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Preface

Multi-agent system research offers a promising technology for implementing cog-
nitive intelligent non-playing characters. However, the technologies used in game
engines and multi-agent platforms are not readily compatible due to some in-
herent differences in concerns. Where game engines focus on real-time aspects
and thus propagate efficiency and central control, multi-agent platforms assume
autonomy of the agents. Increased autonomy and intelligence may offer benefits
for a more compelling gameplay and may even be necessary for serious games.
However, it raises problems when current game design techniques are used to
incorporate state-of-the-art multi-agent system technology. A very similar argu-
ment can be given for agent-based (social) simulations.

This volume contains the papers presented at AGS 2009: The First Inter-
national Workshop on Agents for Games and Simulations held on May 11 in
Budapest. In this workshop people came together to address the particular chal-
lenges of using agent technology for games and simulations. Submissions were
invited for the following three main themes:

Technical: Connecting agent platforms to games and simulation engines; who
is in control?, Are actions synchronous or asynchronous? How to monitor
results of actions. Can agents communicate through the agent platform?
How efficient should the agents be?

Conceptual: What information is available for the agents from the game or
simulation engine? How to balance reaction to events of the game or sim-
ulation with goal-directed behavior. Ontological differences between agents
and game/simulation information.

Design: How to design games/simulations containing intelligent agents. How
to design agents that are embedded in other systems. Of course we also
welcomed papers about experiences in the use of agents in games and simu-
lations. Both successes as well as “failures” were welcome, as both can help
us better understand what are the key issues in combining agents with game
and simulation engines.

We received 17 submissions of high quality covering many of the aspects men-
tioned above. Each submission was reviewed by at least two Program Committee
members. We accepted 11 papers for presentation, which can be found in these
proceedings. We also invited some authors who covered aspects that were con-
sidered to be important in this area, but were not present in the workshop
yet. Together the selection of papers in the present volume constitutes a good
overview of the state of the art in this area. Among the papers we find a strong
example of a description of middleware that is used to connect agents to Unreal
Tournament (an extension of Gamebots). But we also have a paper describing
how to design agents for games that have to behave according to cognitive and



VI Preface

emotive theories in order to mimic or respond to human behavior in a natu-
ralistic way. Several papers describe experiences with particular agent models
used for games and simulations. Finally, the book also contains a paper that
discusses how to evaluate the behavior of the agents in the games. When are
they performing “well”? All in all we are very happy with the papers contained
in this volume. We are sure they form a valuable starting point for people that
want to combine agent technology with (serious) games. Finally, we would like
to thank the Program Committee members, without whom the reviewing would
not have been possible, and for their valuable comments on all papers allowing
for a tough selection of the best paper.

October 2009 Frank Dignum
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Pogamut 3 Can Assist Developers in Building AI  
(Not Only) for Their Videogame Agents 

Jakub Gemrot, Rudolf Kadlec, Michal Bída, Ondřej Burkert, Radek Píbil,  
Jan Havlíček, Lukáš Zemčák, Juraj Šimlovič, Radim Vansa, Michal Štolba,  

Tomáš Plch, and Cyril Brom 

Charles University in Prague, Faculty of Mathematics and Physics 
Malostranské nám. 2/25, Prague, Czech Republic 

Abstract. Many research projects oriented on control mechanisms of virtual 
agents in videogames have emerged in recent years. However, this boost has 
not been accompanied with the emergence of toolkits supporting development 
of these projects, slowing down the progress in the field. Here, we present 
Pogamut 3, an open source platform for rapid development of behaviour for 
virtual agents embodied in a 3D environment of the Unreal Tournament 2004 
videogame. Pogamut 3 is designed to support research as well as educational 
projects. The paper also briefly touches extensions of Pogamut 3; the ACT-R 
integration, the emotional model ALMA integration, support for control of 
avatars at the level of gestures, and a toolkit for developing educational 
scenarios concerning orientation in urban areas. These extensions make 
Pogamut 3 applicable beyond the domain of computer games. 

Keywords: Virtual agents, behaviour, control mechanisms, Unreal 
Tournament, 3D environment, agent development toolkit, emotions, ACT-R, 
gestures, education, ALMA. 

1   Introduction 

The development of control mechanisms for videogame agents (that is, their 
“artificial intelligence”) is hard by itself. The developer’s work is typically further 
complicated by the fact that many tedious technical issues, out of the main scope of 
their work, have to be solved. For instance, they have to integrate their agent within a 
particular 3D environment, develop at least simple debugging tools or write a code for 
low-level movement of their agents. This list may continue for pages and developers 
address these issues over and over, in most cases a waste of energy and time. 

For last four years, we have been developing the Pogamut toolkit, which provides 
general solutions for many of these issues, allowing developers to focus on their main 
goals. A new major version, Pogamut 3, has been released. Importantly, Pogamut 3 is 
designed not only for advanced researchers, but also for newcomers. Pogamut 3 can 
help them to build their first virtual agents, a feature which makes it applicable as a 
toolkit for training in university and high-school courses, as demonstrated in [9].   
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The purpose of this paper is to review the main features of Pogamut 3, its 
architecture, extensions, and work in progress. Section 2 introduces the main features. 
Section 3 briefly discusses applications of Pogamut 2 and Pogamut 3. Section 4 
introduces new extensions added to Pogamut 3 recently. Section 5 discusses related 
work. Section 6 discusses work in progress and concludes the paper. 

This paper is an extension of a short paper presented in [21]. More information 
about Pogamut 3 can be found at the project homepage [3], where an installer is 
available for download. The project’s page features tutorial videos, learning material 
about the platform and forums, which provide the always-needed support and help to 
build the community around Pogamut 3.  

2   Features of Pogamut 3 

The agent development cycle can be conceptualized into five stages: (1) inventing an 
agent, (2) implementing the agent, (3) debugging the implemented agent, (4) tuning 
the agent’s parameters, and (5) validating the agent through series of experiments. 
Individual features of Pogamut 3 were purposely designed to provide the support 
during the last four stages. 

The features of Pogamut 3 include: 
 

1) a binding to the virtual world of the Unreal Tournament 2004 videogame 
(UT2004) [17], 

2) an integrated development environment (IDE) with a support for debugging 
(Fig. 2), 

3) a library with sensory-motor primitives, path-finding algorithms, and a support 
for shooting behaviour and weapon handling,  

4) a connection to the POSH [11], which is a reactive planner for controlling 
behaviour of agents, and a visual editor for POSH plans (Fig. 4), 

5) a support for running experiments, including distributed experiments running 
on a GRID. 

 

Technically, the Pogamut 3 toolkit integrates five main components: UT2004, 
GameBots2004, the GaviaLib library, the Pogamut agent, and the IDE (Fig. 1). These 
components implement the features mentioned above, enabling a user to create, 
debug, and evaluate his or her agents conveniently.  

In general, the components of the Pogamut 3 toolkit can be used per partes. For 
instance, one can use GameBots2004 independently as well as a part of the GaviaLib 
library or the IDE. We will return to this point later. 

 

Fig. 1. Pogamut architecture 
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Fig. 2. Pogamut 3 NetBeans plugin (6) and its parts (1-5). The parts are described in the text.  

2.1   Virtual Environment of Pogamut 3 

UT2004 is a well-known action videogame with so-called “partly opened” code. In 
particular, the game features UnrealScript, a native scripting language developed by 
the authors of UT2004, in which a substantial part of the game is programmed; almost 
everything except of the graphical and the physical engine. Users can modify the code 
in UnrealScript. Additionally, the game features a lot of pre-built objects, maps, and a 
level editor. These two points allow users to create new game extensions and blend 
them with the original game content. In the context of the Pogamut 3 toolkit, the game 
provides the virtual environment for running agents. 

Actually, there are more games with partly or fully opened codes, for instance 
Halo 2 [12] or Quake 3 [25]. Each of these games has its advantages and 
disadvantages – there is no single winner. We chose UT2004 since its user 
community is large and it is relatively new offering better graphical experience 
comparing e.g. to Quake 3. Concerning UT2004’s disadvantages, it should be 
mentioned, for instance, that the whole code of Quake 3’s engine is available, which 
is not the case of UT2004. Halo2 would likely be a better platform than UT2004 for 
developing tactic AI.  
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2.2   Interface to the Virtual World 

One can implement agents directly in UnrealScript; however, it is often advantageous, 
both for educational as well as experimental reasons, to develop the agents using a 
different, external mechanism. This means that one has to create a binding to the 
UT2004 game. Several years ago, Adobbati et al. developed a generic binding for this 
purpose called GameBots [1]. It was swiftly adopted by the UT community. The 
original GameBots worked with UT99. GameBots2004 is our customized extension 
of the original GameBots, which connects the rest of the Pogamut toolkit to the 
UT2004.  

GameBots2004 exports information about the game environment through a TCP/IP 
text based protocol, allowing users to connect to UT employing the client-server 
architecture. This means that the user implements an agent’s control mechanisms at 
the client and uses GameBots2004 as the server.  

Importantly, GameBots2004 can be used separately without other components of 
Pogamut 3. Thus, one can connect his/her own development environment to UT2004. 
On the other hand, if someone aims at connecting Pogamut 3 to other virtual 
environment, he/she has to develop his/her own world-interface replacing 
GameBots2004.  

2.3   GaviaLib Library 

The GaviaLib library has been developed as a general purpose Java library for 
connecting agents to almost any virtual environment, i.e. it is a generic interface for 
accessing a wide range of possible worlds. Only mild assumptions have been imposed 
upon virtual environments; in a nutshell, an environment has to work with objects and 
be able to provide information in an event-based manner.  

GaviaLib provides: 

• Abstract agent implementation, which handles the agent’s life cycle, allows 
for the remote control of the agent through JMX [40], a standard Java 
protocol for remote instrumentation of programs, and defines a common set 
of logs, 

• Agent’s interface to the world, which manages object and event identities and 
notifies the agent about important object events (e.g. an object has 
appeared/disappeared/been changed), 

• XML/XSLT framework for the definition of the world’s objects and events. 
 

What deserves most attention is the agent’s interface. This interface provides API for 
listening for events and for querying object instances. Both of these use cases utilize 
Java class hierarchy allowing for different levels of abstraction, an analogy to 
semantic ontologies. This feature can be illustrated on the following example. Let us 
assume a simulator of a virtual world that can be populated by items such as fruits and 
vehicles, but currently only apples and cars are supported. Concerning agents that are 
to populate this world, this means that designers must provide a way for the agents to 
recognize items of these two kinds. When GaviaLib is used, designers have to create 
following classes representing the objects’ types and their categories: “item”, “fruit”, 
“vehicle”, “apple”, and “car”. Utilizing Java class inheritance, designers will further 
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Fig. 3. High-level GaviaLib architecture overview. (1) Perceptual part servers to process 
information messages from the virtual world that Pogamut 3 is connected to. (2) Interaction 
part sends commands to the virtual world. (3) Agent abstractions comprise stubs of agents, 
defining high-level interface for agents’ minds.  

define that classes “vehicle” extends “item”, “fruit” extends “item”, “apple” extends 
“fruit”, and “car” extends “vehicle”. GaviaLib then propagates events according to 
this ontology; for instance, when an event happens on the object of class “apple”, it is 
propagated also to “fruit” and “item”. This makes the event model of GaviaLib 
flexible as the user may listen on all “fruit” events by attaching a listener on the class 
“fruit” instead of attaching the listener on every instance of fruit. This feature is not 
available when using GameBots2004 alone. This implementation also allows for 
custom extensions to existing code. When another designer creates a new class 
“banana” that extends “fruit”, all existing listeners on “fruit” will automatically be 
able to report events that have happened on all bananas. 

The GaviaLib’s layered architecture (Fig. 3) makes it possible to use different 
means of communication with the virtual world. A GaviaLib agent can be connected 
through plain text TCP/IP protocols (like GameBots2004), CORBA or, in the case of 
Java environments, it can reside in the same Java Virtual Machine as the world 
simulator and communicate directly through method calls.  

GaviaLib has also other features. These are fully detailed in [22]. 
The possibility of general usage of the library will be known only after rigorous 

testing with various virtual environments. Presently, the only stable binding featured 
by GaviaLib is the UT2004 binding, which employs Gamebots2004, as detailed in 
Sec. 2.4. However, we also have a work-in-progress binding with the Defcon game 
[27]. Defcon is simulation of a global thermonuclear conflict played in real-time. The 
player takes a role of a commander in charge of military forces under the flag of one 
nuclear nation. The successful binding of GaviaLib to Defcon would provide 
evidence that the library could be used as a general middleware for connecting to 
virtual environments. The investigation of GaviaLib possibilities on a rigorous basis 
presents future work. 

2.4   UT2004 Agent 

The UT2004 agent is a set of Java classes and interfaces derived from the basic 
classes of the GaviaLib library. The UT2004 agent is derived from all Parts (1) – (3) 
from Fig. 3, adding UT2004 specific features, such as UT2004’s sensory-motor  
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Fig. 4. Screenshot of POSH visual editor. A part of the plan of Hunter agent, which is a 
standard Pogamut example agent, is depicted. 

primitives, the navigation utilizing the internal UT2004 way-point system and 
auxiliary classes providing information about the game rules. Thus, if a user wants to 
connect Pogamut to a different environment, he/she has to do both of these things: a) 
create a new interface to the virtual world (i.e. replace GameBots2004), b) create 
domain specific mechanisms at the side of the GaviaLib library (i.e. replace UT2004 
agent).  

Developers can program UT2004 agents using the classes of the Pogamut agent; 
they can implement an agent’s control mechanism directly in Java or use the reactive 
planner POSH. POSH has been developed as an independent action selection planner 
by Joanna Bryson [11] and Pogamut 3 exploits it as a plug-in. From our perspective, 
the main advantage of this planner is that it is easy to understand for beginners 
allowing them to program their first agents quickly and easily comparing e.g. to Soar 
[44], Drools rules [29] or Jadex [4]. Similarly to some but not all of the other planners 
and reasoners, it enforces the design that clearly separates low-level actions and 
sensory primitives (coded in Java or Python) from a high level hierarchical plan of an 
agent’s behaviour, simplifying the design process. POSH also lacks some features of 
more advanced planners and rule-based engines such as variable binding at the level 
of plans. This is often an advantage for beginners; some of these features may be 
unintelligible to them. However, at the same time, these features may be vital for 
advanced users. For those who already advance, it may be an option to use plain Java 
or another planner instead of POSH.  

The editor for POSH plans is available (Fig. 4). 
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2.5   Integrated Development Environment 

The IDE is developed as a NetBeans plugin [41] (Fig. 2). It can communicate with 
running agents via JMX. The IDE offers multiple features for a designer, such as 
empty agent project templates, example agents (e.g. hunter and prey agents or a 
khepera-like agent) (Fig. 2, Window 1), management of UT2004 servers, list of 
running agents (Fig. 2, Window 4), introspection of agent’s variables and a quick 
access to general agent properties (Fig. 2, Window 3), the step-by-step debugging, log 
viewers (Fig. 2, Window 5), and the manual controller of agent’s position (Fig. 2, 
Window 2). However, the Pogamut agents can also be developed without this plug-in 
in any other Java IDE using only GaviaLib with the UT2004 extension. 

3   Applications and Scalability 

Pogamut 2 (i.e. the previous version) has been used in many research projects [e.g. 
42, 38], including student projects at our university ranging from utilizing 
evolutionary techniques for agent development [31], trough fuzzy rule control of 
behaviour of agents [39], up to episodic memory modelling [13]. Pogamut 2 has been 
employed for training in university and high-school courses [9, see also 7 for 
supplementary materials]. It was also picked as a base for 2K BotPrize competition1, 
where participants were challenged to develop an agent that can fool the panel of 
judges that it is a human.  

Some projects have been completed using Pogamut 3 (i.e. the present version), 
including a prototype of an educational game for teaching students the basics of 
developing virtual agents and virtual storytelling [8]. However, Pogamut 3 is 
presently more buggy than the previous version (although this may change soon).   

The number of UT2004 agents a user can control via Pogamut 3 depends on the 
agents’ complexity. Generally, Pogamut 3 cannot be expected to handle more than 10 
agents at the same time. However, Pogamut 3, as well as Pogamut 2, allows for 
running both Pogamut agents as well as UT agents (i.e. agents programmed directly in 
the Unreal Script) simultaneously and the number of UT agents is limited only by the 
UT2004 server ability to handle the load.  

The synchronous perception-action cycle for Pogamut 3 agents lasts 250 ms. This 
constant can be decreased to about 100 ms depending on the computer and the 
number and complexity of agents within the simulation. Decreasing the constant 
below this number can render the application unstable mainly due to GameBots2004 
and UT2004 limitations. Asynchronous messages are processed instantaneously; the 
time lag caused by the propagation of the event via GameBots2004 and GaviaLib is in 
the order of milliseconds depending on the computer hardware used.  

4   Pogamut’s Extensions 

Recently, several extensions to Pogamut 3 have been completed. The purpose of these 
extensions is to make Pogamut 3 useful also beyond the domain of gaming AI. The 
extensions have been developed independently: they are not integrated in a single 
                                                           
1 http://botprize.org (27.9.2009) 
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package. Moreover, they are not included into the Pogamut 3 release version at the 
time of writing of this paper, but they may be available for download in coming 
months. In this section, we will review these extensions in further detail: ACT-R 
Integration, Gestures module, ALMA Integration, and Educational Scenarios. 

4.1   ACT-R Integration 

Recently, it has been proposed that computational cognitive science modelling can 
benefit from implementing models using virtual agents [10, 30]. This means, a neuro-
/psychologically plausible model can be integrated within a virtual agent’s “mind” 
and then tested trough scenarios in virtual worlds. Advantages of this approach have 
been discussed in [10]. One potential way how to do this is to adopt a general 
cognitive architecture, such as Soar [33, 44], ACT-R [2] or LIDA [19], as the main 
architecture of a virtual agent’s mind. These architectures are somewhat plausible and 
tend to be modular; hence one can embed his or her model in one of the modules 
without loosing much of its original plausibility. In fact, Jilk and colleagues [30] did 
exactly this for a model of the visual cortex.  

Pogamut 3 newly offers a binding to ACT-R cognitive architecture, so called 
PojACT-R [50] (Fig. 5). Because Pogamut is written in Java, we used jACT-R [24], 
the Java implementation of ACT-R. We run jACT-R in a separate thread. The 
important limitation of PojACT-R is that the cognitive cycle of ACT-R lasts 50 ms, 
while the Pogamut’s cycle is longer (about 100-250 ms). This issue is partly 
ameliorated by a special type of perception buffers implemented by the default 
PojACT-R agent. These buffers hold perceptual information from the UT2004 
temporarily and pass it to the jACT-R in a step-wise manner while giving high 
priority to asynchronous messages.  

To demonstrate that PojACT-R works, we implemented a simple Hunter agent 
featuring the ACT-R architecture. Preliminary results suggest that the efficiency of 
this agent is acceptable for research purposes (e.g. the cognitive cycle of this agent 
featuring 160 rules lasted about 20 ms on average on Intel Core 2.66 GHz Duo with 
UT2004 server and client running [50]). Java principles and the modular architecture 
enable various kinds of experiments (e.g. spatial orientation, episodic memory 
modelling, multithreaded AI). 

Different reasoning engines, such as Jadex [4], can be connected to Pogamut 
similarly to jACT-R. In fact, Educational scenarios described in Sec. 4.3 uses Drools 
rules [29] in this manner. We decided to connect jACT-R to make Pogamut 3 
available for the community of computational cognitive psychology. BDI reasoners 
such as Jadex, which can make the platform available for traditional software agents 
community, can present another future goal. 

4.2   Gestures Module 

It is widely accepted that in order to achieve believable virtual agents, some level of 
gesturing and facial expressions is needed. Even though UT2004 features quite 
powerful animation system, gestures and facial expressions are typically expressed 
using animations prepared in advance (i.e. made in specialized applications). Our aim 
was to allow users to implement mechanisms that can compose animations of the 
agents’ avatars as much on-the-fly as possible while depending on UT2004 as little as  
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Fig. 5. Architecture of PojACT-R. Compare this figure with Fig. 3. 

possible; in other words, to allow users to control UT2004 avatars directly from 
Pogamut 3. To this end, we had to find a way of defining, planning, decomposing, 
and transporting of animations.  

Concerning planning, we decided to use Behaviour Markup Language (BML) [32]. 
BML is intended to become “a framework and an XML description language for 
controlling the communicative human behaviour of embodied conversational agents” 
[32]. It provides a convenient way to create and parse sequences of behaviours, 
including gestures, facial animations and speech, though in our case, only lexicalized 
gestures and gaze have been implemented so far. 

For definition of lexicalized gestures, we have devised our own simplistic XML-
based language, which has been designed to operate easily with BML. If reasonable, 
BML can be bypassed and the user can supply his own implementation of a planner 
through a simple interface.  

For decomposition of animations the MPEG-4 with its “atomic animations” was 
chosen. Examples of such animations are “arm flexing,” “arm twisting,” or “arm 
abduction.” These can be decomposed furthermore into lower level skeletal animations, 
which are then handled by Unreal Engine and composed into the final result. 

Communication with the virtual world is carried using a slightly modified FBA bit-
stream format specified in MPEG4 [14]. This bit-stream is quite efficient and lowers 
the amount of bits transferred to a bare minimum. In order to achieve even less traffic, 
we have decided to use a variable frame rate (instead of a constant one). On the other 
hand, concerning efficiency of the transfer, the limitation is the TCP protocol, which 
increases the traffic. Had we used RTP, the traffic would have been lower. We used 
TCP for prototyping purposes; in future, we plan to switch to RTP. 

The work is detailed in [35] where also an example avatar is presented.  

4.3   ALMA Integration 

Emotion modelling is a multi-faced theme with many possible benefits for virtual 
agents. Emotions can affect decision making, expressive part of agents’ behaviour or 
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just serve the agent as another source of information when interacting with humans. 
All of these points can increase virtual agents’ believability.  

Therefore we decided to incorporate the ALMA emotion model [20] into  
Pogamut 3. ALMA is based on OCC theory of emotions [34] and provides our agents 
with three distinct types of affects: emotions for short term affects, mood for medium 
term affects and personality for long-term affects. ALMA is coded in Java and offers 
a GUI where the model can be configured easily.  

ALMA integration works as follows. First, a user defines a set of events that 
should cause emotional responses. These events will be detected in the environment 
by Pogamut’s methods. Second, whenever one of these events occurs in the 
environment, it will be appraised by a set of ALMA emotion variables and sent as an 
input to ALMA. Third, ALMA will process the appraised event and generate a change 
of affective variables. 

The ALMA-to-Pogamut 3 binding was already used in Project Emohawk [5] to 
provide virtual agents with affects. Project Emohawk features a simple scenario, 
taking place in small town called UnrealVille. The virtual agents (a boy and two girls) 
are able to invite each other to the cinema, escort each other home or go for a walk to 
the park. The agents can like or dislike other agents, get angry with them or even fall 
in love. The analysis confirmed that the ALMA-to-Pogamut 3 binding is stable and 
can be used for virtual agents emotion modelling.  

4.4   Educational Scenarios 

Educational scenarios (ES) present a framework aimed at easy authoring of short 
didactic scenes. The current prototype implements a scenario for exercising 
orientation in urban areas. The target audience of this prototype is primary school 
students. The students are challenged in a game-like world with tasks ranging from 
following a path presented on a 2D map in a 3D visualization of a city, trough 
marking the player’s 3D location on a 2D map, to estimating direction to the player’s 
home. However, the ES framework can be used in a more general way. 

In the content creation phase, ES provides an Eclipse IDE plug-in for specifying 
areas and points of interest in a 2D map of a city (e.g. street crossings, the player’s 
home etc.). These landmarks can be then referenced from a script describing 
behaviour of the whole scenario. Drools rules engine [29] is used as the underlying 
scripting language for this purpose. A simple domain specific language resembling 
restricted natural English has been defined on top of the Drools rules, which makes 
the process of scenario creation accessible even for non-expert programmers. 

ES also extends the core functionality of Pogamut 3 with a set of dialog widgets 
visualized in the UT2004, making it possible to run a dialog system within the game 
in run time. This dialog system can be used independently of the plug-in for 
specifying landmarks and areas on the map. 

The work is detailed in [47].  

5   Related Work 

With respect to the Pogamut’s objective, we will break down related work into three 
categories; a) tools for teaching students basics of development of virtual agents and 
virtual storytelling applications, b) tools supporting research on gaming agents’ AI, c) 
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general multi-agent platforms. Concerning Point (a), many tools for authoring 3D 
graphics exist, as opposed to tools for teaching programming of behaviour for virtual 
agents. Several authoring toolkits emerged from the cauldron of the virtual 
storytelling community in recent years [reviewed in 36], but they tend to provide very 
limited or no support for teachers and learners, many of them are poorly documented 
and some of them are not downloadable. To our knowledge, with respect to learning 
programming behaviour for virtual agents, there are only two tools (besides Pogamut) 
that support education explicitly and whose dissemination to schools has been 
documented: Netlogo [49] and Alice [15]. Netlogo is an excellent entry-level tool for 
building simple agents and running social simulations, but it does not allow for the 
creation of agents with complex behaviour and possesses no complex 3D presentation 
environment. Alice’s main objective is the introduction of basic programming 
concepts like loop statements or object-oriented programming. The complexity of the 
built-in 3D environment is not comparable to current game engines and the 
environment is only a mean to achieve Alice’s educational goal. 

Concerning Point (b), there are several tools for the development of behaviour of 
human-like agents inside commercial game engines. Table 1 lists these tools along 
with their game engines and programming languages.  

All of these tools except the Pogamut 3, UT3 .Net Bots and RIT’s GameBots are 
using rather old game engines as their simulation environment. Quake 2 was released 
in 1998 and Unreal Tournament 99 in 1999. In comparison, Unreal Tournament 2004 
used by Pogamut 3 gives better graphical experience. However, Unreal Tournament 3 
(released in 2007) used by UT3.Net Bots is superior to all other game engines used by 
the listed tools. However, there is a trade-off: UT3 requires PCs with better  
performing hardware (i.e. graphic cards and CPUs), which may not be available, e.g. 
if the tool is used at high-schools for workshops. 

Table 1. A list of open source tools for development of computer game agents. The year of the 
last release/update is based on web information, we have not contacted the authors. Thus, this 
information is not guaranteed. 

Name Game Language Last    
release  

GUI Note 

F.E.A.R [16] Quake 2 C++ 2005 None  
Quagents [45] Quake 2 C++ 2005 None Prolog and 

Matlab 
integration 

QASE [23] Quake 2 Java 2009 None Matlab 
integration 

Original 
Gamebots [1] 

UT99 -- 2001 None Just a network 
protocol 

RIT’s 
Gamebots [37] 

UT03, 
UT04 

-- 2007 Simple 
visualizer 

Just a network 
protocol 

JavaBots [28]  UT99 Java 2002 Simple  
UT3 .Net Bots 
[46] 

UT3  C# 2008 Simple 
level map 

 

Pogamut 3 [3] UT04 Java 2009 Netbeans 
plugin 

POSH, BML, 
ACT-R  
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All of these frameworks are extensible but none of them besides Pogamut and 
Quagents comes with any 3rd party decision making system already connected. On the 
other hand, several tools offer a Matlab integration. 

Finally, all implementations of pure Gamebots are merely communication 
protocols. They provide neither any feature of GaviaLib, nor a complex integrated 
development environment offered by Pogamut 3. 

Concerning (c), the question is what is the relation of general multi-agent (MAS) 
platforms, such as Jade [43], to Pogamut 3 and GaviaLib. The point is that MAS 
platforms are typically not used in “agents in videogames” research; why is this? Our 
answer on this question should not be understood as a definite claim but rather as a 
statement aiming to motivate a further discussion on this topic. Our opinion is that 
MAS platforms are basically something different than toolkits like Pogamut; they 
have been built for different purpose. If one wants to use Jade in “agents in 
videogames” research, one would need to create a wrapper-agent that would 
encapsulate the whole virtual environment (e.g. UT2004) and that would provide 
communication interface to agents that would represent reasoners for in-game agents.  

In other words, GameBots would be replaced by the wrapper-agent and the client-
server architecture of a Pogamut-like toolkit by the MAS architecture. But why should 
anyone do this? On the one hand, all the work that we and others have done to 
implement GameBots would need to be done again in implementing the wrapper-agent, 
and all the work behind GaviaLib would need to be done again at the side of reasoning-
agents. Actually, this reimplementation in a MAS platform may even bring a 
disadvantage. As GameBots communicate via a text-based protocol, the parsing is fast. 
If one wants to exploit FIPA-like messages [18], the parsing overhead would increase.  

On the other hand, there are many features of MAS platforms without obvious use 
for game agents, for instance yellow pages. The whole “service-oriented” view of 
MAS seems to be needless for game agents. We see one possible advantage of a MAS 
platform in that the agents can communicate each other with directly. Each Pogamut 
agent can communicate with other agents in game only via the virtual environment. 
MAS platforms offer direct agent-agent communication channels, by-passing the 
environment. The trouble with this advantage is that game designers would often want 
to have all the communication directed via the environment for the reasons of 
plausibility. Still, direct agent-agent channel may be useful in more complicated 
games with many agents, e.g. in tactical games where the agents are required by 
designers to communicate each other with (e.g. solders via a walkie-talkie). 

To summarize, Pogamut’s main contributions are: full integration with Netbeans 
IDE, connection to the relatively new game engine, binding for ACT-R, POSH, BML, 
and ALMA, and continuing support and development of the platform. 

