclosed by the four paths of the P–V plot. The integral

P dV along the paths of constant pressure and is simply the

adiabats, where there is no heat transfer is given by the change in
internal energy

Substituting the ideal gas law into (S.4.32.1) and rearranging,
we find

What remains is to write W and in terms of P and form the quotient.
Using the equation for an adiabatic process in an alternative form,

where we used In the process the gas absorbs the
heat
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we have

Substituting for and by putting (S.4.32.4) into (S.4.32.1) yields

The efficiency is then

4.33 Diesel Cycle (Stony Brook)

We calculate the efficiency as in Problem 4.32. The work W in
the cycle (see Figure S.4.33) is

where we have again used the ideal gas law and
The heat absorbed by the gas during is

The efficiency  is

Using the equation for the adiabats gives
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The ideal gas law gives

Substituting (S.4.33.4) and (S.4.33.5) into (S.4.33.3) gives

4.34 Modified Joule–Thomson (Boston)

The work done by the piston goes into changing the internal energy of the
part of the gas of volume that enters the plug and into the work done
by the gas to enter container B occupying volume So we may write

where is the constant-volume heat capacity for one molecule and is
the number of molecules in the volume On the other hand, before and
after the plug, we have, respectively,
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Substituting dV from (S.4.34.2) and from (S.4.34.3) into (S.4.34.1), we

So,

When (S.4.34.5) becomes

Ideal Gas and Classical Statistics

4.35 Poisson Distribution in Ideal Gas (Colorado)

The probability of finding a particular molecule in a volume V is

The probability of finding N marked molecules in a volume V is

Similarly, the probability of finding one particular molecule outside of the
volume V is

and for particular molecules outside V,

Therefore, the probability of finding any molecules in a volume V is
the product of the two probabilities (S.4.35.1) and (S.4.35.2) weighted by
the number of combinations for such a configuration:

have

SOLUTIONS
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The condition also implies that Then we may approximate

So, (S.4.35.3) becomes

where we used the average number of molecules in V:

Noticing that, for large .

we obtain

where we used

(S.4.35.6) can be applied to find the mean square fluctuation in an ideal gas
(see Problem 4.94) when the fluctuations are not necessarily small (i.e., it is
possible to have although N is always much smaller
than the total number of particles in the gas
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4.36 Polarization of Ideal Gas (Moscow Phys-Tech)

The potential energy of a dipole in an electric field E is

where the angle is between the direction of the electric field (which we
choose to be along the axis) and the direction of a the dipole moment.
The center of the spherical coordinate system is placed at the center of the
dipole. The probability that the direction of the dipole is within a solid
angle is

The total electric dipole moment per unit volume of the gas is

Introducing a new variable and denoting we obtain

SOLUTIONS
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where is the Langevin function. For we can
expand (S.4.36.3) to obtain

Since and

we have for the dielectric constant

4.37 Two-Dipole Interaction (Princeton)

Introduce spherical coordinates with the axis along the line of the sepa-
ration between the dipoles. Then the partition function reads

The potential energy of the interaction can be rewritten in the form

Since

(S.4.37.2) becomes
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We can expand the exponential at high temperatures so that

where The first-order terms are all zero upon integration,
and we have

where the cross term also vanishes, and we find

SOLUTIONS



133

The average force is given by

where F is the free energy. So,

The minus sign indicates an average attraction between the dipoles.

Entropy of Ideal Gas (Princeton)

a) For an ideal gas the partition function factors; however, we must take
the sum of N identical molecules divided by the number of interchanges N!
to account for the fact that one microscopic quantum state corresponds to
a number of different points in phase space. So

Now, the Helmholtz free energy, F, is given by

Using the explicit expression for the molecular energy we can rewrite
(S.4.38.3) in the form

4.38

Using Stirling’s formula, ln we obtain
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Here we used the fact that the sum depends only on temperature, so we
can define

b) Now we can calculate the total entropy of the two gases (it is important
that the gases be identical so that is the same for both vessels):

We have for total entropy

c) After the vessels are connected their volume becomes the
number of particles becomes 2N, and the temperature remains the same
(no work is done in mixing the two gases). So now

where F is defined by (S.4.38.4).

SOLUTIONS
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and

Let us show that is always nonnegative. This is equivalent to the
condition

Chemical Potential of Ideal Gas (Stony Brook)

The expression for the Helmholtz free energy was derived in Problem 4.38:

Since all the molecules are in the ground state, the sum only includes one
term, which we can take as an energy zero, Then (S.4.39.1) becomes

where we took into account a degeneracy of the ground state The Gibbs
free energy G is then

which is always true. At which makes perfect
sense.

4.39

THERMODYNAMICS AND STATISTICAL PHYSICS



136

where we have expressed G as a function of P. The chemical potential
so we obtain, from (S.4.39.3),

This approximation is valid when the temperature is much lower than the
energy difference between the electronic ground state and the first
excited state; since this is comparable to the ionization energy
this condition is equivalent to However, even at temperatures

the gas is almost completely ionized (see Landau and Lifshitz,
Statistical Physics, Sect. 106). Therefore (S.4.39.4) is always valid for a
nonionized gas.

Gas in Harmonic Well (Boston)

a) The partition function is given by a standard integral (compare with
4.38, where the molecules are indistinguishable):

The Helmholtz free energy F follows directly from the partition function:

b) We may find the force from F:

4.40

SOLUTIONS
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The equation of state is therefore analogous to the gas in a container with
rigid walls, where

c) The entropy, energy, and heat capacity all follow in quick succession from
F:

Ideal Gas in One-Dimensional Potential
(Rutgers)

a) The coordinate- and momentum-dependent parts of the partition func-
tion can be separated. The coordinate-dependent part of the partition
function

For the potential in this case we have

where we substituted

and

4.41
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The free energy associated with the coordinate-dependent part of the par-
tition function is

The average potential energy is given by

For we have a harmonic oscillator, and in agreement with the equipar-
tition theorem (see Problem 4.42)

which also agrees with the generalized equipartition theorem.

Equipartition Theorem (Columbia, Boston)

a) For both of these averages the method is identical, since the Hamiltonian
depends on the same power of either or q. Compose the first average as
follows:

where the energy is broken into the term and the rest of
the sum. The second integrals in the numerator and denominator cancel,
so the remaining expression may be written

where, asusual, A change of variables produces a piece dependent
on  and an integral that is not:

b) For and the average potential energy per particle

4.42

SOLUTIONS



139

The average proceeds in precisely the same way, yielding

b) The heat capacity, at constant volume is equal to From part
(a), we have

where we now sum over the 3-space and momentum degrees of freedom per
atom. The heat capacity,

is the law of Dulong and Petit.

c) Now take the average:

Integration by parts yields

where the prime on the product sign in the first term indicates that we
integrate over all except then the first term in the
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numerator equals zero. If is one of the then by the assumption of U
infinite, the term still equals zero. Finally, if then by l’Hôpital’s
rule the first term again gives zero. In the second term, so
the expression reduces to

Finally,

d) By definition,

Given a polynomial dependence of the energy on the generalized coordinate:

(S.4.42.11) yields

To satisfy the equipartition theorem:

Thus, we should have

SOLUTIONS
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4.43 Diatomic Molecules in Two Dimensions
(Columbia)

a) The partition function may be calculated in the usual way by multi-
plying the individual Boltzmann factors by their degeneracies and summing:

This is difficult to sum, but we may consider the integral instead, given the
assumption that

b) The energy and heat capacity of the set of diatomic molecules described
above may be determined from the partition function for the set:

where the N-fold product has been divided by the number of permutations
of the N indistinguishable molecules. Recall that

We then find that

Again, for the heat capacity is

A diatomic rotor in three dimensions would have contributions to the energy
of per degree of freedom. Three degrees of translation and two
degrees of rotation (assuming negligible inertia perpendicular to its length)
gives for one molecule
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A diatomic rotor confined to a plane would have three degrees of freedom,
two translational and one rotational. Hence,

The quantization of energy is not apparent since we have assumed

4.44 Diatomic Molecules in Three Dimensions (Stony
Brook, Michigan State)

a) We first transform the expression of the kinetic energy

where are the Cartesian coordinates of the molecule in the frame
with the c.m. at the origin to spherical coordinates:

For the rigid diatom,

We may substitute (S.4.44.2) into (S.4.44.1), obtaining

Using the definition of c.m., we may write

SOLUTIONS



143

yielding

Then (S.4.44.3) becomes

with

b) In order to find the conjugate momenta we must compute the
Lagrangian

Expressing through

we may rewrite the Hamiltonian as

c) The single-diatom partition function may be computed as follows:
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Now the free energy F for N such classical molecules may be found from

The entropy is then

and the energy E and heat capacity C are

d) For the quantum case the Schrödinger equation for a rigid rotator

where each of the energy states is  The partition func-
tion is given by

For low temperatures we may neglect high-order terms and write

where we left only terms with and For N molecules we find
for the free energy that

admits the standard solution

SOLUTIONS



The energy E and heat capacity C are then

So, at low temperatures the heat capacity corresponding to the rotational
degrees of freedom is exponentially small. This implies that there would be
no difference, in this limit, between the heat capacity for monatomic and
diatomic molecules. In the opposite case, at high temperatures,
the sum may be replaced by an integral:

where Proceeding from (S.4.44.18), we have

Replacing the sum by an integral, we obtain

Therefore, in the classical limit (high temperatures),

The energy E and heat capacity C are given by
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We see that this is the same as found in (S.4.44.12). Since we expect a heat
capacity per degree of freedom of 1/2, we see that there are two degrees of
freedom for each molecule since

They correspond to the two rotational degrees of freedom of a classical rod.
(There are no spatial degrees of freedom since the molecule is considered
fixed.)

4.45 Two-Level System (Princeton)

a) There is nothing to prevent giving each atom its larger energy hence,
has a maximum of 1 with Clearly, the system would

not be in thermal equilibrium. To compute the problem in equilibrium,
we need to determine the partition function, Z. For distinguishable non-
interacting particles, the partition function factors, so for identical energy
spectra

The free energy would be

The energy is then

or

where Obviously, since both and are positive, cannot be
larger than 1. On the other hand, is a monotonic function which

SOLUTIONS



goes to 1/2 when goes to infinity; hence, at

b) The entropy  may be found from (S.4.45.2)–(S.4.45.4):

The entropy per particle, is given by

Writing

We can check that

as it should.

4.46 Zipper (Boston)

a) A partition function may be written as

where we have used the fact that a state with open links has an energy

where

So
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b) The average number of open links is given by

which does not depend on N. It is also zipped up tight!

Hanging Chain (Boston)

a) Let the number of links with major axis vertical be the number of
horizontal major axis links will then be The total length of the
chain is then

The energy of the system, is also a function of     since

where is the number of possible configurations with
major axis vertical links.

b) The average energy can be found from (S.4.47.3):

4.47

If then and

SOLUTIONS

where we let                          The partition function
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where Therefore,

The average length is

We can check that, if

Molecular Chain (MIT, Princeton, Colorado)

a) Consider one link of the chain in its two configurations: and The
energy of the link is

The partition function for the entire chain is given by

b) The average length of the chain may be found from the partition function:

4.48

c) If (S.4.48.3) becomes
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Therefore,

as it should, since (for the specified direction of the tensile force ) it
corresponds to a thermodynamic inequality for a system at equilibrium:

If high temperature,

If

where we let The changeover temperature is obviously

d) From (S.4.48.3),

At small , (S.4.48.7) becomes

SOLUTIONS
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Nonideal Gas

Heat Capacities (Princeton)

From the definition of for a gas,

151

Since we are interested in a relation between and it is useful to
transform to other variables than in (S.4.49.1), namely V instead of
We will use the Jacobian transformation (see Landau and Lifshitz, Statis-
tical Physics, Sect. 16):

A useful identity is obtained from

So

Since

and

4.49



SOLUTIONS152

b) Let us write the van der Waals equation for one mole of the gas in the
form

from which we obtain

Substituting for P in (S.4.49.5) yields

We can see that (in regular units for an
ideal gas where

4.50 Return of Heat Capacities (Michigan)

a) We will again use the Jacobian transformation to find      as a function
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where we used

So, we obtain

Substituting into (S.4.50.2) yields

b,c) We cannot determine the temperature dependence of but we
can find as follows:

Similarly,

where F is the Helmholtz free energy, and we used

From (S.4.50.4) and the equation of state, we have

and from (S.4.50.5),
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(since implies Integrating (S.4.50.6) and
(S.4.50.7), we obtain

where and are some functions of temperature. Since we know
from (a), we infer that and finally

Nonideal Gas Expansion (Michigan State)

a) The work done in the expansion

b) To find the heat absorbed in the expansion use the Maxwell relations
given in the problem:

where the prime indicates the derivative with respect to Integrating
(S.4.51.2), we obtain

where is some function of The heat absorbed in the expansion

and

4.51
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van der Waals (MIT)

a) The heat capacity is defined as

By using the Maxwell relation

we may write

Substituting the van der Waals equation of state

into (S.4.52.3) gives

b) The entropy may be computed from

We were given that at therefore, again using (S.4.52.2)
and (S.4.52.4), we obtain

c) The internal energy may be calculated in the same way from

4.52



156 SOLUTIONS

d) During adiabatic compression, the entropy is constant, so from (S.4.52.7)

and we have

e) The work done is given by the change in internal energy since the
entropy is constant:

From (S.4.52.11), we arrive at

Critical Parameters (Stony Brook)

At the critical point we have the conditions

Now, from we have

and using (S.4.52.4) and (S.4.52.7), we get

So, (S.4.52.8) becomes

4.53
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Substituting the Dietrici equation into (S.4.53.1) gives

Using the second criterion (S.4.53.2) gives

where

by (S.4.53.3), so

by (S.4.53.6). (S.4.53.7) then yields

which combined with (S.4.53.4) gives

Substituting this result in the RHS of (S.4.53.4) finally yields

Rearranging the original equation of state gives

so
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Mixtures and Phase Separation

Entropy of Mixing (Michigan, MIT)

a) The energy of the mixture of ideal gases is the sum of energies of the
two gases (since we assume no interaction between them). Therefore the
temperature will not change upon mixing. The pressure also remains un-
changed. The entropy of the mixture is simply the sum of the entropies of
each gas (as if there is no other gas) in the total volume. We may write the
total entropy S (see Problem 4.38) as

SOLUTIONS

where and are the number of molecules of each gas in the mixture.
V is the total volume of the mixture The entropy of the
gases before they are allowed to mix is

Therefore, the change in entropy, is given by

So, (S.4.54.3) becomes

In conventional units we find

The entropy increased as it should because the process is clearly irreversible.