6   Conclusion and Future Prospect  

The Pogamut 3 toolkit provides many general solutions for developers of videogame 
agents. The important facet of Pogamut 3 is that it has been designed not only for 
advanced researchers, but also for newcomers. Its applicability for beginners has been 
proved by using it as a toolkit for teaching in a university and a high-school course on 
programming virtual agents [7, 9]. 
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The current release [3] of Pogamut has also several limitations. Most notably, its 
integration with UT2004 and the support provided by GaviaLib classes make it most 
suitable for first-person shooter AI projects; this suits some, but is unsuitable for 
others. Although the ACT-R integration [50] is now available for cognitive 
psychologists and Educational scenarios [47] make Pogamut 3 partly applicable for 
the domain of serious games, features that would help with general virtual agents and 
general gaming AI development and education are limited.  

To partly address this issue, we are now extending Pogamut 3 by a generic 
educational storytelling scenario with non-violent graphics [8], which utilizes the 
ALMA model [20]. Pogamut has been being connected to the Defcon game [27] and 
we are considering a Virtual Battle Space 2 (VBS2) [5] connection, which would 
feature the industry standard HLA interface (IEEE 1516) [26]. The creation of a 
general GaviaLib–HLA bridge would make it possible to connect even more 
environments with minimal effort. 
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Abstract. We describe a distributed architecture for situated large-
scale agent-based simulations with predominately local interactions. The
approach, implemented in AglobeX Simulation platform, is based on
a spatially partitioned simulated virtual environment and allocating a
dedicated processing core to the environment simulation within each
partition. In combination with dynamic load-balancing, such partition-
ing enables virtually unlimited scalability of the simulation platform.
The approach has been used to extend the AgentFly air-traffic test-
bed to support simulation of a complete civilian air-traffic touching Na-
tional Air-Space of United States. Thorough evaluation of the system
has been performed, confirming that it can scale up to a very high num-
ber of complex agents operating simultaneously (thousands of aircraft)
and determining the impact of different configurations of the simulation
architecture on its overall performance.

1 Introduction

Agent-based simulations have recently become a popular way to model and
study complex multi-actor systems, complementing the long-established system
dynamics and discrete-event simulation approaches [3]. For a large number of
agents, high complexity of their reasoning and/or high complexity of agent-
environment interaction, a single machine might not be able to host the whole
simulation. In such a case, an effective distribution schema is required that would
enable the simulation to scale.

In this paper, we propose a particular distributed agent-based simulation ar-
chitecture and describe AglobeX Simulation, a simulation platform imple-
menting the architecture. The development of the platform has been motivated
by the need to simulate, with great level of detail, full civilian air-traffic touch-
ing National Air-Space of the United States. The design and the implementation
developed, however, provide a more universal recipe and can be applied to other
large-scale (analytical) simulations requiring high simulation fidelity, scalability
and maximum simulation speed.

The proposed approach is based on dynamic partitioning of the simulation of
the virtual world into a variable number of dynamically-sized partitions, each
handled by a dedicated environment simulation component. Thanks to the pre-
vailing locality of agent-to-agent and agent-to-environment interactions, such

F. Dignum et al. (Eds.): Agents for Games and Simulations, LNAI 5920, pp. 16–32, 2009.
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partitioning allows to effectively distribute the required computation between a
number of machines while keeping the communication overhead low.

The proposed architecture has been applied for the simulation of the full
civilian air-traffic touching National Air-Space of United States, requiring high-
fidelity simulation involving the total of 52,799 airplanes with up-to 6,500 simul-
taneous aircrafts operating over the whole Earth – long flights departing, arriving
or flying over the United States. The AgentFly [18] system implementing the
proposed architecture is used for a thorough empirical evaluation.

The paper is organized as follows. After a review of the related work in
Section 2, we define the class of simulation problems addressed and state the
requirements of the suitable solution in Section 3. In Section 4, we describe the
proposed approach in detail, starting with the architecture of the simulation and
the structure of the simulation up to the description of the core spatial parti-
tioning idea and its dynamically re-balanced extension. In Section 5, we briefly
describe the implementation of the approach utilizing the high-performance
Aglobe multi-agent platform. Section 6 is the dedicated to an in-depth eval-
uation of the approach on the civilian air-traffic simulation domain. The effect
of system load and the distribution of hardware resources among different com-
ponents of the architecture are evaluated. Section 7 concludes with a summary
and suggestions for future work.

2 Related Work

There are two basic approaches to agent-based simulations – analytic simulation
and distributed virtual environments. The analytic simulation is typically used
for high fidelity simulation of a given problem with a maximum detail and accu-
racy to provide results for further analysis of the problem. Analytic simulation
runs typically without human interaction and thus a repeated simulation run
with the same initial configuration leads to the same results. Furthermore, the
relation to real-world time (referred to also as wall clock) is not important in
analytic simulation and the simulation is therefore executed at maximum speed
to deliver the results as soon as possible (this mode is also referred to as as fast
as possible [6] mode). The simulation is synchronous and usually deterministic
and can be based either on time steps or on events. The time-stepped simulation
advances by predefined equally-sized (virtual simulation) time steps [8, 24] and
new states of the simulation are computed after each such a step. The event-
driven simulation uses events as a basis for its execution [2, 15]. Each event is
scheduled with a time-stamp and the simulation framework advances to the time
of the event with the earliest time-stamp and determines the new states.

The distributed virtual environments (DVEs) [23] are used to create a realis-
tic illusion of real-world environment to a human user for purposes such as train-
ing or entertainment. Because of involvement of human users, DVEs are usually
paced with wall clocks and do not produce the same results when repeated. They
also usually do not support absolute synchronization and ordering of messages
[12, 13, 25].
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High level architecture (HLA) [5, 11] is an industry standard developed as
an extension of DVE simulation. The architecture has been defined by a work-
ing group formed by the Defense Modeling and Simulation Office in order to
standardize simulation development and allow inter-operability between various
simulators produced by multiple vendors by using standardized simulation roles,
predefined communication protocols and the data exchanging format.

The AglobeX Simulation described in this paper uses a combination of both
the analytic and DVE approach. Agent’s communication, internal processes and
non-physical interaction with other agents is asynchronous, non-deterministic,
possibly containing a human in the loop, and the implementation of these
processes therefore uses the DVE approach. The simulation of the environment,
situated entities and physical interactions in the virtual world is synchronous and
deterministic, and the analytic approach with maximal accuracy is therefore used.
The simulations built on the platform can run in the as-fast-as-possible mode pre-
serving the accuracy of the simulation together with asynchronous and
non-deterministic behavior of the agents in faster than wall clocks paced time.

As far as our primary application area of interest, i.e. air-traffic simulation
is concerned, both the analytic and DVE approaches are used. The DVE are
primarily used for training purposes and not directly relevant to our objectives.
Analytic simulation, on the other hand, is used for the purposes of obtaining
insight into various processes and phenomena related to air traffic. Numerous
simulations with varying level of detail, different purposes and coverage have
been developed. Agogino [1] uses agent-based simulation for incremental en-
hancements of the current air-traffic management (ATM). Krozel [10] uses the
FACET simulation system to model air-traffic in inclement weather. Gorodet-
sky [7] uses an agent-based simulation for ATM within the air-space of large
airports. Hwang [9] uses simulation for verification of collision avoidance al-
gorithms. All of the above systems focus on simulating a particular subset of
the overall air traffic. On the other hand, the AgentFly system built using the
AglobeX Simulation platform aims to provide a model of the entire air traffic.
The huge computational requirements resulting from this goal were consequently
one of the driving forces behind the development of the presented distributed
simulation platform.

3 Simulation Problem and Requirements

In this section, we describe the class of simulations addressed by this work and
we specify the requirements on the solutions.

3.1 Simulation with Localized Interactions

We are addressing simulations involving large numbers of situated entities1, both
autonomous and passive, operating and interacting in a realistically modeled
1 By situated entities we mean that they are embedded in a synthetic model of a 3D

physical space.
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large-scale virtual world. Given our motivating application, we further assume
that the virtual world is an Earth-like 3D environment limited by a maximum
altitude. The entities need not be present during the whole simulation but can
be dynamically introduced or removed based on the simulation needs.

Each situated entity in the simulation carries a state, components of which can
be either (i) observable i.e. public and external or (ii) hidden i.e. non-observable,
private and internal. The fundamental component of the entity’s observable state
present in the simulation is its position and orientation in the virtual world.

The evolution of the entity’s state is governed by the defined entity’s physics,
e.g. entity movement is driven by its motion dynamics typically defined by a set
of differential equations, which can also refer to entity’s hidden state components.
Physics can be divided to intra-entity and inter-entity. The intra-entity physics
capture those aspects of physical dynamics that can be fully ascribed to a single
entity. Although the equations of the intra-entity physics can refer to any states
in the simulated world, they only govern the states carried by its respective
entity. In contrast, the inter-entity physics captures the dynamics that affects
multiple entities simultaneously and which cannot be fully decomposed between
them (consider e.g. the effects of a physical collision of two entities).

In addition to physical interactions, autonomous entities can also interact
via communication, i.e. exchange electronic messages, and by using sensors to
perceive their surrounding virtual environment. Communication between entities
can be restricted by the inter-entity physics simulating required communication
medium, e.g. wireless network. Similarly, each sensor has its capabilities defined
which may restrict the observable state it can perceive only to a defined subset,
typically based on the distance from the sensor’s location (e.g. a limited range
of a radar).

3.2 Requirements

Having defined the type of simulations addressed and the necessary terminology,
we can now state the desired properties of a simulation platform:

– High fidelity – The simulation has to be accurate with respect to the defined
physics. Simulation level of details (LOD) [4] techniques cannot be used to
reduce the complexity of used intra- or inter-physics as this could lead to
significant errors in the simulation output.

– Scalability – The simulation platform has to be scalable in terms of the
number of simulated situated entities (both the number of simultaneously
running entities and their total number) and the virtual world dimension.
Distributed architecture of the simulation should allow to scale the simula-
tion up simply by increasing the number of computing resources used for the
simulation.

– Maximum simulation speed – The high-performance simulation platform
should be able to produce results for a given simulation scenario in minimum
possible time without sacrificing the accuracy of the high fidelity simulation.
In other words, the speed with which the simulation is executed should not
affect simulation results.
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4 Approach and Architecture

We now describe the key components of the approach to large-scale simulations
which we implemented within the AglobeX Simulation platform.

4.1 Situated Entities

In our approach, any entity consists of up to three subcomponents:

– Body – The entity’s body encapsulates entity’s intra-physics which governs
the evolution of entity’s state as a function of other, possibly external states.
Typically, the body defines motion dynamics for the entity.

– Reactive control – The entity’s reactive control contains real-time loop-back
control for the entity. The loop-back control affects entity’s states based on
the observation of other states. Reactive control e.g. handle urgent reactive
behaviors (such as avoiding an obstacle) triggered in emergency situations.

– Deliberative control – The entity’s deliberative control contains complex
algorithms employing planning, prediction and communication with other
entities. The outputs of deliberative control typically feed back into and
controls the entity’s reactive control module. Typically, complex delibera-
tive algorithms providing high-level entity control are invoked based on the
sensing perceptions.

Due to their principal similarity in loop-back approach, the body and the reactive
control are collectively referred to as entity’s state updater.

Entities can be either autonomous or passive. Autonomous entities, termed
situated agents, have at least one and typically both control modules. Situated
agents are used to represent pro-active, goal-oriented actors in the simulation.
Passive entities only posses the body and thus they represent non-autonomous
objects whose behavior in the virtual world is fully defined only by their physics.

4.2 System Architecture

All components in the simulator architecture are divided into two groups, see
Figure 1:

– Environment simulation components (ESCs) – These components are
responsible for application of all entities’ state updaters and also for the
updates resulting from the inter-physics.

– Deliberative control components – The deliberative control part of each sit-
uated agent is encapsulated in a separate deliberative control component.
Deliberative parts can communicate via component-to-component message
transmission if this is allowed by inter-physics governing the communication
medium.

Even though the deliberative control part and the state updater are decoupled
in the simulator architecture, the deliberative control and the state updater of
each entity is connected by a signal channel through which sensing perceptions
(one way) and control commands to the reactive control (the other way) are
transmitted.
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Fig. 1. Architecture overview of the distributed AglobeX Simulation platform

4.3 Time-Stepped Simulation

The presented simulation platform employs a time-stepped simulation approach
[6]. The virtual simulation time driving the dynamic processes of the simulation
entities is incremented uniformly by a constant time step. Defined physics and
loop-back control from the reactive parts are expressed in terms of difference
equations; such equations define the entity’s state (after the time increment) as
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a function of the current state only. All these difference equations, and therefore
all physics and reactive parts, have to be evaluated synchronously in order to
provide consistent evolution of the virtual world. Synchronous evaluation means
that states are updated only after difference equations (relevant in the given
moment in time) have been evaluated.

The above virtual time steps and thus the resulting state updates can be
applied regularly with respect to the external wall clock time, or in a as-fast-as
possible manner. In the as-fast-as possible mode, the next time step is initiated
just immediately after the previous one has been completed. This mode therefore
allows to complete a given simulation scenario in the shortest possible time.

4.4 Distributed Simulation and Environment Partitioning

Both the environment simulation and deliberative control components can be
distributed among multiple computer nodes during the simulation. The whole
virtual simulation world is spatially divided into a number of partitions. The par-
titions are mutually disjoint except for small overlapping areas around partitions’
boundaries. Each partition has a uniquely assigned environment simulation com-
ponent (ESC) which is responsible for updating states (i.e applying of relevant
difference equations) corresponding to all entities located within the partition.
The application of intra-physics may require exchange of state information be-
tween multiple partitions, in case the entities it affects are not located within
the same partition.

In contrast with the state updaters, entity’s deliberative control modules are
deployed in the simulation grid (computer nodes) irrespective of the partitions
and corresponding entity’s position in the virtual world.

The above virtual world partitioning implies that whenever the location of an
entity changes so that the entity moves (spatially) to a new partition, the entity’s
state updater needs to be migrated to ESC responsible for the new partition.
In contrast, the relatively heavy-weight deliberative control modules are never
moved between computer nodes. The signal channel between the entity’s reactive
control and its deliberative control module is transparently reconnected and
it is guaranteed that no signal transmission is lost during the migration of a
state updater between two ESCs. The small overlapping areas around partition
boundaries introduced above are used to suppress oscillatory migration of state
updaters between neighboring ESCs in the case when the corresponding entity
is moving very close along partition borders.

4.5 Simulation Cycle

The consistent evolution of the whole virtual world is achieved by coordinated
operation of all ESCs. Each simulation cycle is decomposed into the following
phases:

1. Evaluation of state updaters – During this phase, ESCs determine new state
values as a result of difference equations defined in intra-physics and reactive
control modules of respective entities.
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2. Evaluation of inter-physics – In this phase, ESCs exchange state information
required to calculate state updates controlled by inter-physics (and therefore
possibly crossing partition boundaries)

3. Migration of state updaters – Entities whose location after the state update
no longer belongs to the partition corresponding to their hosting ESCs are
migrated to the appropriate ESCs.

4. Application of new states – From this moment, all pre-computed new state
values are considered as current ones.

The next phase of the simulation cycle is invoked only once the current phase is
completed by all ESCs.

4.6 Dynamic Load-Balancing

In order to provide maximum performance throughout the whole simulation,
the proposed architecture implements load-balancing. Load-balancing related to
both environment simulation components (through dynamic re-partitioning) and
deliberative control parts (through balanced startup deployment) is supported.

The world decomposition to partitions is not fixed during the simulation but
is dynamically updated depending on each partition’s host’s load. Based on the
time required for processing of the first two phases of the simulation cycle (see
above) by each ESCs, the world is re-partitioned so that the number of entities
belonging to partitions is proportional to the measured times. ESC performing
the first two phases faster will be assigned a larger area with more situated
entities and thus more state updaters and vice versa. If there are no situated
entities in the simulation, partitions are equally distributed covering the whole
virtual world.

The above described re-partitioning is performed before the migration of state
updaters (phase 3 of the simulation cycle). After re-partitioning, all state up-
daters which no longer belong to their currently assigned ESC partition are sub-
sequently migrated to the appropriate ESC. Re-partitioning is not performed
during each simulation cycle but only if the difference in state update eval-
uation times by all ESCs exceed a pre-defined threshold. The re-partitioning
is also triggered whenever a new computer node is allocated to environment
simulation.

The load of computer nodes running deliberative components is balanced
only when new deliberative components are instantiated. Deliberative parts of
newly introduced entities are spread proportionally among computer nodes ac-
cording to individual nodes’ average load in several previous simulation cycles,
expressed as the sum of each node’s idle time over those simulation cycles. The
computer node with the highest idle time will receive more deliberative control
modules and vice versa. There is no dynamic re-balancing of already running
deliberative control modules because it would introduce issues with component-
to-component addressing and proper conversation protocol consistency during
the migration.
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5 Implementation

The distributed simulation architecture described in the previous section has
been implemented on top of the AGlobe multi-agent platform [21] and is part
of the the AgentFly [18] multi-agent system for air-traffic control and planning.

AGlobe is a multi-agent middleware supporting agent encapsulation, effec-
tive agent-to-agent communication, high-throughput message passing, message
topicking, yellow pages services, agent full migration, but also agent life-cycle
management. AGlobe is well suited for scalable multi-agent simulation as it
supports integration of simulation components. AGlobe requires limited com-
putational resources and its operation is very efficient. AGlobe also facilitates
modeling communication inaccessibility and unreliability in ad-hoc networking
environment. AGlobe has been used for number of applications and agent sys-
tem prototypes in the area of air traffic control, car electronic modeling, design
process simulation or network intrusion detection.

In the designed distribution simulation platform, each ESC and each delib-
erative control module are encapsulated as an AGlobe software agent. Beside
agents that represent ESCs and deliberative control modules, there are also
other agents which take care of simulation maintenance and coordination among
distributed system.

AgentFly [18] is a complex multi-agent system for modeling and simulation
of air-traffic, involving both manned and unmanned aircraft. The framework
provides models of aircraft physics, advanced trajectory path planning algo-
rithms [22], multi-layer collision avoidance implementing both cooperative and
non-cooperative collision avoidance [20], integration interfaces for external data
sources, high-fidelity 3D visualization and data collectors for post-run analysis
tools. AgentFly has been integrated with the algorithms for planning tactical
missions, information collection and surveillance [19]. The system scalability has
been dramatically enhanced, by integration of the presented distributed simula-
tion platform, in order to answer commercial traffic simulation requirements.

6 Evaluation

We have evaluated the proposed distributed simulation architecture on a large-
scale simulation of civilian air-traffic (see the domain description below). The
objective of the experiments were two-fold: (i) to understand the performance of
the simulation platform with constant computing resources under varying level
of system load, i.e. the size/complexity of the simulation scenario (Section 6.4),
and (ii) to understand the performance of the simulation system under vary-
ing distribution of the available resource between key platform components
(Section 6.5).

6.1 U.S. National Airspace Traffic Domain

The proposed simulation platform has been deployed for the simulation of civil-
ian air-traffic within U.S. National Airspace (U.S. NAS). The resulting airspace
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Fig. 2. Airplanes over U.S. NAS and world partitioning

simulator is used for studying concepts for the NextGenerationAir Transportation
Systems (NGATS) [14] in cooperation with the Federal Aviation Administration
(FAA).

Each civilian flight operated under Instrumented Flight Rules (IFR) [16] is
represented as a situated entity within the simulation. One simulation run typ-
ically covers one day and simulates operation of all civilian IFR flights which
traverse, fully or partially, U.S. NAS. Even though the area of the study is
limited to U.S. NAS, some effects external to U.S. NAS are also studied, cov-
ering almost the whole Earth for long-distance flights. The overall number of
simulated airplanes is 52,799 (up to 6,500 are simultaneous) corresponding to
real air-traffic for a particular day in 2007, see Figure 2. Depending on the air-
plane type, each entity uses a precise flight model based on the BADA airplane
performance models [17].

The distribution of the number of airplanes during the simulation day time is
depicted in Figure 3. Note that there are significant peaks every half an hour of
the simulation time; these peaks lead to extreme load of the system with more
than 300 airplanes created at one simulation cycle in the highest peak of the day.
For each such a newly created airplane, a corresponding situated entity needs to
be spawned and the computation-intensive flight trajectory planning and flight
control algorithms executed.

The simulation cycle is 12 seconds long, which is suitable for this domain.
A scalable simulation platform is required because the system is used for anal-
ysis of concepts related to the predicted growth of air traffic in the upcoming
decades (i.e. a simulation of the expected density of traffic in 5, 10, 15, and 20
years).
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Fig. 3. The number of simultaneous airplanes during the simulation

6.2 Metrics

The run-time is the total real (wall clock) time needed for the simulation mul-
tiplied by the number of processor cores used during the simulation.

The normalized airplane is a fictive airplane that is flying during the whole
simulation from its start to the end. The number of airplanes is changing during
the simulation, thus the mean of the number of airplanes is used as the number
of normalized airplanes running during the whole simulation. This number is
used to normalize run-time to study requirements per each situated entity.

6.3 Testing Configuration

The configuration contained a set of several heterogenous (both in terms of the
operating system and hardware) computer nodes. During experiments, nodes
were dedicated for ESCs or deliberative controllers, see computer node allocation
in Figure 4:

The testing configuration consisted of 9 cores with 9GB RAM for ESCs and
11 cores with 15GB RAM for the flight control integrated in deliberative con-
trollers. All computers were interconnected through a 1 Gbit Ethernet network
(connection through a single switch) using the TCP/IP protocol. All systems
were running Sun Java 64-bit 1.6.0 14 environment. All empirical values are av-
eraged from five independent measurements with identical initial conditions, e.g.
a freshly launched JVMs, no allocated memory etc.

6.4 Overall System Load

The objective of the first experiment was to explore how the speed of the sim-
ulation changes with the changing level of system load. The experiment was
performed using all computer nodes. The variations in system load were intro-
duced by varying the number of airplanes simulated, ranging from 10% up to
100% of all air-traffic (with 10% step).
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Intel Core2 Duo T7700 (2x2.6GHz)
4 GB RAM
Windows Vista 64-bit

Intel Core2 Quad Q9950 (4x2.83GHz)
4 GB RAM
Ubuntu 9.04 64-bit

2x Intel Xeon E5420 (8x2.5GHz)
8 GB RAM
Windows Vista 64-bit

Intel Core2 Quad Q6600 (4x2.4GHz)
4 GB RAM
Windows Vista 64-bit

Intel Core2 6300 (2x1.86GHz)
3 GB RAM
Windows Vista 64-bit

Intel Core2 6700 (2x2.6GHz)
4 GB RAM
Windows Vista 64-bit

Simulation
controller
(2 cores, 4GB)

Environment
simulation
(9 cores, 8GB)

5 cores
4GB
used for Environment simulation

1 Gbit Ethernet
TCP/IP connections

3 cores
4GB

used for Flight control

Flight 
control
(11 cores, 15GB)

Fig. 4. Computer nodes allocation during experiment: environment simulation – hosts
environmental components, flight control – hosts all deliberative control parts and
simulation controller – other components for simulation control and input/output
interfacing to the simulation

Fig. 5. Effect of the increasing number of flights simulated with fixed hardware re-
sources, measured in terms of the total duration of the simulation (Chart A) and
run-time per normalized airplane (Chart B)

The aggregated results of the experiment are depicted in Figure 5 showing the
correspondence between the total duration of the simulation and the number of
flights. Chart A shows the maximum duration is less than 13 minutes for 100%
of flights. Chart B shows run-time needed to simulate one normalized airplane.

The experiment demonstrates properties and effectiveness of the distributed
simulation. The measured characteristics can be divided into three regions
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depending on the system load (the number of airplanes): (i) underloaded, (ii) op-
timally loaded and (ii) overloaded simulation. The regions can be determined by
the specified threshold, a dashed horizontal line at 0.18 s in Figure 5,
Chart B.

The upper-left part of the plot above the threshold corresponds to the under-
loaded simulation, the part bellow the threshold is the optimally loaded simulation
and the upper-right part above the plot is the overloaded simulation.

Underloaded Simulation. At low levels of system load (few situated entities), the
simulation is underloaded and thus inefficient. The hardware resources cannot be
effectively used because the load of the simulation is too low (e.g. the simulation
running 5 airplanes cannot effectively use 20 processor cores), but there is an
overhead given by the maintenance of distributed architecture which depends
both on the number of processors cores and the number of airplanes in the
system. The shape of the load line in Figure 5, Chart B is concave as the overhead
of the distributed simulation is split among the increasing number of airplanes.
The underloaded simulation leads to higher run-time per normalized airplane.

Optimally loaded Simulation. In the optimally loaded configuration, the simula-
tion is able to use all available hardware resources effectively. This section begins
at the moment when all hardware can be used and ends when some components
start to be overloaded. Within the optimally loaded region, the increasing load
of the simulation is distributed regularly among all resources, leading to almost
linear increase of the simulation run-time.

Overloaded Simulation. Moving towards the highest load of the fixed computer
configuration, the hardware resources become overloaded. The overload has three
main reasons:

CPU overload. The simulation management is designed to run the simulation
as fast as possible considering the CPU load. If the CPU performance is not
sufficient, the simulation continuously slows down until the whole simulation
almost stops.

Memory overload. Once the simulation requires more than available physical
memory, this results in higher probability of page faults and causes swapping
which leads to decrease of the simulation performance.

Network overload. Despite the distributed design which inherently aims to
minimize the network traffic, the network can get overloaded. If the network
is not able to transmit all traffic required by the simulation especially related
to the environment simulation, the simulation is paused and waits for their
delivery.

In the experiments, usually both CPU and memory resources were overloaded.
Thus the simulation gradually slows down at the beginning of the overload and
with higher load it slows down quickly.
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6.5 Varying Resource Distribution

The aim of the second group of experiments was to asses the performance impact
of different distributions of available hardware resources between environmental
and deliberative control components in the simulation. Both experiments used
a simulation load consisting from 40% of the flights.

The first experiment was performed using the full test hardware configuration
for the deliberative control parts (see Figure 4) and varying hardware configura-
tion for the environmental components. The second experiment was performed
using the full test hardware configuration for the environmental components and
varying hardware configuration for the deliberative control parts.

The results for the first and second experiment are depicted in Figures 6 and 7,
respectively. The left plots in both Figures show how the simulation run-time
decreases with adding hardware resources. The right plots in both Figures show
changes in normalized run-time.

The first experiment (Figure 6) shows the dependency between the overall
performance and the number of computational cores assigned to the environ-
ment components and thus resulting in different numbers of partitions in the
simulation. The left region of the charts (one, two and three partitions) shows a
significant speed-up in both the simulation run-time and normalized run-time.
This is because the small number of partitions in the simulation are overloaded.
Adding more hardware and thus more partitions (three, four and five parti-
tions) corresponds to the optimally-utilized simulation. The simulation run-time
is still reduced, however, the normalized run-time stagnates. This is caused by
rising demands for partition-to-partition coordination. Adding even more re-
sources brings almost no speed-up in the simulation run-time and even results
in a decreasing normalized run-time. The reason is that the simulation config-
uration is unable to fully-utilize the newly introduced partitions in comparison
to increasing overhead for partition-to-partition coordination.

The second experiment(Figure 7) shows a similar picture for the dependency
of the simulation run-time on the number of available hardware resources for
deliberative controllers. In the left part (two, three and four cores), it shows a

Fig. 6. The effect of changing the hardware resources allocated to environment com-
ponents while keeping the resources allocated to the rest of the system constant; the
effect measured in terms of the total simulation run-time (left) and total run-time per
normalized airplane (right)



30 D. Šǐslák et al.

Fig. 7. The effect of changing the hardware resources allocated to deliberative control
parts while keeping the resources allocated to the rest of the system constant; the effect
measured in terms of the total simulation run-time (left) and simulation run-time per
normalized airplane (right)

significant speed-up for the same reasons as in the previous case. The different
property is for more hardware resources (four, five and six cores). In such a
case, the simulation stays optimally loaded, the simulation run-time decreases
and the normalized run-time remains constant. The reason is that deliberative
controllers are independent and do not require any additional coordination. All
computational resources can be therefore used for parallel computation. At a
certain moment, we can identify that there is no use in adding more hardware
resources for the deliberative controllers as the bottle neck is in the environment
part for the given simulation configuration.

The simulation performance is maximized by the proper distribution of available
resources among environmental components and deliberative controllers. Under-
resourcing of any part leads to a very significant decrease of the overall system
performance. Over-resourcing of the deliberative controllers has no effect on per-
formance, but it can help when the load to the system increases. Over-resourcing
of the environment controllers can cause decrease of the overall performance due
to an additional coordination overhead induced by a higher number of partitions.

7 Conclusion

We have investigated the problem of efficient simulation of a huge number of
situated agents operating in large-scale virtual worlds. A distributed, fully scal-
able approach with automated load balancing has been proposed to address the
problem. The approach efficiently exploits the predominantly local nature of
interactions in situated agent-based simulations and uses it to efficiently par-
tition the virtual world and distribute it over multiple computer nodes. The
approach has been implemented in a AglobeX Simulation agent-based sim-
ulation platform based on AgentFly test-bed, its specific application to the
air-traffic domain, and evaluated on the simulation of the complete civilian air-
traffic touching the U.S. NAS involving the total of 52,799 flights with up to
6,500 airplanes simulated at one time. The evaluation confirms the ability of
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the approach to handle very large-scale agent-based simulations and highlights
the need to carefully assign hardware resources to individual components of the
simulation platform.
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Abstract. Recently, we introduced Behavioural State Machines (BSM ),
a novel programming framework for development of cognitive agents with
Jazzyk, its associated programming language and interpreter. The Jazzyk
BSM framework draws a strict distinction between knowledge represen-
tation and behavioural aspects of an agent program. Jazzyk BSM thus
enables synergistic exploitation of heterogeneous knowledge representa-
tion technologies in a single agent, as well as offers a transparent way
for embedding cognitive agents in various simulated or physical environ-
ments. This makes it a particularly suitable platform for development
of simulated, as well as physically embodied cognitive agents, such as
virtual agents, or non-player characters for computer games.