In our case and

4.54

b) If the gases are the same, then the entropy after mixing is given by



THERMODYNAMICS AND STATISTICAL PHYSICS 159

and so In the case of identical gases, reversing the process only
requires the reinsertion of the partition, whereas in the case where two
dissimilar gases are mixed, some additional work has to be done to separate
them again.

c) The same arguments as in (a) apply for a mixture of two isotopes,
and The Gibbs free energy can be written in the form

where and are the chemical potentials of pure isotopes. Therefore,
the potential (S.4.54.7) has the same form as in the mixture of two different
gases, and there is no correction to the result of (a). This is true as long
as (S.4.54.7) can be written in this form, and it holds even after including
quantum corrections to the order of (see, for further details, Landau and
Lifshitz, Statistical Physics, Sect. 94).

4.55 Leaky Balloon (Moscow Phys-Tech)

Let us consider the bag as part of a very large system (the atmosphere)
which initially has N molecules of air, which we consider as one gas, and

molecules of helium. The bag has volume and the number of helium
molecules is Using (S.4.38.7) from Problem 4.38 and omitting all the
temperature-dependent terms, we may write for the initial entropy of the

When the helium has diffused out, we have

We wish to find  in the limit where Then

We then obtain

system



where is the concentration ratio of helium molecules
in the bag to their concentration in the air. In regular units
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Osmotic Pressure (MIT)

a) The free energy for a one-component ideal gas is derived in Problem

The Gibbs free energy

But so (S.4.56.2) must be transformed:

If we have a mixture of two types of molecules with and particles
each, we find for the thermodynamic potential of the mixture:

4.38:

Substituting the standard pressure and temperature into (S.4.55.5) gives

The minimum work necessary to separate the helium at constant temper-
ature is (see Landau and Lifshitz, Statistical Physics, Sect. 20)

since after we separate the helium molecules from the rest of
the air, the total entropy of that system would decrease. So

4.56
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Therefore The Gibbs potential of the mixture

161

where are partial pressures corresponding to particles
A and B, respectively. So,

It can be seen that

namely

where (see also Problem 4.54).

b) To derive the pressure difference, we notice that for the system with
a semipermeable membrane, only the chemical potentials of the solvent
are equal, whereas the chemical potentials of the solute do not have to be
(since they cannot penetrate through the membrane). We will write first
the Gibbs free energy on the left and right of the membrane, and
respectively. will be defined by (S.4.56.6), with whereas

The chemical potentials of the solvent are given by

Equating we obtain



162

or

SOLUTIONS

where we only take into account the first-order terms in the solute. If we
also assume, which is usually the case, that the osmotic pressure is also
small, i.e., we obtain, from (S.4.56.11),

where and are the concentrations of the solutes:
Therefore, with the same accuracy, we arrive at the final

A different derivation of this formula may be found in Landau and Lifshitz,
Statistical Physics, Sect. 88.

Clausius–Clapeyron (Stony Brook)

a) We know that, at equilibrium, the chemical potentials of two phases
should be equal:

Here we write to emphasize the fact that the pressure depends
on the temperature. By taking the derivative of (S.4.57.1) with respect to
temperature, we obtain

Taking into account that and where s and
are the entropy and volume per particle, and substituting into (S.4.57.2),

where subscripts 1 and 2 refer to the two phases. On the other hand,
where  is the latent heat per particle, so we can rewrite

(S.4.57.3) in the form

which is the Clausius–Clapeyron equation.

formula:

we have

4.57
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b) Consider the particular case of equilibrium between liquid and vapor.
The volume of the liquid is usually much smaller than that for the vapor

so we can disregard in (S.4.57.4) and write

Phase Transition (MIT)

where L is the latent heat per mole, is Avogadro’s number, and R is
the gas constant.

For a system at equilibrium with an external reservoir, the Gibbs free energy
is a minimum. Any deviation from equilibrium will raise G:

where is the pressure of the reservoir (see Landau and Lifshitz, Statistical
Physics, Sect. 21). Expanding in we have

Using the ideal gas law for vapor, we get

or

We can see that Rewriting (S.4.57.6) in usual units gives

4.58

Since we may rewrite (S.4.58.2) as
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At the critical point, so (S.4.58.3) becomes

For (S.4.58.4) to hold for arbitrary we have

See Landau and Lifshitz, Statistical Physics, Sect. 153 for further discus-
sion.

Hydrogen Sublimation in Intergalactic Space
(Princeton)

Using the Clausius–Clapeyron equation derived in Problem 4.57, we can
estimate the vapor pressure P at Namely,

where is the number density, is the average speed, and is a sticking
coefficient, which for this estimate we take equal to 1. Here we used the
result of Problem 4.14, where we calculated the rate of particles striking the
surface. Now if the density is not too high, the number of particles leaving
the surface does not depend on whether there is vapor outside, so this would

4.59

where is the pressure at the triple point and R is the gas constant. Here
we disregard the volume per molecule of solid hydrogen compared to the one
for its vapor. This formula is written under the assumption that the latent
heat does not depend on the temperature, but for an order-of-magnitude
estimate this is good enough.

Consider solid hydrogen at equilibrium with its vapor. Then the number
of particles evaporating from the surface equals the number of particles
striking the surface and sticking to it from the vapor. The rate of the
particles striking the surface is given by
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be the sublimation rate. Taking the average velocity from Problem 4.13,
we get

where is the mass of a hydrogen molecule, and substituting
we may rewrite (S.4.59.2) as

Gas Mixture Condensation (Moscow Phys-Tech)

Consider three parts of the plot (see Figure S.4.60). At there is a
regular gas mixture (no condensation). At one of the gases
is condensing; let us assume for now it is oxygen (it happens to be true).
At they are both condensing, and there is no pressure change. Let
us write

Here is the partial nitrogen pressure at _ is the saturation
vapor pressure of oxygen, and is the saturated vapor pressure of nitrogen
(1 atm) at Between and nitrogen is a gas, and since the

Using (S.4.60.3) and dividing (S.4.60.1) by (S.4.60.2), we have

yielding

temperature is constant,

4.60
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Had we assumed that oxygen is condensing at we would get
This contradicts the fact that oxygen boils at a higher temperature.

The saturated vapor pressure at K should be less than To
find the oxygen mass, we use the ideal gas law at where the oxygen
is just starting to condense (i.e., its pressure is and it is all gas). So

where is the oxygen molar mass. For nitrogen a similar equation can
be written for

where is the molar mass of nitrogen. Dividing (S.4.60.5) by (S.4.60.6),
we obtain

4.61 Air Bubble Coalescence (Moscow Phys-Tech)

Writing the equilibrium conditions for the bubbles to exist, we find for the
pressure inside each original bubble:
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where is the hydrostatic pressure ( is the height of the water). We
disregard any effects due to the finite size of the bubble since they are
small After merging, the pressure inside the new bubble will not
change. This is due to the fact that the temperature is constant, and since
the jar is closed and water is incompressible, the total volume also will not
change. The new radius is given by

Writing (S.4.61.1) for the new bubble, we obtain

where we disregard any small change in hydrostatic pressure. From
(S.4.61.1) and (S.4.61.3) we find that the change of pressure inside the
jar is

4.62 Soap Bubble Coalescence (Moscow Phys-Tech)

Assume that, during the coalescence, the total mass of air inside the bubbles
and the temperature do not change. So,

where are the masses of air inside bubbles respec-
tively. By the ideal gas law,

where is the mass, is the pressure, and is the volume in
the ith bubble, and is the molar mass of the trapped air. The equilibrium
condition for a bubble is
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The coefficient 2 in front of the second term results from the presence of
two surfaces of the soap film enclosing the air (compare with Problem 4.61).
From (S.4.62.2) and (S.4.62.3) we obtain

Substituting (S.4.62.4) into (S.4.62.1), we obtain

and so

Note that if  a is very small the volume of the new bubble is close to the
sum of the original volumes, whereas if it is very large the surface area of
the new bubble is roughly the sum of the original surface areas.

4.63 Soap Bubbles in Equilibrium (Moscow
Phys-Tech)

a) The equilibrium is unstable. It is obvious from purely mechanical consid-
erations that if the radius of one bubble decreases and the other increases,
the pressure in the first bubble (which is inversely proportional to will
increase and that in the second bubble will decrease, leading to further
changes in respective radii until the system becomes one bubble with ra-
dius (see Figure S.4.63). The same result can be obtained by considering
the free energy of the system.

b) The free energy of the bubble consists of two parts: a volume part, which
is just the free energy of a gas (see Problem 4.38), and a surface part, which
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is associated with the surface tension:

The Gibbs free energy

The entropy change

where is the potential of the system with one bubble and is the
potential of the initial configuration. We then find

where we used the fact that the number of particles did not change and q
is the heat necessary to produce a unit area of the film:

So

We can eliminate from the final result by using the following equations:

169
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where the last equation represents the ideal gas law at constant tempera-
ture. This yields the equation

Solving this cubic equation in the small limit gives

Substituting (S.4.63.9) into (S.4.63.4) yields (in the same approximation)

Quantum Statistics

4.64 Fermi Energy of a 1D Electron Gas
(Wisconsin-Madison)

For a one-dimensional gas the number of quantum states in the interval

where and L is the “length” of the metal. The total number
of electrons N (which in this case is equal to the number of atoms) is

Therefore,

where is the atomic spacing. The Fermi energy

where is the electron mass.

is
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4.65 Two-Dimensional Fermi Gas (MIT,
Wisconson-Madison)

a) At the noninteracting fermions will be distributed among the
available states so that the total energy is a minimum. The number of
quantum states available to a fermion confined to a box of area A with
momentum between and is given by

where the multiplicity and the spin The N fermions
at fill all the states of momentum from 0 to We can therefore
calculate this maximum momentum from

The Fermi energy for this nonrelativistic gas is simply

Using (S.4.65.2) and (S.4.65.3) we obtain

For and (S.4.65.5) becomes

b) The total energy of the gas

Substituting from (S.4.65.2) into (S.4.65.7) gives



becomes a step function. All the states above a certain energy,
are empty, and the states below, are filled (see Figure S.4.66). This
energy for an electron gas is called the Fermi energy. Physically, this results
from the simple fact that the total energy of the gas should be a minimum.
However, we have to reconcile this with the Pauli principle, which prohibits
more than one electron per quantum state (i.e., same momentum and spin).
This means that the states are filled gradually from zero energy to the
limiting energy, The number of states accessible to a free particle with
absolute value of momentum between and is

In each of these states, we can put two electrons with opposite spin (up
and down), so if we consider the total number of electrons, N, contained in
a box of volume V, then N is given by

Substituting we obtain

172

4.66 Nonrelativistic Electron Gas (Stony Brook,
Wisconsin-Madison, Michigan State)

SOLUTIONS

a) As the Fermi-Dirac distribution function
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and therefore

To calculate the total energy of the gas, we can write

and therefore

and we can check that

b) The condition for strong degeneracy is that the temperature should
be much smaller than the Fermi energy:

For typical metals, if we assume that there is one free electron per atom
and a typical interatomic distance we obtain an electron density

So, most of the metals are strongly degenerate, even at
room temperature.

4.67 Ultrarelativistic Electron Gas (Stony Brook)

The fact that the gas is ultrarelativistic implies that the energy of the
electron is large compared to its rest energy In this case, the dispersion

where again

N/V which indicates a Fermi energy of the order of
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law is linear: The number of quantum states is the same as for the
nonrelativistic case considered in Problem 4.66:

However, the Fermi energy now is different since and

Hence,

The total energy is

After substituting from (S.4.67.1), we obtain

So, the pressure is

Hence, for an ultrarelativistic gas we have the same as for mass-
less particles (e.g., photons), which is not surprising since the dispersion law
is the same.

4.68 Quantum Corrections to Equation of State
(MIT, Princeton, Stony Brook)

a) Start with the particle distribution over the absolute value of momentum:
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where the upper sign in (S.4.68.1) and below corresponds to Fermi statistics
and the lower to Bose Using we obtain

The total energy is given by

On the other hand, using the grand canonical potential where

and replacing the sum by an integral, using (S.4.68.2), we obtain

Integrating (S.4.68.5) by parts, we have

Comparing this expression with (S.4.68.3), we find that

However, Therefore, we obtain the equation
of state, which is valid both for Fermi and Bose gases (and is, of course,
also true for a classical Boltzmann gas):

Note that (S.4.68.8) was derived under the assumption of a particular dis-
persion law for relativistic particles or photons with
(S.4.68.8) becomes (see Problem 4.67). From (S.4.68.8) and
(S.4.68.3), we obtain
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where (S.4.68.9) defines the equation of state. To find quantum
corrections to the classical equation of state (which corresponds to the case

expand the integral in (S.4.68.9), using as a small
parameter:

The first term, which we may call corresponds to a Boltzmann gas with
(see Problem 4.39), and the second term gives the first correction

Using the fact that, for small corrections (see, for instance, Landau and
Lifshitz, Statistical Physics, Sect. 24),

we can write the first quantum correction to the free energy F. Using the
classical expression for in terms of and V gives the result to the same

Using

we obtain, from (S.4.68.13),

and

Using and substituting (S.4.68.10) into (S.4.68.9), we have

accuracy:

and
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where

b) The condition for validity of this approximation is that the first correc-
tion should be much less than unity:

This gives the condition on the density for which (S.4.68.15) is valid:

It is interesting to determine the de Broglie wavelength at this tem-
perature We find that

We see that this approximation is valid when the separation between par-
ticles is much larger than the de Broglie wavelength. (S.4.68.16) expresses
the same condition as for the applicability of Boltzmann statistics (which
implies Since the chemical potential may be written (see
Problem 4.39)

we see that

4.69 Speed of Sound in Quantum Gases (MIT)

a) The Gibbs free energy G is a function of which do not depend on
the number of particles; i.e.,

where is some function of On the other hand,
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Therefore, for a system consisting of identical particles, and we
may write for

where and From (S.4.69.3) we have

and we recover

b) The number of quantum states in the interval between and for
a Fermi gas is

where At electrons fill all the states with momentum
from 0 to so the total number of electrons N is given by

For and

or

The total energy of the gas

Substituting from (S.4.69.8), we obtain
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Using the equation of state for a Fermi gas (see Problem 4.66),

we have

Now, using (S.4.69.11), we can calculate

Alternatively, we can use the expression obtained in (a) and the fact that,
at the chemical potential From (S.4.69.8),

and we again recover (S.4.69.12) in

c) We can explicitly calculate the total energy of the Bose gas, which will be
defined by the particles that are outside the condensate (since the condensed
particles are in the ground state with At a temperature below the
Bose–Einstein condensation the particles outside the condensate
(with are distributed according to a regular Bose distribution with

(see Problem 4.70):

The total number of particles outside the condensate is therefore
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The energy of the Bose gas at is

The free energy F is

since and So the pressure

So we see that the pressure does not depend on the volume and

at We could have determined the result without the above calcu-
lations since at the particles which are inside the condensate
(with = 0) have no momentum and do not contribute to pressure.