In this paper we report on Jazzbot and Urbibot projects, two case-
studies we developed using the Jazzyk BSM framework in simulated en-
vironments provided by a first person shooter computer game and a
physical reality simulator for mobile robotics respectively. We describe
the underlying technological infrastructure of the two agent applications
and provide a brief account of experiences and lessons we learned during
the development.

1 Introduction

One of the long-term aims of Artificial Intelligence is to enable development of
intelligent cognitive agents. I.e. such which internally model their environment,
their own mental attitudes, reason about them and subsequently base their deci-
sions regarding their future actions upon these models. Even though AI research
provides a plethora of approaches for solving partial problems on the way to-
wards this aim, we only rarely encounter approaches enabling integration of the
various developed technologies. The field of agent oriented programming, and
in consequence multi-agent systems programming, offers a sound theoretical ba-
sis allowing synergistic exploitation of heterogeneous AI technologies in a single
agent system.

Therefore in our recent work, we introduced the theoretical framework of
Behavioural State Machines with its associated agent oriented programming
language Jazzyk [11,12]. Jazzyk BSM provides a simple, theoretically sound lan-
guage for modular agent programming based on a generic computational model

F. Dignum et al. (Eds.): Agents for Games and Simulations, LNAI 5920, pp. 33–47, 2009.
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for reactive systems. It draws a strict distinction between the knowledge repre-
sentation (KR) and behavioural aspects of an agent program and thus enables
exploiting heterogeneous KR technologies in a single agent system.

To provide a proof-of-concept, as well as to further nurture our research to-
wards a methodology of development with Jazzyk BSM (cf. [14] and [13]), we
developed two case study applications Jazzbot and Urbibot . Jazzbot is a virtual
bot in the simulated 3D environment of an open source first person shooter
computer game Nexuiz. Its task is to explore a virtual building, search for cer-
tain objects in it and subsequently deliver them to the base. At the same time,
Jazzbot is supposed to differentiate between other players present in the build-
ing and seek safety upon being attacked by an enemy player. When the danger
disappears, it should return back to the activity interrupted by the attack.

Urbibot , on the other hand, was developed as a step towards programming
mobile robots. It is an agent program steering a model of customized e-Puck,
a small two-wheeled mobile robot in an environment provided by the physical
robotic simulator Webots. Similarly to Jazzbot , Urbibot explores its environment
in order to find red poles present in it. It tries to bump into each of them,
while trying to avoid patrol robots policing the environment. Upon encounter
with such a patrol robot, Urbibot runs away to finally return to the previously
interrupted activity when safe again.

Both agents feature a BDI inspired architecture. While interacting with two
different types of virtual bodies, a character in the game and an interface to
robot hardware sensors and actuators respectively, both implementations exploit
the power of non-monotonic reasoning for representation and reasoning about
their beliefs and goals. We employ an interpreted object oriented programming
language to enable efficient representation of and reasoning about topological
structure of the environment.

After a brief introduction to the framework of Behavioural State Machines
and its associated programming language Jazzyk in Section 2, Sections 3 and 4
describe respectively Jazzbot and Urbibot agents in a closer detail. Subsequently,
Section 5 provides a description of the underlying technological infrastructure
used in the implemented agents. Finally, a discussion of our experiences and
lessons learned from the development of Jazzbot and Urbibot agents, together
with an outlook to the ongoing and future work wraps up the paper in Section 6.

2 Jazzyk BSM

In [12] we introduced the framework of Behavioural State Machines (BSM ).
BSM framework draws a clear distinction between the knowledge representation
and behavioural layers within an agent. It thus provides a programming system
that clearly separates the programming concerns of how to represent an agent’s
knowledge about, for example, its environment and how to encode its behaviours.
In the core of the framework is a generic reactive computational model inspired
by Gurevich’s Abstract State Machines [3], enabling for efficient structuring of
the program code. This section briefly introduces the BSM framework. For the
complete formal description of the BSM framework, see [12].
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2.1 Syntax

BSM agents are collections of one or more so-called knowledge representation
modules (KR modules), typically denoted by M, each representing a part of
the agent’s knowledge base. KR modules may be used to represent and maintain
various mental attitudes of an agent, such as knowledge about its environment, or
its goals, intentions, obligations, etc. Transitions between states of a BSM result
from applying so-called mental state transformers (mst), typically denoted by
τ . Various types of mst’s determine the behaviour that an agent can generate.
A BSM agent consists of a set of KR modules M1, . . . ,Mn and a mental state
transformer P , i.e. A = (M1, . . . , Mn,P); the mst P is also called an agent
program.

The notion of a KR module is an abstraction of a partial knowledge base
of an agent. In turn, its states are to be treated as theories (i.e. sets of sen-
tences) expressed in the KR language of the module. Formally, a KR module
Mi = (Si,Li,Qi,Ui) is characterized by a knowledge representation language
Li, a set of states Si ⊆ 2Li , a set of query operators Qi and a set of update
operators Ui. A query operator ��� ∈ Qi is a mapping ��� : Si × Li → {�,⊥}.
Similarly an update operator ⊕ ∈ Ui is a mapping ⊕ : Si × Li → Si.

Queries, typically denoted by ϕ, can be seen as operators of type ��� : Si →
{�,⊥}. A primitive query ϕ = (���φ) consists of a query operator ��� ∈ Qi and a
formula φ ∈ Li of the same KR module Mi. Complex queries can be composed
by means of conjunction ∧, disjunction ∨ and negation ¬.

Mental state transformers enable transitions from one state to another. A
primitive mst 
ψ, typically denoted by ρ and constructed from an update op-
erator 
 ∈ Ui and a formula ψ ∈ Li, refers to an update on the state of the
corresponding KR module. Conditional mst’s are of the form ϕ −→ τ , where
ϕ is a query and τ is a mst. Such a conditional mst makes the application of
τ depend on the evaluation of ϕ. Syntactic constructs for combining mst’s are:
non-deterministic choice | and sequence ◦.
Definition 1 (mental state transformer). Let M1, . . . ,Mn be KR modules
of the form Mi = (Si,Li,Qi,Ui). The set of mental state transformers is defined
as below:

– skip is a primitive mst,
– if 
 ∈ Ui and ψ ∈ Li, then 
ψ is a primitive mst,
– if ϕ is a query, and τ is a mst, then ϕ −→ τ is a conditional mst,
– if τ and τ ′ are mst’s, then τ |τ ′ and τ ◦ τ ′ are mst’s ( choice, and sequence

respectively).

Even though it is a vital feature of the BSM theoretical framework, for simplicity
we omit the treatment of variables in the definitions of query and update formulae
above. For a full fledged description of the BSM framework consult [12].

2.2 Semantics

The yields calculus, summarised below after [12], specifies an update associ-
ated with executing a mental state transformer in a single step of the language
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interpreter. It formally defines the meaning of the state transformation induced
by executing an mst in a state, i.e. a mental state transition.

Formally, a mental state σ of a BSM A = (M1, . . . ,Mn, τ) is a tuple σ =
〈σ1, . . . , σn〉 of KR module states σ1 ∈ S1, . . . , σn ∈ Sn, corresponding to
M1, . . . ,Mn respectively. S = S1 × · · · × Sn denotes the space of all mental
states over A. A mental state can be modified by applying primitive mst’s on
it and query formulae can be evaluated against it. The semantic notion of truth
of a query is defined through the satisfaction relation |=. A primitive query ���φ
holds in a mental state σ = 〈σ1, . . . , σn〉 (written σ |= (���φ)) iff ���(φ, σi), oth-
erwise we have σ �|= (���φ). Given the usual meaning of Boolean operators, it is
straightforward to extend the query evaluation to compound query formulae.
Note that evaluation of a query does not change the mental state σ.

For an mst 
ψ, we use (
, ψ) to denote its semantic counterpart, i.e., the
corresponding update (state transformation). Sequential application of updates
is denoted by •, i.e. ρ1 •ρ2 is an update resulting from applying ρ1 first and then
applying ρ2. The application of an update to a mental state is defined formally
below.

Definition 2 (applying an update). The result of applying an update
ρ = (
, ψ) to a state σ = 〈σ1, . . . , σn〉 of a BSM A = (M1, . . . ,Mn,P), denoted
by s

⊕
ρ, is a new state σ′ = 〈σ1, . . . , σ

′
i, . . . , σn〉, where σ′

i = σi 
 ψ and σi,

, and ψ correspond to one and the same Mi of A. Applying the empty update
skip on the state σ does not change the state, i.e. σ

⊕
skip = σ.

Inductively, the result of applying a sequence of updates ρ1 • ρ2 is a new state
σ′′ = σ′ ⊕ ρ2, where σ′ = σ

⊕
ρ1. σ

ρ1•ρ2→ σ′′ = σ
ρ1→ σ′ ρ2→ σ′′ denotes the

corresponding compound transition.

The meaning of a mental state transformer in state σ, formally defined by the
yields predicate below, is the update set it yields in that mental state.

Definition 3 (yields calculus). A mental state transformer τ yields an up-
date ρ in a state σ, iff yields(τ, σ, ρ) is derivable in the following calculus:

�
yields(skip,σ,skip)

�
yields(�ψ,σ,(�,ψ)) (primitive)

yields(τ,σ,ρ), σ|=φ
yields(φ−→τ,σ,ρ)

yields(τ,σ,ρ), σ �|=φ
yields(φ−→τ,σ,skip) (conditional)

yields(τ1,σ,ρ1), yields(τ2,σ,ρ2)
yields(τ1|τ2,σ,ρ1), yields(τ1|τ2,σ,ρ2) (choice)

yields(τ1,σ,ρ1), yields(τ2,σ
⊕
ρ1,ρ2)

yields(τ1◦τ2,σ,ρ1•ρ2) (sequence)

We say that τ yields an update set ν in a state σ iff ν = {ρ|yields(τ, σ, ρ)}.
The mst skip yields the update skip. Similarly, a primitive update mst 
ψ yields
the corresponding update (
, ψ). In the case the condition φ of a conditional mst
φ −→ τ is satisfied in the current mental state, the calculus yields one of the
updates corresponding to the right hand side mst τ , otherwise the no-operation
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skip update is yielded. A non-deterministic choice mst yields an update corre-
sponding to either of its members and finally a sequential mst yields a sequence
of updates corresponding to the first mst of the sequence and an update yielded
by the second member of the sequence in a state resulting from application of
the first update to the current mental state.

The following definition articulates the denotational semantics of the notion
of mental state transformer as an encoding of a function mapping mental states
of a BSM to updates, i.e. transitions between them.

Definition 4 (mst functional semantics). Let M1, . . . ,Mn be KR modules.
A mental state transformer τ encodes a function fτ : σ �→ {ρ|yields(τ, σ, ρ)} over
the space of mental states σ = 〈σ1, . . . , σn〉 ∈ S1 × · · ·Sn.
Subsequently, the semantics of a BSM agent is defined as a set of traces in the
induced transition system enabled by the BSM agent program.

Definition 5 (BSM semantics). A BSM A = (M1, . . . ,Mn,P) can make a
step from state σ to a state σ′, iff σ′ = σ

⊕
ρ, s.t. ρ ∈ fP(σ). We also say, that

A induces a (possibly compound) transition σ
ρ→ σ′.

A possibly infinite sequence of states σ1, . . . , σi, . . . is a run of BSM A, iff for
each i ≥ 1, A induces a transition σi → σi+1.

The semantics of an agent system characterized by a BSM A, is a set of all
runs of A.

Additionally, we require the non-deterministic choice of a BSM interpreter to
fulfil the weak fairness condition, similar to that in [9], for all the induced runs.

Condition 1 (weak fairness condition). A computation run is weakly fair
iff it is not the case that an update is always yielded from some point in time on
but is never selected for execution.

2.3 Jazzyk

Jazzyk is an interpreter of the Jazzyk programming language implementing the
computational model of the BSM framework. The syntax of the Jazzyk language
is an instantiation of the abstract mathematical syntax of the BSM theoretical
framework. when φ then τ construct encodes a conditional mst φ −→ τ . Symbols ;

and , stand for choice | and sequence ◦ operators respectively. To facilitate op-
erator precedence, mental state transformers can be grouped into compound
structures, blocks, using curly braces {. . .}.

To better support source code modularity and re-usability, Jazzyk interpreter
integrates GNU M41, a state-of-the-art macro preprocessor. Macros are a power-
ful tool for structuring and modularizing and encapsulating the source code and
writing code templates. Before feeding the Jazzyk agent program to the language
interpreter, first all the macros are expanded. Listing 1 depicts a Jazzyk code
snippet. For further details on the Jazzyk programming language and the macro
preprocessor integration with Jazzyk interpreter, consult [12].
1 http://www.gnu.org/software/m4/
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Fig. 1. Screenshots of the Jazzbot and Urbibot agents

3 Jazzbot

Jazzbot is a virtual agent embodied in a simulated 3D environment of the first-
person shooter computer game Nexuiz 2. It is a goal-driven BDI inspired cogni-
tive agent developed with the Jazzyk language. The Nexuiz death-match game
takes place in a virtual building containing various objects (e.g. weapons, flags
or armor kits), is capable of simulating diverse terrains like solid floor, or liquid
and provides a basic means for inter-player interaction. Because of its accessi-
bility (Nexuiz is published under the open source GNU GPL licence), we chose
the Nexuiz game server as the simulator for Jazzbot case-study, the first larger
proof-of-concept application for the Jazzyk BSM framework. Figure 1 left de-
picts a screenshot of the Jazzbot agent acting in the simulated environment.
Demonstration videos and source code can be found on the project website3.

Jazzbot ’s behaviour is implemented as a Jazzyk program. In the experimen-
tal scenario, the bot searches for a particular item in the environment, which it
then picks up and delivers to the base point. While during the search phase the
agent tries to always move to unexplored segments of the environment, when it
tries to deliver the item, it exploits a path planning algorithm to compute the
shortest path to the base point. Hence, during the search phase, in every step
the bot randomly selects a direction to move to a previously unexplored part of
the building and in the case there is none such, it returns to the nearest way-
point from which an unexplored direction exists. The behaviour for environment
exploration is interrupted, whenever Jazzbot feels under attack, i.e. an enemy
player attempts to shoot at it. Upon that it triggers emergency behaviours, such
as running away from the danger. After the sense of emergency fades away, it
returns back to its previously performed goals of item search, or delivery.

The Jazzbot ’s control cycle consists of three steps that are executed sequen-
tially. Firstly, the bot reads its sensors (perception), then if necessary it deliber-
ates about its goals, (goal commitment strategies implementation) and finally it
selects an action according to its actual goals and beliefs (act). Listing 1 provides
2 http://www.alientrap.org/nexuiz/
3 http://jazzyk.sourceforge.net/
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Listing 1. Code snippet from the Jazzbot agent

define(‘ACT’,‘{
/∗ The bot searches for an item, only when it does not have it ∗/
when |=goals [{ task(search(X)) }] and not |=beliefs [{ hold(X) }] then SEARCH(‘X’);
/∗ When a searched item is found, it picks it ∗/
when |=goals [{ task(pick(X)) }] and |=beliefs [{ see(X) }] then PICK(‘X’) ;
/∗ When the bot finally holds the item, it deliver it ∗/
when |=goals [{ task(deliver(X)) }] and |=beliefs [{ hold(X) }] then DELIVER(‘X’) ;
/∗ Simple behaviour triggers without guard conditions ∗/
when |=goals [{ task(wander) }] then WALK ;
when |=goals [{ task(safety) }] then RUN AWAY ;
when |=goals [{ task(communicate) }] then SOCIALIZE

}’)

an example code implementing selection of goal oriented behaviours, realized as
parametrized macros, triggered by Jazzbot ’s goals. While the bot simply triggers
behaviours for walking around, danger aversion and social behaviour, execution
of behaviours finally leading to getting an item are guarded by belief conditions.

The Figure 2 provides an overview of the Jazzbot ’s architecture. The agent
features a belief base consisting of two KR modules for representation of agent’s
actual beliefs and storing the map of the environment, a goal base encoding inter-
relationships between various agent’s declarative, performance and maintenance
goals and finally the module interfacing the bot with the simulated environment.

JzNexuiz KR module (cf. Subsection 5.4), the Jazzbot ’s interface to the envi-
ronment, the body, provides the bot with capabilities for sensing and acting in
the virtual world. The bot can move forward, backward, it can turn, or shoot. Ad-
ditionally, the Jazzbot is equiped with several sensors: GPS, sonar, 3D compass
and an object recognition sensor. The module communicates over the network
with the Nexuiz game server and thus provides an interface of a pure client side
Nexuiz bot, i.e. the bot can access only a subset of the perceptual information
a human player would have available.

The Jazzbot ’s belief base is composed of two modules: JzASP (cf. Subsec-
tion 5.1) and JzRuby (cf. Subsection 5.2). While the first one integrates an
Answer Set Programming [2] (ASP) solver Smodels [18] and contains a logic
program reflecting agent’s beliefs about itself, the environment, objects in it and
other players, the second, based on an interpreted object oriented programming
language Ruby, stores the map of the agent’s environment.

The Jazzbot ’s goal base is again an ASP logic program representing agent’s
current goals and their interdependencies. Goals can be either of a declarative
(goals-to-be), or performative nature (goals-to-do, or tasks). In Jazzbot agent
implementation, each goal-to-do activates one, or more tasks, which in turn trig-
ger, one or more corresponding behaviours the agent is supposed to execute. On
the ground of holding certain beliefs, the agent is also allowed to adopt new,
or drop goals which are either satisfied, irrelevant, or subjectively recognized as
impossible to achieve. The agent thus implements goal commitment strategies.
We explore the details of the programming methodology employed in the Jazzbot
project in [14]. The Section 5 below provides details on the implementation of
the Jazzbot ’s KR modules.
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Fig. 2. Internal architecture of Jazzbot and Urbibot agents

4 Urbibot

Urbibot [4] is the second case-study developed as a step towards applications
of the Jazzyk BSM framework in the mobile robotics domain. It is a robot
exploring a maze where it searches for red poles and then tries to kick them down
while at the same time avoiding patrols policing the space. Urbibot is embodied
as an e-Puck4, a small educational mobile robot simulated in Webots5 [10], a
robotics oriented physical world simulator. The robot is steered using URBI 6,
a highly flexible and modular robotic programming platform based on event-
based programming model. The main motivation for using URBI is the direct
transferability of the developed agent program from simulator to the real robot.

Similarly to the Jazzbot , the overall agent design is inspired by the BDI ar-
chitecture and reuses parts of the code developed for Jazzbot . In turn, except
for using JzASP KR module to represent agent’s beliefs about itself, Urbibot
features similar agent architecture as the one depicted in the Figure 2 for the
Jazzbot agent. Urbibot ’s beliefs comprise exclusively information about the map.
The interface with the simulator environment is provided by the JzUrbi KR
module (see Subsection 5.3).

As already noted above, Urbibot ’s behaviour is similar to that of Jazzbot agent.
However instead of controlling the agent’s body with rather discrete commands,
such as move forward, or turn left, Urbibot ’s URBI allows a more sophisti-
cated control by directly accessing the robot’s actuators, which in the case of the
4 http://www.e-puck.org/
5 http://www.cyberbotics.com/
6 http://www.gostai.com/
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Fig. 3. Urbibot exploring the simulated environment. The lower right corner provides
the current snapshot of the Urbibot ’s camera perception.

e-Puck robot, are only it’s two wheels. The robot features a mounted camera, a
directional distance sensor and an additional GPS sensor (our customization of
the original e-Puck robot). In the JzRuby module, the robot analyzes the camera
image stream and by joining it with the output of the distance and GPS sensors
it constructs a 2D map of the environment. Upon encountering a patrol robot,
Urbibot calculates an approximation of the space the patrol robot can see, and
subsequently tries to navigate out of this area as quickly as possible. Again, the
details on the implementation of the Urbibot ’s KR modules can be found later in
the Section 5. Figures 1 (right) and 3 depicts a screenshot of the Urbibot agent
and the maze environment with the Urbibot acting in it. Furthermore, demon-
stration videos and source code are provided in the corresponding section of the
Jazzyk project website3.

5 Modules

The Jazzyk Software Development Kit (Jazzyk SDK) provides a C++ interface
from which each KR module plug-in has to be derived. Basically, the class defines
five methods: initialize, finalize, cycle, query and update. It is possible
to define multiple query and update methods corresponding to KR module’s
query and update operators. These methods then define the plug-in’s interface
to the Jazzyk interpreter. While initialize, finalize and cycle are mainly used for
initialization, shutdown and maintenance of the module the query and update
provide means for modification of the stored knowledge base.

Below we describe KR module’s we employed in development of the Jazzbot
and Urbibot case studies. We introduce two modules facilitating agent’s knowledge
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representation JzASP and JzRuby followed by description of two modules, JzUrbi
and JzNexuiz , interfacing the agents with their respective environments.

5.1 JzASP

In [5] we presented the JzASP module. It integrates Lparse [17] and Smodels
[18], an Answer Set Programming grounder and solver respectively. The stored
knowledge base thus consists of a logic program in the syntax of AnsProlog∗ [2]
(Prolog style syntax) and can be accessed by two query methods sure believes and
poss believes and two update methods add and del allowing for retrieval and mod-
ification of the stored knowledge base. Internally, the JzASP module processes
the program by passing it to the Lparse library and subsequently let’s Smodels
solver to compute the program’s answer sets.

The two query methods sure believes and poss believes check whether the query
formula, an AnsProlog∗ term, is contained in all the computed answer sets, or
there exists at least a single answer set containing it respectively. Before the
query formula is processed by the module, all the free variables occurring in it
are substituted by their valuations and subsequently, the query method attempts
matching the remaining free variables with a term from a computed answer set.

The update interface methods add and del provide a means to assert, or retract
a clause (a fact, or a rule) to/from the stored knowledge base. The variable
substitution treatment is similar to that in processing query formulae.

While the Jazzbot agent employs the JzASP for both, reasoning about its
beliefs regarding its environment, other agents and its own body state, as well as
to represent and reason about its goals, the Urbibot agent employs the module
only to treat its goal base. Using the power of non-monotonic reasoning, in
particular the default negation, to reason about agent’s goals turned out to be
advantageous and led to an elegant encoding of interrelations between various
goals. We elaborate more on the technique used in [14].

5.2 JzRuby

The JzRuby module, detailed description in [4], integrates the interpreted ob-
ject oriented scripting language Ruby7. The KR module interface methods for
initialization and finalization as well as the query and update routines are able
to process plain Ruby programs as argument formulae (query/update). Jazzyk
variables are treated as global variables in the Ruby interpreter’s memory space.
Query invocations of the single query method return the truth value of the code
invocation within the Ruby interpreter, i.e. provided the code execution yields a
value other than 0, the KR module returns � and ⊥ otherwise. The single update

method of the KR module simply executes the provided update formula, a plain
Ruby code chunk.

To represent the Jazzbot ’s information about the topology of its environment,
the agent uses a circle-based waypoint graph (CWG) [16] to generate the map of

7 http://www.ruby-lang.org/
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Fig. 4. Environment maps representation in Jazzbot and Urbibot

its environment. CWG’s are an improved version of waypoint graphs, extended
with a radius for each waypoint. The radius is determined by the distance be-
tween the avatar and the nearest obstacle. This technique ensures, especially in
big rooms or open spaces, a smaller number of nodes and connections within the
graph what in turn speeds up the path search algorithm. Figure 4 (left) shows
a graphical representation of the CWG for a sample walk of the Jazzbot agent
from the spawn point to the point marked by the arrow.

Additionally, each waypoint stores a list of objects present within its range
as well as about walls touching it and information about unexplored directions,
i.e. such in which there’s no connection to another waypoint, nor a wall. By
employing a breadth-first graph search algorithm, the agent can compute the
shortest path to a particular object, or a position.

The CWG graph is constructed by the agent so that in each step it determines
whether its current absolute position corresponds to some known waypoint, and
if not, it turns around in 60◦ steps and by checking its distance sensor, it de-
termines the nearest obstacle around. Subsequently, the newly added waypoint
is incorporated into the CWG by connecting it to all the other waypoints with
which it overlaps and all the perceived objects together with all the directions
in which the agent can see a wall are stored with it.

While similarly to the Jazzbot , the Urbibot uses the JzRuby KR module for
representing its environment too, the map representation approach differs. Ur-
bibot represents the map of its environment as a 2D grid, where in each cell it
stores an information about its content, such as unknown, free, wall, patrol,
avoid or pole. A new row or column is added to the grid when the robot reaches
the edge of the known region. While the agent continuously adds new informa-
tion to cells, the map becomes more and more precise. Furthermore, the Urbibot
employs the A∗ path planning algorithm to compute the shortest path between
the current position and a position to go, be it an unexplored cell, the nearest
safe cell a patrol robot cannot see, or a cell containing a pole which it tries to
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kick down. Also, the Urbibot uses the JzRuby module to algorithmically process
the sensory input from its mounted camera and the distance sensors.

5.3 JzUrbi

In order to interface a Jazzyk program with the robot’s body, the JzUrbi KR
module [4] integrates the URBI programming language interpreter. It connects
over TCP/IP to an URBI server on the simulator’s side, or with the URBI robot
controller that controls the robot’s body.

The single query method query provide the agent program with the sensor
information from the body. Jazzyk variables are treated the same way as in
JzRuby, i.e. as global variables of the underlying URBI interpreter. Similarly,
the single update method update simply sends the provided update formula, an
URBI program, to the URBI server.

The Urbibot connects over the JzUrbi module with the URBI server running
in the Webots simulator and thereby steers the e-Puck robot, extended with a
GPS sensor. In the particular case of the Urbibot , the sensory input accesses the
following sensors: camera, distance sensor, GPS, touch-sensor and a light-sensor.
Together with the update interface steering the Urbibot ’s two wheels, these two
methods provide the basic interface for e-Puck ’s control.

5.4 JzNexuiz

Finally, the JzNexuiz KR module, invented in [8], facilitates Jazzbot ’s interaction
with the Nexuiz game environment. By the means of a single query interface
method sense and a single update method act, it enables control of the Jazzbot ’s
avatar body in the virtual building. The query method provides access to several
sensors of GPS, sonar, 3D compass and object recognition. The update method
allows issuing commands to the avatar’s body, such as move, turn, jump, use,
attack or say.

Technically, the module connects over TCP/IP with a Nexuiz server and thus
provides an interface of a pure client side Nexuiz bot. The consequence of this
setup is that the Jazzbot agent can access only a strict subset of the perceptual in-
formation a human player would have. The Jazzbot plug-in integrates a stripped
down and customized Nexuiz client. In turn, the bot’s actions are implemented
as the corresponding key strokes of a virtual player.

Figure 5 depicts the syntax accepted by the plug-in’s query and update in-
terface methods sense and act. Each query formula starts with the name of the
accessed virtual sensor device followed by the corresponding arguments being
either constants, or variables facilitating retrieval of information from the envi-
ronment. Similarly, the update formulas consist of the action to be executed by
the avatar followed by a list of arguments specifying the command parameters.

The truth values of query formula evaluation depends on the sensory input
retrieved from the environment. In the case the query evaluates to true (�), the
additional information about e.g. the distance of an obstacle, or the reading of
the body health sensor, is stored in provided free variables.
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nex_query ::= sensor (constant | variable)+

nex_update ::= action (constant | variable)+

sensor ::= sen_const | variable

sen_const ::= ‘body’ | ‘liquid’ | ‘ground’ | ‘gps’ | ‘compass’ |

‘sonar’ | ‘map’ | ‘eye’ | ‘listen’

action ::= act_const | variable

act_const ::= ‘move’ | ‘turn’ | ‘jump’ | ‘use’ | ‘attack’ | ‘say’

Fig. 5. JzNexuiz EBNF

6 Experiences and Conclusion

The two case-studies described in this paper served us most importantly as a
vehicle to nurture and pragmatically drive our research towards a methodol-
ogy for using an agent oriented programming language exploiting strengths of
heterogeneous KR technologies in a single cognitive agent system. For further
details concerning the methodology consult [14]. As an important side effect, we
collected experiences with programming BDI inspired virtual cognitive agents
for computer games and simulated environments, as well.

As in the long run we aim at development of autonomous robots, in both cases
the virtual agents had to be running autonomously and independently from the
simulator of the environment. This choice had a strong impact on the design
of the agents w.r.t. the action execution model and the model of perception. In
both described applications, the agents are remotely connecting to the simulated
environment in which they execute actions in an asynchronous manner, i.e. they
can only indirectly observe the effects (success/failure) of their actions through
later perceptions. As far as the model of perception is concerned, unlike other
game bots, Jazzbot is a pure client side bot, i.e. the amount of information it can
perceive is a strict subset of the information provided to the game client used by
human players. Hence, the Jazzbot agent cannot take advantage of additional in-
formation, such as the global topology of the environment, or information about
objects in distant parts of the environment, which are accessible to the majority
of other bots available for first-person shooter games. In the case of Urbibot , the
simulator provides only perceptions accessible to the models of robot’s sensors.
In our case these are most importantly a camera, a directional distance sensor
and global positioning, hence the available information is, similarly to Jazzbot ,
only local, incomplete and noisy.

As both implemented agents are running independently from the simulation
engine and execute their actions in an asynchronous manner, their efficiency is
only loosely coupled to the simulation platform speed. In our experiments, the
speed of agent’s reactions was reasonable w.r.t. task the bots were supposed to
execute. However, especially in the case of Jazzbot , due to deficiencies on the side
of sensors, such as missing camera rendering the complete scene the bot can see,
Jazzbot in its present incarnation cannot match the reaction speed of advanced
human players in a peer-2-peer match.



46 M. Köster et al.

Since, the agents store their internal state in the application domain specific
KR modules, the control model of Jazzyk BSM framework results in agents which
can instantly change the focus of their attention w.r.t. an observed change of the
context in the environment. The goal orientedness of agent’s behaviours emerges
from the coupling between behaviour triggers and agent’s attitudes modeled in
its components [14]. This turned out to be of a particular advantage when a quick
reaction to interruptions, such as an encounter of an enemy agent, or a patrol,
was needed. On the other hand, because of the open plug-in architecture of the
Jazzyk BSM framework, we were able to quickly prototype and experiment with
various approaches to knowledge representation and reasoning, as well as various
models of interaction with the environment.

Our research project follows the spirit of [7], where Laird and van Lent argue
that approaches for programming intelligent agents should be tested in realistic
and sophisticated environments of modern computer games. Jazzbot project thus
follows in footsteps of their SOAR QuakeBot [6].

Another relevant project, Gamebots [1], provides a general purpose interface to
a first-person shooter game Unreal Tournament8. Gamebots ’ approach is however
server side, i.e. the virtual agent is provided with much more information than
a human player has, what was not in the spirit of our aim to emulate mobile
robots in a virtual environment. Why we did not pick the Gamebots framework
for our project was also the fact, that it is specific to the commercially available
game Unreal Tournament and since 2002, the project does not seem to be further
maintained.

To our knowledge, our work on the Jazzbot and Urbibot case-studies is novel
in the sense that it seems to be the first efficient application of non-monotonic
reasoning framework of ASP in a highly dynamic domain of simulated robotics,
or a first-person shooter computer game. Even though, to our knowledge the
first attempt by Provetti et al. [15] uses ASP for planning and action selection
in the context of the Quake 3 Arena9 game, authors note that their bot could
not recalculate its plans rapidly enough since each computation required up to
7 seconds in a standard setup [15]. Thus, in comparison to Jazzbot or Urbibot ,
their agent was capable to react to events occurring in the environment only to
a lesser extend, because both their action selection and planning was in ASP.

Similarly, to our knowledge, the transparent integration of various KR tech-
nologies such as a declarative, logic based technology for representing agent’s
beliefs and goals, an object oriented language for storing the topological infor-
mation about the environment together with a generic reactive control model
of the agent program in the Jazzyk BSM framework is unique. In consequence,
the Jazzyk BSM framework shows a lot of potential for further experimentation
with synergies of exploiting various AI technologies in cognitive agent systems,
especially in the attractive domain of virtual agents and autonomous non-player
characters, for computer games. Yet, we believe, more experimentation is needed

8 http://www.unrealtournament3.com/
9 http://www.idsoftware.com/
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to explore the limits and deficiencies of our approach in the domain of simulated,
as well as physical reality embodied robotics.
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Abstract. Although there are many researches in teamwork, the development
of agent teams for complex environments still present many challenges, espe-
cially if these environments have real-time requirements. Many tools have been
developed, but there is no silver bullet, and the most general tools have serious
problems with the real-time requirements. This paper introduces a new proxy-
based tool, based on Joint Intentions, to help agents to be a teammate in partially
observable, dynamic and stochastic environments with real-time requirements.
Validation experiments with the computer game Unreal Tournament 2004 have
demonstrated impressive results.

1 Introduction

In computer games most effort has been done to improve graphic aspects, but very little
has been done considering the behavioral aspects, in order to reduce the distance to the
human behavior [3]. The situation of team-based games is even worse, because bots1

usually do not assume coherent roles inside the team. Thus, although there is progress
on individual behavior, not much has been done for social behavior in computer games.

Teamwork2 has emerged as the paradigm for coordinating cooperative agents in dy-
namic environments and it has been shown to be capable of leading to flexible and
robust behavior [29]. However, there is no general solution to build agent teams and
each new domain may have new requirements. It still remains a challenge for team-
work applications in which the domain is highly dynamic and requires a short response
time.

Teamwork has been applied to many domains, such as rescue disaster [19], mili-
tary combat [7] [9], robocup soccer [10] [15], and collaboration between humans and
agents [20]. Flexible teamwork, promoted by the explicit team model, that defines com-
mitments and responsibilities for teammate, allows a robust coordination, keeping co-
herence even with individuals faults and unpredictable changes in the environment [26].

1 A character controlled by an artificial agent.
2 A cooperative effort realized by teammates to achieve a goal.

F. Dignum et al. (Eds.): Agents for Games and Simulations, LNAI 5920, pp. 48–62, 2009.
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Some theories have been proposed to formalize the behavior of a group of agents to
act as a team. Two of these theories have important results for real problems. They are
Joint Intentions [14] and Shared Plans [5]. Both are described through a logic formal-
ism, but with different approaches. Joint Intentions focus on a team’s joint mental state,
while Shared Plans focus on the agent’s intentions towards its collaborator’s action or
towards a group’s joint action.

Tools as STEAM [30] and Machinetta [26] had good results in many complex envi-
ronments [7] [31] [15] [23] [20] [2] [25] [33]. The natural way would be to use some of
these tools to improve teamwork on bot’s development in computer games. However,
practical issues have pointed out for the development of a new specialized tool. STEAM
was developed using an old version of SOAR [13], that made changes in its language
since then. Machinetta, that is a successor of STEAM, has shown many limitations for
the game domain.

In order to overcome these limitations, this work introduces TWProxy, a new tool
that enables agents to perform teamwork in highly dynamic environments. TWProxy
uses many of the good ideas of Machinetta, avoiding some of its limitations and adding
new features.

The remainder of the paper is organized as follows: Section 2 shows the main related
works, Section 3 describes the features of TWProxy, Section 4 presents experiments and
evaluation, and Section 5 concludes the paper.

2 Related Works and Main Contributions

Theoretical works in agent teamwork [14] [5] [6] define some features about team be-
havior. They describe what the agents need to share in order to perform a teamwork, like
goals to achieve, plans to perform together, and knowledge about the environment. The
agents need to share their intentions to perform a plan in order to achieve a common
goal, the teammates need to be aware about their capabilities and how to fill roles to per-
form the high level team plan. They must be able to monitor both, their own progress
and the group’s progress to achieve the team goals. Some systems have been developed
using the teamwork idea as teams with human collaboration [23], teams for disaster
situation [19], and teams for industry production line [8].

Joint Intentions [14] focus on teammates’ joint mental states. A team jointly intends
a team action if team members are jointly committed to completing such team action,
while mutually believing that they were doing it [30]. Joint Intentions assume that the
agents are modeled in a dynamic multi-agent environment, without complete or correct
beliefs about the world or other agents. They have changeable goals and their actions
may fail. Thus, the teammate jointly commits to make public the knowledge when a
goal is achieved, impossible to be reached, or irrelevant.

In contrast with Joint Intentions, the concept of SharedPlans [5] relies on a novel
intentional attitude, intending-that. An individual agent’s intending-that is directed to-
ward its collaborator’s action or toward a group’s joint action. It is defined through a set
of axioms that guide an individual to take actions, including communication actions,
that either enable or facilitate its teammates to perform the assigned tasks [30].



50 I.M. Monteiro and L.O. Alvares

Based on these theories, important teamwork infrastructures have been developed,
like GRATE* [8], COLLAGEN [21], STEAM [30], TEAMCORE [20] RETSINA [28],
MONAD [32], and Machinetta [26]. STEAM was developed to provide flexibility and
re-usability of agent coordination through the use of a general model of teamwork. Such
model exploits the autonomous reasoning about coordination and communication. Pre-
vious works have failed either in fulfilling responsibilities or in discovering unexpected
opportunities, once they have used precomputed coordination plans, which are inflexi-
ble. Indeed, they have been developed for a specific domain, what hampers the reuse.
STEAM is specially based on Joint Intentions in order to make the basic building blocks
of teamwork, and it uses Shared Plans to avoid an agent to undo the actions of another
agent.

MONAD defines a multi-agent control architecture based on STEAM teamwork
model to automatically coordinate the execution of multi-agent tasks. MONAD pro-
vides the designer with tools to specify different protocols and the situations in which
they should be applied. It shows how different teams can be easily configured, lead-
ing the teams to differ in performance. In spite of MONAD be applied to Unreal Tour-
nament3, its experiments just evaluate how the team configuration can affect the
team performance, but this does not evaluate how efficient a team with this tool
can be.

Machinetta is a proxy-based integration infrastructure where there is a symbiotic
relationship between proxies and team members. The proxies provide teamwork mod-
els reusable for heterogeneous entities. Machinetta provides each agent with a proxy
and the proxies act together in a team. The Machinetta project was build over previ-
ous works like STEAM and TEAMCORE proxies [20], adding features like adjustable
autonomy reasoning, a novel role allocation algorithm, and the representation of coor-
dination tasks as roles. The pair agent-proxy execute Team-Oriented Programs(TOP)
[24], that are abstract team plans that provide high-level description of the activities
to be performed. Such programs specify joint plans of the team, but do not contain all
of the required details of coordination and communication. Team plans are reactively
instantiated and they allocate roles to capable agents.

Although there are many tools with similar proposals, none of them focus on the
response time for answering the requirements of real-time. In addition, many of these
tools show some practical limitation. For instance, STEAM was developed using an old
version of SOAR [13]. Machinetta has shown a high response time for highly dynamic
domains with real-time requirements. It also does not reuse the terminated plans, being
necessary to create extra plans and increasing the memory usage. MONAD is no longer
available.

In this paper we present TWProxy as a solution to the teamwork problem with real-
time requirements. It is based on the Joint Intentions formalism and is inspired on Ma-
chinetta. We add new important features, including: (i) a simple and extensible language
to describe plans and beliefs, (ii) maintenance of consistency through atomic commu-
nication, (iii) reuse of terminated plans, and (iv) plans that are invariant to the number
of agents.

3 A computer game that provides highly dynamic environment.
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3 TWProxy

In order to meet the requirements for the development of teams of agents in highly dy-
namic environments with real-time requirements4, we introduce TWProxy, a new light-
weight and efficient infrastructure to provide coordination to teams of heterogeneous
agents.

Fig. 1. TWProxy model

In our approach, summarized in Figure 1(a), each agent is associated with a proxy
that performs the communication and the multi-agent planning. The team coordination
is achieved using role allocation. Each proxy knows the capabilities of the other team-
mates. When plan preconditions are achieved, roles are assigned according to this plan.
When the plan postconditions are achieved, each teammate releases its role. The proxy
does not tell how to execute the role, it just deliberates about what to do. Because of the
high-level coordination, a flexible teamwork is possible, leaving the details about role
execution with the agent.

Figure 1(b) shows the TWProxy internal organization, composed by planner, beliefs
base, agent communication interface, inter-proxy communication module and interac-
tion between these elements. The communication modules are easily extensible in order
to achieve new organization requeriments or the TWProxy integration with new kind of
agents. The planner and set of beliefs are driven by the description language of plans
and beliefs, as shown in listings 1. Follow are described the TWProxy internal interac-
tion represented by arrows in Figure 1(b):

4 In this work, we assume a response time window of 200 ms.
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1. New belief or an update of beliefs, that was perceived by agent and that will update
the set of beliefs.

2. Usage of the set of beliefs by planner, that uses stored beliefs to check condition to
activate or to deactivate plans.

3. Deliberation about role allocation to the associated agent.
4. Deliberate about role allocation to other teammate or request of capability update,

been sent to the responsible proxy, that will request about its associated agent ca-
pability update.

5. New belief from other proxy.
6. Channel used to agents communication through TWProxy.

3.1 Plans and Beliefs

The initial agent beliefs and its plans are stored in a structured file specified with the
language shown in listing 1. This file contains agent beliefs about capabilities, team
composition and the specific domain. It also describes high-level team plans.

Listing 1. Grammar of the language to define the plans and initial beliefs

<blf> ::= <block> | <block> <blf>
<block> ::= "belief" <belief_block> |

"plan" <plan_block>
<belief_block> ::= <id> "{" <inside_belief> "}"

<inside_belief> ::= <attr_value> |
<attr_value> <inside_belief>

<attr_value> ::= <id> ":" <value> ";"
<value> ::= <id> | <id> "," <values> |

<number> | <number> "," <value> |
"true" | "false"

<plan_block> ::= <id> "{" <inside_plan> "}"
<inside_plan> ::= "roles" ":" <role_values> ";"

<pre_block> <post_block>
<role_values> ::= <id> | <id> "," <role_values> |

<id> "+" | <id> "+" <role_values>
<pre_block> ::= "precondition" "{" <expr> "}"

<post_block> ::= "postcondition" "{" <expr> "}"
<expr> ::= "(" <expr> ")" |

<id> "." <id> <comp> <number> |
<id> "." <id> <comp> <id> "." <id> |
<id> "." <id> <comp> "true" |
<id> "." <id> <comp> "false" |
<expr> "|" <expr> | <expr> "&" <expr>

<id> ::= "[a-zA-Z][a-zA-Z_0-9]*"
<number> ::= "[+-]?[0-9]+|[+-]?[0-9]+\.[0-9]+"

<comp> ::= "==" | "!=" | "<" | "<=" | ">" | ">="

Teams of agent-proxy pairs execute Team-Oriented Programs (TOPs) [24]. These TOPs
specify the joint plans of the team and their inter-dependencies, but they do not contain
all the required details of coordination and communication.

Listing 2. An example about capability belief

belief capability_agent001_CTFProtectTheBase {
type: capability;
rapId: agent001;
roleId: CTFProtectTheBase;
ability: 76;

}
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Listing 2,3 and 4 show examples of different parts of the beliefs file for the Capture The
Flag domain. Listing 2 defines that the agent agent001 can perform the role CTFPro-
tectTheBase and that his level of ability for this role is 76.

Listing 3. An example about domain specific belief

belief flag_enemy{
type: flag;
owner: enemy;
have: false;

}
belief flag_friend{

type: flag;
owner: friend;
have: true;

}

The domain specific belief is also described in the beliefs file, as shown in listing 3. The
belief contents is flexible enough to describe new properties, because the new attributes
are handled dynamically.

Listing 4. A plan example

plan p1{
roles: CTFProtectTheBase, CTFCaptureTheFlag+;
precondition{

( flag_friend.have == true ) &
( flag_enemy.have == false )

}
postcondition {

( flag_friend.have == false ) |
( flag_enemy.have == true )

}
}

Listing 4 shows an example of a plan for the Capture The Flag context. When a team
has its flag and it does not have the enemy flag, plan p1 is activated launching a role
allocation process. This plan specifies two roles to be allocated, CTFProtectTheBase
and CTFCaptureTheFlag, where the second is flexible for more than one allocation,
which is indicated by the symbol ”+” at the end of the role’s name. If a team has four
agents available, one performs CTFProtectTheBase, while the other three execute CT-
FCaptureTheFlag.

3.2 Communication

The module Inter-Proxy Communication uses two kinds of communication, the atomic
broadcast [4] and unicast. Each kind of communication is separated in different chan-
nels. The atomic broadcast is used to share team beliefs, keeping the distributed black-
board consistent, and unicast is used in the role allocation process.

In order to solve the problem of atomic communication, TWProxy has a simple
atomic broadcast layer that can be extended to meet requirements of other kinds of or-
ganization. This kind of communication is used when a new team belief is available. In
other words, when a teammate perceives a new situation that affects the team, he shares
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it, keeping the knowledge of the team consistent. However, the teammate does not need
to share his individual knowledge, decreasing the number of messages exchanged.

The unicast channel is used to perform a simplified form of Contract Net Protocol
[27], in order to achieve role allocation. When the team leader perceives that the pre-
condition of a plan was achieved, he asks the other agents about their ability, and after
receiving the answers he allocates the roles for the necessary number of agents.

3.3 Planner

The TWProxy planner uses team leader to launch a new plan. The team leader may be
either statically pre-fixed or dynamically defined at run-time. A simple way to dynami-
cally choose a team leader is giving the leadership position to the first member that re-
quests it, what is easy to do using atomic communication. The use of team leader avoids
conflict problems in role allocation, saving time to react to the environment changes.
The team leader has updated team beliefs and it can launch a plan consistently, because
everyone is committed to share information relevant to the team.

In order to achieve the real-time requirements, the process of role allocation is not
thoroughly distributed. After the team leader receives information about the ability of
the teammates, it decides by its own about the allocation of the roles. This is the main
limitation of TWProxy, but it is also the main issue that increases the performance of
role allocation. Only a few messages are needed to update the team leader with the team
ability, thus the process is optimized to achieve the best performance.

The planner is like a rule-based system. Every plan has rules to both activate it (the
preconditions) and to stop it (the postconditions). These rules are checked using the
current knowledge. Roles are assigned in the activation of a plan and the involved agents
release their roles in the plan stopping.

With TWProxy the team leader can use two algorithms to perform the role alloca-
tion: an optimal algorithm with complexity O(n3) or a new heuristic algorithm with
complexity O(n2log(n2)). The optimal algorithm is the Hungarian or Kuhn-Munkres
algorithm, a classical solution to the assignment problem, originally proposed by H.
W. Kuhn in 1955 [12] and refined by J. Munkres in 1957 [18]. The heuristic algo-
rithm is the Normalized Relative Weight (NRW), proposed in this work and presented in
Algorithm 1.

In the role allocation problem, each agent ai ∈ A, is defined by its capability to
perform roles, being R = r1, ..., rk the set of roles. The capability of an agent ai

to perform a role rj , is quantitatively given by C(ai, rj). The matrix M defines the
allocation of roles to team members, where mi,j is the value for the ith row and jth
column, and mi,j = 1 if ai performs rj , otherwise mi,j = 0.

Thus, the goal in this problem is to maximize the function

f(M) =
∑

ai∈A

∑

rj∈R

C(ai, rj) ∗ mi,j

such that
∀i

∑

1≤j≤k

mi,j = 1
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Algorithm 1. Normalized Relative Weight
Require: C is a subset of all capabilities, and it has just roles that will be assigned.

for i = 0 to nAgents do
norma ⇐ 0
for j = 0 to nRoles do

norma ⇐ norma + C(i ∗ nRoles + j).cap2

end for
norma = sqrt(norma)
for j = 1 to nRoles do

C(i ∗ nRoles + j).cap ⇐ C(i ∗ nRoles + j).cap/norma
C(i ∗ nRoles + j).agent ⇐ i
C(i ∗ nRoles + j).role ⇐ j

end for
end for
C ⇐ sortByCapability(C)
for k = 0 to nRoles ∗ nAgents do

aIdx ⇐ C(k).agent
rIdx ⇐ C(k).role
if Allocated(rIdx) = false and HasRole(aIdx) = false then

Allocated(rIdx) ⇐ true
HasRole(aIdx) ⇐ true
Allocation(aIdx) ⇐ rIdx

end if
end for

The NRW algorithm is a modification of the greedy strategy. It considers that each agent
has a vector with all the capabilities, and the algorithm uses just a sub-vector of these
capabilities related to the roles that should be performed. After that, NRW normalizes
each subvector from the agent. Thus, each capability may be compared fairly. Then, the
algorithm can use a greedy strategy to find a solution.

3.4 Agent Interface

Each individual agent is attached to a TWProxy forming a social agent. The communi-
cation between the individual agent and the TWProxy is defined by a flexible interface,
allowing interaction with several kinds of agents.

The interface between proxy and agent is defined by a base class that must be ex-
tended to implement this communication. Such interface is based on message exchange
and it can be adjusted to each kind of agent. In a new domain, the interface with the
agent is the main modification needed. Thus, it is possible to build a team, to a new do-
main, by just developing the interface between agent and proxy, and the team program.
The individual agent does not need to have social commitment, because TWProxy does
this for it.
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4 Experiments and Evaluation

In this section we present three kinds of experiments to show the main contributions
of TWProxy. The first one evaluates the role allocation process, comparing the Hun-
garian algorithm with the heuristic proposed here. The second measures the period of
teamwork inconsistency, evaluating the elapsed time between an important change in
the environment and the team adoption of a new strategy. The third kind of experiment
evaluates the efficiency of bots using TWProxy in matches.

4.1 Role Allocation Efficiency

The first experiment about the efficiency of the role allocation intends to explain why
to use an heuristic algorithm if there exists an optimal one that runs in polynomial
time. The answer is simple, the heuristic algorithm scales better than the optimal one.
Considering one second as the maximum time to wait for role allocation, the optimal
algorithm scaled up around 230 agents while the heuristic scaled up around 1200 agents.
For this reason, TWProxy uses by default the Hungarian algorithm when the number of
agents is lower than a given threshold, otherwise the proxy uses the heuristic method.

An important issue when dealing with heuristic algorithms is to know how good the
heuristic is. A statistical analysis sounds a good solution. Thus, many role allocations
were simulated to evaluate the difference between the optimal and the heuristic algo-
rithm. The result of 999 allocations with the number of agents ranging from 3 to 100 is
shown in Figure 2 representing the mean of percentage of optimum allocation and its
standard deviation. By increasing the number of agents, the algorithm tends to 98% of
the optimum while the standard deviation decreases.
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Fig. 2. Means of percentage of the maximum value and standard deviation

4.2 Evaluating the Period of Teamwork Inconsistency

In highly dynamic environments, a great concern in teamwork is to avoid teamwork
inconsistency. In the Capture The Flag domain5, a teamwork inconsistency may be the

5 In the game type Capture The Flag, one team must score flag captures by taking the enemy
flag from the enemy base and returning it to their own flag. If the flag carrier is killed, the flag
drops to the ground for anyone to pick up. If the friend flag is taken, it must be returned ( by
touching it after it is dropped) before the team can score a flag capture.
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following: given a team composed of agents A, B and C, if either A or B are trying to
recover a flag that has been recovered by C, then the team is in an inconsistent state.
Every team in a dynamic environment will stay in an inconsistent state during some
period of time. Therefore, the goal is to minimize inconsistency states.

The experiment about Period of Teamwork Inconsistency(PTI) intended to evaluate
the ability of TWProxy to react in (soft) real-time to environment changes. In order to
compare its performance, Machinetta was exposed to the same situation. A group of five
agents were updating their beliefs about the flag status, and the time period between the
environment change and the role allocation to the whole team has been computed.

The sequence of environment changes was the same for Machinetta and TWProxy.
It was composed of 25 updates, representing a whole match. Each proxy played 100
matches, in order to get a general behavior of PTI. This experiment was performed on
a single machine. For this reason, the network latency did not appear in the results.

The results shown in Table 1 describe the mean(μ) and the standard deviation(σ) of
the experiments set. The measure unit is milliseconds and the time represents the total
time between a new received belief and the modification of the strategy. TWProxy, in
this experiment, achieved a mean of 77.91ms, while Machinetta got 12303.34ms. In
other words, TWProxy was more than one hundred times faster than Machinetta to reach
a consistent state. The standard deviation shows how stable TWProxy execution was in
comparison to Machinetta.

Table 1. Mean and standard deviation of the PTI experiment

Elapsed time(ms)
TWProxy μ = 77.91 σ = 12.95

Machinetta μ = 12303.34 σ = 6459.54

The performance and stability of TWProxy against Machinetta was the main result of
this experiment. In the midst of this circumstance, Machinetta also presented a high us-
age of memory, more than 100MB per proxy, making its usage difficult in some domains
like modern games. TWProxy in these experiments did not use more than 1.6MB of
memory. The key of these results relies on the kind of application for which Machinetta
and TWProxy were designed. While TWProxy design was concerned to achieve real-
time requirements, Machinetta was originally developed to allow humans to participate
in teams with robots and artificial agents. Several points may explain this efficiency, in-
cluding: the usage of C++ instead of Java; optimization in the access to the beliefs; and
mainly no conflicts to solve, because the communication with atomic broadcast guaran-
tees the total order of messages and the usage of team leader avoids the role allocation
conflict.

4.3 Teamwork Efficiency

To evaluate the teamwork efficiency of TWProxy we used the well known game Un-
real Tournament 2004 (UT2004), a multiplayer First-Person Shooter(FPS) game. The
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classical team-based game type Capture The Flag was chosen to evaluate the team
coherence, because it is easy to measure the results and simple to identify the team be-
havior. The GameBOTs [1] [11] project is used to communicate the developed bot with
the game.

The UT2004 game provides an environment with the following characteristics [22]:

– partially observable - the agent, using its perception, cannot access all relevant
environment states;

– stochastic - the next state of the environment is not completely determined by the
current state and actions selected by the agents;

– nonepisodic - the quality of bot’s actions depends on its previous actions;
– dynamic - the environment state can change between the agent’s perception and

agent’s actions;
– continuous - the number of environment states is unlimited;
– multi-agent - there is cooperative and competitive interaction between agents.

In our experiments, the agents have been developed using the framework IAF [17], that
implements a hybrid agent architecture [16]. Such agents communicate with the game
controlling a player. For these experiments every agent has the same capabilities. Thus,
just the teamwork is different. In order to compare TWProxy with another teamwork
solution, Machinetta is used, because of the large number of successful applications in
dynamic environments [23] [20] [24] [25].

The team that plays Capture The Flag using TWProxy has just four plans, that are
activated when the state of a flag changes. Such plans generate the following team
behavior:

1. when a team has its own flag but it has not the enemy’s flag, someone needs to
protect the base while others go to capture the enemy’s flag;

2. when a team has both, its own and the enemy’s flag, all agents must go back to their
base;

3. when a team does not have its own flag but it has the enemy’s flag, the agent that
has the enemy’s flag must go back to its base and the others should recover the
team’s flag;

4. when the team has no flags, every agent must search any flag.

The matches experiments were composed of 30 matches with 15 minutes and teams
were composed of 5 players (except in experiments against humans, when 4 players
were used ). The following teams participated in the matching experiments: TWproxy-
Team, a team composed of agents developed with IAF and using TWProxy; UTBots-
Average, the Capture The Flag team from UT2004 in Average difficulty level (default
level); UTBots-Experienced, the Capture The Flag team from UT2004, in Experienced
difficulty level; Machineta-Team, a team composed of agents developed with IAF and
using Machineta; and Human-Team, a team composed of humans with different levels
of skill.

The Tables 2, 3, 4, 5 and 6 summarize the results of matches, showing mean (μ) and
standard deviation (σ) of the team score and the sum of individual scores. The team
score represents how many flags were successfully captured and the sum of individual
scores indicates the teammate behavior, computed by the number of killed enemies and
captured flags.
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TWProxy-Team vs UTBots-Average. TWProxy-Team had no difficulties to win
UTBots-Average, winning 93.33% of the battles, as seen in Table 2. Being UTBots-
Average a centralized approach that accesses the full state of the game to decide what
to do, the result of this experiment represents the possibility to use distributed artificial
intelligence in domains like modern games. The immediate advantage of the distributed
approach is the possibility of new gameplay, despite increasing the complexity to de-
velop bots.

Table 2. TWProxy-Team versus UTBots-Average

TWProxy-Team UTBots-Average
Wins 93.33% 0%
Team Score μ = 2.42 σ = 1.45 μ = 0.03 σ = 0.18
Sum of Individual Score μ = 230.97 σ = 31.11 μ = 100.77 σ = 20.27

TWProxy-Team vs UTBots-Experienced. In this experiment, TWProxy-Team also
had no difficulties to win UTBots-Experienced, as shown in Table 3. Although the score
of UTBots-Experienced was better than UTBots-Average, in comparison with the pre-
vious experiment, TWProxy-Team won 76.67% of the battles.

Table 3. TWProxy-Team versus UTBots-Experienced

TWProxy-Team UTBots-Experienced
Wins 76.67% 0%
Team Score μ = 1.37 σ = 1.24 μ = 0 σ = 0
Sum of Individual Score μ = 227.03 σ = 27.32 μ = 117.87 σ = 27.72

Machinetta-Team vs UTBots-Average. Using the same agents of TWProxy-Team,
but with a different proxy (Machinetta instead of TWProxy), the performance of
Machinetta-Team was worse than the performance of TWProxy-Team in the same situa-
tion. Table 4 shows the results of these experiments, where Machinetta-Team won only
20% of the battles. Thus, it is possible to see how a tool of coordination can influence
the team performance.

Table 4. Machinetta-Team versus UTBots-Average

Machinetta-Team UTBots-Average
Wins 20% 0%
Team Score μ = 0.27 σ = 0.64 μ = 0.03 σ = 0.18
Sum of Individual Score μ = 185.47 σ = 48.28 μ = 73.87 σ = 31.84
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TWProxy-Team vs Machinetta-Team. In these experiments, as shown in Table 5,
Machinetta-Team did not score on TWProxy-Team, while TWProxy-Team scored on
average 0.6 points per match. In general, TWProxy-Team won 43.33% of the battles,
while Machinetta-Team did not win any one. Although the agents were the same in both
teams, TWProxy shows advantages over Machinetta for this domain, that is a highly
dynamic environment with real-time requirements.