4.70 Bose Condensation Critical Parameters (MIT)

a) The number of particles dN in an element of phase space is given by

where With the usual dispersion law for an ideal gas
and integrating over we find the particle distribution over energy:

Integrating (S.4.70.2), we obtain a formula for the total number N of par-
ticles in the gas:
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Letting we rewrite (S.4.70.3) as

(S.4.70.4) defines a parametric equation for the chemical potential The
decrease of volume (or temperature) will increase the value of the integral,
and therefore the value of (which is always negative in Bose statistics) will
increase. The critical parameters or correspond to the point where

(i.e., if you decrease the volume or temperature any further, should
increase even further to provide a solution to (S.4.70.4), whereas it cannot
become positive). So we can write at a certain temperature:

Therefore,

b) In two dimensions the integral (S.4.70.3) becomes

and there is no Bose condensation (see Problem 4.71).

4.71 Bose Condensation (Princeton, Stony Brook)

For Bose particles,

where is the temperature in energy units. The total number of particles
in a Bose distribution is

Substituting   into the
integral gives
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The condition for Bose condensation to occur is that, at some particular
temperature, the chemical potential goes to zero. Then the number of
particles outside the Bose condensate will be determined by the integral

This integral should converge since N is a given number. Expanding around
in order to determine conditions for convergence of the integral yields

So, this integral diverges at and there is no Bose condensation
for this region. (For instance, in two dimensions, particles with ordinary
dispersion law would not Bose-condense.) In three dimensions,

so that Bose condensation does occur.

4.72 How Hot the Sun? (Stony Brook)

(See Problem 2 of Chapter 4 in Kittel and Kroemer, Thermal Physics.) The
distribution of photons over the quantum states with energy
is given by Planck’s distribution (the Bose–Einstein distribution with
chemical potential

where is the temperature of the radiation which we consider equal to the
temperature of the surface of the Sun. To find the total energy, we can
replace the sum over modes by an integral over frequencies:

where the factor 2 accounts for the two transverse photon polarizations.
The energy of radiation in an interval and unit volume is therefore
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The total radiation energy density over all frequencies is

The integral with factor is just a number which we can take (in
fact it is So

The energy flux   per a unit solid angle is

The flux that illuminates the Earth is proportional to the solid angle
subtended by the Sun’s surface at the Earth:

The radiant energy flux at the Earth is therefore

where is the temperature of the Sun’s surface in K. Now we may estimate

(The actual temperature is about 6000 K; see Problem 4.73.)

4.73 Radiation Force (Princeton, Moscow Phys-Tech,
MIT)

a) The total radiation flux from the Sun is
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where is the Stefan–Boltzmann constant. Only a fraction of
this flux reaches the Earth. In equilibrium this fraction equals the total
flux radiated from the Earth at temperature So

From (S.4.73.2) we obtain

b) The radiation pressure on the Earth is given by

where is the ratio of the total flux from the Sun to the flux that
reaches the Earth. The radiation force on the Earth

where is the cross section of the Earth.

c) For the small “chondrule” the temperature will be the same because it
depends only on the angle at which the Sun is seen and the radiation force:

d) Using (S.4.73.3) and denoting the melting temperature of the metallic
particle and the distance from the Sun we obtain



THERMODYNAMICS AND STATISTICAL PHYSICS 185

e) Let us estimate the radius of a particle for which the radiation force will
equal the gravitational force at the distance of the Earth’s orbit Using
(S.4.73.6), we have

4.74 Hot Box and Particle Creation (Boston, MIT)

a) The number of photons is

where the factor 2 comes from the two polarizations of photons;
So,

b) At low temperatures we can disregard any interaction between photons
due to the creation of electron–positron pairs. We can therefore use the
standard formula for energy flux:

where is the Stefan–Boltzmann constant. On the other hand, by analogy
with molecular flow,

where the particle mass and
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where   is the energy density. So,

c) Using the equation of state for a photon gas

and

we have

The entropy S is then

d) The energy E of the system of particles + photons is

The entropy of the system is the sum of the entropy of an ideal gas and
radiation. The free energy of a single-particle ideal gas with (see
Problem 4.38) of created particles and the radiation is then

Minimizing the free energy with respect to the number of particles, we have

From (S.4.74.12) we obtain
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This result can be immediately obtained if we consider the process as a
“chemical” reaction

or

For chemical equilibrium

Since, for photons, we have

where is the chemical potential of an ideal gas (see part (e)). This result
gives us (S.4.74.13).

e) Pair creation and annihilation can be written in the form

The chemical potential of the photon gas is zero (since the number of pho-
tons is not constant but is defined by equilibrium conditions). Therefore,
we have for process (S.4.74.14) in equilibrium:

where and are the chemical potentials of electrons and positrons,
respectively. If we disregard the walls of the box and assume that there are
no electrons inside the box initially, then the number of electrons equals
the number of positrons, and We then find for the number of
electrons (positrons)

where the factor 2 comes from the double degeneracy of the electron gas
and we set The energy may be written
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Disregarding the 1 in the denominator of (S.4.74.16) and expanding the
square root with respect to the small parameter                  for 
we obtain, from (S.4.74.16),

where we set We then find that the concentrations are

and so

Alternatively, we can take an approach similar to the one in (d). Using the
formula for the chemical potential of an ideal gas (see Problem 4.39) gives

We can immediately write

to obtain the same result in (S.4.74.18) and (S.4.74.19).

f) For the electrons are highly relativistic, and we can write
in (S.4.74.16). Then
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where we have used the integral given in the problem. Finally,

4.75 D-Dimensional Blackbody Cavity (MIT)

For a photon gas the average number of photons per mode is given by

The energy

where V  is the volume of the hypercube:

Substituting into (S.4.75.2), we obtain

The energy density is simply

For D = 3 we recover the Stefan–Boltzmann law:

4.76 Fermi and Bose Gas Pressure (Boston)

a) Using  and substituting the entropy from the problem, we
obtain
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But

Therefore,

We may then find the pressure P of the gas:

The isothermal work done by the gas

b) For a photon gas in a cuboid box

where is a constant.

So,

The same is true for a relativistic Fermi gas with dispersion law

c) For a nonrelativistic Fermi gas the energy is

where is a constant. So,

and

This result was already obtained directly in Problem 4.66 (see (S.4.66.8)).
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4.77 Blackbody Radiation and Early Universe (Stony
Brook)

By definition the free energy

The entropy is then

a)

b)

The energy of the system

Alternatively, the entropy can be found from

or

So,

where can be expressed from (S.4.77.3) as
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where we let Performing the integral gives

Substituting the energy for this mode we recover the entropy
in the form

4.78 Photon Gas (Stony Brook)

The photon gas is a Bose gas with zero chemical potential
leading to Planck’s distribution:

Replacing the sum over different modes by an integral in spherical coordi-
nates, we may write, for the number of quantum states in a volume V,

Substituting into (S.4.78.2) and taking into account the two
possible transverse polarizations of photons, we obtain
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Let us calculate the Helmholtz free energy F. For a Bose gas with
the grand thermodynamic potential is given by

The free energy F would coincide with Again
replacing the sum by an integral in (S.4.78.4) and substituting
yield

Integrating by parts gives

where

although we really do not need this, and so

with a positive constant. The pressure P of the photon gas is
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The entropy S of the gas is given by

The energy E may now be found from

Comparing (S.4.78.7) and (S.4.78.9) gives

Note that this result is the same as for an ultrarelativistic electron gas
(which has the same dispersion law see Problem 4.67). The total
number of photons is given by

where we let

Comparing (S.4.78.9)–(S.4.78.10) with (S.4.78.11), we can write

So, similar to the classical ideal gas, we have

4.79 Dark Matter (Rutgers)

a) The virial theorem may be written relating the average kinetic energy,
and the forces between particles (see Sect. 3.4 of Goldstein, Classical

Mechanics):
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For an inverse square law force (gravitation), the average kinetic energy
and potential energy are related as

For a very rough estimate of the gravitational potential energy of Draco,
consider the energy of a sphere of uniform density and radius

The average kinetic energy may be approximated by

Substituting (S.4.79.2) and (S.4.79.3) into (S.4.79.1), we find

b) If most of the mass of Draco is in massive neutrinos, we may estimate
the energy by considering the energy of a uniform distribution of fermions
in a box of volume V. The energy of such a fermionic gas has been found
in Problem 4.66:

Rewriting (S.4.79.5) in terms of density and volume gives

If the mass of the neutrino is too low, in order to maintain the observed
density, the number density would increase, and the Pauli principle would
require the kinetic energy to increase. So, in (S.4.79.6), the energy increases
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as the mass of the neutrino decreases. Equating the kinetic energy from
(a) with (S.4.79.6), we see

c) Substituting (S.4.79.4) into (S.4.79.7), we determine that

This value is at least an order of magnitude larger than any experimental
results for neutrino masses, implying that the model does not explain the
manner in which Draco is held together (see also D. W. Sciama, Modern
Cosmology and the Dark Matter Problem).

4.80 Einstein Coefficients (Stony Brook)

a) At equilibrium the rates of excitation out of and back to state 1 should
be equal, so

Substituting (P.4.80.1), (P.4.80.2), and (P.4.80.3) into (S.4.80.1) gives

We may find the ratio of the populations from (S.4.80.2) to be

b) At thermal equilibrium the population of the upper state should be
smaller than that of the lower state by the Boltzmann factor so
(S.4.80.3) gives
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Substituting the radiation density into (S.4.80.4) gives

or

The ratios of coefficients may be found by considering (S.4.80.6) for extreme
values of since it must be true for all values of For very large values of

we have

Substituting (S.4.80.7) back into (S.4.80.6) yields

or

which immediately yields

and so, from (S.4.80.7),

c) Inspection of (S.4.80.11) shows that the ratio of the spontaneous emission
rate to the stimulated emission rate grows as the cube of the frequency,
which makes it more difficult to create the population inversion necessary
for laser action. The pump power would therefore scale as

4.81 Atomic Paramagnetism (Rutgers, Boston)

a) The energy associated with the magnetic field is

where is an integer varying in the range
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b) From (S.4.81.1) we may find the partition function Z:

where we define The sum (S.4.81.2) may be easily calculated:

The mean magnetic moment per dipole is given by

Since the atoms do not interact,

For  J = 1/2,

This result can be obtained directly from (S.4.81.3) and (S.4.81.4):
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For J = 1,

c) For large H the magnetization saturates

It is convenient to define the so-called Brillouin function [Brillouin,
Journal de Physique 8, 74 (1927)] in such a way that

So,

For small H, we can expand coth

So,

The saturation value (S.4.81.10) corresponds to a classical dipole per
atom, where all the dipoles are aligned along the direction of H, whereas the
value at small magnetic field H (S.4.81.11) reflects a competition between
order (H) and disorder
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4.82 Paramagnetism at High Temperature (Boston)

a) The specific heat c of a system that has N energy states is given by

Using we may rewrite

where we have used In Note that, in general, the param-
eter is not small (since it is proportional to the number of particles),
but, subsequently, we obtain another parameter

b) For a classical paramagnetic solid:

so
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and we have

where is the probability density. Therefore,

For the quantum mechanical case, there is an equidistant energy
spectrum: (see Problem 4.81) and

To calculate we can use the following trick (assuming J integer):

From (S.4.82.6) we have

With the familiar sum

we arrive at
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We wish to perform the sum from –J to J, so

and (S.4.82.5) gives

c) For               ,

and

As in Problem 4.81 for

where We then find

For

which coincides with (S.4.82.11).
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4.83 One-Dimensional Ising Model (Tennessee)

a) The partition function is defined as

where the product is taken over the sites. Define where
Start by evaluating the sum at one end, say for The answer is
independent of the value of

Next we evaluate the sum over which is also independent of the value
of

So each summation over gives the identical factor and Z is
the product of N such factors.

b) The heat capacity per spin is obtained using thermodynamic identities.
The partition function is related to the free energy F:

The entropy is given by

Now, the heat capacity C is given by

The heat capacity per spin is
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4.84 Three Ising Spins (Tennessee)

a) Define and where The definition of the
partition function is

A direct calculation gives

b) The average value of spin is

c) The internal energy is

4.85 N Independent Spins (Tennessee)

a) The partition function is given by

where Each spin is independent, so one has the same result as
for one spin, but raised to the Nth power

b) The internal energy is the derivative of ln Z with respect to

c) The entropy is derivative of ln Z with respect to



THERMODYNAMICS AND STATISTICAL PHYSICS 205

4.86 N Independent Spins, Revisited (Tennessee)

We use the expression where is the probability of the arrange-
ment of spins. For N spins we assume that are up and are down,
where The different arrangements are

Use Stirling’s approximation for the factorial to obtain

4.87 Ferromagnetism (Maryland, MIT)

Using the mean field approximation, we may write the magnetization M of
the lattice as (see Problem 4.81)

where is the density of the spins and is the sum of the imposed field
and the field at spin produced by the neighboring spins:

where is a constant. We may rewrite (S.4.87.1) as

The susceptibility is given by
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For B and M small we may rearrange (S.4.87.4), yielding

where The divergence of at indicates the onset of
ferromagnetism. The spins will align spontaneously in the absence of an
applied magnetic field at this temperature.