Table 5. TWProxy-Team versus Machinetta-Team

TWProxy-Team Machinetta-Team
Wins 43.33% 0%
Team Score μ = 0.6 σ = 0.81 μ = 0 σ = 0
Sum of Individual Score μ = 217.27 σ = 57.15 μ = 176.07 σ = 29.61

TWProxy-Team vs Human-Team. This last experiment aims to evaluate the team co-
herence, putting TWProxy-Team against Human-Team. Usually, teams of humans have
the ability to explore some coherence fault in a team of bots, what justifies this experi-
ment. Thus, a group of 25 people, with different skills in FPS6, participated in the team
of humans. Table 6 shows how disputed these battles were. TWProxy-Team won 20%
of the matches and Human-Team won 26.67%. The individual score indicates that the
human players were better than bots, however, no incoherence was found in the team
of bots. The main advantage for Human-Team was the evolving of strategy, because the
strategy of TWProxy-Team did not evolve. Nevertheless, the results were so close, with
a little advantage for Human-Team.

Table 6. TWProxy-Team versus Human-Team

TWProxy-Team Human-Team
Wins 20% 26.67%
Team Score μ = 0.23 σ = 0.43 μ = 0.5 σ = 0.97
Sum of Individual Score μ = 108.73 σ = 25.02 μ = 154.2 σ = 39.23

5 Conclusions

This work introduces TWProxy, a new tool based on a team-proxy approach to coor-
dinate groups of agents. Experiments presented here have shown that it is possible to
use the teamwork paradigm for highly dynamic environments with real-time require-
ments. These also confirms the flexibility of high-level planning and the reusability of
the proxy approach.

TWProxy shows new important features to develop teams in complex environments.
It provides two partially distributed algorithms to perform role allocation, including a
new efficient heuristic algorithm. It also provides a simple and extensible language to

6 First Person Shooter.
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describe plans and beliefs. The plans can be reusable and the number of agents per-
forming a plan can be variable. A distributed blackboard with team beliefs is available
to the agents, and the use of TWProxy for new domains just requires to write the agent’s
interface and the TOP.

Based on experiments, TWProxy has shown advantages compared to Machinetta,
being more stable and efficient. These experiments evaluated the following aspects: the
quality of the role allocation performed by TWProxy; the period of teamwork inconsis-
tency, where TWProxy has much better response time than Machinetta in a simulated
environment; and the efficienty of teamwork, where it was possible to see TWProxy
keeping the team coherence in matches against UTBots, Machinetta-Team and Human-
Team. The comparison between TWProxy and Machinetta was also important to show
how the teamwork efficiency may change according to the used coordination tool.

As future works, we intend to implement support to new organization of agents. We
also intend to develop a new layer of fault-tolerant communication, trying to minimize
the delay inserted in the treatment of lost messages. New games beyond the Capture
The Flag will also be investigated.
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Abstract. Massively Multiplayer Online Games present a new and ex-
citing domain for service-oriented agent computing as the mechanics of
these virtual worlds get more and more complex. Due to the eminently
distributed nature of these game systems and their growing necessity of
modern AI techniques, it is time to introduce design methods that take
advantage of the power of Multi-Agent Systems, Agent Organizations
and Electronic Institutions in order to face the challenges of designing
a modern Massively Multiplayer Online Game. This article follows pre-
vious pieces of work in the line of Multi-Agent Systems and Massively
Multiplayer Online Games research into a common ontology to represent
the information that agents store and share and towards the use of the
THOMAS service architecture and the SPADE agent platform to address
these challenges. The main focus of the article is the so called MMOG
Layer : a software layer which is independent of the environment simu-
lation and the human-interface devices. An example implementation of
such layer is also set out.

1 Introduction

Massively Multiplayer Online Games (MMOGs) are an important focus of re-
search, not only because they are economically attractive, but also because a
MMOG involves many fields and a large amount of data that is generated by
the interactions of many individuals: configuring a MMOG is a relevant source of
research. In the field of AI, to model such systems and its dynamics is nowadays
a very relevant task[10, 17].

A typical MMOG (such as World of WarcraftTM1 or Age of ConanTM2, two
successful games of this kind) gathers a large community of concurrent players
in a persistent virtual game world. These players take part in a common game
which has no foreseeable end (i.e. the game is never completed or finished) and,
along with some synthetic characters and creatures driven by AI, they populate
the virtual world and create an online society with its own rules, landscape,
economy and idiosyncrasy.

1 http://www.blizzard.com
2 http://www.ageofconan.com
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MMOGs are similar in nature to established online virtual communities, like
Second LifeTM3 or ThereTM4, as both have three-dimensional virtual worlds
inhabited by the users’ online personas and both have a virtual environment in
which the activities of the users take place. However, virtual communities usually
spot an open policy and an enforcement of freedom among its members. They
do not completely lack rules or norms, but in general terms, users are left to do
as they please and there are no short or long term goals for the users’ personas
to accomplish.

On the other hand, a MMOG also presents some degree of freedom to its
players, but it is normally built around a set of rules, logics, conventions and
other game mechanics that the game system itself enforces onto the players and
that, together, represent the actual way of playing that particular MMOG and
set what the game is about and how it becomes an enjoyable and challenging
experience for the players. Besides, MMOGs have a tradition of integrating the
development, evolution and upgrade of the players’ alter egos into the game
mechanics, making it a de facto mandatory long-term game goal for most players.

The present paper focuses in presenting one of the different layers of the
architecture MMOGboMAS (MMOG based on Multi-Agent Systems) detailing,
not only the architecture (ontology and agent taxonomy), but also a prototype
applied to a concrete game. The layer presented is the MMOG layer, where in
an abstraction level that is independent from not only the way the user is going
to access the game, but also from the virtual environment, the game rules and
mechanics are defined and dealed with.

In this way, the ontology defined is a common basic ontology that the agents
that form the game can use to express semantic knowledge in common terms.
Also this ontology is used as the base foundation for other, more specific, ontolo-
gies that can be built to represent knowledge for a given game or game genre.
An example of this later kind of ontology is also provided. The language chosen
to represent these ontologies is OWL-DL the standard content language for the
semantic web, sanctioned by the W3C5.

On the other hand, the agents pertaining to the MMOG layer will allow
the creation of virtual organizations and make use of complex services. So, this
layer has been designed and implemented according to the specifications of the
THOMAS architecture67. This architecture is an extension of the classic FIPA
platform [13] to open systems dealing with dynamic virtual organizations and
services ala SOA.

To implement the prototype, the SPADE[11] MAS platform has been used
due to its python language-based feature, so that it is very easy to develop quick
and functional agent prototypes.

3 http://www.secondlife.com
4 http://www.there.com
5 http://www.w3.org
6 http://www.fipa.org/docs/THOMASarchitecture.pdf
7 http://www.dsic.upv.es/users/ia/sma/tools/Thomas/archivos/arquitectura.pdf
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There have been other approaches to use agents in online gaming, albeit not
exactly in the MMOG space. Most of them are oriented towards achieving better
behaviors in Non-Player Characters. Dignum et al. [9] propose a more natural
(long-term) behavior of Non-Player Characters through the use of Multi-Agent
Systems, and clarify that game design should be adjusted to incorporate the
possibilities of agents early on in the process, a statement also fundamental to
this line of research. Also, Gemrot et al. [15] take a more practical approach by
developing a full framework, called Pogamut, to integrate distributed intelligent
agents as synthetic opponents and allies (bots) in games powered by the ’Unreal
Engine’TMtechnology. The main objective of the Pogamut project is to provide
new AI-driven players that can bestow new challenges to the players and learn
from their actions, using a distributed AI network that runs outside of the game
clients and server. Both approaches take online gaming in general as a domain for
agents achieving good results, so it is a natural step forward for agent technology
to enter the MMOG space.

In section 2 the concept of MMOG based on MAS architecture is provided. In
section 3 the MMOG Layer is introduced. In section 4 a specific example deriving
from the MMOG ontology is presented. Finally, in section 5 some conclusions
are presented along with some hints at future works.

2 MMOG Based on MAS Architecture (MMOGboMAS)

This piece of work follows in the footsteps of previous research efforts like [1]
and [2] in which games in general and MMOG in particular are researched as
natural scenarios for agents and MAS. A MMOG (like most complex systems)
can be seen as a system split into several layered subsystems, with each layer
being relatively independent and taking care of one aspect of the whole MMOG
experience. From the perspective of this work, a MMOG is split into three layers:

– HCI Layer: It is the client-side of the system, the part of the game run-
ning on the players hardware (PC, mobile phone, game console, . . . ). It is the
user interface that the game provides to the player, i.e. the game client soft-
ware, and it provides the player with a gaming experience (i.e. 3D graphics,
sound, . . . ). On a computer, for instance, this software does not differ techni-
cally from other types of game software (i.e. offline games), and it is normally
built around a game engine, giving it agent capabilities. Due to this layered
design, the user is able to interact with the same game in different ways ac-
cording to the device it is using, that is, the Interface Agent it interacts with.
Its desirable features are efficiency and good usability. This agent is an ex-
ternal agent (out of the direct control of the platform) because it is executed
in the client machine, that is, the players computer. It is a light-weighted
agent that provides the user an interface to the MMOG. The InterfaceAgent
is capable of triggering a set of actions that output information messages
towards the MMOG Layer (in fact, to the ProfileAgent). A user may have
many InterfaceAgents installed: one on a computer, another on a mobile
phone, etc. But since all of them represent the same user, all of them end
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Fig. 1. A MMOG Multi-Agent System

up communicating with the same ProfileAgent (representation of the user in
the MMOG Layer).

– Intelligent Virtual Environment (IVE) Layer: It is the virtual rep-
resentation of the game environment itself. It is part of the server-side of
the system, the part of the game that runs mostly on the game provider’s
hardware, a controlled environment. The synthetic place and scenario where
the game takes place: The virtual world. This world is independent of the
type of game or simulation it must give support. The IVE layer falls outside
the scope of this article, but it is thoroughly described in [4], presenting two
kind of agents: Simulation Controller Agents and Inhabitant Agents. The
first ones are in charge of controlling the environment (or pieces of it) and
communicating with the graphical viewers along with the agents inhabiting
such environment, that is, the Inhabitant Agents.

– MMOG Layer: It is a complex subsystem where all the game logics and
mechanics are implemented and must be solved at run-time. It is independent
of the IVE layer. It implements the game rules / norms controlling the game
development. It is the place where all the game clients connect to play, and
along with the IVE layer must facilitate game server scalability. In this line



The MMOG Layer: MMOG Based on MAS 67

of research, this subsystem is seen as the core of a MAS and requires, at
least, one agent platform as its foundation.

The main scope of this paper lies within the MMOG Layer that will be detailed
in the next section.

3 The MMOG Layer

3.1 Agent Taxonomy

As stated before, the MMOG Layer is essentially a dedicated, open MAS which
runs the game. This MAS uses agent technologies like agent services, Electronic
Institutions[6, 12] and Agent Organizations[3, 7, 14] to model some game me-
chanics, and translates the common issues and situations found in MMOGs into
problems that can be solved using classic software agent features, such as agent
interactions, agent communication protocols (like auctions or call-for-proposals),
service-oriented computing, event-driven behaviors, role models, etc. A (rough)
translation table between game and agent concepts can be seen in table 1.

Like any other agentification process, one of the key ideas is to identify the
agents and types of agents that will conform the system. In this case, the agents
are based on the concepts and entities that form the whole game experience of
a MMOG, and are explained in more detail in [2]:

– ProfileAgent: a personal agent which manages the player status and profile
within the game community. A ProfileAgent is executed server-side, that is,
inside the agent platform (which makes it an internal agent). It manages the
player’s preferences in the game world, which avatars the player uses and the
role that the player plays in the system (Spectator, Player or GameMaster).

– AvatarAgent: an agent which represents an avatar of a human player
within the game (a PC or Player Character). It is a persistent kind of agent:
is not deleted and re-spawned often, it bears a long life cycle. It is the agent
that holds the PC stats (server-side), and so, a malicious player cannot mod-
ify them locally (cheat). The AvatarAgent is the kind of agent that actually
performs the actions for the player in the virtual world. It is a persona of

Table 1. Translation between game concepts and MAS concepts

Game Concept Agent Concept Technology
Players Clan Agent Organization THOMAS

Players Clan: Lord Agent Organization Supervisor
Players Clan: Objective Agent Organization Goal
Players Clan: Loot Share Agent Organization Reward Policy

Game Zone Electronic Institution AMELI
Game Zone Hub Federation of Electronic Institutions
Client Software Interface Agent (not in its entirety) SPADE

Player Character AvatarAgent
Non-Player Character NPCAvatarAgent

Game World Intelligent Virtual Environment OSG
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the player inside the virtual world and it is a very active type of agent. Since
it is an internal agent of the game and it is designed by the game develop-
ers, it will strictly follow the game rules, much like a Governor agent does
not break the rules of an Electronic Institution. It is related to the IVE’s
Inhabitant Agent (see figure 1).

– NPCAvatarAgent: an agent which represents an avatar of an AI-controlled
character. It is similar to the AvatarAgent, as both populate the game world,
but it does not obey nor represent a player in the game. It is also related to
the IVE’s Inhabitant Agent.

– GameZoneAgent: a kind of agent which implements the logics of the game
environment and works as a nexus between the MMOG Layer and the IVE
Layer’s Simulation Controller (see figure 1).

– BankAgent: an agent that stores information persistently for other agents
and helps maintain the consistency and reliability of the system.

As summarized in table 1, this approach makes use of Agent Organizations and
Electronic Institutions too. Agent Organizations are used to express what is
known as player Clans or Guilds, i.e. player associations, which may or may not
be permanent, and that bond players which have something in common. This
commonness is usually a goal or set of goals within the game world, e.g. in a
medieval fantasy game like World of WarcraftTM a clan may be formed to build
an army to participate in a big-scale battle against opposing armies. In agent
terms, these clans are really Agent Organizations within the agent platform.
Each organization has its supervisors (which double as Clan Lords in the game
world), its members (which are AvatarAgents), its goals and its reward policies.
The later two are expressed within game terms using an ontology (more on this
later in section 3.2).

Electronic Institutions, however, come handy for another task: modeling the
game zones. A game zone is a segment of the virtual game world with its own
name, theme and uniqueness. For example, in a medieval fantasy game which
has a big game world representing an island, a game zone could be a castle
called ’Hidden Palace’ and the dungeon below it. Game zones like that work
essentially in a very similar way as Electronic Institutions do: there are clear
entry and exit points, interconnected rooms, requirements for entering certain
rooms, crowd limits, AI-controlled agents that play different roles, etc. In fact,
there is a separate branch of the Electronic Institutions called the ’3D Electronic
Institutions’[6] that cover precisely this kind of virtual places. The whole game
world is envisioned as a set of interconnected (or federated) Electronic Institu-
tions. The main institution is called the ’Free Zone’, an Electronic Institution
with relaxed constraints and where the Player Clans may be formed.

3.2 A Common Ontology for MMOG Agents

One issue left partially unsolved in previous works, and that this paper ad-
dresses, is the need for a common ontology for all these agents to be able to
share information in a consistent way (i.e. they need to speak the same content
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language). It is clear that every game or game genre has its own mechanics,
rules and players, but, in essence, all MMOGs share some common concepts,
like player avatars. These common concepts can be expressed using a common
set of conventions, a common knowledge base. Then, in order to express specific
concepts for a given game or genre, custom ontologies that derive from the orig-
inal one can be described. This common ontology is called MMOG Ontology.
Besides providing a good starting point for expressing knowledge in MMOGs,
the use of a common ontology (or set of ontologies) allows for some interesting
developments: first, some parts of the MAS (or even the whole system) can be
reused or cloned from game to game with little to no change needed; second,
it would be possible to interchange or carry over knowledge between different
MMOGs, such as player information, statistics, avatars, etc; third, it settles a
common way of working on a MMOG that transcends the current project and
helps developer to establish work methodologies; and fourth, it allows for rapid
game prototype creation using already available tools for developing ontologies.

The MMOG Ontology has been defined using the Web Ontology Language
(OWL). More precisely, it is expressed using the OWL-DL (Description Log-
ics) sublanguage for two reasons: one, some of the features of this sublanguage,
like defining one-to-many-like relational properties, where needed; and two, the
full set of the OWL language (called OWL-Full) is not deemed as being com-
putable [5]. Even so, it is a quite light ontology, as it is composed of some base
classes that have datatype8 and object properties. A summary table of the ontol-
ogy is presented in table 2. The ontology uses the ’mmog:’ prefix and it presents
the following classes: mmog: Avatar, mmog: Clan, mmog: GameBeacon,
mmog: GameItem, mmog: GameZone, mmog: Goal, mmog: Profile,
mmog: Requirement and mmog: RewardPolicy. Let’s review each one of
them.

– mmog:Avatar: This is the generic class to represent an avatar within the
game. It does not matter if its a player-controlled avatar (i.e. played by an
AvatarAgent) or an AI-controlled avatar (played by a NPCAvatarAgent).
Avatars are uniquely identified by their hasName property which ties each
of them to a unique name string identifier within the game system.

– mmog:Clan: This class represents a Player Clan that the system imple-
ments by means of an Agent Organization. It has properties referring its
members, lords, goals, reward policies and constraints.

– mmog:GameBeacon: A beacon is a sort of ’named point’ of the virtual
world. A marked position inside a mmog:GameZone which is referred by
name. For example, the starting point or one of the exits.

– mmog:GameItem: An inanimate object within the game world uniquely
identified by a code string. For example, in an adventure game, the items
that the players virtually carry in their inventories are instances of a subclass
of mmog:GameItem.

8 A property whose value is a basic data type such integer, float, string, boolean, etc.
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Table 2. Summary table of the MMOG ontology

Summary table of mmog:Avatar class

Property Type Inverse Property

atBeacon (single mmog:GameBeacon) –

hasName (single string) –

hasOwner (single mmog:Profile) owns

isLordOf (multiple mmog:Clan) hasLord

isMemberOf (multiple mmog:Clan) hasMember

Summary table of mmog:Clan class

Property Type Inverse Property

hasGoal (multiple mmog:Goal) –

hasLord (multiple mmog:Avatar) isLordOf

hasMember (multiple mmog:Avatar) isMemberOf

hasName (single string) –

hasRewardPolicy(multiple mmog:RewardPolicy) –

maxMembers (single int) –

Summary table of mmog:GameBeacon class

Property Type Inverse Property

hasName (single string) –

placedAtZone (single mmog:GameZone) containsBeacon

Summary table of mmog:GameItem class

Property Type Inverse Property

hasID (single string) –

hasName (single string) –

Summary table of mmog:GameZone class

Property Type Inverse Property

containsBeacon (multiple mmog:GameBeacon) placedAtZone

hasName (single string) –

hasRequirement (multiple mmog:Requirement) –

Summary table of mmog:Goal class

Property Type Inverse Property

hasCondition (multiple owl:Thing) –

Summary table of mmog:Profile class

Property Type Inverse Property

createdWhen (single date) –

hasContact (multiple mmog:Profile) hasContact

hasPlayerName (single string) –

owns (multiple mmog:Avatar) hasOwner

playsRole (single owl:oneOf {’Spectator’ ’Player’
’GameMaster’}

–

Summary table of mmog:Requirement class

Property Type Inverse Property

atBeacon (single mmog:GameBeacon) –

hasGoal (single mmog:Goal) –

playsRole (single owl:oneOf {’Spectator’ ’Player’
’GameMaster’}

–

requireClan (single boolean) –

requireClanMax (single int) –

requireClanMembers(single int) –

Summary table of mmog:RewardPolicy class

Property Type Inverse Property

hasAction (multiple owl:Thing) –
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– mmog:GameZone: A class to represent a game zone. As stated earlier, a
game zone is a segment of the virtual game world with its own name, theme
and uniqueness. It holds one or more requirements to be entered.

– mmog:Goal: A collection of conditions expressed within valid semantic
terms of the game. When all the conditions are met, then the goal is reached.
For example, a condition could be the equivalent expression of ’Place object
A in beacon XYZ’ or ’Avatar B is a member of Clan C’.

– mmog:Profile: The profile of a player within the game community: The
player’s screen name along with all the information the system wants to
keep from the player, the avatars the player controls, which role the player
plays within the game system and the contact list for this player (i.e. the
’friends list’).

– mmog:Requirement: A requirement to enter a given GameZone. It can
specify terms regarding player clans attributes, goals or player role.

– mmog:RewardPolicy: A reward policy to apply once a goal has been
achieved. It holds a collection of actions defined within game terms. Actions
will normally be specified using terms from derived ontologies of specific
games.

And so, this ontology serves as a foundation to build other, more specific on-
tologies to express the knowledge of a particular game or type of game. In the
next section, an example of these kind of ontologies can be found.

4 Prototyping the MMOG Layer

Analysing the feasibility of the proposal by means of a prototype based on a con-
crete game, and making use of different agent platforms to allow to manage the
different services, virtual organizations and agents involved in this kind of layer.

4.1 Technology Used: THOMAS: Open Systems, Virtual
Organizations and Services

As it has been stated before and can be seen in table 1, there are different
software technologies used in this implementation of an example of a MMOG
layer: to manage Agent Organizations, the THOMAS platform has been used; to
implement agents, the SPADE platform has been used for its high prototyping
speed; and so on.

The THOMAS abstract architecture is an approach to extend the classic FIPA
platform to be used in open systems giving support for dynamic virtual orga-
nizations and allowing to express services offered and demanded for the entities
in the system ala SOA (in fact, every component of the architecture is offering
his functionalities as services). Figure 2 shows the THOMAS architecture, which
main components are:

– Platform Kernel : Component in charge of the communication and internal
agent management. It is composed by the Network Layer and AMS that
appears in the classic FIPA architecture.
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Fig. 2. THOMAS Architecture

– OMS (Organization Management Service): This component controls the life
cycle of the virtual organizations in the system.

– SF (Service Facilitator): This is an improvement of the FIPA architecture’s
DF, so that it allows not only to search and publish services, but also to
compose, discover and matchmaking, using SOA standards and techniques.

4.2 An Example: RacingGame

Let’s imagine an online racing game where players can assume the roles of drivers
of different types of vehicles (Cars, Motorbikes and Trucks) that compete in
online races (e.g. a simplified vision of the genre of games like Mini-Racing
OnlineTM9 or Test Drive UnlimitedTM10). Players can also participate in an in-
game virtual marketplace that allows them to buy and sell parts to upgrade
their vehicles. There are basically two kinds of environments within the game:
roads (where the racing takes place) and shops (where the selling and buying
takes place). Besides, racers can find two types of objects on the road: gas cans
(which replenish their gas tanks) and obstacles (which deal damage to a vehicle
if it crashes into them). The developers of the game also wish to incorporate
some sort of ’Top Racers Ranking’ or ’Leaderboard’, and so, they need to collect
some data from the races, such as how many races has a given player taken part
in and how many of them did that player win.

With that game design in mind, a custom ontology called ’RacingGame’
built on top of the MMOG ontology can be defined. Let’s start by refining the
mmog:GameItem. Three different kinds of items have been identified: parts, gas
cans and obstacles, and such, three distinct subclasses of mmog:GameItem can
be created to represent them: VehiclePart, GasCan and RoadObstacle. Let’s start
with the later two. GasCan needs an obvious datatype property called hasFuel
9 http://www.miniracingonline.com

10 http://www.testdriveunlimited.com
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that indicates how many fuel units are contained in the can. It also needs a
property to indicate where is it placed. Looking at the MMOG ontology, the
placedAtZone property does just that, and so, it is extended to cover the domain
of GasCan too. The RoadObstacle class is very similar, but instead of the hasFuel
property, it has one called dealsDamage which indicates how much damage is
dealt to a vehicle if it crashes with the obstacle. The VehiclePart class is going to
be the superclass of every subtype of part, so it can have the common properties
of every part: hasPrice, which is a datatype property indicating how much does
the part cost, and canApplyTo, a multiple property which indicates that the
part can be applied (i.e. is ’compatible’) to a certain subclass of VehicleAvatar
(more on that later). The subclasses of VehiclePart are BodyWork, Engine and
Wheels, each one representing one of the main parts of a vehicle and each one
having some properties identifying its features and advantages and some other
aspects, like the color of the BodyWork (see table 3).

Table 3. Subclasses of VehiclePart

Subclass Property Type

BodyWork hasArmour (single owl:oneOf {1 2 3 4 5})
BodyWork hasColour (single owl:oneOf {’Red’ ’Black’ ’White’})
BodyWork hasWeight (single float)

Engine gasConsumption (single float)

Engine hasPower (single int)

Wheels hasGrip (single owl:oneOf {1 2 3 4 5})

It is clear that the avatars in this game are going to be the vehicles that race,
and that all of them have common properties that can be reflected using OWL
properties. Let’s subclass mmog:Avatar creating the new class VehicleAvatar
that represents an in-game vehicle. Each vehicle is composed by the union of
three parts: a bodywork, an engine and the wheels, and so, the VehicleAvatar
class has three object properties called hasBodywork, hasEngine and hasWheels
that represent this fact. It also has a numeric property called maxSpeed that
represents the maximum speed that a vehicle can reach based on the properties
of the parts that conform it. VehicleAvatar also has a series of subclasses starting
with BikeAvatar, CarAvatar and TruckAvatar, each one representing one
type of vehicle that the player can control. These classes refine the type of vehicle,
but do not add any significant property (see figure 3).

Regarding zones, two kinds of mmog:GameZones are defined: the
CarPartsShop and the Road. The CarPartsShop is the place where player
can buy and sell car parts to upgrade their vehicles. It is envisioned to be imple-
mented with an Electronic Institution that resembles those used in other market
types (like the one used in the FishmarketTMsystem[8]). The other zone is the
Road, which represents the virtual courses where the races take place. For this
zone, two classes of mmog:GameBeacon have been defined to mark the start and
end points of a race: RaceStartPoint and RaceEndPoint.
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Fig. 3. Diagram of the mmog:Avatar subclasses in the RacingGame ontology

Last, the mmog:Profile must be refined in order to represent all the specific
data for the races, and such, the RacerProfile class is created. It holds an
object property called favoritePlace which points to the game zone where the
player’s avatars have spent more time since the moment the player joined the
game community (represented by the property mmog:createdWhen). It also has
a couple of numeric properties to represent the number of races the player has
been involved in and how many of them did he actually win: numberOfRaces
and numberOfWins.

4.3 Agents Developed

The SPADE platform has been chosen for it allows prototyping of system agents
in a very short amount of time. It can be seen as a Rapid Application Devel-
opment Agent Platform, due in great deal to the use of python as its main
programming language and the fact that it is fully FIPA-compliant. This latter
compliance with the FIPA standards, allows to easily set up communications
between a SPADE agent and THOMAS, as, in its current version, THOMAS is
supported by another agent platform supporting FIPA communication.

To illustrate the interplay of these technologies, an example implementation of
the Player Clans has been built on top of THOMAS’ Agent Organizations. Fol-
lowing the RacingGame example, the ’RacingMatches’ application facilitates the
connection between players interested in becoming part of or creating a brand
new race (or clan) and the race management system (Agent Organizations). In
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this particular example, races are managed inside a THOMAS unit called Race-
Management which provides search, membership and registration services to the
players. This example shows how a VehicleAvatar agent can set up a new race
and how other agents can join the race. To set up a race, a VehicleAgent must
provide an implementation of one of these pre-defined services: ”BeginnersRace”,
”AdvancedRace”, ”DifficultRace” or ”VeryHardRace”. It must play the role of
”Organizer” (or Provider) of the race and the other participants play the role
of ”Challengers” (or Consumers of the service).

Register in THOMAS: Any VehicleAvatar agent that wants to use THOMAS
services, must first register in the THOMAS service platform. This is accom-
plished by means of sending an AcquireRole(”Virtual”, ”Member”) message com-
mand to the THOMAS OMS. This message implies that the agent wishes to
acquire the role ’Member’ in the ’Virtual’ organization, which is the default unit
where all system agents are. Once the OMS checks that the agent can become
part of the unit, it adds the agent to the unit (See figure 4).

Fig. 4. VehicleAvatar agent joining THOMAS

Register a new service: After registering into a THOMAS platform, an agent
can make use of the services offered by the OMS and SF. One of these de-
fault services is to look for other services with a similar profile to the one the
agent is interested in. In this example, the service is called BeginnersRace. So,
a VehicleAvatar agent would send the SF a command message like SearchSer-
vice(BeginnersRace), and the SF then would return the list of registered services
with a similar profile and a ranking value for each one of them. This ranking
value marks the degree of affinity between the given service and the actual re-
sult. In the example, the SF may return: ((BeginnersRace,5), (AdvancedRace,4),
(DificultRace,3), (VeryHardRace,2)), which means that there are already similar
services (races) in the system and one of them is exactly what the agent is look-
ing for. The VehicleAvatar agent wishes to obtain more semantically detailed
information about the BeginnersRace service, so it sends a message like GetPro-
file (”BeginnersRaceProfile”) to the SF. The SF answers with a URI where the
profile is described, and then the VehicleAvatar agent can analyse the profile.
This profile, as any semantic document within the THOMAS framework, is writ-
ten in the OWL-S[16] language, and as such, can be understood by a software
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agent that can parse and extract information from these kind of documents.
The VehicleAvatar can read the service profile and then know that, according
to the profile, an agent must adopt a role in order to register a new process (a
new implementation) of the service. In this example, the BeginnersRaceProfile
demands the role of Organizer, and such, the VehicleAvatar agent can assume
that role via a message like: AcquireRole(“Organizer”, “BeginnersRace”).