4.88 Spin Waves in Ferromagnets (Princeton,
Colorado)

Quantum spins have the commutation relations

a) The time dependences of the spins are given by the equations of motion:

b) The classical spin field at point is In the simple cubic lattice
the six neighboring lattice sites are at the points where is

or      We expand the sum in a Taylor series, assuming that  is a small
number, and find
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c) Given the form of the spin operator in part (c), one immediately derives
the equation by neglecting terms of order

The equations of motion have an eigenvalue which represents the fre-
quencies of the spin waves.

d) The internal energy per unit volume of the spin waves is given by

where the occupation number is suitable for bosons. At low temperature
we can evaluate this expression by defining the dimensionless variable

which gives for the integral

At low temperature the upper limit of the integral becomes large, and the
internal energy is proportional to         The heat capacity is the derivative
of with respect to temperature, so it goes as

Fluctuations

4.89 Magnetization Fluctuation (Stony Brook)

The energy of a dipole in a magnetic field      may be written

The partition function Z is simply
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Since the moments are all independent, we may express the average mag-
netization  as

On the other hand,

For the ensemble averages are independent, and

We are left with so (S.4.89.2) and (S.4.89.3) give

We then obtain
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4.90 Gas Fluctuations (Moscow Phys-Tech)

a) We can disregard any particles from the high-vacuum part of the setup
and consider the problem of molecular flow from the ballast volume into
the vacuum chamber. The number of particles was calculated in Problem

where is the particle concentration and is the average velocity. Ex-
pressing via the pressure P and using (see Problem 4.13)

we obtain

b) At the given pressure the molecules are in the Knudsen regime, the mean
free path Therefore, we can assume that the molecular distribu-
tion will not change and N can be obtained from the Poisson distribution.
The mean fluctuation (see Problem 4.94)

The mean relative fluctuation is given by

c) The probability of finding N particles as a result of one of the measure-
ments, according to the Poisson distribution (see Problem 4.35), is

Therefore, the probability of counting zero particles in 1 ms is

an exceedingly small number. This problem is published in Kozel, S. M.,
Rashba, E. I., and Slavatinskii, S. A., Problems of the Moscow Institute of
Physics and Technology.

4.14:



210 SOLUTIONS

4.91 Quivering Mirror (MIT, Rutgers, Stony Brook)

a) When the mirror is in thermal equilibrium with gas in the chamber, one
may again invoke the equipartition theorem and state that there is
of energy in the rotational degree of freedom of the torsional pendulum,
where the torque is given by The mean square fluctuation in the
angle would then be given by (see Chapter 13, Fluctuations, in Pathria)

So,

Now, Avogadro’s number and we obtain

b) Even if the gas density were reduced in the chamber, the mean square
fluctuation would not change. However, in order to determine whether
individual fluctuations might have larger amplitudes, we cannot rely on the
equipartition theorem. We instead will examine the fluctuations in the
frequency domain. may be written

where is the power spectral density of At high gas density,     is
broader and smaller in amplitude, while the integral remains constant. This
corresponds to more frequent collisions and smaller amplitudes, whereas,
at low density,       is more peaked around the natural frequency of the
torsional pendulum           where I is its moment of inertia, still keeping
the integral constant. It then appears that by reducing the density of the
gas we actually increase the amplitude of fluctuations!

4.92 Isothermal Compressibility and Mean Square
Fluctuation (Stony Brook)

a) Let us use the Jacobian transformation for thermodynamic variables:
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Since the chemical potential    is expressed in P,  and does not depend on
N, we can write

where                 and are reduced entropy and volume respectively.
Using the equation for the Gibbs free energy of a single-component system,

we can write

where we also used But from (S.4.92.1),

So finally

b) By definition the average number of particles in the grand canonical
ensemble is

where Now, from (a),

where N is an average number of particles:

where we have used
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From (S.4.92.3)

and

Since V is proportional to

The relative fluctuation is given by

4.93 Energy Fluctuation in Canonical Ensemble
(Colorado, Stony Brook)

First solution: For a canonical ensemble:

where On the other hand,

Differentiating (S.4.93.2), we obtain

By inspecting (S.4.93.1)–(S.4.93.3), we find that

Now, the heat capacity at constant volume,      is given by
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Therefore, comparing (S.4.93.4) and (S.4.93.5), we deduce that, at constant
volume,

or in standard units

Since

then

Second solution: A more general approach may be followed which is appli-
cable to other problems. Because the probability of finding that the value
of a certain quantity X deviates from its average value is proportional
to and denoting we can write

Note that The entropy has a maximum at Expanding

where

so The probability distribution

If we have several variables,

If the fluctuations of two variables are statistically independent,

we obtain

so
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The converse is also true: If the variables and are statis-
tically independent. Now for a closed system we can write

where is the total entropy of the system and is the entropy change
due to the fluctuation. On the other hand,

where is the minimum work to change reversibly the thermodynamic
variables of a small part of a system (the rest of the system works as a heat
bath), and is the average temperature of the system (and therefore the
temperature of the heat bath). Hence,

However,

where and are changes of a small part of a system due to
fluctuations and P are the average temperature and pressure. So,

Expanding (for small fluctuations) gives

Substituting (S.4.93.16) into (S.4.93.14), we obtain
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where we used

So, finally

Using V and as independent variables we have

Substituting (S.4.93.19) into (S.4.93.18), we see that the cross terms with
cancel (which means that the fluctuations of volume and temper-

ature are statistically independent,

Comparing (S.4.93.20) with (S.4.93.10), we find that the fluctuations of
volume and temperature are given by

To find the energy fluctuation, we can expand
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where we used Substituting and from

(S.4.93.21), we obtain a more general formula for

At constant volume (S.4.93.23) becomes

the same as before.

4.94 Number Fluctuations (Colorado (a,b), Moscow
Phys-Tech (c))

a) Using the formula derived in Problem 4.92, we have

Consider an assortment of particles which are in the quantum state.
They are statistically independent of the other particles in the gas; therefore
we can apply (S.4.94.1) in the form

For a Fermi gas

So, by (S.4.94.2),
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Similarly, for a Bose gas

we have

b) First solution: Since a classical ideal gas is a limiting case of both Fermi
and Bose gases at we get, from (S.4.94.3) or (S.4.94.6),

Alternatively, we can take the distribution function for an ideal classical
gas,

and use (S.4.94.2) to get the same result. Since all the numbers of
particles in each state are statistically independent, we can write

Second solution: In Problem 4.93 we derived the volume fluctuation

This gives the fluctuation of a system containing N particles. If we divide
(S.4.94.9) by we find the fluctuation of the volume per particle:

This fluctuation should not depend on which is constant, the volume or
the number of particles. If we consider that the volume in (S.4.94.10) is
constant, then

Substituting (S.4.94.11) into (S.4.94.10) gives
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Using the equation for an ideal gas, in (S.4.94.12), we obtain

Third solution: Use the Poisson distribution, which does not require that
the fluctuations be small:

The average square number of particles is

Thus we recover (S.4.94.8) again:

c) Again we will use (S.4.94.1):

Since the gas is strongly degenerate, we can use and
(see Problem 4.66):

Then



THERMODYNAMICS AND STATISTICAL PHYSICS 219

4.95 Wiggling Wire (Princeton)

First solution: Consider the midpoint of the wire P fixed at points A and B
(see Figure S.4.95). let  be the deviation of the wire from the line segment
AB. Then, in equilibrium, the wire will consist of segments and
To find         we will have to find the minimum work          to change the
shape of the wire from APB to

Using a standard formula for the probability of fluctuation (see Problem
4.93),

we obtain

So,

This answer can be easily generalized for an arbitrary point along the
wire (see Landau and Lifshitz, Statistical Physics, Sect. 112):
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Second solution: We solve the equation of motion for the wire (see deriva-
tion in Problem 1.46, Part I). For the boundary conditions

we have modes:

with for where is the phase velocity,
Taking for simplicity

we can find the average kinetic and potential energy in each mode:

The total energy in each mode is

The fluctuation of the wire is given by

where we have used For
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where we substituted from (S.4.95.9). Note that even modes do not
contribute to the fluctuation of the midpoint of the wire, as expected from
elementary considerations. We may then find the fluctuation:

where we have used the sum given in the problem

So,

as before.

4.96 LC Voltage Noise (MIT, Chicago)

Write the Hamiltonian H for the circuit:
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harmonic oscillator of frequency whose energy levels are

The average energy in the circuit is given by (with

The average energy is equally distributed between the capacitance and the
inductance:

where V is the voltage across the capacitor (between points A and B; see
Figure S.4.96). We then have

In the classical limit

We could equally well have derived the classical result by using the equipar-
tition theorem (see Problem 4.42). For the single degree of freedom, there
is an average energy which, as noted, is divided between the capacitor
and inductor, so

a)

where is the charge on the capacitor. This is the Hamiltonian of a
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as found in (S.4.96.6). The mean square noise voltage is

If then (S.4.96.6) becomesb)

Applications to Solid State

Thermal Expansion and Heat Capacity
(Princeton)

4.97

a) First solution: We can calculate the average displacement of an oscillator:

Since the anharmonic term is small, we can expand the
exponent in the integral:
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where we set So,

Note that, in this approximation, the next term in the potential
would not have introduced any additional shift (only antisymmetric terms
do).

Second solution: (see Problem 1.37, Part I) We can solve the equation of
motion for the nonlinear harmonic oscillator corresponding to the potential

where is the principal frequency. The solution (see
(S.1.37.10) of Part I) gives

where is defined from the initial conditions and A is the amplitude of
oscillations of the linear equation. The average over a period
is

We need to calculate the thermodynamic average of

Substituting we obtain

the same as before.
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The partition function of a single oscillator associated with this potential
energy is
b)

So, the free energy F per oscillator is given by

where we approximated ln                          The energy per oscillator may be
found from

The heat capacity is then

The anharmonic correction to the heat capacity is negative.
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4.98 Schottky Defects (Michigan State, MIT)

When N atoms are displaced to the surface, they leave the same number
of vacancies. Now there are N vacancies and atoms in lattice
points. The entropy as a function of N is

where we have used Stirling’s formula

The free energy may be written

The minimum of the free energy can be found to be

or

general, but since and the number of defects it can

Since we have

which is what one would expect.

4.99 Frenkel Defects (Colorado, MIT)

We assume that the number of defects created around one lattice site does
not affect the process of creating new defects. In other words, all configu-
rations of the system are independent (not a very realistic assumption in



THERMODYNAMICS AND STATISTICAL PHYSICS 227

be used as an approximation). The vacancies and interstices then can be
distributed in and ways, respectively:

The total number of possible configurations of the system, is given by

The entropy, S, may be written

Using Stirling’s formula

we obtain, from (S.4.99.3),

Using (S.4.99.5) and the fact that the total energy of the system
we have

or
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and

The condition implies that and therefore

4.100 Two-Dimensional Debye Solid (Columbia,
Boston)

a) The number of normal modes in the 2D solid within the interval of a
wave vector may be written

In the 2D solid there are only two independent polarizations of the excita-
tions, one longitudinal and one transverse. Therefore,

where      is the average velocity of sound. To find the Debye frequency
we use the standard assumption that the integral of (S.4.100.2) from 0 to
a certain cut-off frequency     is equal to the total number of vibrational
modes; i.e.,

Therefore,

We can express through

Then (S.4.100.2) becomes
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The free energy (see Problem 4.77) then becomesb)

Defining and introducing a new variable we can
rewrite (S.4.100.7) in the form

Integrating (S.4.100.8) by parts, we obtain

where the 2D Debye function is

The energy is given by
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The specific heat at low temperatures) is

At low temperatures, we can extend the upper limit of integration
to infinity:

Therefore, at

where

and is the Riemann function. Note that the specific heat in 2D is

(see also Problem 4.75). Note also that you can solve a somewhat differ-
ent problem: When atoms are confined to the surface but still have three
degrees of freedom, the results will, of course, be different.

4.101 Einstein Specific Heat (Maryland, Boston)

a) For a harmonic oscillator with frequency the energy

where

So,



THERMODYNAMICS AND STATISTICAL PHYSICS 231

b) If we assume that the N atoms of the solid each have three degrees of
freedom and the same frequency then the total energy

The specific heat

In the high-temperature limit of (S.4.101.4) we havec)

In regular units

which corresponds to the law of Dulong and Petit, does not depend on
the composition of the material but only on the total number of atoms
and should be a good approximation at high temperatures, especially for
one-component elements. Prom the numbers in the problem,

Therefore,

Note that, at high enough temperatures, anharmonic effects calculated in
Problem 4.97 may become noticeable. Anharmonic corrections are usually
negative and linearly proportional to temperature.

At low temperatures (S.4.101.4) becomes

The heat capacity goes to zero as exp whereas the
experimental results give (see Problem 4.42). The faster falloff of
the heat capacity is due to the “freezing out” of the oscillations at
given the single natural frequency

d)
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4.102 Gas Adsorption (Princeton, MIT, Stanford)

For two systems in equilibrium, the chemical potentials should be equal.
Consider one of the systems as an ideal gas (vapor) in a volume, and another
as a surface submonolayer film. For an ideal gas the free energy F (see
Problem 4.38) is given by

where and correspond to the energy states and statistical sum associ-
ated with the internal degrees of freedom. If the temperature is reasonably
small, where corresponds to the ionization energy of the
atoms, so that the atoms are not ionized and mostly in the ground state,
and this state is nondegenerate, we can take and then (S.4.102.1)
becomes

The Gibbs free energy G is given by

where we have expressed G as a function of P and using The
chemical potential so

Now, consider an adsorption site: we can apply a Gibbs distribution with
a variable number of particles to this site:
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where the possible occupational numbers of the site for a submonolayer
0,1 (site is empty, site is occupied), with energy Performing
the sums, we have

The average number of particles per site may be written

The total number of adsorbed particles N is given by

The surface concentration is simply

(S.4.102.9) can also be derived by considering the canonical ensemble. The
number of possible ways of distributing N atoms among sites is

where

and

Substituting for an ideal gas from (S.4.102.4) into (S.4.102.9), we have



234 SOLUTIONS

The partition function is then

and the average number of particles

the same as (S.4.102.8).