Implement the new service: Once registered as a provider of a new service,
a VehicleAgent must provide a process description (i.e. a valid implementation)
of the service it successfully described via the profile. This process description
must be accessible through an URI and it is provided by the VehicleAgent to the
THOMAS platform with a message like: RegisterProcess ( ”BeginnersRacePro-
file”, ”http://.../ BeginnersRaceProcess.owl”). Normally, the OWL-S documents
describing processes are placed in the THOMAS platform, which serves them
via a web server (i.e. Apache Tomcat), but SPADE agents can easily serve web
documents themselves using platform facilities, and so, a VehicleAgent can host
its own process document (see figure 5).

Fig. 5. Register and implement a new service

Client connection: Of course a race is no fun if only the organizer of the event
races. So, other VehicleAvatar agents may join the race. To do so, the first step
is to join THOMAS as can be seen a few lines above. Then, VehicleAgents can
use a SerchService kind of message to discover the ”BeginnersRace” service,
and a GetProfile message to obtain the profile. After that, they can make use
of a message like GetProcess(BeginnersRaceProfile) to obtain the process infor-
mation and know that they must acquire the Challenger role through an Ac-
quireRole(”Challenger”, ”BeginnersRace”) message. And finally, they can make
actual use of the service, that is, join an active race, by sending the right com-
mand message to the Organizer VehicleAgent. In this particular example, such
message includes a service call with the following properties as parameters: Ve-
hicleAvatar:hasName and Profile:hasPlayerName.
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5 Conclusions and Future Work

This work has continued the research line of MMOG Multi-Agent Systems
by providing a starting point for building and exchanging semantic content be-
tween agents of these kind of systems. The existence of a basic ontology (a
common starting point) to represent game-related knowledge is needed in order
to achieve greater long-term goals like standardization, inter-systems communi-
cation or define a methodology to build these kind of system from the ground
up. In this work, such common ontology has been defined using the standard
OWL-DL semantic language, as well as a small example of a more refined on-
tology for a specific game type. Both of them can be downloaded from the web:
http://gti-ia.dsic.upv.es/ontologies/ and are ready for deployment and use.

An interplay between two previously unrelated agents and services platforms,
THOMAS and SPADE, has been created in order to allow agents of the MMOG
Layer to provide and consume services specified in the OWL-S semantic lan-
guage, which is derived from the OWL language used in the common ontology.

Moreover, the path has been open to properly define and specify the agent
interactions and protocols that conform the whole communication scheme of
the system, as now there is an ontology for these agents to use and to express
their semantic knowledge and an organizational platform to support and enforce
services, norms and agent organizations.
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Abstract. The importance of affect in delivering engaging experiences in en-
tertainment and education is well recognized. We introduce the Koko architec-
ture, which describes a service-oriented middleware that reduces the burden of
incorporating affect into games and other entertainment applications. Koko pro-
vides a representation for affect, thereby enabling developers to concentrate on
the functional and creative aspects of their applications. The Koko architecture
makes three key contributions: (1) improving developer productivity by creating a
reusable and extensible environment; (2) yielding an enhanced user experience by
enabling independently developed applications to collaborate and provide a more
coherent user experience than currently possible; (3) enabling affective commu-
nication in multiplayer and social games.

1 Introduction

Games that incorporate reasoning about their player’s affective state are gaining in-
creasing attention. Such games have been prototyped in military training [6] and educa-
tional [11] settings. However, current techniques for building affect-aware applications
are limited, and the maintenance and use of affect is in essence handcrafted in each
application.

We take as our point of departure the results of modeling affect based on appraisal
theory. A fundamental concept of appraisal theory is that the environment of an agent
is essential to determining the agent’s affective state. As such, appraisal theory yields
models of affect that are tied to a particular domain with a defined context. Therefore,
each new problem domain requires a new affect model instance. A current and com-
mon practice has been to copy and edit a previous application (and, occasionally, to
build from scratch) to meet the specifications of a new domain. This approach may be
reasonable for research proofs-of-concept, but is not suitable for developing production
applications.

Additionally, in order to more accurately predict the user’s affective state, many af-
fective applications use physical sensors to provide additional information about the
user and the user’s environment. The number and variety of sensors continues to in-
crease and they are now available via a variety of public services (e.g., weather and
time services) and personal commercial devices (e.g., galvanic skin response units).
Current approaches require each affective application to interface with these sensors
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directly. This is not only tedious, but also nontrivial as the application must be adjusted
whenever the set of available sensors changes.

To address these challenges we propose a service-oriented architecture, called Koko,
that compliments existing gaming engines by enabling the prediction of a gamer’s af-
fective state. When compared to existing approaches the benefits of our architecture are
an increase in developer productivity, an enhanced user experience, and the enabling
of affective social applications. Koko is not another model of emotions but a middle-
ware from which existing (and future) models of affect can operate within. It provides
the means for both game developers and affect model designers to construct their re-
spective software independently, while giving them access to new features that were
previously impossible. Further, Koko is intended to be used by affective models and
applications that seek to recognize emotion in a human user. Whereas it is possible to
use Koko to model the emotions of nonplaying characters, many benefits, such as using
physical sensors, most naturally apply when human users are involved.

The Koko architecture is realized as a service-oriented middleware which runs inde-
pendently from the game engine. The primary reason for this separation becomes more
apparent when we discuss the social and multiplayer aspects of Koko. Such an approach
is consistent with existing techniques for multiplayer access to a central game server.

1.1 Contributions

Any software architecture is motivated by improvements in features such as modular-
ity and maintainability: you can typically achieve the same functionality through more
complex or less elegant means [16]. Of course, an improved architecture facilitates
accessing new functionality: in our case, the sharing of affective information and the
design of social applications. Koko concentrates on providing three core benefits to af-
fective game developers. In the remainder of this section, we elaborate on these benefits.

Developer Productivity. Koko separates the responsibility of developing an application
from that of creating and maintaining the affect model. In Koko, the application logic
and the affect model are treated as separate entities. By creating this separation, we can
in many cases completely shield each entity from the other and provide standardized
interfaces between them.

Additionally, Koko avoids code duplication by identifying and separating modules
for accessing affect models and various sensors, and then absorbs those modules into
the middleware. For example, by extracting the interfaces for physical sensors into the
middleware, Koko enables each sensor to be leveraged through a common interface.
Further, since the sensors are independent of the affect models and applications, a sensor
that is used by one model or application can be used by any other model or application
without the need for additional code.

Quality of User Experience. Abstracting affect models into Koko serendipitously serves
another important purpose. It enables an enhanced user experience by providing data to
both the application and its affect model that was previously unattainable, resulting in
richer applications and more comprehensive models.

With current techniques it is simply not possible for separate applications to share
affective information for their common users. This is because each application is inde-
pendent of and thereby unaware of other applications in use by that user. By contrast,
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Koko-based applications can share common affective data through Koko. This reduces
each application’s overhead of initializing the user’s affective state for each session, as
well as providing insight into a user’s affective state that would normally be outside the
application’s scope.

Such cross-application sharing of a user’s affective information improves the value
of each application. As a use case, consider a student using both an education and an
entertainment application. The education application can proceed with easier or harder
questions depending on the user’s affective state even if the user’s state were to be
changed by participation in some unrelated game.

Affective Social Applications. In addition to enabling cross-application sharing of af-
fective data, the Koko architecture enables cross-user sharing of affective data. The con-
cept of cross-user sharing fits naturally into the realm of social and multiplayer games.
Through Koko, a user if authorized may view the affective state of other members in
their social circle or multiplayer party. Further, that information can potentially be used
to better model the inquiring user’s affective state.

1.2 Paper Organization

The remainder of this paper is arranged as follows. The background section reviews
appraisal theory models. The architecture section then provides detailed description of
the components that compose Koko. Finally, the evaluation section demonstrates the
merits of the Koko architecture.

2 Background

Smith and Lazarus’ [18] cognitive-motivational-emotive model, the baseline for current
appraisal models (see Figure 1), conceptualizes emotion in two stages: appraisal and
coping. Appraisal refers to how an individual interprets or relates to the surrounding
physical and social environment. An appraisal occurs whenever an event changes the
environment as interpreted by the individual. The appraisal evaluates the change with
respect to the individual’s goals, resulting in changes to the individual’s emotional state
as well as physiological responses to the event. Coping is the consequent action of the
individual to reconcile and maintain the environment based on past tendencies, current
emotions, desired emotions, and physiological responses [8].

Koko focuses on a section of the appraisal theory process (denoted by the dashed
box), because Koko is intended to model emotions in human subjects. As a result, the
other sections of the process are either difficult to model or outside Koko’s control. For
instance, the coping section of the process is outside Koko’s control as it is an action
that must be taken by the user.

A situational construal combines the environment (facts about the world) and the
internal state of the user (goals and beliefs) and produces the user’s perception of the
world, which then drives the appraisal and provides an appraisal outcome. This ap-
praisal outcome is made up of multiple facets, but the central facet is “Affect” or current
emotions. For practical purposes, “Affect” can be interpreted as a set of discrete states
with an associated intensity. For instance, the result of an appraisal could be that you
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Fig. 1. Appraisal Theory Diagram [18]

are happy with an intensity of α as well as proud with an intensity of β. Unfortunately,
selecting the set of states to use within a model is not an easy task as there is no one
agreed upon set of states that covers the entire affective space.

Next, we look at three existing appraisal theory approaches for modeling emotion.
The first is a classic approach which provides the foundation for the set of affective
states used within Koko. The final two are contemporary approaches to modeling emo-
tion with the primary distinction among them being that EMA focuses on modeling
emotions of nonplaying characters whereas CARE concentrates on measuring human
emotional states.

OCC. Ortony, Clore, and Collins [14] introduced the so-called OCC model, which con-
sists of 22 types of emotions that result from a subject’s reaction to an event, action, or
object. The OCC model is effectively realized computationally, thus enabling simula-
tions and real-time computations. Further, the OCC’s set of emotions have turned out
to cover a broad portion of the affective space. Elliot [2] expanded the set of emotions
provided by the OCC to a total of 24 emotions. Koko employs this set of 24 emotions
as its baseline affective states.

EMA. The EMotion and Adaptation (EMA) model leverages SOAR [12] to extend
Smith and Lazarus’ model for applications involving nonplaying characters [7]. EMA
monitors a character’s environment and triggers an appraisal when an event occurs.
It then draws a set of conclusions or appraisal frames, which reflect the character’s
perception of the event. EMA then assigns emotions and emotional intensities to each
appraisal frame, and passes it to the coping mechanism, which decides the best actions
to take based on the character’s goals [5].

CARE. The Companion-Assisted Reactive Empathizer (CARE) supports an on-screen
character that expresses empathy with a user based on the affective state of the user



Architecture for Affective Social Games 83

[10]. The user’s affective state is retrieved in real-time from a pre-configured static
affect model, which maps the application’s current context to one of six affective states.
The character’s empathic response is based on these states.

CARE populates its affective model offline. First, a user interacts with the applica-
tion in a controlled setting where the user’s activity is recorded along with periodic
responses from the user or a third party about the user’s current affective state. Second,
the recorded data is compiled into a predictive data structure, such as a decision tree,
which is then loaded into the application. Third, using this preconfigured model the
application can thus predict the user’s affective state during actual usage.

3 Architecture

Existing affective applications tend to be monolithic where the affective model, ex-
ternal sensors, and application logic are all tightly coupled. As in any other software
engineering endeavor, monolithic designs yield poor reusability and maintainability.
Similar observations have led to other advances in software architecture [16].
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Fig. 2. Koko architectural overview

Figure 2 shows Koko’s general architecture using arrows to represent data flow. The
following portion of this section provide details on each of Koko’s major components.
Then after the groundwork of the architecture has been explained we elaborate on the
formal interface definitions for the remainder of the section.

3.1 Main Components and Their Usage

Koko hosts an active computational entity or agent for each user. In particular, there is
one agent per human, who may use multiple Koko-based applications. Each agent has
access to global resources such as sensors and messaging but operates autonomously
with respect to other agents.
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The Affect Model Container. This container manages the affect model(s) for each
agent. Each application specifies exactly one affect model, whose instance is then man-
aged by the container. As Figure 3 shows, an application’s affect model is specified in
terms of the affective states as well as application and sensor events, which are defined
in the application’s configuration (described below) at runtime.
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Affect
Model

Application
Events
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Events
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1
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Model

1

1

Fig. 3. Main Koko entities

Configuring the affect model at runtime enables us to maintain a domain-independent
architecture with domain-dependent affect model instances. Further, in cases such as
CARE, we can construct domain-independent models (generic data structures) and pro-
vide the domain context at runtime (object instances). This is the approach Koko has
taken by constructing a set of generic affect models that it provides to applications.
These affect models follow CARE’s supervised machine learning approach of modeling
affect by populating predictive data structures with affective knowledge. These affect
models are built, executed, and maintained by the container using the Weka toolkit [20].
The two standard affect models that Koko provides use Naive Bayes and decision trees
as their underlying data structures.

To accommodate models with drastically different representations and mechanisms,
Koko encapsulates them via a simple interface. The interface takes input from the user’s
physical and application environment and produces an affect vector. The resulting affect
vector contains a set of elements, where each element corresponds to an affective state.
The affective state is selected from an ontology that is defined and maintained via the
developer interface vocabulary. Using this ontology, each application developer selects
the emotions to be modeled for their particular application. For each selected emotion,
the vector includes a quantitative measurement of the emotion’s intensity. The intensity
is a real number ranging from 0 (no emotion) to 10 (extreme emotion).

Mood Model. Following EMA, we take an emotion as the outcome of one or more
specific events and a mood as a longer lasting aggregation of the emotions for a spe-
cific user. An agent’s mood model maintains the user’s mood across all applications
registered to that user.

Koko’s model for mood is simplistic as it takes in affect vectors and produces a
mood vector, which includes an entry for each emotion that Koko is modeling for that
user. Each entry represents the aggregate intensity of the emotion from all affect models
associated with that user. Consequently, if Koko is modeling more than one application
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for a given user, then the user’s mood is a cross-application measurement of the user’s
emotional state.

To ensure that a user’s mood is up to date with respect to recent events, we introduce
a mood decay formula [15] as a way to reduce the contribution of past events. This
formula reduces the effect that a given emotion has on the user’s mood over time. We
further augment our mood model with the concept of mood intensity from the work of
Dias and Paiva [1]. The mood intensity sums all positive and negative emotions that
make up the user’s current mood, which is used to determine the degree to which a
positive or negative emotion impacts a user. For example, if a user has a positive mood
intensity then a slightly negative event may be perceived as neutral, but if the event were
to recur the mood intensity would continue to degrade, thereby amplifying the effect of
the negative event on the user’s mood over time.

Affect Repository. The affect repository is the gateway through which all affective
data flows through the system. The repository stores both affect vectors (application
specific) and mood vectors (user specific). These vectors are made available to both
external applications as well as the affect and mood models of the agents. This does not
mean all information is available to a requester, as Koko implements security policies
for each user (see user manager). An entity can request information from the repository
but the only vectors returned are those they have the permission to access.

The vectors within the repository can be retrieved in one of two ways. The first re-
trieval method is through a direct synchronous query that is similar to an SQL SELECT

statement. The second method enables the requester to register a listener which is no-
tified when data is inserted into the repository that matches the restrictions provided
by the listener. This second method allows for entities to have an efficient means of
receiving updates without proactively querying and placing an unnecessary burden on
the repository.

Event Repository. The event repository is nearly identical to the affect repository with
respect to storage, retrieval, and security. Instead of storing vectors of emotion, the
event repository stores information about the user’s environment. This environmental
information is comprised of two parts: information supplied by the application and
information supplied by sensors. In either case, the format of the data varies across
applications and sensors as no two applications or sensors can be expected to have
the same environment. To support such flexibility we characterize the data in discrete
units called events, which are defined on a per application or sensor basis. Every event
belongs to an ontology whose structure is defined in the developer interface.

Sensor Manager. Information about a user’s physical state (e.g., heart rate and per-
spiration) as well as information about the environment (e.g., ambient light, tempera-
ture, and noise) can be valuable in estimating the user’s emotional state. Obtaining that
data is a programming challenge because it involves dealing with a variety of poten-
tially arcane sensors. Accordingly, Koko provides a unified interface for such sensors
in the form of the sensor manager. This yields key advantages. First, a single sensor
can be made available to more than one application. Second, sensors can be upgraded
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transparently to the application and affect model. Third, the overhead of adding sensors
is amortized over multiple applications.

The sensor manager requires a plugin for each type of sensor. The plugin is responsi-
ble for gathering the sensor’s output and processing it. During the processing stage the
raw output of the sensor is translated into a sensor event whose elements belong to the
event ontology in the developer interface vocabulary. This standardized sensor event is
then provided as input to the appropriate affect models.

User Manager. The user manager keeps track of the agents within Koko and maintains
the system’s security policies. The user manager also stores some information provided
by the user on behalf of the agent. This includes information such as which other agents
have access to this agent’s affective data and which aspects of that data they are eligible
to see. It is the user manager’s responsibility to aggregate that information with the
system’s security policies and provide the resulting security restrictions to the sensor
manager and the affect repository. Privacy policies are crucial for such applications, but
their details lie outside the scope of this paper.

Developer Interface Vocabulary. Koko provides a vocabulary through which the ap-
plication developer interacts with Koko. The vocabulary consists of two ontologies, one
for describing affective states and another for describing the environment. The ontolo-
gies are encoded in OWL (Web Ontology Language). The ontologies are designed to
be expandable to ensure that they can meet the needs of new models and applications.

The emotion ontology describes the structure of an affective state and provides a
set of affective states that adhere to that structure. Koko’s emotion ontology provides
by default are the 24 emotional states proposed by Elliot [2]. Those emotions include
states such as joy, hope, fear, and disappointment.

The event ontology can be conceptualized in two parts, event definitions and events.
An event definition is used by applications and sensors to inform Koko of the type of
data that they will be sending. The event definition is constructed by selecting terms
from the ontology that apply to the application, resulting in a potentially unique subset
of the original ontology. Using the definition as a template, an application or sensor
generates an event that conforms to the definition. This event then represents the state
of the application or sensor at a given moment. When the event arrives at the affect
model it can then be decomposed using the agreed upon event definition.
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Object

PerformedBy
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OccursIn

TypeOf

name
value
time spent

Location
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name
value
completed
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Fig. 4. Event ontology example
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Koko comes preloaded with an event ontology (partially shown in Figure 4) that
supports common contextual elements such as time, location, and interaction with ap-
plication objects.

Consider an example of a user seeing a snake. To describe this for Koko you would
create an event seeing, which involves an object snake. The context is often extremely
important. For example, the user’s emotional response could be quite different depend-
ing on whether the location was in a zoo or the user’s home. Therefore, the application
developer should identify and describe the appropriate events (including objects) and
context (here, the user’s location).

3.2 The Architecture Formally

Now that we have laid the groundwork, we describe the Koko architecture in more for-
mal terms from the perspective of an application developer. The description is divided
into two segments, with the first describing the runtime interface and the second de-
scribing the configuration interface. Our motivation in presenting these interfaces con-
ceptually and formally is to make the architecture open in the sense of specifying the
interfaces declaratively and leaving the components to be implemented to satisfy those
interfaces.

Application Runtime Interface. The application runtime interface is broken into two
discrete units, namely, event processing and querying. Before we look at each unit in-
dividually, it is important to note that the contents of the described events and affect
vectors are dependent on the application’s initial configuration, which is discussed at
the end of this section.

Application Event Processing. The express purpose of the application event interface
is to provide Koko with information regarding the application’s environment. During
configuration, a developer defines the application’s environment via the event ontology
in the developer interface. Using the ontology, snapshots of the application’s environ-
ment are then encoded as events, which are passed into Koko for processing. The formal
description of this interaction is as follows.

userID × applicationID× applicationEvent �→ ⊥ (1)

Upon receipt, Koko stores the event in the agent’s event repository, where it is available
for retrieval by the appropriate affect model. This data combined with the additional
data provided by external sensors provides the affect model with a complete picture of
the user’s environment.

Application Queries. Applications are able to query for and retrieve two types of vec-
tors from Koko. The first is an application-specific affect vector and the second is a
user-specific mood vector, both of which are modeled using the developer interface’s
emotion ontology. The difference between the two vectors is that the entries in the affect
vector are dependent upon the set of emotions chosen by the application when it is con-
figured, whereas the mood vector’s entries are an aggregation of all emotions modeled
for a particular user.
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When the environment changes, via application or sensor events, the principles of
appraisal theory dictate that an appraisal be performed and a new affect vector com-
puted. The resulting vector is then stored in the affect repository. The affect repository
exposes that vector to an application via two interfaces. Formally, (here a square bracket
indicates one or more)

userID × applicationID �→ affectVector (2)

userID × applicationID× timeRange �→ [affectVector] (3)

Additionally, an application can pass in a contemplated event and retrieve an affect
vector based on the current state of the model. The provided event is not stored in the
event repository and does not update the state of the model. This enables the application
to compare potential events and select the one expected to elicit the best emotional
response. The interface is formally defined as follows.

userID × applicationID× predictedEvent �→ affectVector (4)

Mood vectors, unlike affect vectors, aggregate emotions across applications. As such,
a user’s mood is relevant across all applications. Suppose a user is playing a game that
is frustrating them and the game’s affect model recognizes this. The user’s other affect-
enabled applications can benefit from the knowledge that the user is frustrated even if
they cannot infer that it is from a particular game. Such mood sharing is natural in Koko
because it maintains the user’s mood and can supply it to any application. The following
formalizes the above mechanism for retrieving the mood vector.

userID �→ moodVector (5)

Application Configuration Interface. Properly configuring an application is key be-
cause its inputs and outputs are vital to all of the application interfaces within Koko. In
order to perform the configuration the developer must gather key pieces of information
and then supply that information to Koko using the following interface:

[affectiveState] × [eventDefinition]× [sensorID] × modelID �→ applicationID (6)

The affectiveStates are the set of states (drawn from the emotion ontology) that the ap-
plication wishes to model. The eventDefinitions describe the structure (created using the
event ontology) of all necessary application events. The developer can encode the entire
application state using the ontology, but this is often not practical for large applications.
Therefore, the developer must select the details about the application’s environment
that are relevant to the emotions they are attempting to model. For example, the time
the user has spent on a current task will most likely effect their emotional status, where
as the time until the application needs to garbage collect its data structures is most likely
irrelevant. The sensorIDs and modelID both have trivial explanations. Koko maintains
a listing of both the available sensors and affect models, which are accessible by their
unique identifiers. The developer must simply select the appropriate sensors and affect
model and record their identifiers.
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Further, Koko enables affect models to perform online, supervised learning by classi-
fying events via a set of emotions. Applications can query the user directly for the user’s
emotional state and then subsequently pass that information to Koko. In general, many
applications have well-defined places where they can measure the user’s responses in a
natural manner, thereby enabling online learning of affective state. Applications that do
exercise the learning interface benefit from improved accuracy in the affect model. The
formal definition of this interface is as follows. Notice there is no output because this
interface is used only to update Koko’s data structures not to retrieve information.

userID × applicationEvent× emotionClassifier �→ ⊥ (7)

4 Evaluation

Our evaluation mirrors our claimed contributions, namely, the benefits of the Koko ar-
chitecture. First, we evaluate the contributions of the architecture in itself. Subsequently,
we demonstrate the usefulness of the architecture with case studies of both single and
multiplayer games.

4.1 Architecture Evaluation

A software architecture is motivated not by functionality but by so-called “ilities” or
nonfunctional properties [3]. The properties of interest here—reusability, extensibil-
ity, and maintainability—pertain to gains in developer productivity over the existing
monolithic approach. In addition, by separating and encapsulating affect models, Koko
enables sharing affective data among applications, thereby enhancing user experience.
Thus we consider the following criteria.

Reusability. Koko promotes the reuse of affect models and sensors. By abstracting
sensors via a standard interface, Koko shields model designers from the details of how
to access various sensors and concentrate instead on the output they produce. Likewise,
application developers can use any installed affect model.

Maintainability. Koko facilitates maintenance by separating the application from the
affect model and sensors. Koko supports upgrading the models and sensors without
changes to the components that use them. For example, if a more accurate sensor has
been released you could simply unregister the corresponding old sensor and register the
new sensor using the old sensor’s identifier. Any model using that sensor would begin
to receive more accurate data. Likewise, a new affect model may replace an older model
in a manner that is transparent to all applications using the original model.

Extensibility. Koko specifies generic interfaces for applications to interact with affect
models and sensors as well as providing a set of implemented sensors and models.
New sensors and models can be readily installed as long as they respect the specified
interfaces.
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User Experience. Koko promotes sharing at two levels: cross-application or intraa-
gent and cross-user or interagent communication. For a social or multi-player appli-
cation Koko enables users—or rather their agents—to exchange affective states. Koko
also provides a basis for applications—even those authored by different developers—to
share information about a common user. An application may query for the mood of its
user. Thus, when the mood of a user changes due to an application or otherwise, this
change becomes accessible to all applications.

4.2 Case Studies

In this section we present two case studies that demonstrate Koko in operation. The
first study is the creation of a new social application, called booST, which illustrates
the social and multiplayer aspects of Koko. The second study is the re-creation of the
affect-enabled Treasure Hunt game, which helps us illustrate the differences between
the Koko and CARE architectures.

booST. The subject of our first case study is a social, physical health application with
affective capabilities, called booST. To operate, booST requires a mobile phone running
Google’s Android mobile operating system that is equipped with a GPS sensor. Notice,
that while booST does take advantage of the fact that the sensor and application run on
the same device this is not a restriction that is imposed by Koko.

The purpose of booST is to promote positive physical behavior in young adults by
enhancing a social network with affective capabilities and interactive activities. As such,
booST utilizes the OpenSocial platform [13] to provide support for typical social func-
tions such as maintaining a profile, managing a social circle, and sending and receiving
messages. Where booST departs from traditional social applications is in its use of the
energy levels and emotional status of its users.

Each user is assigned an energy level that is computed using simple heuristics from
data retrieved from the GPS. Additionally, each user is assigned an emotional status
generated from the affect vectors retrieved from Koko. The emotional status is repre-
sented as a number ranging from 1 to 10. The higher the number the happier the indi-
vidual is reported to be. A user’s energy level and emotional status are made available
to both the user and members of the user’s social circle.

To promote positive physical behavior, booST supports interactive physical activities
among members of a user’s social circle. The activities are classified as either competi-
tive or cooperative. Both types of activities use the GPS to determine the user’s progress
toward achieving the activities goal. The difference between a competitive activity and
a cooperative activity is that in a competitive activity the user to first reach the goal is
the winner, whereas in a cooperative activity both parties must reach the goal in order
for them to win.

Koko’s primary function in booST is to maintain the affect model that is used to
generate the user’s emotional status. The application provides the data about its en-
vironment, which in the case of booST is the user’s social interactions and the user’s
participation in the booST activities. Koko passes this information to the appropriate
user agent, who processes the data and returns the appropriate emotional status. Fur-
ther, Koko enables the exchange of affective state with the members of a user’s social
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Fig. 5. booST buddy list and activities screenshots

circle. This interaction can be seen in Figure 5 in the emoticons next to the name of
a buddy. The affective data shared among members of a social circle is also used to
provide additional information to the affect model. For instance, if all the members of
a user’s social circle are sad then their state will have an effect on the user’s emotional
status.

Treasure Hunt. We showed above how a new application, such as booST, can be
built using Koko. Now we show how Koko can be used to retrofit an existing affective
application, resulting in a more efficient and flexible application.

Treasure Hunt (TH) is a educational game that demonstrates the CARE model [10]
wherein the user controls a character to carry out some pedagogical tasks in a virtual
world. TH appraises the emotional state of the user based on a combination of (1)
application-specific information such as location in the virtual world, user’s objective,
and time spent on the task and (2) data from physiological sensors providing informa-
tion on the user’s heart rate and skin conductivity. TH conducts an appraisal every time
the user’s environment changes and produces one of six perceived emotional states is
output.

To reconstruct TH using Koko, we first abstract out the sensors. The corresponding
sensor code is eliminated from the TH code-base because the sensors are not needed by
the application logic. After the sensors have been abstracted, we select the six emotional
states from the emotion ontology that match those already used in TH. The final step
is to encode the structure of the application’s state information into application events.
This basic format of the state information is already defined, as the original TH logs the
information for its internal affect model.

Both CARE and Koko models can be thought of as having three phases, as outlined
in Table 1. The difference between the two architectures is how they choose to perform
those phases. For example, in CARE’s version of TH the environmental data and emo-
tional classifiers are written to files. The data is then processed offline and the resulting
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Table 1. Three phases of CARE affect models

# Description

1 Gather environmental data and emotional classifiers
2 Perform supervised ML techniques on the data and classifiers
3 Given environmental data produce emotional probabilities

affect model is injected into the application allowing TH to produce the emotional prob-
abilities.

Koko improves on the CARE architecture by eliminating the need for the application
to keep record of its environmental data and also by performing the learning online. As a
result, the Koko-based TH can move fluidly from phase 1 to phase 3 and back again. For
example, if TH is using Koko then it can smoothly transition from providing Koko with
learning data, to querying for emotional probabilities, and return to providing learning
data. In CARE this sequence of transitions while possible, results in an application
restart to inject the new affect model.

This improvement can be compared to an iterative software engineering approach
versus the more rigid waterfall approach. CARE corresponds to the waterfall approach,
in that it makes the assumption that you have all the information required to complete
a stage of the process at the time you enter that stage. If the data in a previous stage
changes, you can return to a previous state but at a high cost. Koko follows a more
iterative approach by removing the assumption that all the information will be available
ahead of time and by ensuring that transitions to a previous state incur no additional
cost. As a result, Koko yields a more efficient architecture than CARE.

5 Discussion

This paper shows how software architecture principles can be used to specify a mid-
dleware for social affective computing. If affective computing is to have the practical
impact that many hope it will, advances in software architecture are crucial. Further,
the vocabulary of events and context attributes introduced here can form the basis of a
standard approach for building and hosting affective applications.

Game Integration. Due to the social and multiplayer nature of Koko, it cannot be con-
tained within a traditional gaming engine. However, Koko can interoperate with gaming
engines in a loosely coupled manner. To incorporate Koko into an existing game en-
gine API, the engine can simply provide a façade (wrapper) around the Koko API. The
façade is responsible for maintaining a connection to the Koko service and marshalling
or unmarshalling objects from the engine’s data structures to those supported by the
Koko. Currently, Koko has service endpoints that support the communication of data
structures encoded as Java objects, XML documents, or JSON objects.

Affect Modeling. Existing appraisal theory applications are developed in a monolithic
manner [2] that tightly couples application and model. As a notable exception, EMA
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provides a domain-independent framework that separates the model from the applica-
tion. Whereas EMA focuses on modeling virtual characters in a specific application,
Koko models human emotion in a manner that can cross application boundaries.

We adopt appraisal theory due to the growing number of applications developed
using that theory. Our approach can also be applied to other theories such as Affective
Dimensions [15], whose models have inputs and outputs similar to that of an appraisal
model. Likewise, we have adopted Elliot’s set of emotions because of its pervasiveness
throughout the affective research community. Its selection does not signify that Koko is
bound to any particular emotion ontology. Therefore, as the field of affective computing
progresses and more well-suited ontologies are developed, they too can be incorporated
into the architecture.

Virtual Agents. Koko’s interagent communication was developed with a focus on
human-to-human social interactions (e.g., booST). This does not limit Koko to only
those interactions and we have begun to explore the usage of Koko with human-to-
virtual agent interactions. Given the correct permissions, virtual agents (operating out-
side of Koko) could request the user’s affective state in the same manner as agents
internal to Koko can. For example, the virtual agents models used in the ORIENT [9]
and NonKin Village [17] applications could access the affect state of the player and use
that information to enhance the agent’s decision making process.

Enhanced Social Networking. Human interactions rely upon social intelligence [4].
Social intelligence keys not only on words written or spoken, but also on emotional
cues provided by the sender. Koko provides a means to build social applications that
can naturally convey such emotional cues, which existing online social network tools
mostly disregard. For example, an advanced version of booST could use affective data
to create an avatar of the sender and have that avatar exhibit emotions consistent with
the sender’s affective state.

Future Work. Koko opens up promising areas for future research. In particular, we
would like to further study the challenges of sharing affective data between applications
and users. In particular we are interested in exploring the types of communication that
can occur between affective agents.

In a companion paper [19], we describe a methodology for building affect-aware,
social applications. We are interested in refining and enhancing that methodology for
gaming applications that incorporate affect.
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Abstract. In this paper we present our current work on an embodied conversa-
tional agent for training medical bad news conversations and discuss the inspi-
ration gained from previous work of our own and others. Central in this  
research is the influence of emotional and social features on the selection and 
realization of conversational behavior.  
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versations, Tutoring, Empathy. 

1   Introduction 

Over the last few decades there has been an important shift in much work on dialogue 
systems. Traditional spoken dialogue systems were created to fulfill a very specific 
task, using spoken or written language. By combining spoken dialogue systems with a 
graphical representation of a human (or human-like entity), so-called Embodied Con-
versational Agents (ECAs) are able to communicate not only verbally but also  
nonverbally. In addition, because of their embodiment ECAs are perceived more like 
intelligent agents endowed with a personality. The work on ECAs thus incorporates 
more than natural language understanding; it also includes other aspects of cognitive 
modeling, such as models of emotion and social skills. The last few years have seen a 
large increase in the research that has been done on modeling emotions [1-5] and on 
modeling social skills [6-8]. 

In this paper we present our current work on embodied conversational agents and 
discuss the inspiration and insight gained from previous work of our own and others.  
Two types of ECAs are described in order to take stock of part of the state-of-the-art and 
to point out some of the difficulties the scientific community is dealing with at the  
moment. We selected tutoring agents and agents in interactive pedagogical drama to 
discuss, because their behaviors typically contain emotion and social features, which are 
of great importance in these types of tasks [15]. As the design of our agent, which will 
hold bad news conversations, also includes these features, we look at these types of 
agents to gain insight and inspiration about how to implement such features. In addition 
we look at which developments of traditional types of conversational systems have 
improved interactions with virtual humans in various ways during the last decade. 
Components from some of the described systems are taken into account in the design of 
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the agent architecture. Additionally, the design of the virtual agent is based on theoreti-
cal models of human cognition to allow virtual humans to behave more as real human 
beings, both in physical behavior as in mental processes. This approach is founded on 
the belief that “the best representation of an object is itself.” By making virtual humans 
to be more humanlike, the quality of interacting with such agents will also most likely 
be improved, opening the door for new improvements and applications.  

2   Tutoring Agents  

In this section we take a look at virtual tutor systems to see which features play a role in 
selecting and expressing conversational behavior (in tutoring). In ECA research, tutor-
ing and coaching have been a popular choice of tasks as they display a lot of different 
aspects of conversational interaction [9-11]. Typically the actions of a tutor includes 
giving instructions, asking and answering questions, providing explanations, giving 
examples, setting specific tasks and objectives, motivating the student, providing feed-
back (both positive and negative) throughout the training session and afterwards,  
providing support and evaluating the performance of the student. Based on this list the 
actions of a tutor can be divided into two broad categories: 1) providing information 
regarding the task at an appropriate level towards the learner and 2) engaging and direct-
ing the learner through the learning process. The challenge is to build correct models of 
the cognitive components that lead to the selection and realization of these actions, as it 
is often unclear which components lead to a certain behavior, how they function and 
how they interact with each other. 

For current day ECA research the second category is particularly interesting, as it 
deals with the social and emotional skills that are of great importance when perform-
ing the role of tutor. In order to keep a learner motivated and challenged a tutor may 
need to praise or blame the learner (emotion directed behavior), adopt the role of a 
study-buddy (altering the social relation between tutor and learner) and keep track of 
what the learner is thinking and feeling (abducting the mental state of the user). By 
adapting the virtual tutor’s social and emotional skills to each individual learner, the 
outcome of a tutoring session will most likely be improved significantly. Furthermore 
it will contribute to the effort to make conversational agent to behave in a more hu-
manlike fashion. 

As an example the remainder of this section will describe an intelligent tutoring 
system we developed called INES (Intelligent Nursing Education Software) [12-14]. 
The INES system is designed with the purpose of helping students practice nursing 
tasks using a haptic device within a virtual environment. A virtual human in the INES 
system provides the role of tutor with which the learner can interact (see figure 1). 
The virtual tutor is capable of performing acts from both categories mentioned above, 
but focuses on affective control of the mental state of the learner in the tutoring dia-
logues [12]. It does so by selecting the appropriate feedback to give to the learner 
after he or she has performed an action. In order to select the appropriate feedback the 
tutor makes an assumption about the learner’s mental state and consequently adapts 
the selection of its type of action, the affective language it uses and the overall tutor-
ing strategy. For example the tutor might say “It was quite a difficult task. Try again, 
but put the needle in more slowly.” instead of saying “You put the needle in too fast.  
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Fig. 1. The INES system. The student is using a haptic device that transforms to an injection 
needle in the virtual environment (displayed on the left screen). In this environment the student 
can interact with a Virtual Patient and perform simple nursing tasks. The performance is moni-
tored by the Virtual Tutor (displayed on the right screen). 

Try again.” if the learner comes across as being hesitant. The assumption is based on 
the observed behaviors of the learner. This includes, amongst others, the learner’s 
confidence level and an appraisal of the learner’s actions while he or she is perform-
ing the task: Did the learner make many mistakes? How grave were those mistakes? 
How is the overall performance so far? How (pro-) active is the student? Furthermore, 
the tutor system also takes into account the difficulty of the task and the emotional 
effect previous feedback had on the system itself. All these aspects are used to esti-
mate the affective and motivational state of the user (anxious-confident, dispirited-
enthusiastic), as well as the performance of the task [15]. As a result the  
socio-emotional aspects of the interaction between the learner and the virtual tutor do 
not only influence the learning strategies the tutor adopts but also the manner in 
which the conversational actions are expressed. 

The INES system contains the variables `happy-for’ and ‘sorry-for’ in its mental 
model that are updated depending on the student’s success. The emotions the agent 
experiences are thus related to the behavior of the learner. The extent to which it re-
sponds naturally to the situation is restricted to influencing the learning process in a 
positive way. These variables are used to adjust the type of feedback.  

It is apparent that in general the focus within a tutoring system lies on optimizing 
the learning achievements of the user, not on making the tutor agent behave as hu-
man-like as possible. Although the tutor agent’s cognitive capabilities have been 
improved, e.g. adapting the complexity of the information to the level of the learner 
and using emotional and social conversational behavior to motivate and engage the 
learner, these improvements only influence the tutor agent’s behaviors to the extent  
that they increase the performance of the learner. The improved cognitive processes 
do not cause the tutor agent to act more with its own interests in mind. Nevertheless, 
the conversational behaviors and the cognitive models of emotions and social skill of 
tutoring systems described in this section provide us with a good insight on which 
features play a role in tutoring interactions with humans and how they influence the 
learner’s behavior. By utilizing this knowledge and modifying the cognitive models 
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of emotion and social skills that are described in this section, we aim to create a vir-
tual human that can behave without restricting its behavior by a specific focus.  

3   Interactive Pedagogical Agents  

This section describes the second type of embodied conversational agents; agents in 
Interactive Pedagogical Drama [16]. Interactive Pedagogical Drama is a style of edu-
cational instruction that has the goal of teaching learners the skills that are necessary 
to cope with stressful and difficult situations. Within an Interactive Pedagogical 
Drama, learners interact with believable virtual characters in a story that is recogniz-
able for them and elicits empathy. The goal is that by allowing the virtual characters 
to face and overcome difficulties, which are similar to those the learners are facing, 
the learners experience and learn skills that can be used to deal with their own prob-
lems. Through interaction with the system the learners can steer the story in such a 
way that it handles specific problems and solutions they are interested in. While the 
learner can influence the story, the virtual characters select their actions on their own. 
Interactive Pedagogical Drama differs from the tutoring systems described in the 
previous section in the following way. Instead of being actively encouraged by the 
virtual human to perform the learning task as the virtual tutor instructs, in interactive 
Pedagogical Drama the learner learns by observing the story. Because the conversa-
tional behavior of the virtual characters in interactive pedagogical drama is focused 
on the story and on other agents instead of on the learner, their behavior selections are 
less restricted than that of a virtual tutor. Virtual characters in interactive personal 
drama might also express emotions and social skills that will not surface in a tutoring 
system, such as anger, frustration or impolite behavior. In order to allow the learners 
to have a productive interaction with the drama, let them believe in the efficiency of 
the skills used by the virtual characters and subsequently apply those skills in their 
own life, it is important that the system has the following characteristics: First of all, 
the learners must be able to identify themselves with the characters in the story. Sec-
ondly the difficulties the virtual characters experience must both be believable and 
familiar to the learners. If one of these characteristics is lacking the suspension of 
disbelief of the entire drama fails and the learners will not benefit from the interac-
tion. This means it is vital that the behavior the virtual humans perform is as plausible 
as possible. Furthermore it can be desirable that when a virtual human is asked why it 
performs a certain behavior it is able to give a plausible explanation.   

A well-known interactive pedagogical drama system that used an agent-based ap-
proach is Carmen’s Bright IDEAS. Carmen’s Bright IDEAS is an interactive health 
intervention system designed to improve the problem solving skills of mothers of 
pediatric cancer patients [16]. Parents of children with a chronic disease often lack the 
capabilities of dealing with many demands their sick child demands and the needs of 
their spouse, their healthy children and their work. The goal of the system is to teach a 
specific approach to social decision making and problem solving called Bright IDEAS 
[17] and to help parents in dealing with difficult situations. The drama of Carmen’s 
Bright IDEAS narrates the following scenario: It relates the problems and stresses of 
the protagonist of the story, Carmen, who has a nine-year-old son with pediatric leu-
kemia and a six-year-old daughter. Carmen discusses her problems with a counselor, 
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Fig. 2. Carmen’s Bright IDEAS. Carmen, the agent on the right, discusses her problems with 
Gina. 

Gina, who suggest she uses Bright IDEAS to help her to deal with difficult situations. 
With Gina’s help Carmen goes through the initial steps of Bright IDEAS then com-
pletes the remaining steps on her own (see figure 2).  

In Carmen’s Bright Ideas, the user can influence the course of the story at specific 
points, but does not participate directly as a story character. Instead the learner can 
control the actions of Carmen at an intentional level by directing the thoughts and 
feelings Carmen might have in a certain situation when asked about it. Subsequently, 
the selected thoughts and feelings are incorporated into the mental model of Carmen. 
This will result in the virtual agent to perform actions which are congruent with the 
thoughts and feeling that were selected by the learner. The thoughts and emotions the 
learner can choose from are formalized in such a way that the learner is able to iden-
tify them and relate herself to the situation. Where Carmen allows the learner to inter-
act with the drama, Gina’s task is to make sure the social problem solving technique 
is followed. The virtual counselor does so by appropriately responding to the actions 
of Carmen and motivating her through dialogue and gestures. 

The agent architecture in Carmen’s Bright IDEAS is based on a multi-layer transi-
tion-based agent model called Situation Spaces [18]. This entails that there are spe-
cific states in which the agents can find themselves, defined by the situation at that 
moment. The agents select their behavior based on the state they are in, instead of an 
event that occurs in the world. For virtual characters in Carmen’s Bright IDEAS four 
different layers exist, each with a variety of states; problem solving, dialogue model, 
physical focus and emotional appraisal. For the Gina character the problem solving 
layer is used to give form to the dramatic structure, including the IDEAS steps and the 
strategies Gina uses to realize these steps. The dialogue model is used to select and 
execute dialogue acts to bring these strategies about. In Carmen’s case the problem 
solving and dialogue models are more reactive and focus on responding to the com-
municative actions of Gina. In both characters the physical focus layer is used to 
manage and execute non-verbal behavior and the emotional appraisal layer covers the 
agents’ emotional appraisal model [16]. Although both virtual characters can make 
use of non-verbal communicative behavior, it has a larger impact on the learner when 
it is performed by Carmen. 
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One of the key points of Interactive Pedagogical Drama is that the learner is able to 
see the causal relations between a selected intention, the accompanying behavior and 
the effect that behavior has. As both the selectable intentions and the response behav-
iors are plausible, the insight in the cognitive processing helps the character to  
become more human-like. Also, in Interactive Pedagogical Drama the focus of the 
virtual characters is on the conversation and only secondary on the task of teaching 
the learner something. In order to facilitate a more appropriate conversation, the be-
havior selection of the virtual characters will be less restricted than that of tutoring 
agents where the main focus of their behavior lies on the tutor task. Consequently the 
virtual characters in an Interactive Pedagogical Drama can select from a much wider 
range of conversational behaviors and thus will display more diverse emotions and 
social skills in their dialogues. As our goal is to make an embodied conversational 
agent that acts like a human, both behavioral and mentally, the insights in the rela-
tionship between intentions and behavior and the insights in the emotion and social 
features gained by research on Interactive Pedagogical Drama are very useful. 

4   A Bad News Agent  

Having looked at several state-of-the-arts ECA systems, we have gained some insight 
on which features are important in conversations and how these features influence a 
(virtual) human’s behavior. Whether a conversation with an ECA involves tutoring, 
counseling, entertaining or is related to another task, it is of great importance that the 
virtual character’s actions are plausible. This can be achieved by trying to aim for 
realism both externally and internally, by which we mean that the agent performs 
close to human-like behavior (i.e. physically) and is driven by close to human-like 
cognitive models. At first glance there are two benefits. First, by modeling human 
cognitive processes insight is gained in the practical workings of human cognition, 
albeit at an abstract level and secondly virtual characters will be able to provide a 
more understandable and realistic explanation of why they have chosen to perform 
certain behaviors. All in all, this will contribute in making virtual human be more 
human-like. 

In order to realize a realistic virtual human, we are currently designing a virtual 
character that makes use of cognitive models that are involved in the selection of 
appropriate conversational behavior i.e. when the virtual human is engaged in an 
interaction, what kind of behaviors does it select, why does it select them and how do 
these selection mechanisms influence the manifestation of the behavior? The cogni-
tive models are based on psychological and sociological theories of human cognition. 
The purpose of the system is to assist physicians (in training) to practice holding bad 
news conversations. To this end the function of the virtual character is twofold. Pri-
marily it plays the role of the virtual patient that is receiving the bad news and sec-
ondly it performs a tutor role, giving feedback to the learner about why it responded 
the way it did (see figure 3). 

The conversational behaviors of the virtual human are not restricted to facilitating 
the optimal learning experience (e.g. steering the conversation so the learner will be 
challenged more) as is the case in more traditional tutoring systems, but instead the 
virtual human is only limited to perform behaviors that are appropriate given the 
situation. 
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Fig. 3. This is the overall layout of the agent. Notice that the Character role is included in the 
Tutor role. This has the advantage that the Tutor role can easily refer to the behaviors the 
Character role has performed when the Tutor role gives feedback to the User. 

4.1   Bad News Domain 

It is important to understand what we mean by “bad news”, so as to place this re-
search in the correct context. In general, a bad news conversation is a dialogue in 
which the “speaker” discloses information that is unfavorable to the “listener”. In this 
research the topic of the unfavorable information will involve the “listener’s / re-
ceiver’s” medical condition, such as with patients that have a terminal disease. Defini-
tions of bad news as they are used in different studies are: “Any information which 
adversely and seriously affects an individual’s view of his or her future.” [19] or 
“news that will change a patient’s outlook for the future in a very negative way. Such 
bad news can be about a severe illness, prospects of death or increasing levels of 
limitations.” [20]. By using bad news conversations as the task of the interaction with 
the virtual agent and subsequently trying to model the cognitive processes involved, 
we hope to gain insight in a variety of advanced cognitive behaviors such as affective 
and social aspects.  

A significant amount of research has been done on how someone should conduct 
bad news conversations, resulting in several detailed protocols and strategies that 
describe the best way of delivering bad news [19, 21, 22]. Unfortunately, few of these 
studies have looked at the response behaviors of the receivers of bad news. We are 
particularly interested in the way receivers respond, both verbally and non-verbally, to 
receiving the bad news, why they respond in such a manner and most importantly 
how such behaviors can be modeled into a virtual human. To this end psychological 
and sociological literature has been studied on the subject of coping mechanisms and 
strategies [23, 24]. Of particular relevance is the work of Elizabeth Kübler-Ross, who 
in her work has gained a great understanding on behavior of terminally ill patients 
[25]. This has led to the formation of the well-known categorization of coping strate-
gies that are utilized by dying patients: Denial and Isolation, Anger, Bargaining, De-
pression and Acceptance. By analyzing these different coping mechanisms in terms of 
affective social aspects we hope to gain an idea on how they influence conversational 
behavior. So far we have split the influence of coping strategies into two categories: 
one category that influences the selection of behavior (i.e. which behavior should the 
virtual agent perform) and another category that influences the manifestation of the 
selected behavior (i.e. in what manner is the behavior carried out). Contained in the 
coping strategies are emotional and social features that cause the influence of  
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behavior. A good example is the Anger coping behavior to receiving bad news. When 
this strategy is adopted the virtual human will select appropriate conversational be-
havior to cope with the situation. This may be result in selecting the “assigning 
blame” speech action (attribution emotion) and its accompanying gestures. The se-
lected speech action will be impolite (social relation) and gesturing will have charac-
teristic that are associated with anger (short, strong movements). However in order to 
use these coping strategies the virtual humans must possess emotions and social skills. 
To that end we incorporate models derived from cognitive theories.   

4.2   Bad News Agent Architecture  

The basis of the agent architecture of our Bad News agent is the Beliefs, Desires and 
Intentions (BDI) cognitive model [26-28], one of the most well-known and most stud-
ied models used in creating reasoning intelligent agents [29]. One of the basic com-
ponents of the architecture is a belief-base that contains all the virtual character’s 
beliefs about the world (including other agents, such as it human interlocutor, and 
itself). Beliefs describe the agent’s subjective interpretations of the situation and not 
an objective representation. For instance, if a patient is given an estimation of one 
year of remaining life and the normal prognosis is four to six months, he still might 
believe that one year is short. 

For the aspect of desires we intend to include a goal-base that contains a variety of 
goals the agent may adopt. The main difference between desires and goals is that 
desires are roughly unrestricted objectives or situations that the agent would like to 
achieve or bring about. Goals on the other hand are those desires that are actively 
pursued and have to be consistent with each other. For example, an agent might have 
the desires to Get out of the hospital or to Get treatment in the hospital. Obviously 
these are two desires that are not consistent with each other and as such only one can 
be adopted as a goal.  

As described in the BDI model, intentions represent the deliberative state of an 
agent, i.e. which goal it is committed to and is it trying to achieve by executing its 
plan of action. However, in our architecture we make a distinction between the terms 
intention and communicative intent. While the former may be a proper representation 
of commitment to a goal resulting in a plan of communicative behaviors, the latter is a 
description of which behavior or state of mind a communicative act is trying to elicit 
from the interlocutor. For example, if the goal the agent is committed to, (i.e. its in-
tention) is to be comforted by getting a positive reassurance from the doctor, the agent 
might ask “Everything is going to be okay, isn’t it?”. This question contains two 
communicative intents. The first intent is to cause the doctor to believe that the agent 
believes that everything is going to be alright (if he did not think so already). Sec-
ondly the question intends to elicit a response in which the doctor confirms the belief 
of the agent that everything is going to be alright. If the agent forms a communicative 
intent, this intent will be expressed by its behavior. More specifically, the wished-for 
effect that a communicative act brings about (i.e. the communicative intent) is con-
tained in the communicative act itself, but it depends on the interpretation by the in-
terlocutor if this effect is achieved. In case of the example, if the doctor ignores or 
fails to understand the communicative intent he might answer truthfully that every-
thing is NOT going to be alright. A communicative action that does not allow for the 
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possible realization of the communicative intent has no purpose and as such will not 
be performed. This wished-for effect should not only cause a change in the belief, 
goal or intention state of the addressee, but should be extended to include the user’s 
affective state. The purpose of the wished-for effect is to get the interlocutor to be-
lieve something, know something, do something, feel something etc. that causes the 
agent to be closer to achieving its own goal.  

Although beliefs, desires (or goals) and intentions form a basis for an embodied 
conversational agent, it is necessary to also incorporate affective and social features in 
order to create believable interactive virtual humans. To that end we also include a 
component in the agent architecture that deals with affect. The main content of this 
component at this point is an emotion appraisal model of our own design, which is 
based on a conglomeration of features obtained from existing emotion and emotion 
appraisal models and fitted together. It incorporates features from the OCC model [4], 
the Affective Reasoner (AR) model [2] and the EMA model [3]. The OCC model is a 
well-known theoretical model of human emotion. It has been the basis for several 
state-of-the-art emotion appraisal systems such as EMA and that of FearNot![1]. The 
OCC model evaluates how the state of the world influences the emotions of the per-
son. However the OCC model does not take into account the mental states of other 
agents when it is determining which emotion should be elicited based on the situation. 
In order to make a believable and realistic virtual human this capability needs to be 
included, so that the virtual agent can generate appropriate responses to the human 
interlocutor. Therefore we extract features from the Affective Reasoner model that are 
able to deal with the mental state of others. Also the OCC model does not describe 
how the formed emotions influence the selection and execution of behavior, which is 
a problem that needs to be addressed if a virtual human is to be created. Some of the 
features of the EMA model are included in our affective model as the EMA model 
utilizes a set of appraisal variables that can be used quite easily in the context of bad 
news conversations. 

In addition to emotion, social skills also play an important role in natural conversa-
tion. They influence both the selection of conversational behavior and the realization 
of that behavior. Each social situation requires a particular type of behaviors. This is 
represented in the architecture by dividing the virtual human’s conversational behav-
ior into categories that correspond with different social situations. Only behaviors 
from the category that corresponds to the social situation can be selected. Also each 
category contains a set of labels that are passed on to the behavior realizer to dictate 
how the behavior should be executed (e.g. volume of speech, specific facial  
expressions, and characteristics for gestures).  

For the input of the cognitive processes we make the assumption that the virtual 
human has interpreted input signals from the environment. These signals are all the 
features that make up the conversational behavior of the learner. Verbally this entails, 
amongst others, the learner’s speech act (both the prosody and the content), when the 
learner speaks and non-verbally this refers to the learner’s facial expression, his gaze 
behavior, his head movement and his body posture as detected by the virtual human. 
Consequently the virtual human forms a causal interpretation [3]. This is a configura-
tion of the agent’s belief-base, goal-base and intention at a certain time-point that 
represents the agent’s subjective interpretation of the relationship between the agent 
and the environment plus the interpreted but not yet fully processed input signals. The 
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causal interpretation is then handled by cognitive processes that are based on cogni-
tive models. These processes include updating the belief-base (including beliefs about 
the social relationship between the virtual agent and the human interlocutor), updating 
the goal-base, emotional appraisal, adjusting plan of behaviors and monitoring the 
environment. As a result of the cognitive processing, an intention (and communicative 
intentions) is selected.  This selection is influenced by the social relation between the 
virtual human and the environment, the coping strategy the agent has selected and the 
output of the emotion appraisal. Based on this intention an appropriate category of 
behaviors is selected from a behavior library. For example, if the intention is to give 
an answer to the interlocutor, then the “answering”-category of behavior is selected. 
Subsequently, the behavior that is most appropriate, according to the virtual human’s 
current the social state and the emotion appraisal, is selected. In the situation of a bad 
news conversation it is likely the social relationship with the interlocutor (a doctor) is 
quite formal. This will lead to a formal, polite type of answer such as “I understand 
doctor” instead of “yeah okay doc”. Additionally the emotional state of the virtual 
human (most likely dismayed and sad) will result in a terse answer: “I understand 
doctor” instead of “It is perfectly clear what you are saying to me doctor.” The man-
ner in which the behavior is performed (e.g. variables in prosody and gestures) also 
depends on the emotion state and the social state of the virtual human.  

5   General Discussion 

Embodied conversational agents can benefit significantly from the inclusion of social 
and affective features. Although these features can be included in many ways, a good 
way of creating virtual humans that represent real humans seems to be to incorporate 
cognitive models of psychological and sociological theories into the design of such 
agents. Particularly the inclusion of cognitive models that deal with emotions and 
social skills are important as they greatly increase the capability of virtual human to 
behave as a real human. Both emotions and social features influence a virtual hu-
man’s behavior in two manners: first by influencing which conversational behavior 
the agent selects and secondly by influencing the way this behavior is executed. In our 
development of the Bad News Agent, we are trying to combine both of these.  
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Abstract. Video games in general and educational role play games in
particular would increase in believability if Non Player Characters reacted
appropriately to the player’s actions. Realistic and responsive feedback
from game characters is important to increase engagement and enjoyment
in players. In this paper, we discuss the modelling of autonomous char-
acters based on a biologically-inspired theory of human action regulation
taking into account perception, motivation, emotions, memory, learning
and planning. These agents populate an educational Role Playing Game,
ORIENT (Overcoming Refugee Integration with Empathic Novel Tech-
nology) dealing with the cultural-awareness problem for children aged
13 to 14.

1 Introduction

Non Player Characters (NPCs) vary in importance and may play roles of by-
standers, allies or competitors to the player in the fictional world of computer
games. These NPCs’ behaviour is usually scripted and automatic, triggered by
certain actions of or dialogue with the player. This method is cumbersome and
produces gameplay that is repetitive and thus unnatural. In more advanced Com-
puter Role Playing Games (CRPGs), NPC behaviour can be more complex and
players’ choices may affect the course of the game, as well as the conversation
(eg. Fallout31). However, true dialogues with NPCs are still a problem. In most
CRPGs, the same dialogue option chosen by the player will usually receive the
same reply from the NPC.

It is beneficial for NPCs to be believable and ‘real’ so that the player will en-
joy interacting with them. Characters that are able to express their feelings and
can react emotionally to events are more life-like. NPCs capable of dynamically
reacting to player actions in reasonable and realistic ways are therefore very

1 http://fallout.bethsoft.com/eng/home/home.php

F. Dignum et al. (Eds.): Agents for Games and Simulations, LNAI 5920, pp. 107–118, 2009.
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desirable. Natural interaction between NPCs and the player is very important
because it transforms the challenge of the game from a technical one to an in-
terpersonal one, and thus may increase both the enjoyment and the engagement
of players. However, up-to-date, real autonomous agents that are capable of im-
provisational actions, appear to be able to ‘think’, and have desires, motivations
and goals of their own, are still rare in games.

2 Educational Role Playing Game

Researchers pointed out that play is a primary socialization and learning mech-
anism common to all human cultures and many animal species. ‘Lions do not
learn to hunt through direct instruction but through modeling and play.’ [1].
Games are effective because learning takes place within a meaningful context
where what must be learned is directly related to the environment in which
learning and demonstration take place.