4.103 Thermionic Emission (Boston)

a) We can consider the electron gas outside the metal to be in equilibrium
with the electrons inside the metal. Then the number of electrons hitting
the surface from the outside should be equal to the number of electrons
leaving the metal. Using the formula for chemical potential of a monatomic
ideal gas (see Problem 4.39), we can write

where for an electron gas. Rewriting (S.4.103.1), we have

The state of equilibrium requires that this chemical potential be equal to
the potential inside the metal, which we can take as i.e., the
energy is required to take an electron from the Fermi level inside the
metal into vacuum. So, the pressure of the electron gas is given by

On the other hand, the number of particles of the ideal gas striking the
surface per unit area per unit time is
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The current

where    is the electron charge. Therefore, we can express P from (S.4.103.5):

Equating (S.4.103.6) with (S.4.103.3), we find the current

Alternatively, we can calculate the current by considering the electrons
leaving the metal as if they have a kinetic energy high enough to overcome
the potential barrier.

b) For one particle,

where and are the energies, and and the volumes per particle,
of the gas and solid, respectively. Since we can rewrite (S.4.103.8)
in the form

Substituting (S.4.103.9) into the Clausius-Clapeyron equation (see Problem

we obtain

We may rewrite (S.4.103.11) as

Integrating, we recover (S.4.103.2):

where A is some constant, or

4.57),
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4.104 Electrons and Holes (Boston, Moscow
Phys-Tech)

a) Let the zero of energy be the bottom of the conduction band, so
(see Figure S.4.104). The number of electrons may be found from

where                 for electrons, and the Fermi distribution formula has been
approximated by

The concentration of electrons is then

where

b) In an intrinsic semiconductor
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since a hole is defined as the absence of an electron. We may then write

where     is the energy of a hole and we have used the nondegeneracy con-
dition for holes                  The number of holes is

The energy of a hole (from the bottom of the conduction band) is

Therefore, similar to (a):

The product of the concentrations of electrons and holes does not de-
pend on the chemical potential as we see by multiplying (S.4.104.3)
and (S.4.104.8):

We did not use the fact that there are no impurities. The only important
assumption is that which implies that the chemical potential
is not too close to either the conduction or valence bands.

c) Since, in the case of an intrinsic semiconductor (every electron
in the conduction band leaves behind a hole in the valence band), we can
write, using (S.4.104.9),
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Therefore,

Equating (S.4.104.3) and (S.4.104.11), we can find the chemical potential
for an intrinsic semiconductor:

If then the chemical potential is in the middle of the band gap:

4.105 Adiabatic Demagnetization (Maryland)

We now want to produce a Maxwell relation whose independent variables
are T and H. Write an equation for the free energy F:

a) We start with the usual relation and substitute
M dH for P dV, since the work done in this problem is magnetic rather
than mechanical. So
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We then obtain, from (S.4.105.2),

The cross derivatives of (S.4.105.3) are equal so

The heat capacity at constant magnetic field is given by

from which we obtain

By again exchanging the order of differentiation in (S.4.105.6) and using
the result found in (S.4.105.4), we have

Replacing M by in (S.4.105.7) yields the desired

b) For an adiabatic process, the entropy S is constant. Writing
we compose the differential

and by (S.4.105.4) and (S.4.105.5),
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The heat capacity may be written as the integralc)

Substituting into (S.4.105.8), we have

Using the heat capacity at zero magnetic field, and
(S.4.105.12) in (S.4.105.11), we obtain

The temperature may be written so for our adiabatic process

The integrand in (S.4.105.14) is found by substituting into
(S.4.105.10):

So, for a process at constant entropy, we may write

Rearranging and integrating give

and

d) A possible route to zero temperature is illustrated in Figure S.4.105.
During leg 1 the paramagnetic sample is kept in contact with a reservoir
at a low temperature, and the magnetic field is raised from 0 to The
contact with the reservoir is then removed, and the field is reduced to zero
along leg 2. The sample is thereby cooled.
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4.106 Critical Field in Superconductor (Stony Brook,
Chicago)

a) If the external field is smaller than the critical field, then the
B-field inside the superconductor is zero, and the magnetization M
becomes

This means that the superconductor displays perfect diamagnetism (with
magnetic susceptibility The change in free energy of the
superconductor due to the increase of the external field H may be written
as Therefore, the free energy of the
superconductor in a field is given by

The transition to a normal state occurs when the free energy of the super-
conducting state is equal to that of the normal state:

Here we used the fact that, because of the negligible magnetic susceptibility,
the free energy of the normal state practically does not depend on the
applied field. So, we have

where Now, it is easy to calculate the entropy discontinuity
since

so

If we recall that the dependence of the critical field on the temperature can
be approximated by the formula where then
we can confirm that a superconducting state is a more ordered state, since

and hence
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b) The latent heat if the transition occurs at a constant temperature,
is given by If the transition is from superconducting to
normal, then

So, if we have a transition from the superconducting to normal states, then
heat is absorbed.

c) The specific heat is defined as Here we disregard any
volume and pressure changes due to the transition. Hence, from equation
(S.4.106.6), the specific heat per volume discontinuity is

At zero field the transition is of second order and so the specific
heat per unit volume discontinuity at from (S.4.106.8) is
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Quantum
Mechanics

One-Dimensional Potentials

5.1 Shallow Square Well I (Columbia)

The ground state energy E must be less than zero and greater than the
bottom of the well, From the expression

one can deduce the form for the eigenfunction. Denote the ground state
energy where is to be determined. The eigenfunction
outside the well (V = 0) has the form Inside the well, define

where One can show that is positive since
Inside the well, the eigenfunction has the form so

Matching and its derivative at             gives two expressions:

243
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Dividing these two equations produces the eigenvalue equation

The equation given by the rightmost equals sign is an equation for the
unknown      Solving it gives the eigenvalue E.

5.2 Shallow Square Well II (Stony Brook)

a) For the bound state we can write the eigenvalue as
where is the decay constant of the eigenfunction outside the square well
(see Problem 5.1). Inside the square well we define a wave vector by

The infinite potential at the origin requires that all eigenfunctions vanish
at So the lowest eigenfunction must have the form

At the point we match the eigenfunctions and their derivatives:

We eliminate the constants A and B by dividing these two equations:

Earlier we established the relationship between and So the only un-
known variable is which is determined by this equation.

b) To find the minimum bound state, we take the limit as in
the eigenvalue equation. From (S.5.2.1) we see that goes to a nonzero
constant, and the eigenvalue equation only makes sense as if
tan which happens at Using (S.5.2.1) gives

Thus, we derive the minimum value of for a bound
state:
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c) For a positive energy state set                          where     is the wave vector
outside the square well. Inside the square well we again define a wave vector

according to

Again we have the requirement that the eigenfunction vanish at For
we have an eigenfunction with two unknown parameters B and

Alternatively, we may write it as

in terms of two unknowns C and D. The two forms are equivalent since
We prefer to write it with the phase shift

Again we match the two wave functions and their derivatives at

Dividing (S.5.2.10) by (S.5.2.11), we obtain

Since is a known function of the only unknown in this equation is
which is determined by this equation.

d) From (S.5.2.12) we derive an expression for the phase shift:

5.3 Attractive Delta Function Potential I (Stony
Brook)

a) The bound state is stationary in time: its eigenvalue is E (E < 0), and
the time dependence of the wave function is
The equation for the bound state is
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The bound state for has the form

We have already imposed the constraint that be continuous at
This form satisfies the requirement that is continuous at the origin
and vanishes at infinity. Away from the origin the potential is zero, and
the Schrödinger equation just gives A relation between C
and E is found by matching the derivatives of the wave functions at
Taking the integral of (S.5.3.1) between and gives

Applying (S.5.3.3) to (S.5.3.2) gives the relations

We have found the eigenvalue for the bound state. Note that the dimensions
of C are energy × distance, which makes the eigenvalue have units of energy.
Finally, we find the normalization coefficient A:

b) When the potential constant changes from the eigenfunction
changes from where the prime denotes the eigenfunction with
the potential strength In the sudden approximation the probability
that the particle remains in the bound state is given by

where
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Substituting (S.5.3.2) into (S.5.3.9) and using the result of (S.5.3.7), we
obtain

Finally, using (S.5.3.5) yields

It is easy to show that as required by particle conservation. If
then since there is no change, and the particle must stay

in the bound state.

5.4 Attractive Delta Function Potential II (Stony
Brook)

a) In order to construct the wave function for the bound state, we first
review its properties. It must vanish at the point At the point

it is continuous and its derivative obeys an equation similar to
(S.5.3.3):

Away from the points it has an energy and
wave functions that are combinations of and These constraints
dictate that the eigenfunction has the form

At the point we match the two eigenfunctions and their derivatives,
using (S.5.4.1). This yields two equations, which are solved to find an
equation for
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We use the first equation to eliminate A in the second equation. Then each
term has a factor of which is canceled:

Multiplying both sides of (S.5.4.5) by sinh gives

This last equation determines which determines the bound state energy.
There is only one solution for sufficiently large values of

b) The minimum value of for creating a bound state is called It is
found by assuming that the binding energy which means
We examine (S.5.4.7) for small values of and find that

5.5 Two Delta Function Potentials (Rutgers)

There are two delta function singularities, one at and one at
The potential can be written in an equivalent way as

At each delta function we match the amplitudes of the eigenfunctions as
well as the slopes, using a relation such as (S.5.3.3). A single, isolated,
attractive, professional, delta function potential has a single bound state.
We expect that a pair of delta function potentials will generally have one
or two bound states.

The lowest energy state, for symmetric potentials, is a symmetric eigen-
function. The eigenvalue has theform where is the decay
constant of the eigenfunction. The most general symmetric eigenfunction
for a bound state is
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Matching at either gives the pair of equations:

Eliminating the constants A and B gives the final equation for the unknown
constant

For large values of the hyperbolic tangent is unity, and we have the
approximate result that which gives for large P the eigenvalue

For small values of we see that and
This is always the lowest eigenvalue.

The other possible eigenstate is antisymmetric: it has odd parity. When
the separate bound states from the two delta functions overlap, they com-
bine into bonding and antibonding states. The bonding state is the sym-
metric state we calculated above. Now we calculate the antibonding state,
which is antisymmetric:

Using the same matching conditions, we find the two equations, which are
reduced to the final equation for

For large values of the hyperbolic cotangent function (coth) approaches
unity, and again we find                 and At small values
of the factor of coth Here we have so we find at small
values of that The antisymmetric mode only exists for
For the only bound state is the symmetric one. For there are
two bound states, symmetric and antisymmetric.
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5.6 Transmission Through a Delta Function Potential
(Michigan State, MIT, Princeton)

On the left the particle has an incident intensity, which we set equal to
unity, and a reflected amplitude R. On the right the transmitted amplitude
is denoted by T.

At the point we match the value of on both sides. We match
the derivative according to an expression such as (S.5.3.3) with
This yields two equations for T and R which can be solved for T:

5.7 Delta Function in a Box (MIT)

a) In the absence of the delta function potential, the states with odd parity
are

These states have zero amplitude at the site of the delta function
and are unaffected by it. So, the states with odd parity have the same
eigenfunction and eigenvalues as when the delta function is absent.

b), c) For a delta function potential without a box, the bound states have
a wave function of (see Problem 5.3). In the box we expect to
have similar exponentials, except that the wave function must vanish at
the edges of the box The states which do this are
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Using (S.5.4.1), we match the difference in the derivatives at with
the amplitude of the delta function potential. This leads to the eigenvalue
condition

The quantity on the left of (S.5.7.6) has a minimum value of 1, which it
obtains at This limit produces the eigenvalue So we must
have for the zero eigenvalue, which is the answer to part (b). The
above eigenfunction, for values of gives the bound state energy E < 0
when

5.8 Particle in Expanding Box (Michigan State, MIT,
Stony Brook)

a) For a particle confined to a box the ground state
and the first excited state are

After the sudden transition the final eigenfunctions are

b) In the sudden approximation let denote the probability that the
particle starts in the ground state 0 and ends in the final state
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where the amplitude of the transition is given by

The amplitude for the particle to remain in its ground state is then

The probability is given by

The same calculation for the transition between the initial ground state
and final excited state is as follows:

where

The integral is zero by parity, since the integrand is an odd function of
so



QUANTUM MECHANICS 253

5.9 One-Dimensional Coulomb Potential (Princeton)

a) Since the electron is confined to the right half-space, its wave function
must vanish at the origin. So, an eigenfunction such as exp is un-
suitable since it does not vanish at The ground state wave function
must be of the form where  needs to be determined.
The operator acting on this form gives

so that using this wave function in Schrödinger’s equation yields

For this equation to be satisfied, the first and third terms on the left must
be equal, and the second term on the left must equal the term on the right
of the equals sign:

The answer is one sixteenth of the Rydberg, where      is the ground state
energy of the hydrogen atom. The parameter where is the
Bohr radius.

b) Next we find the expectation value The first integral is done to find
the normalization coefficient:

The average value of is 6 Bohr radii.

5.10 Two Electrons in a Box (MIT)

a) If the box is in the region then the one-electron orbitals are
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If both electrons are in the spin state  (spin up), then the spin part of the
wave function is symmetric under exchange of coordinates. Therefore,
the orbital part has to be antisymmetric, and both particles cannot be in
the state. Instead, the lowest energy occurs when one electron is in
the state and the other is in the state:

b) The probability that both are in one half, say the left side, is

Three integrals must be evaluated:

The result is rather small. Naturally, it is much more favorable to have one
particle on each side of the box.
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5.11 Square Well (MIT)

255

a) The most general solution is

We evaluate the coefficients by using the initial condition at = 0:

The term cos is either 1, 0, or –1, depending on the value of The
answer to (a) is to use the above expression for in (S.5.11.3). The answer
to part (b) is that the probability of being in the eigenstate is
The answer to part (c) is that the average value of the energy is

This latter series does not converge. It takes an infinite amount of energy
to form the initial wave function.

5.12 Given the Eigenfunction (Boston, MIT)

We evaluate the second derivative of the eigenfunction, which gives the
kinetic energy:
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We take the limit that of the function on the left, and this must
equal – since we assumed that the potential vanishes at infinity. Thus,
we find that

The energy is negative, which signifies a bound state. The potential
can be deduced from (S.5.12.1) since everything else in this expression is
known:

This potential energy has a bound state which can be found analytically,
and the eigenfunction is the function given at the beginning of the problem.

5.13 Combined Potential (Tennessee)

Let the dimensionless distance be The kinetic energy has the scale
factor In terms of these variables we write Schrödinger’s
equation as

Our experience with the hydrogen atom, in one or three dimensions, is that
potentials which are combinations of and are solved by exponentials

times a polynomial in The polynomial is required to prevent the
particle from getting too close to the origin where there is a large repulsive
potential from the term. Since we do not yet know which power of
to use in a polynomial, we try

where  and need to be found, while A is a normalization constant.
This form is inserted into the Hamiltonian. First we present the second
derivative from the kinetic energy and then the entire Hamiltonian:
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We equate terms of like powers of

The last equation defines The middle equation defines once  is known.
The top equation gives the eigenvalue:

Harmonic Oscillator

5.14 Given a Gaussian (MIT)

Denote the eigenfunctions of the harmonic oscillator as with eigen-
value They are a complete set of states, and we can expand any
function in this set. In particular, we expand our function in terms
of coefficients

The expectation value of the energy is the integral of the Hamiltonian H
for the harmonic oscillator:
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where we used the fact that The probability of energy
So the probability of is given by

where

It is easy to show that this quantity is less than unity for any value of
and is unity if

5.15 Harmonic Oscillator ABCs (Stony Brook)

a) Here we took

since the commutator

b)

c)

and finally
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d) In order to demonstrate that            and are also eigenstates of
compose the commutator

by (S.5.15.1). Similarly,

Now,

Substituting (S.5.15.4) into (S.5.15.5) and replacing by we have

Rearranging (S.5.15.6) yields

as required. A similar calculation gives

We see from the above results that the application of the operator on
a state has the effect of “raising” the state by 1, and the operator
lowers the state by 1 (see (f) below).

e)

since, by assumption,

f) Since by (c), the number operator and the Hamiltonian
commute, they have simultaneous eigenstates. Starting with

we may generate a number state whose energy eigenvalue is 1 + 1/2
by applying the raising operator Applying again produces a state of
eigenvalue 2+1/2. What remains to be done is to see that these eigenstates
(number, energy) are properly normalized. If we assume that the state
is normalized, then we may compose the inner product
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Up to an arbitrary phase, we see that

Starting with the vacuum ket we can write an energy eigenket

g) The energy spectrum is where  takes all positive integer values
and zero. From (S.5.15.9) and the fact that the norm of the eigenvectors is
positive (actually, 1), we see that cannot be negative, and so no negative
eigenvalues are possible.

5.16 Number States (Stony Brook)

a) In this problem it is important to use only the information given. We
may write the Hamiltonian as

We may establish the following:

Apply the number operator to the state directly:

where (see Problem 5.15), so
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Since a we have

b) We see from (S.5.16.2) that the Hamiltonian is just

We demonstrated in (a) that is an eigenstate of the number operator
so is also an eigenstate of the Hamiltonian with eigenvalues

given by

where is the potential energy. The expectation values of the poten-
tial and kinetic energies are equal for the quantum oscillator, as for time
averages in the classical oscillator. Therefore, they are half of the total
energy:

In this problem, however, you are explicitly asked to use the operators
and to calculate so we have

c) The expectation value may be calculated indirectly. Note that



We proceed to find

Thus, the result is the same by both approaches.

5.17 Coupled Oscillators (MIT)

The Hamiltonian of the system is

The problem is easily solved in center-of-mass coordinates. So define

These new coordinates are used to rewrite the Hamiltonian. It now decou-
ples into separate and parts:
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The has a frequency and eigenvalues
where is an integer. The oscillator has a frequency of

and eigenvalues where is an integer.

5.18 Time-Dependent Harmonic Oscillator I
(Wisconsin-Madison)

a) At times the wave function is

b) The state has even parity: it remains the same if one replaces
by since This is true for all times.

c) The average value of the energy is

which is independent of time.

5.19 Time-Dependent Harmonic Oscillator II
(Michigan State)

a) The time dependence of the wave function is

b) The expectation value for the energy is

which is independent of time.
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c) To find the average value of the position operator, we first need to show
that

Then

The expectation value of the position operator oscillates in time.

5.20 Switched-on Field (MIT)

a) Operate on the eigenfunction by the kinetic energy term in the Hamil-
tonian:

Consider the factor the 1 must give the eigenvalue and must
cancel the potential energy. These two constraints give the identities

The normalization constant is determined by

b) The solution is given above:
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c) After the perturbation is added, the Hamiltonian can be solved
exactly by completing the square on the

where the displacement The new ground state energy and
eigenfunction are

The harmonic oscillator vibrates about the new equilibrium point with
the same frequency as before. The constants and are unchanged by

d) To find the probability that a particle, initially in the ground state,
remains in the ground state after switching on the potential, we employ the
sudden approximation. Here we just evaluate the overlap integral of the
two eigenfunctions, and the probability is the square of this overlap:

5.21 Cut the Spring! (MIT)

a) Below we give the Hamiltonian thefrequency and the eigenvalues
of the particle while coupled to two springs:
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The only change from the harmonic oscillator for a single spring is that,
with two identical springs, the effective spring constant is 2K.

b) The eigenfunction of the ground state is

c) When one spring is cut, the particle is now coupled to only a single
spring. So we must replace 2K in the above equations by K. The ground
state eigenfunction is now

Notice that The amplitude I for remaining in the ground state
is found, in the sudden approximation, by taking the overlap integral of the
two ground state wave functions. The probability of remaining in the
ground state is the square of this overlap integral:

where we have used in deriving the last line. The probability
of remaining in the ground state is close to unity.

Angular Momentum and Spin

5.22 Given Another Eigenfunction (Stony Brook)

a) The factor cos indicates that it is a state which has an angular
momentum of 1.
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b) In order to determine the energy and potential, we operate on the eigen-

The constant in the last term can be simplified to
In the limit the potential vanishes, and only the constant term in
the kinetic energy equals the eigenvalue. Thus, we find

c) To find the potential we subtract the kinetic energy from the eigenvalue

The potential has an attractive Coulomb term and a repulsive
term.

5.23 Algebra of Angular Momentum (Stony Brook)

a)

b) Since and commute, we will try to find eigenstates with eigenvalues

state with the kinetic energy operator. For this gives for the radial
part

and act on the eigenfunction:

of and denoted by where are real numbers:
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Since we know that Anticipating the result, let
Form the raising and lowering operators and

Find the commutators

From part (a) we know that We now ask what is the eigen-
value of for the states

So, these states have the same eigenvalue of Now, examine the eigen-
value of for these states:

In (S.5.23.3) we see that has the effect of raising or lowering the
of the states so that

where are the corresponding coefficients. As determined above, we
know that so cannot be applied indefinitely to the state

there must be an such that
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Expand and apply to (S.5.23.4):

Either the state is zero or So

Similarly,

For and since the only solution is

We knew that was real, but now we have
so

5.24 Triplet Square Well (Stony Brook)

Since the two spins are parallel, they are in a spin triplet state with
and The spin eigenfunction has even parity. The two-electron
wave function is written as an orbital part times the spin part.
The total wave function must have odd parity. Since the spin has even
parity, the orbital part must have odd parity: Since
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the interaction potential acts only between the electrons, it is natural to
write the orbital part in center-of-mass coordinates, where
and

The problem stated that the total momentum was zero, so set We
must now determine the form for the relative eigenfunction           It obeys
the Schrödinger equation with the reduced mass where is the
electron mass:

We have reduced the problem to solving the bound state of a “particle” in
a box. Here the “particle” is the relative motion of two electrons. However,
since the orbital part of the wave function must have odd parity, we need
to find the lowest energy state which is antisymmetric,

Bound states have where the binding energy Define
two wave vectors: for outside the box, and

when the particle is in the box, The lowest
antisymmetric wave function is

We match the wave function and its derivative at one edge, say
which gives two equations:

We divide these two equations, which eliminates the constants A and B.
The remaining equation is the eigenvalue equation for

Since and are both positive, the cotangent of must be negative,
which requires that This imposes a constraint for the existence
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of any antisymmetric bound state:

Any attractive square well has a bound state which is symmetric, but the
above condition is required for the antisymmetric bound state.

5.25 Dipolar Interactions (Stony Brook)

a) We assume the magnetic moment is a vector parallel to the spin with a
moment where is a constant. Then we write the Hamiltonian
as

The second term contains only components since the vector a is along
the

b) We write

For we have so we can write

c) The addition of two angular momenta with gives values of S
which are 0 or 1:
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For there are three possible eigenvalues of                            which
gives an energy of

For there is one eigenvalue of and this state has zero
energy.

5.26 Spin-Dependent      Potential (MIT)

a) The spin operator is For spin 1/2 the expression
becomes, for Pauli matrices, where is the

unit matrix. The total spin operator for the two-particle system is

For the spin singlet state then while for the spin
triplet state then

b) The potential is repulsive for the triplet state, and there are no bound
states. There are bound states for the singlet state since the potential is at-
tractive. For the hydrogen atom the potential is and the eigenvalues
are

Our two-particle bound state has instead of and the reduced mass
instead of the mass so we have the eigenvalues

5.27 Three Spins (Stony Brook)

a) We use the notation that the state with three spins up is This
is the state with We operate on this with the lowering operator

which shows that the states with lower values of M are
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b) From the definition of we deduce that

The matrix is the Hermitian conjugate of

c) Because and we can construct

d) To find the matrix we square each of the three
matrices and add them. This gives where is the 4 × 4 unit
matrix. This is what one expects, since the eigenvalue of is J(J + 1),
which is 15/4 when J = 3/2.
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5.28 Constant Matrix Perturbation (Stony Brook)

Define where is the eigenvalue. We wish to diagonalize
the matrix by finding the determinant of

When confronted by a cubic eigenvalue equation, it is best first to try to
guess an eigenvalue. The obvious guesses are The one that works
is so we factor this out to get

We call these eigenvalues respectively. When we construct the
eigenfunctions, only the one for is unique. Since the first two have degen-
erate eigenvalues, their eigenvectors can be constructed in many different
ways. One choice is

b) Since the three states     form a complete set over this space, we can
expand the initial state as

a)
the matrix by finding the determinant of
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To find the amplitude in state we operate on the above equation with
The probability P is found from the absolute-magnitude-squared of

this amplitude:

Let us quantize the spin states along the so that spin up and spin
down are denoted by

The eigenstates of are for pointing along the and       for the

QUANTUM MECHANICS 275

5.29 Rotating Spin (Maryland, MIT)



At time we start in state Later this state becomes

The amplitude for pointing in the negative is found by taking
the matrix element with The probability is the square of the absolute
magnitude of this amplitude:

5.30 Nuclear Magnetic Resonance (Princeton, Stony
Brook)

a) Let and denote the probability of spin up and spin down as a
function of time. The time-dependent Hamiltonian is

The equations for the individual components are

where the overdots denote time derivatives. We solve the first equation for
and substitute this into the second equation:
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We assume that

We determine the eigenvalue frequency by inserting the above form for
into (S.5.30.8), which gives a quadratic equation for that has two

roots:

We have introduced the constants They are not all inde-
pendent. Inserting these forms into the original differential equations, we
obtain two relations which can be used to give

This completes the most general solution. Now we apply the initial con-
ditions that the spin was pointing along the at This gives

which makes and which gives
These two conditions are sufficient to find
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The probability of spin up is and that of spin down is

b) In the usual NMR experiment, one chooses the field       so that
in which case                and                                and The
spin oscillates slowly between the up and down states.

Variational Calculations

5.31 Anharmonic Oscillator (Tennessee)

Many possible trial functions can be chosen for the variational calculation.
Choices such as exp are poor since they have an undesirable cusp
at the origin. Instead, the best choice is a Gaussian:

where the potential in the problem is

We evaluate the three integrals in (A.3.1)–(A.3.4).

We have used (A.3.1) to derive the last expression. Now we find the min-
imum energy for this choice of trial function by taking the derivative with
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respect to the variational parameter Denote by the value at this
minimum:

This result for is higher than the exact eigenvalue.

5.32 Linear Potential I (Tennessee)

The potential V is symmetric. The ground state eigenfunction must also
be symmetric and have no cusps. A simple choice is a Gaussian:

where the variational parameter is and A  is a normalization constant.
Again we must evaluate the three integrals in (A.3.1)–(A.3.4):

The minimum energy is found at the value where the energy derivative
with respect to is a minimum:
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5.33 Linear Potential II (MIT, Tennessee)

The wave function must vanish in either limit that            Two
acceptable variational trial functions are

where the prefactor   ensures that the trial function vanish at the origin.
In both cases the variational parameter is    We give the solution for the
first one, although either is acceptable. It turns out that (S.5.33.2) gives a
higher estimate for the ground state energy, so (S.5.33.1) is better, since the
estimate of the ground-state energy is always higher than the exact value.
The ground state energy is obtained by evaluating the three integrals in
(A.3.1)–(A.3.4):
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The optimal value of called is obtained by finding the minimum value
of

Note that this result is also the first asymmetric state of the potential in
Problem 5.32.

5.34 Return of Combined Potential (Tennessee)

a) The potential contains a term which diverges as              as
The only way integrals such as are well defined at the origin
is if this divergence is canceled by factors in In particular, we must have

at small This shows that the wave function must vanish at
This means that a particle on the right of the origin stays there.

b) The bound state must be in the region since only here is the
potential attractive. The trial wave function is

where the variational parameter is We evaluate the three integrals in
(A.3.1)–(A.3.4), where the variable
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The minimum energy is obtained by setting to zero the derivative of .
with respect to This gives the optimal value and the minimum energy

5.35 Quartic in Three Dimensions (Tennessee)

The potential is spherically symmetric. In this case we can
write the wave function as a radial part times angular functions. We
assume that the ground state is an and the angular functions are

which is a constant. So we minimize only the radial part of the wave
function and henceforth ignore angular integrals. In three dimensions the
integral in spherical coordinates is The factor     comes
from the angular integrals. It occurs in every integral and drops out when
we take the ratio in (A.3.1). So we just evaluate the part. Again we
choose the trial function to be a Gaussian:

The three integrals in (A.3.1)–(A.3.4) have a slightly different form in three
dimensions:
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Note the form of the kinetic energy integral K, which again is obtained
from by an integration by parts. Again set the derivative of
equal to zero. This determines the value which minimizes the energy:

5.36 Halved Harmonic Oscillator (Stony Brook,
Chicago (b), Princeton (b))

a) Using the Rayleigh–Ritz variation principle, calculate the expec-
tation value of the ground state energy as a function of

So our trial function is already normalized. Continuing with the numerator
of (S.5.36.1), we have

First calculate the denominator of (S.5.36.1):
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where we set and Evaluate the integral

So, we have

Finally,

To minimize this function, find     corresponding to

Now,
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Therefore,

We should have the inequality (see Problem 5.33)

where is the true ground state energy.

b) To find the exact ground state of the system, notice that odd wave
functions of a symmetric oscillator problem (from         to     ) will also be
solutions for these boundary conditions since they tend to zero at
Therefore, the ground state wave function of this halved oscillator will corre-
spond to the first excited state wave function of the symmetrical oscillator.
The wave function can easily be obtained if you take the ground state
and act on it by the creation operator (see Problem 5.16):

The ground state energy of our halved oscillator will in turn correspond to
the first excited state energy of the symmetrical oscillator:

Comparing this result with that of (a), we see that the inequality (S.5.36.13)
holds and that our trial function is a fairly good approximation, since it
gives the ground state energy to within 15% accuracy.
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5.37 Helium Atom (Tennessee)

In the ground state of the two-electron system, both orbitals are in 1s states.
So the spin state must be a singlet with The spin plays no role
in the minimization procedure, except for causing the orbital state to have
even parity under the interchange of spatial coordinates. The two-electron
wave function can be written as the product of the two orbital parts times
the spin part:

where is the Bohr radius and is the variational parameter. The orbitals
are normalized to unity. Each electron has kinetic (K) and potential

(U) energy terms which can be evaluated:

where is the Rydberg energy. The difficult integral is that
due to the electron–electron interaction, which we call V:

First we must do the angular integral over the denominator. If is the
larger of and then the integral over a solid angle gives

In the second integral we have set and                        which
makes the integrals dimensionless. Then we have split the into
two parts, depending on whether is smaller or greater than The first
has a factor from the angular integrals, and the second has a factor
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One can exchange the order of integration in one of the integrals and
demonstrate that it is identical to the other. We evaluate only one and
multiply the result by 2:

This completes the integrals. The total ground state energy in Ryd-
bergs is

We find the minimum energy by varying Denote by the value of
at which is a minimum. Setting to zero the derivative of           with
respect to yields the result The ground state energy is

Perturbation Theory

5.38 Momentum Perturbation (Princeton)

The first step is to rewrite the Hamiltonian by completing the square on
the momentum operator:

The constant just shifts the zero of the momentum operator. The rewrit-
ten Hamiltonian in (S.5.38.1) suggests the perturbed eigenstates:
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The action of the displaced momentum operator on the new eigenstates
is

so the Hamiltonian gives

and the eigenvalues are simply

5.39 Ramp in Square Well (Colorado)

a) For a particle bound in a square well that runs from
the eigenfunction and eigenvalue for the lowest energy state are

The eigenfunction is symmetric and vanishes at the walls of the well.

b) We use first-order perturbation theory to calculate the change in energy
from the perturbation:
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5.40 Circle with Field (Colorado, Michigan State)

The perturbation is if we assume the field is in the
The same result is obtained if we assume the perturbation is

in the In order to do perturbation theory,
we need to find the matrix element of the perturbation between different
eigenstates. For first-order perturbation theory we need

The eigenvalues are unchanged to first-order in the field E.
To do second-order perturbation theory, we need off-diagonal matrix

elements:

If we recall that then we see that can only
equal for the integral to be nonzero. In doing second-order perturbation
theory for the state the only permissible intermediate states are

This solution is valid for states For the ground state, with
the state does not exist, so the answer is
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5.41 Rotator in Field (Stony Brook)

 The eigenfunctions and eigenvalues are

b) The electric field interacts with the dipole moment to give an interaction

This problem is almost identical to the previous one. The quantity of
the previous problem is changed to the moment I in the present problem.
The perturbation results are similar. The first-order perturbation vanishes
since The second-order perturbation is given by (S.5.40.3)
and (S.5.40.4) after changing to I and to

5.42 Finite Size of Nucleus (Maryland, Michigan
State, Princeton, Stony Brook)

a) To find the potential near the nucleus, we note Gauss’s law, which
states that for an electron at a distance from the center of a spherical
charge distribution, the electric field is provided only by those electrons
inside a sphere of radius For this is the charge
whereas for it is just the charge Z . Thus, we find for the derivative
of the potential energy:

a)
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where is a constant of integration. We chose to make the
potential continuous at

b) For a single electron bound to a point nucleus, we can use hydrogen wave
functions:

c) The first-order change in the ground state wave energy is

For any physical value of Z , the parameter    is very much smaller than
unity. One can evaluate the above integral as an expansion in and show
that the first term is           so the answer is approximately
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The result from first-order perturbation theory is obtained by taking the
integral of the perturbation with the ground state wave function

The ground state energy is The first term in has odd
parity and integrates to zero in the above expression. The second term in

has even parity and gives a nonzero contribution. In this problem it is
easiest to keep the eigenfunctions in the separate basis of rather than
to combine them into In one dimension the average of so
we have

where This is probably the simplest way to leave the answer.
This completes the discussion of first-order perturbation theory.

The other term         in contributes an energy of in second-
order perturbation theory. The excited state must have the symmetry of

which means it is the state This has three
quanta excited, so it has an energy

Now we combine the results from first- and second-order perturbation the-
ory:

5.43 U and   Perturbation (Princeton)
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5.44 Relativistic Oscillator (MIT, Moscow
Phys-Tech, Stony Brook (a))

a) The classical Hamiltonian is given by whereas the
relativistic Hamiltonian may be expanded as follows:

The perturbation to the classical Hamiltonian is therefore

First solution: For the nonrelativistic quantum harmonic oscillator, we have

where are operators. Defining new operators Q, P,

and noting the commutation relations

we may rewrite (S.5.44.2) as
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Introducing the standard creation and annihilation operators (see Problems
5.15 and 5.16):

we find that

Using these results, we may express the first-order energy shift as

The expansion of is simplified by the fact that so

Finally, we obtain

where
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Second solution: Instead of using operator algebra, we can find a wave
function in the momentum representation, where

The Hamiltonian then is

The Schrödinger equation for becomes

This equation has exactly the same form as the standard oscillator
Schrödinger equation:

We then obtain for the momentum probability distribution for the ground
state:

Therefore

where Using the old “differentiate with respect to an
innocent parameter method” of simplifying an integral, we may rewrite
as

where we substituted (S.5.44.10) into (S.5.44.11) and let Fi-
nally,
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as found in the first solution.

b) The first-order energy shift from would be zero (no diagonal elements
in the matrix). The leading correction would be the second-order shift
as defined by the formula

where        means sum over                     From (S.5.44.3) and (S.5.44.4), we
have

As for any second-order correction to the ground state, it is negative. To
make this expression equal to the one in part (a), we require that

So,
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5.45 Spin Interaction (Princeton)

In first-order perturbation theory the change in energy is

since and the matrix element of is zero for the ground state
The first excited state is three-fold degenerate: denote these states as

In this notation the matrix elements are

In second-order perturbation theory

where where the unit matrix is Each spin state has the same
energy, to second order.

5.46 Spin–Orbit Interaction (Princeton)

a) In three dimensions the lowest eigenvalue of the harmonic oscillator is
which can be viewed as from each of the three dimensions.

The ground state has s-wave symmetry. The lowest excited states have
eigenvalue There are three of them. They have symmetry
and are the states and

where
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b) In the spin–orbit interaction we take the derivative and find

The matrix element is a constant, which simplifies the calculation. We
evaluate the factor  by defining the total angular momentum J as

For the ground state of the harmonic oscillator, and
The above expectation value of is zero. The ground state is unaf-
fected by the spin–orbit interaction, although it is affected by relativistic
corrections (see Problem 5.44) as well as by other states (see Problem 5.45).

The first excited states have  so that For
we find that

5.47 Interacting Electrons (MIT)

a) The wave function for a single electron bound to a proton is that of the
hydrogen atom, which is

where is the Bohr radius. When one can neglect the Coulomb repulsion
between the two electrons, the ground state energy and eigenfunctions are

For we find that
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The last factor in (S.5.47.3) is the spin-wave function for the singlet
in terms of up and down spin states. Since the spin state has odd parity,
the orbital state has even parity, and a simple product function
is correct. The eigenvalue is twice the Rydberg energy

b) The change in energy in first-order perturbation theory is
The orbital part of the matrix element is

where the final integration variable is
Next we evaluate the spin part of the matrix element. The easiest way

is to use the definition of the total spin to derive

where for spin-1/2 particles, such as electrons, Since
the two spins are in an state, the expectation value
Combining this with the orbital contribution, we estimate the perturbed
ground state energy  to be

5.48 Stark Effect in Hydrogen (Tennessee)

We use the notation to describe the four orbital states: the s-state
is and the three are Spin is not affected
by this perturbation and plays no role in the calculation. For degener-
ate perturbation theory we must evaluate the 10 different matrix elements

which occur in the symmetric 4 × 4 matrix. The interac-
tion potential is                  One can use parity and other group theory
arguments to show that only one matrix element is nonzero, and we call it
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Since the two states have no matrix elements with the other two
states, we can omit them from the remaining steps in the calculation. Thus
we must find the eigenvalues of a 2 × 2 matrix for the states       and

This matrix has eigenvalues The perturbation splits the fourfold
degenerate state into states with eigenvalues

Since is proportional to the electric field, the energies split linearly with
.
The matrix element can be evaluated by using the explicit represen-

tation for the eigenstates of the hydrogen atom:

yielding

The angular integral gives 2/3, and

5.49 Hydrogen with Electric and Magnetic
Fields (MIT)

We use the same notation as in Problem 5.48 to describe the four orbital
states: the s-state is and the three are
Here again, spin is not affected by this perturbation. As in Problem 5.48,
we must evaluate the 10 different matrix elements which
occur in the symmetric 4 × 4 matrix.
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One interaction potential is One can use parity and other
group theory arguments to show that the only nonzero matrix elements are

One can show that and are equal to within a phase factor. We ig-
nore this phase factor and call them equal. The evaluation of this integral
was demonstrated in the previous solution. The result here is
compared to the one in the previous problem.

To first order in the magnetic field, the interaction is given by

In spherical coordinates the three unit vectors for direction are

In these units the vector potential can be written as Similarly,
the momentum operator in this direction is

where the cyclotron frequency is The magnetic field is a
diagonal perturbation in the basis          .

Now the state has no matrix elements for these interactions and is
unchanged by these interactions to lowest order. So we must diagonalize
the 3 × 3 interaction matrix for the three states

The states are initially fourfold degenerate. The double perturbation
leaves two states with the same eigenvalue while the other two are
shifted by where and Note that

so that, in the absence of the magnetic field, the result is the same as in
Problem 5.48.
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5.50 Hydrogen in Capacitor (Maryland, Michigan
State)

For time-dependent perturbations a general wave function is

where the satisfy

For the time-dependent perturbation

From Schrödinger’s equation we can derive an equation for the time devel-
opment of the amplitudes

If the system is initially in the ground state, we have and the
other values of are zero. For small perturbations it is sufficient to
solve the equation for

The general probability that a transition is made to state is given by

This probability is dimensionless. It should be less than unity for this
theory to be valid.
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a) For the state the probability is zero. It vanishes because the
matrix element of is zero: because of parity. Both S-
states have even parity, and has odd parity.

b) For the state the transition is allowed to the
orbital state, which is called The matrix element is similar to the
earlier problem for the Stark effect. The 2P eigenstate for , is
in (S.5.48.5) and that for the 1S state is exp The integral
is

where is the Bohr radius of the hydrogen atom.

5.51 Harmonic Oscillator in Field (Maryland,
Michigan State)

We adopt (S.5.50.4) and (S.5.50.5) for the time-dependent perturbation
theory. Now we label the eigenstates with the index for the harmonic
oscillator state of energy and write the equation satisfied
by the time-dependent amplitudes

We need to evaluate the matrix element of between the states
and of the harmonic oscillator. It is only nonzero if In

terms of raising and lowering operators,
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a) If the initial state is at then the amplitude of the
state for is given by

The last equation is the probability of ending in the state if the
initial state is This expression is valid as long as it is less than 1 or
if

b) The state cannot be reached by a single transition from
since the matrix element However, can be reached by a
two-step process. It can be reached from and is excited from

The matrix element is so we have that

Note that Similarly, one can show that However,
the total probability, when summed over all transitions, cannot exceed 1.
Therefore, we define a normalized probability
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5.52 Decay of Tritium (Michigan State)

We use the sudden approximation to calculate the probability that the
electron remains in the ground state. One calculates the overlap integral

of the initial and final wave functions, and its square is the probability.
The ground states in the initial and final states are called and

is the Bohr radius:

WKB

5.53 Bouncing Ball (Moscow Phys-Tech, Chicago)

The potential energy here is We can apply the quasi-classical
(WKB) approximation between points where                       with the
quasi-classical function applicable all the way to The wave function
is given by

On the other hand, for
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Imposing the condition yields

We know that in this approximation

5.54 Truncated Harmonic Oscillator (Tennessee)

a) If C is the turning point, to be found later, then the WKB formula in
one dimension for bound states is

where we have used the truncated harmonic oscillator potential for
The constant C is the value of where the argument of the square root
changes sign, which is

so

for
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The integral on the left equals The easiest way to see this result
is to use the change of variables and the integrand becomes

between 0 and (Actually, just note that this is the area of
a quadrant of a disk of radius C). We get

b) The constraint that there be only one bound state is that and
This gives the following constraints on the last constant in the

energy expression:

5.55 Stretched Harmonic Oscillator (Tennessee)

We use (S.5.54.1) and (S.5.54.2) as the basic equations. The turning point
C is where the argument of For the present potential the turning
point is

The integral in (S.5.54.1) has three regions. In the interval then
is a constant, and the integral is just The potential

is nonzero in the two intervals and Since
the WKB integral is symmetric, we get

To evaluate the second integral, change variables to
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The last integral equals Writing we find

We have to determine E. Equation (S.5.55.5) is a quadratic equation for
the variable Solving the quadratic by the usual formula gives the final
result:

5.56 Ramp Potential (Tennessee)

We use (S.5.54.1) and (S.5.54.2) as the starting point. In the present prob-
lem, and so

Since the integral is symmetric, we can write it as

Remembering that we obtain the final result:
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5.57 Charge and Plane (Stony Brook)

In the WKB approximation

or, between turning points,

Substituting (S.5.57.1) into (S.5.57.2) and using the symmetry of the motion
about we obtain

Thus,

b) For the potential where

the quantization condition gives

a) Since we may write
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c) Using the boundary conditions at we obtain

It implies that the odd states, for which are not affected by
while even states should satisfy the condition

Since

where

this condition takes the following form:

5.58 Ramp Phase Shift (Tennessee)

The following formula is for the phase shift in one dimension where the
particle is free on the right as and encounters an
impenetrable barrier near the origin:
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The factor is the phase change when the particle goes through the
turning point where

For the present problem we have that for and this part
of the integral exactly cancels the term For the potential is

assuming that The turning point is so we
have

5.59 Parabolic Phase Shift (Tennessee)

Again we use (S.5.58.1) for the phase shift. The potential in the
present problem is zero for  The integral in this region cancels the
term To the left of the origin, the turning point is

The integral over again equals The phase shift is linear with
energy and has a constant term.

5.60 Phase Shift for Inverse Quadratic (Tennessee)

Again we use (S.5.58.1) for the phase shift. The turning point is
The phase integral is
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The last integral is found in standard tables. To evaluate the phase shift, we
need to evaluate this expression in the limit which gives
So the final expression for the phase shift is

The phase shift is independent of energy.

Scattering Theory

5.61 Step-Down Potential (Michigan State, MIT)

Denote by the momentum of the particle to the right of the origin, and
is momentum on the left. Since energy is conserved, we have

Now we set up the most general form for the wave function, assuming the
incoming wave has unit amplitude:

Matching the wave function and its derivative at the origin gives two equa-
tions for the unknowns R and T which are solved to find R:

5.62 Step-Up Potential (Wisconsin-Madison)

Write the energy as where is the wave vector on the
left of zero. Since define a wave vector on the right as
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a) The wave functions on the left and right of the origin are

where and are the amplitudes of the reflected and transmitted waves.
Matching the wave function and its slope at gives two equations:

These two equations are solved to obtain   and :

b) The particle currents are the velocities times the intensities. The veloc-
ities are on the left and on the right:

The last expression equals the current of the incoming particle.

5.63 Repulsive Square Well (Colorado)

a) If the radial part of the wave function is then define
Since R is well behaved at in this limit. The function
obeys the following equation for
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where

and the theta function is 1 if and 0 if For the
solutions are in the form of or Instead, write it as
where the phase shift is For define a constant according to

Then the eigenfunction is

For the constraint that forces the choice of the hyberbolic
sine function. Matching the eigenfunction and slope at gives

Dividing these equations eliminates the constants A and B. The remaining
equation defines the phase shift.

b) In the limit that the argument of the arctangent vanishes, since
the hyperbolic tangent goes to unity, and

c) In the limit of zero energy, we can define

To find the             part of the cross section at low energy, we start with

where the total cross section is
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5.64 3D Delta Function (Princeton)

For a particle of wave vector Schrödinger’s equation for the radial part
of the wave function is

Only            scattering is important at very low energies, so solve for
Also define and get

At is well behaved, so Thus we choose our wave
functions to be

The quantity is the phase shift. We match the wave functions at
The formula for matching the slopes is derived from (S.5.64.2):

Matching the function and slope produces the equations

which are solved to eliminate A and B and get

In the limit of low energy, we want We assume there are no bound
states so that where is a constant. We find in this limit:

We also give the formula for the cross section in terms of the scattering
length The assumption of no bound state is that
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5.65 Two-Delta-Function Scattering (Princeton)

Let us take an unperturbed wave function of the particle of the form

Suppose that, after scattering, the wave vector becomes In the Born
approximation, the scattering amplitude is

(see, for instance, Landau and Lifshitz, Quantum Mechanics, Sect. 126),
where and (see Figure S.5.65). Substituting the
potential into (S.5.65.2), we obtain

where is the projection of the vector
on the z axis. The scattering cross section

In order to apply the Born approximation, i.e., to use perturbation theory,
we must satisfy at least one of two conditions:



317QUANTUM MECHANICS

where is the range of the potential. The first condition derives
from the requirement that the perturbed wave function be very close to the
unperturbed wave function. Inequality (S.5.65.5) may also be considered
the requirement that the potential be small compared to the kinetic energy
of the particle localized at the source of the perturbation. Even if the first
condition is not satisfied, particles with large enough will also justify the
Born approximation.

5.66 Scattering of Two Electrons (Princeton)

We evaluate the scattering in the Born approximation, which is valid when
the kinetic energies are much larger than the binding energy. The Fourier
transform of the potential is

and the formula for the total cross section of electrons with initial wave
vector is

This cross section is suitable for classical particles, without regard to spin.
The specification to the spin states S = 0, 1 is made below. Write

where is the solid angle of the scattering. The differential cross
section is found by taking the functional derivative of the cross section with
respect to this solid angle:

where we have used the fact that and is defined by
The magnitudes of the vectors and are the same,

so (see Problem 5.65 and Figure S.5.65). All
of the dimensional factors are combined into the Bohr radius Now we
consider how this formula is altered by the spin of the electrons. Spin is
conserved in the scattering, so the pair of electrons has the same spin state
before and after the collision.
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a) For S = 0 the two electrons are in a spin singlet which has odd parity.
Hence, the orbital state must have even parity. The initial and final orbital
wave functions are given below, along with the form of the matrix element.
The relative coordinate is r:

The matrix element has two factors.

b) For S = 1 the spins are in a triplet state which has even parity. The
orbital part of the wave function has odd parity. There is a minus sign
between the two terms in (S.5.66.4) instead of a plus sign, and ditto for the
final wave function. Now the differential cross section is

There is a relative minus sign between the two term in the matrix element.

5.67 Spin-Dependent Potentials (Princeton)

In the first Born approximation the scattering is proportional to the square
of the matrix element between initial and final states. If the initial wave
vector is  and the final one is set and evaluate
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where we have written the transverse components of momentum in terms
of spin raising and lowering operators. The initial spin is pointing along the
direction of the initial wave vector which we define as the
Let us quantize the final spins along the same axis. Now consider how the
three factors scatter the spins:

a)

b)

c)

d)

The term A is spin independent. It puts the final spin in the same
state as the initial spin.

is a diagonal operator, so the final spin is also along the initial
direction, and this term has a value of

flips the spin from         to and contributes a matrix element
of to the final state with the spin reversed.

gives a matrix element of zero since the initial spin cannot be
raised.

When we take the magnitude squared of each transition and sum over final
states, we get the factors for spins of

The differential cross section is written as

We have used the fact that energy is conserved, so to set
(see Problem 5.65 and Figure S.5.65).
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5.68 Rayleigh Scattering (Tennessee)

a) The formula for the total cross section  is

We write where is the solid angle. The differential
cross section is obtained by taking a functional derivative with respect to

There remains only the integral, which is eliminated by the delta
function for energy conservation:

where the vector differs from only in direction.

b) With the assigned choice of the matrix element we write our differential
cross section as

where the factor S is the average over initial polarizations and the sum
over final polarizations. There are two possible polarizations, and both are
perpendicular to the direction of the photon. These averages take the form

The factor 1/2 is from the average over initial polarization. The angle is
between the directions of and
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5.69 Scattering from Neutral Charge Distribution
(Princeton)

a) The particle scatters from the potential energy which is related to
the charge distribution

where is the Fourier transform of and is the Fourier trans-
form of The differential cross section in the Born approximation is

b) In forward scattering we take In order that the cross section have
a nondivergent result in this limit, we need to find

To obtain this result, we examine the behavior of at small values of

Consider the three terms in brackets: (i) the 1 vanishes since the dis-
tribution is neutral; (ii) the second term vanishes since the distribution
is spherically symmetric; (iii) the last term gives an angular average

and the integral of is A. The cross section in forward
scattering is

c) The charges in a hydrogen atom are the nucleus, which is taken as a
delta function at the origin, and the electron, which is given by the square
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of the ground state wave function

where is the Bohr radius.

General

5.70 Spherical Box with Hole (Stony Brook)

In spherical coordinates the eigenfunctions for noninteracting particles of
wave vector are of the form

where and are spherical Bessel functions. The constants A and B
are determined by the boundary conditions. Since we were only asked for
the states with we only need and
We can take a linear combination of these functions, which is a particular
choice of the ratio B/A, to make the wave function vanish at

This satisfies the boundary condition at Requiring that this function
vanish at gives
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5.71 Attractive Delta Function in 3D (Princeton)

a) The amplitude of the wave function is continuous at the point of
the delta function. For the derivative we first note that the eigenfunctions
are written in terms of a radial function and angular functions:

Since the delta function is only for the radial variable only the function
has a discontinuous slope. From the radial part of the kinetic energy

operator we integrate from to

This formula is used to match the slopes at

b) In order to find bound states, we assume that the particle has an energy
given by where needs to be determined by an eigenvalue
equation. The eigenfunctions are combinations of exp In order to
be zero at and to vanish at infinity, we must choose the form

We match the values of at We match the derivative, using the
results of part (a):

We eliminate the constants A and B and obtain the eigenvalue equation
for which we proceed to simplify:
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This is the eigenvalue equation which determines as a function of param-
eters such as D, etc. In order to find the range of allowed values of
D for bound states, we examine The right-hand side of (S.5.71.9)
goes to 1, which is its largest value. So, the constraint for the existence of
bound states is

5.72 Ionizing Deuterium (Wisconsin-Madison)

The ionization energy of hydrogen is just the binding energy of the electron
which is given in terms of the reduced mass of the electron–proton
system. The same expression for deuterium contains the reduced mass
of the electron–deuteron system:

The difference is easily evaluated. The ratio is a small number and
can be used as an expansion parameter:

The ratio of masses gives and

5.73 Collapsed Star (Stanford)

a) Using the 1D Schrödinger equation
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with the boundary conditions gives

where Protons, neutrons, and electrons are fermions,
so 2 may occupy each energy level, and we have

The kinetic energy of a particle

where

To determine which species are relativistic, we wish to find whether
We may extract from S.5.73.2. For neutrons:

Similarly for protons:

Since N, Z < A, both neutrons and protons are non-relativistic. For elec-
trons:

The equilibrium value of Z/A obtained in (c) for relativistic electrons gives
which still leaves 1 in S.5.73.7. Moreover, if we assume

that the electrons are non-relativistic and minimize S.5.73.14 below with
electron energy (see S.5.73.9)
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we will get and which contradicts the assumption.
So the electrons are relativistic. Alternatively, we can use the result of
Problem 4.64,

the same as S.5.73.5.

b) The ground state energy of the system is given by the sum of energies of
all levels, which we may approximate by an integral. We calculate the total
energies of non-relativistic particles (neutrons and protons) and relativistic
ones (electrons) separately:

For 1-D electrons (see Problem 4.64)

The total electron energy is
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where we used for an estimate an electron energy of the form since
we have already established that they are relativistic. We can obtain a
correct value of for them:

where we have used the result of (c), The total energy of the
star is

c) Let We need to find the minimum of the expression

where

Setting the derivative of S.5.73.15 equal to zero gives

Finally,

So the minimum energy corresponds to a star consisting mostly
of neutrons.



328 SOLUTIONS

5.74 Electron in Magnetic Field (Stony Brook,
Moscow Phys-Tech)

a) The relationship between the vector potential and magnetic field is
Using does give So this vector

potential produces the right field.

The vector potential enters the Hamiltonian in the formb)

One can show easily that and each commute with the Hamiltonian
and are constants of motion. Thus, we can write the eigenfunction as
plane waves for these two variables, with only the yet to be
determined:

The Hamiltonian operating on gives

where We may write the energy E as

and find

The energy is given by the component along the magnetic field and the
energy for motion in the plane. The latter contribution is identical
to the simple harmonic oscillator in the The frequency is the
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cyclotron frequency and the harmonic motion is centered at the point
which depends upon The eigenvalues and eigenfunctions are

where are the eigenfunctions for the one-dimensional harmonic oscil-
lator.

5.75 Electric and Magnetic Fields (Princeton)

a) Many vector potentials A(r) can be chosen so that For
the present problem the most convenient choice is Thus the
Hamiltonian is

The above choice is convenient since only fails to commute with H, so
and are constants of motion. Both potentials have been made to depend
on

b) Since and are constants of motion, we can write the eigenstates
and energies as

The last equation determines the eigenvalue and eigenfunctions
The potential is a combination of linear and quadratic terms in So the
motion behaves as a simple harmonic oscillator, where the terms linear in

determine the center of vibration. After some algebra we can write the
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above expression as

So, we obtain

The total energy is plus the kinetic energy along the The
of the eigenfunction is a harmonic oscillator

c) In order to find the average velocity, we take a derivative with respect
to the wave vector

This is the drift velocity in the It agrees with the classical
answer.

5.76 Josephson Junction (Boston)

a) Take the first of equations (P.5.76.1),

and its complex conjugate and multiply them by      and respectively:

Subtracting (S.5.76.3) from (S.5.76.2) yields
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Similarly, from the second of (P.5.76.1),

b) Substituting the solutions and into
(S.5.76.1), we obtain the expression for

Taking (S.5.76.6), the analogous expression for gives

Subtracting (S.5.76.7) from (S.5.76.8), we obtain

where So

where

c) The battery current
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Appendix 1:

Approximate Values of Physical Constants
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Some Astronomical Data

Mass of the Sun

Radius of the Sun

Average Distance between the Earth and the Sun

Average Radius of the Earth

Mass of the Earth

Average Velocity of the Earth in Orbit about the Sun

Average Distance between the Earth and the Moon

Other Commonly Used Units

Angstrom (Å)

Fermi

Barn

Year

Astronomical Year

Parsec

Room Temperature

Horsepower

Calorie

Atmosphere
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Appendix 2:

337

Conversion Table from Rationalized MKSA to Gaussian Units

Appendix 3:

Vector Identities
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Vector Formulas in Spherical and Cylindrical Coordinates

Spherical Coordinates

Transformation of Coordinates

Transformation of Differentials

Square of the Element of Length
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Transformation of the Coordinates of a Vector

Divergence

Curl

Gradient
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Laplacian

Cylindrical Coordinates

Transformation of Coordinates

Transformation of Differentials

Square of the Element of Length

Transformation of the Coordinates of a Vector



APPENDIXES 341

Divergence

Curl

Gradient

Laplacian

Appendix 4:

Legendre Polynomials
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Rodrigues’ Formula

Spherical Harmonics

The first three eigenfunctions of the harmonic oscillator in one dimension
are

Appendix 5:

Harmonic Oscillator
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where is the oscillator frequency.

Appendix 6:

Angular Momentum and Spin

The (Pauli) matrices are

while the vector
The spin 1 matrices are
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Appendix 7:

Variational Calculations

The general procedure for solving variational problems in one dimension
is to first evaluate three integrals which are functions of the variational
parameter

The two expressions for the kinetic energy K can be shown to be equal
by an integration by parts. The second expression is usually easier to use,
since one has to take a single derivative of the trial function and then
square it.

Appendix 8:

Normalized Eigenstates of Hydrogen Atom
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Appendix 9:

Conversion Table for Pressure Units

Appendix 10:

Useful Constants

Resistivity of copper (T = 300 K)

Linear expansion coefficient of copper

Surface tension of water (at 293 K)

Viscosity of water

Heat of vaporization of water (at 373 K, 1 atm)

Velocity of sound in air (at 293 K)

Si band gap

Ge band gap
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