How can cultural studies be made exciting? Perhaps through an educational
role play game. For instance, one in which the student is a space command
member who must master the patterns of behaviour of an alien culture and
pass as their friend within a digitally simulated world. The students will have
interesting missions to keep them motivated and engaged. This approach shifts
the students’ cognitive effort from reading about educational content to hands-on
experience of achieving compelling goals. Members of a team can cooperate with
each other to solve the team’s conflicts with other agents, whether a player from
another team or an NPC. Such an opponent must be perceivable as endowed
with a personality if the player is to be able to suspend disbelief in the way
engagement with the storyworld requires.

In ORIENT2, our game world is designed in just such a way. It is an inter-
active computer assisted role-playing game where three players act as visitors
to a foreign planet that is inhabited by an alien culture. In order to save the
planet from an imminent catastrophe, the players have to cooperate with the
alien inhabitants, which can only be achieved by integrating themselves into
the culture. Since the game incorporates a social setting, each NPC must be
able to establish social relationships with other NPCs and the players to ensure
successful collaboration. ORIENT characters must be able to recognise cultural
differences and use this information to adapt to other cultures dynamically. The
ability to empathise, that is, to detect the internal states of others and to share
their experience, is vital to the formation of long-term relationships. Since en-
hancement of integration in a cultural group relies both on the understanding
of the internal states of the persons involved and their affective engagement,
both cognitive [2] and affective [3] empathy are relevant. Additionally, previous
experience is crucial in maintaining long-term social relationships, which means
a requirement for an autobiographic memory [4] is inevitable. Through an abil-
ity to retrieve previous experiences from its autobiographic memory, an NPC
will be able to know how to react sensibly to a similar future situation. Thus,
2 http://www.e-circus.org/
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ORIENT provides a good case study for modelling NPCs with adaptive and
improvisational capabilities, that possess autobiographical memory, individual
personality and show empathy.

3 Related Work

Much recent work has been carried out on developing agents with autonomous
capabilities. Some of this work focuses on physiological aspects while some fo-
cuses instead on cognitive aspects of human action regulation. Examples of ex-
isting physiological architectures are those by Cañamero [5], Velásquez [6] and
Blumberg [7]. Cañamero’s architecture relies on both motivations and emotions
to perform behaviour selection for an autonomous creature. Velásquez developed
a comprehensive architecture of emotion based on Izard’s four systems model [8],
focusing on the neural mechanism underlying emotional processing. Blumberg
developed an animated dog, Silas that has a simple mechanism of action-selection
and learning combining the perspective of ethology and classical animation. A
more recent implementation of the model is AlphaWolf [9], capturing a subset of
the social behaviour of wild wolves. These architectures are useful for developing
agents that have only existential needs but are too low level for characters which
require planning and storytelling capabilities as in ORIENT. Another problem of
these architectures is that the resulting agents do not show emotional responses
to novel situations because all behaviours are hard-coded.

On the cognitive end, the OCC cognitive theory of emotions [10] is one of the
most used emotion appraisal model in current emotion synthesis systems. The
authors view emotions as valenced reactions that result from three types of sub-
jective appraisals: the appraisal of the desirability of events with respect to the
agent’s goals, the appraisal of the praiseworthiness of the actions of the agent or
another agent with respect to a set of standards for behaviour, and the appraisal
of the appealingness of objects with respect to the attitudes of the agent. Numer-
ous implementations of the theory aimed at producing agents with a broad set
of capabilities, including goal-directed and reactive behaviour, emotional state
and social knowledge exist, beginning with the Affective Reasoner architecture
[11], the Em component [12] of the Hap architecture [13], EMA [14], FAtiMA
(FearNot! Affective Mind Architecture) [15] and many more. On the other hand,
most deliberative agent architectures are based on the BDI (Beliefs, Desires, In-
tentions) model [16]. The ways BDI agents take their decisions, and the reason
why they discard some options to focus on others, however, are questions yet
to be answered. These problems are associated with the BDI architecture itself
and not with a particular instantiation. Furthermore, BDI agents do not learn
from errors and experience.

In order to create purely autonomous agents, we argue that a hybrid archi-
tecture combining both physiological and cognitive aspects is required. Some ex-
amples of this type of architecture are those by Sloman [17], Jones [18], Oliveira
[19] and Dörner [20]. The agent cognitive processes should result from lower-level
physiological processing and the outcome of cognitive processes should influence
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the agent’s bodily states, producing complex behaviours that can be termed emo-
tional. Damasio [21] provides neurological support for the idea that there is no
‘pure reason’ in the healthy human brain but emotions are vital for healthy ratio-
nal human thinking and behaviour which means both cognitive and physiological
systems are essential parts of intelligent agents.

4 ORIENT Agent Mind

4.1 Inspiration

The ORIENT agent mind (i.e. the program that controls NPCs’ behaviour)
is built upon FAtiMA [15] architecture applied in FearNot!v2.0. FAtiMA was
an extension of a BDI architecture, hence, faced the problem of ambiguity in its
decision making processes common in any BDI architecture. It has a reactive and
a deliberative appraisal layer. The reactive appraisal process matches events with
a set of predefined emotional reaction rules while the deliberative appraisal layer
generates emotions by looking at the state of current intentions, more concretely
whether an intention was achieved or failed, or the likelihood of success or failure.
After the appraisal phase, both reactive and deliberative components perform
practical reasoning. The reactive layer uses simple and fast action rules that
trigger action tendencies. On the other hand, the deliberative layer uses the
strength of emotional appraisal that relies on importance of success and failure
of goals for intention selection. A goal is activated only if its start conditions are
satisfied. Each goal also contains success and failure conditions.

The main reason for choosing FAtiMA is that it incorporates the OCC theory
[10], has a continous planner [22] that is capable of partial order planning and
includes both problem-focused and emotion-focused coping [23] in plan execu-
tion. The OCC theory models empathy easily because it takes into consideration
appraisals of events regarding the consequences for others. It is - as far as we
know - the only model that provides a formal description of non-parallel af-
fective empathic outcomes (i.e. emotions that take a bad relationship between
one agent and another into account, e.g., gloating and resentment). Moreover,
since the OCC model includes emotions that concern behavioural standards and
social relationships based on like/dislike, praiseworthiness and desirability for
others, it allows appraisal processes that take into consideration cultural and
social aspects, important for ORIENT agents.

However, the number of empathic emotional outcomes described in OCC:
happy-for, resentment, gloating and pity is limited. Moreover, FAtiMA does not
take the physiological aspects of emotion into account. Another problem with
FAtiMA is the tedious authoring process of the character’s goals, emotional
reactions, actions and effects, and action tendencies so that the final behaviour of
the characters is as intended. Having these values scripted reduces the dynamism
of some of the core aspects modeled, resulting in agents that are not adaptive
and do not learn from experience.

To address these constraints, we considered the PSI theory [20], a
psychologically-founded theory that incorporates all the basic components of
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human action regulation: perception, motivation, cognition, memory, learning
and emotions. It allows for modelling autonomous agents that adapt their in-
ternal representations to a dynamic environment. A few successes of the PSI
model in replicating human behaviour in complex tasks can be found in [20, 24].
A PSI agent does not require any executive structure that conducts behaviour,
rather, processes are self-regulatory and run in parallel driven by needs. Memory
functions as a central basis for coordination.

Emotions within the PSI theory are conceptualised as specific modulations
of cognitive and motivational processes enabling a wide range of empathic emo-
tional effects. These modulations are realised by emotional parameters. Arousal
is the preparedness for perception and reaction; resolution level determines the
accuracy of cognitive processes; and selection threshold prevents oscillating be-
tween behaviours by giving the current intention priority. Different combinations
of these parameter values lead to different physiological changes that resemble
emotional experiences in biological agents. For example, if an event leads to a
drop in the character’s certainty, then its arousal level increases causing a de-
crease in the resolution level. In such situation, a quick reaction is required hence
forbidding time-consuming search. The character will concentrate on the task in
order to recover the deviated need(s) and hence may choose to carry out the first
action that it found feasible. The character may be diagnosed as experiencing
anxiety. Therefore, depending on the cognitive resources and the motivational
state of the agent in a given situation, these parameters are adjusted, resulting
in more or less careful or forceful ways of acting, as well as more or less deliberate
cognitive processing.

Since, FAtiMA already includes perception, cognition, memory and emotions,
we added the PSI motivational and learning components into the existing ar-
chitecture. The motivational system serves as a quick adaptation mechanism of
the agent to a specific situation and may lead to a change of belief about an-
other agent as shown in [25], important for conflict resolution among ORIENT
characters. PSI’s other advantage over FAtiMA is that it does not require much
authoring except initialising the agents with some prior knowledge. PSI agents’
differences in behaviour will then correspond to different life-experiences that
lead to different learned associations. Thus, PSI permits more flexibility both in
authoring and the characters’ behaviour than FAtiMA. Unfortunately, this also
means lack of control over the characters’ behaviour which is a problem because
characters in ORIENT need to behave in certain ways so that the educational
goal can be reached. According to [26], good educational games are games where
narrative events situate the activity, constraining actions, provoking thought and
sparking emotional responses. By making the NPCs react in certain ways, the
player’s ability to access information or manipulate the world is limited. This
forces the player to evaluate the relative value of information and to devise ap-
propriate goals and strategies to resolve complex authentic problems and help
them to develop an experiential understanding of what might be otherwise an
abstract principle.
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Combining FAtiMA and PSI, the problems of psychological plausibility and
control are addressed, neither of which can be solved by either architecture alone.
Cultural and social aspects of interaction can be modelled using FAtiMA while
PSI provides an adaptive mechanism for action regulation, fulfilling the require-
ments of ORIENT characters. Author are free to decide how much information
they want to provide the characters to start with and leave the rest for the
characters to learn. The degree of desirability (or undesirability) of an action
or event is proportionate to the degree of positive (or negative) changes that
an action or event brings to the agent’s drives. This desirability value can be
used to automatically generate emotions according to the OCC model, removing
some of the need to write predefined domain-specific emotional reaction rules.
This means that the reactive layer in FAtiMA may be omitted.

4.2 FAtiMA-PSI Architecture

In the ORIENT agent mind architecture shown in Figure 1, goals are driven by
needs. A motivational system as in PSI provides the character with a basis for
selective attention, critical for learning and memory processes, hence increases
its adaptive prowess. Five basic drives from PSI are modeled in ORIENT includ-
ing Energy, Integrity, Affiliation, Certainty and Competence. These needs can
emerge over time or can be activated by events happening in the environment.
Energy represents an overall need to preserve the existence of the agent (food +
water). As the agent carries out actions, it consumes energy which means that
eventually, it will have to rest or perform actions to regain energy. Integrity rep-
resents well being, i.e. the agent avoids pain or physical damage while affiliation
is useful for social relationships. On the other hand, certainty and competence
influence cognitive processes. It is assumed that the scales for all drives are
comparable, ranging from 0 to 10 where 0 means complete deprivation while 10

Fig. 1. FAtiMA-PSI architecture
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means complete satisfaction. An agent’s aim is to maintain these drives at the
highest level possible at all time in order to function properly.

The motivational system also allows the creation of agents with personality.
Each drive has a specific weight ranging from 0 to 1 that underlines its impor-
tance to an agent. The strength of a drive (Strength(d)) depends on its current
strength plus the amount of deviation from the set point (effect of goal/action)
and the specific weight of the drive. For example, if agent A is a friendly charac-
ter, affiliation would be an important factor in its social relations, say weight 0.8
while a hostile agent B would have a low importance for affiliation, say weight
0.3. Now, if both agents have a current affiliation value of 2 and if the devia-
tion from set point is -4, agent A’s strength for affiliation would be -1.2 (2+(-
4*0.8)) while agent B’s strength for affiliation would be 0.8 (2+(-4*0.3)) based on
Equation 1. The higher the strength of a drive, the lower the agent’s need is for
that particular drive. In this case, agent A will work harder to satisfy its need
for affiliation than agent B. So, by assigning different weights for different needs
to different agents, characters with different personalities can be produced.

Strength(d) = Strength(d) + (Deviation(d) ∗ Weight(d)) (1)

A goal is define by the following attributes:

– Id: the goal identifier or name
– Preconditions: a list of conditions that determine when the goal becomes

active
– SuccessConditions: a list of conditions used to determine if the goal is

successful
– FailureConditions: a list of conditions that determine the goal failure
– EffectsOnDrives: specifies the effects that the goal will have on the agent’s

drives if the goal succeeds

Each goal contains information about its expected contribution to energy, in-
tegrity and affiliation, that is, how much the drives may be deviated from or
satisfied if the goal is performed. Likewise, events or actions also include con-
tributions to drives. Based on this information, the importance of goals to each
character at a particular time instance can be determined, allowing the charac-
ter to give priority to goals that satisfy its needs under different circumstances.
This is an advantage over the previous FAtiMA architecture where a goal’s im-
portance is pre-authored which mean that whenever a goal activation condition
becomes true, the goal is always created with the same importance of success
and failure, independently of the situation that originated the goal. This causes
a problem in deciding which goal should be selected when there are several con-
flicting goals. The effects of needs are also useful in the appraisal phase to create
emotional impact that will be stored in the autobiographic memory and guide
the agent’s further actions. Since each agent has a different personality, the ef-
fect of an event may differ from one agent to another, which in turn affects their
emotional and behavioural responses. Thus, needs can be considered both the
source of behaviour and feedback from the effect of behaviour, a fundamental
aspect necessary for learning agents.
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As for certainty and competence, no explicit specification of contributions
to these is necessary because they are cognitive needs and their values can be
calculated automatically as described below. Whenever an expected event fails
to turn up or an unknown object appears, the agent’s certainty drops. Thus,
uncertainty represents the extent to which knowledge about a given fact/action is
not accurate or not known. We model uncertainty using error prediction with an
Exponential Moving Average where the weighting factors decreases exponentially
resulting in the lastest data being the most important. ORIENT characters
continuously make predictions about the probability of success of their goals.
These predictions are then compared with the actual outcomes. The difference
between these two values is the ObservedError. Based on past observed errors,
we can estimate the current error, that is, the current uncertainty using Equation
2. α represents the rate past observations lose importance and t is the time step
for the character’s mind cycle.

Uncertainty(t) = α ∗ObservedError(t − 1)+ (1−α) ∗Uncertainty(t− 1) (2)

Hence, gaining certainty is not about avoiding uncertain goals but trying out
these goals. This is because in order to achieve certainty, the character has to
reduce the estimation error, and the goals which have high error estimations
are goals that contribute more to certainty. Certainty is achieved by exploration
of new strategies or actions, which leads to the construction of more complete
hypotheses. If trial and error is too dangerous, developments in the environment
are observed in order to collect more information. By doing so, the character
can change its behaviour dynamically. Please note that the character does not
learn by forming new goals because this will lead to a lack of control over its
behaviour. Instead, it learns by trying out different actions from a pre-specified
set of actions and remembering which actions helped it to tackle a situation
best. This information is stored in its autobiographic memory and serves as an
indicator to the success probability of satisfying a specific need in future. Since
certainty depends on the amount of unkown information relating to a goal, the
more an agent encounters the same type of situation, the higher its certainty is
regarding the situation.

Competence represents the efficiency of an agent in reaching its goals and ful-
filling its demands. Success increases competence while failure decreases it. The
agent’s autobiographic memory provides a history of previous interactions, which
records the agent’s experience in a task (the number of successes in performing
a goal) useful for the calculation of goal competence (likelihood of success in
performing a goal, Equation 3). Since no distinction is made in calculating com-
petence between achieving an important goal or a less important one, one can
assume that all goals have the same contribution to the success rate. If the agent
cannot remember previous activations of the goal, then it ignores the likelihood
of success and increases the goal’s contribution to certainty.

Comp(g) = NoOfSuccesses(g)/NoOfTries(g) (3)
OverallComp = NoOfSuccesses/NoOfGoalsPerformed (4)
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The autobiographic memory also stores information about the agent’s overall
performance (the number of successes so far taking into consideration all goals
performed) useful for the calculation of overall competence (Equation 4). The
expected competence (Equation 5) of the agent will then be a sum of its overall
competence and its competence in performing a current goal. A low competence
level indicates that the agent should avoid taking risks and choose options that
have worked well in the past. A high competence means that the agent can
actively seek difficulties by experimenting with new courses of action that are less
likely to succeed. Together, competence and certainty direct the agent towards
explorative behavior; depending on its abilities and the difficulty of mastering
the environment, it will actively seek novelty or avoid complexity. During this
learning process, the agent also remembers any specific expressed emotions by
other agents in particular situations. It continuously updates and adapts this
information enabling empathic engagement in future interactions.

ExpComp(g) = OverallComp + Comp(g) (5)

At the start of an interaction, each agent has a set of initial values for needs.
Based on the level of its current needs, the agent generates intentions, that is, it
activates goal(s) that are relevant to the perceived circumstances. A need may
have several goals that satisfy it (e.g. I can gain affiliation by making a new
friend or socialising with an old friend) and a goal can also affect more than
one need (e.g. eating food offered by another agent satisfies the need for energy
as well as affiliation). So, when determining a goal’s strength (Equation 6), all
drives that it satisfies are taken into account. A goal that satisfies more drives
will have a higher strength than those that satisfy less.

Strength(g) =
∑

Strength(d) (6)

For a particular need, the more a goal reduces its deviation, the more important
that goal is (e.g. eating a full carbohydrate meal when you’re starving satisfies
you better than eating a vegetarian salad). By looking at the contribution of
the goal to overall needs and to a particular need, goals that satisfy the same
need can be compared so that success rate in tackling the current circumstances
can be maximised. So, the utility value of a goal can be determined taking into
consideration overall goal strength on needs (Strength(g)), contribution of the
goal to a particular need (ExpCont(g, d)) and the expected competence (Exp-
Comp(g)) of the agent. Additionally, the urgency of a goal is taken into account.
Urgency(g) gives importance to goals that should become active immediately,
usually goals that satisfy the most current deviated need(s).

EU(g) = (1+goalUrgency(g))∗ExpComp(g)∗Strength(g)∗ExpCont(g, d) (7)

On each cycle, goals are checked to see if any has become active by testing the
goal’s preconditions. Once a goal becomes active, a new intention to achieve the
goal is created and added to the intention structure. The intention represents
the agent’s commitment to achieve the goal and stores all plans created for it.
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Since there can be more than one intention activated at any particular time
instance, the character must choose one of them to continue deliberation (and
planning). Applying PSI, the selection of goal in ORIENT is performed based
on the selection threshold value. The current active intention is selected based
on a winner takes all approach, that is, the goal with the highest expected utility
value is chosen. An unselected goal can be activated if its strength exceeds the
value of the current active intention multiply by the selection threshold. So, if
the selection threshold is high, it is less likely for another goal to be activated,
hence, allowing the agent to concentrate on its current active intention. After an
intention is selected, the agent proceeds to generate plan(s) to achieve it.

When a plan is brought into consideration by the reasoning process, it
generates and updates OCC prospect based emotions such as:

– Hope: Hope to achieve the intention. The emotion intensity is determined
from the goal’s importance of success and the plan’s probability of success.

– Fear: Fear of not being able to achieve the intention. The emotion intensity is
determined from the goal’s importance of failure and the plan’s probability
of failing.

All active goals are then checked to determine if the goal succeeds or fails. If
the planner is unable to make a plan, more prospect based emotions will be
generated, such as Satisfaction, Disappointment, Relief and Fears-Confirmed.
In order to cope with different circumstances, ORIENT characters perform two
types of coping: problem-focused coping and emotion-focused coping as in FA-
tiMA. Problem-focused coping focuses on acting on the environment to tackle
a situation. It involves planning a set of actions that achieve a desired result
and executing those actions. On the other hand, emotion-focused coping works
by changing the agent’s interpretation of circumstances, that is, lowering strong
negative emotions for example, by lowering the importance of goals, a coping
strategy used often by people when problem focused coping has low chances of
success. These coping strategies are triggered by emotions and personality of
the characters. For instance, a fearful character has a higher chance to drop an
uncertain goal than a hopeful character.

5 Conclusion and Future Work

In this paper, we discussed our effort in developing autonomous NPCs for an
educational role play game. In ORIENT, characters behaviour is regulated by
a biologically-inpired architecture of human action regulation. The new addi-
tion of the motivational system onto FAtiMA provides ORIENT characters with
a basis for selective attention, critical for learning and memory processes. In-
tentions are selected based on strength of activated needs, urgency and success
probability addressing the BDI architecture ambiguity in decision making. The
resulting agents learn through trial and error, allowing more efficient adapta-
tion and empathic engagement in different social circumstances. The successful
linking of body and mind is consistent with that of humans’ and hence, should
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produce characters with behaviours that seem plausible to a human. The soft-
ware which is written in Java has been made available at the open source portal
SourceForge3 and is reusable in autonomous agents applications.
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Abstract. This paper addresses an ongoing experience in the design
of an artificial agent taking decisions in a role playing game populated
by human agents and by artificial agents. At first, we will present the
context, an ongoing research project aimed at computer-based support
for participatory management of protected areas (and more specifically
national parks) in order to promote biodiversity conservation and social
inclusion. Our applicative objective is, through a distributed role-playing
game, to help various stakeholders (e.g., environmentalist, tourism oper-
ator) to collectively understand conflict dynamics for natural resources
management and to explore negotiation management strategies for the
management of parks. Our approach includes support for negotiation
among players and insertion of various types of artificial agents (decision
making agent, virtual players, assistant agents). In this paper, we will
focus on the architecture of the decision making agent playing the role
of the park manager, the rationales for its decision, and how it takes into
account the preferences/votes from the stakeholders.

1 Introduction

In this paper, we are discussing our experience of inserting artificial agents in
a role-playing game populated with humans. The role playing game we con-
sider may be considered as a serious game, as our objective is educational
and epistemic. In this game, humans play some role and discuss, negotiate and
take decisions about a common domain, in our case environment management
decisions.

We are currently designing and inserting different types of artificial agents
into this human-based role-playing game. More precisely, we are considering
three types of artificial agents:

F. Dignum et al. (Eds.): Agents for Games and Simulations, LNAI 5920, pp. 119–134, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



120 J.-P. Briot et al.

– artificial players – A first motivation is to address the possible absence of suf-
ficient number of human players for a game session [1]. But this will also allow
more systematic experiments about specific configurations of players pro-
files, because of artificial players’ objective, deterministic and reproducible
behaviors.

– artificial decision maker – The park manager acts as an arbitrator in the
game, making a final decision for types of conservation for each landscape
unit and it also explains its decision to all players. As for artificial players,
using an artificial manager in place of a human manager will allow repro-
ductible experiments with controllable levels of participation and of manager
profile (see Section 6.1).

– assistant agents – These agents are designed to assist a player by performing
tasks, such as orientation within games steps and actions expected, and
also support for negotiation, e.g., by identifying and suggesting potential
coalitions.

In this paper we focus on the design of the artificial decision maker agent. Its
objective is to take decision based on its own analysis of the situation and on
the proposals by the players. The agent is also able to explain its decision based
on its chain of argumentation.

The structure of this paper is as following: after introducing the SimParc
project, its role playing game and its computer support, and the insertion of
artificial agents, we describe the decision maker agent objectives, architecture
and implementation.

2 The SimParc Project

2.1 Project Motivation

A significant challenge involved in biodiversity management is the management
of protected areas (e.g., national parks), which usually undergo various pressures
on resources, use and access, which results in many conflicts. This makes the issue
of conflict resolution a key issue for the participatory management of protected
areas. Methodologies intending to facilitate this process are being addressed via
bottom-up approaches that emphasize the role of local actors. Examples of so-
cial actors involved in these conflicts are: park managers, local communities at
the border area, tourism operators, public agencies and NGOs. Examples of
inherent conflicts connected with biodiversity protection in the area are: irregu-
lar occupation, inadequate tourism exploration, water pollution, environmental
degradation and illegal use of natural resources.

Our SimParc project focuses on participatory parks management. (The origin
of the name SimParc stands in French for “Simulation Participative de Parcs”)
[2]. It is based on the observation of several case studies in Brazil. However,
we chose not to reproduce exactly a real case, but a fictive park, in order to
leave the door open for broader game possibilities [3]. Our project aim is to help
various stakeholders at collectively understand conflicts and negotiate strategies
for handling them.
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2.2 Approach

Our initial inspiration is the companion modeling (ComMod) approach about
participatory methods to support negotiation and decision-making for partic-
ipatory management of renewable resources [4]. They pioneer method, called
MAS/RPG, consists in coupling multi-agent simulation (MAS) of the envi-
ronment resources and role-playing games (RPG) by the stakeholders [4]. The
RPG acts like a “social laboratory”, because players of the game can try many
possibilities, without real consequences.

Recent works proposed further integration of role-playing into simulation, and
the insertion of artificial agents, as players or as assistants. Participatory simula-
tion and its incarnation, the Simulación framework [5], focused on a distributed
support for role-playing and negotiation among human players. All interactions
are recorded for further analysis (thus opening the way to automated acqui-
sition of behavioral models) and assistant agents are provided to assist and
suggest strategies to the players. The Games and Multi-Agent-based Simulation
(GMABS) methodology focused on the integration of the game cycle with the
simulation cycle [1]. It also innovated in the possible replacement of human play-
ers by artificial players. One of our objectives is to try to combine their respective
merits and to further explore possibilities of computer support.

3 The SimParc Role-Playing Game

3.1 Game Objectives

Current SimParc game has an epistemic objective: to help each participant dis-
cover and understand the various factors, conflicts and the importance of dia-
logue for a more effective management of parks. Note that this game is not (or
at least not yet) aimed at decision support (i.e., we do not expect the resulting
decisions to be directly applied to a specific park).

The game is based on a negotiation process that takes place within the park
council. This council, of a consultative nature, includes representatives of vari-
ous stakeholders (e.g., community, tourism operator, environmentalist, non gov-
ernmental association, water public agency. . . ). The actual game focuses on a
discussion within the council about the “zoning” of the park, i.e. the decision
about a desired level of conservation (and therefore, use) for every sub-area (also
named “landscape unit”) of the park (remember that this is a fictive park, see
Section 2.1). We consider nine pre-defined potential levels (that we will consider
as types) of conservation/use, from more restricted to more flexible use of nat-
ural resources, as defined by the (Brazilian) law. Examples are: Intangible, the
most conservative use, Primitive and Recuperation.

The map of the park (a GIS with different layers of information) is shown
at Figure 1. It includes icons for various types of “elements of concern” for the
different stakeholders (e.g., various animals to be protected, tourism spots, types
of illegal occupation, etc.).
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Fig. 1. The map of the SimParc park

The game considers a certain number of players’ roles, each one representing
a certain stakeholder. Depending on its profile and the elements of concerns in
each of the landscape units (e.g., tourism spot, people, endangered species. . . ),
each player will try to influence the decision about the type of conservation for
each landscape unit. It is clear that conflicts of interest will quickly emerge,
leading to various strategies of negotiation (e.g., coalition formation, trading
mutual support for respective objectives, etc).

A special role in the game is the park manager. He is a participant of the game,
but as an arbiter and decision maker, and not as a direct player. He observes the
negotiation taking place among players and takes the final decision about the
types of conservation for each landscape unit. His decision is based on the legal
framework, on the negotiation process among the players and on his personal
profile (e.g., more conservationist or more open to social concerns) [3]. He may
also have to explain his decision, if the players so demand. We plan that the
players and the park manager may be played by humans or by artificial agents.

3.2 Game Cycle

The game is structured along six steps, as illustrated at Figure 2. At the begin-
ning (step 1), each participant is associated with a role. Then, an initial scenario
is presented to each player, including the setting of the landscape units, the
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Fig. 2. The six steps of the SimParc game cycle

possible types of use and the general objective associated with his role. Then
(step 2), each player decides a first proposal of types of use for each landscape
unit, based on his/her understanding of the objective of his/her role and on the
initial setting. Once all players have done so, each player’s proposal is made
public.

In step 3, players start to interact and to negotiate on their proposals. This
step is, in our opinion, the most important one, where players collectively build
their knowledge by means of an argumentation process. In step 4, they revise
their proposals and commit themselves to a final proposal for each landscape
unit. In step 5, the park manager makes the final decision, considering the ne-
gotiation process, the final proposals and also his personal profile (e.g., more
conservationist or more sensitive to social issues). Each player can then consult
various indicators of his/her performance (e.g., closeness to his initial objective,
degree of consensus, etc.). He can also ask for an explanation about the park
manager decision rationales.

The last step (step 6) “closes” the epistemic cycle by considering the possible
effects of the decision. In the current game, the players provide a simple feedback
on the decision by indicating their level of acceptance of the decision.1

A new negotiation cycle may then start, thus creating a kind of learning cycle.
The main objectives are indeed for participants: to understand the various factors

1 A future plan is to introduce some evaluation of the quality of the decision. Possible
alternatives are: computable indicators (e.g., about the economical or social feasibil-
ity), a more formal model (based on viability theory, which allows to compute the
viability and resilience of the result of the zoning decision), or a multi-agent simula-
tion of the evolution of resources. Note that a real/validated model is not necessary
as the park is fictive and the objective is credibility, not realism.
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and perspectives involved and how they are interrelated; to negotiate; to try to
reach a group consensus; and to understand cause-effect relations based on the
decisions.

4 The SimParc Game Support Architecture

4.1 Design and Implementation of the Architecture

Our current prototype benefited from our previous experiences (game sessions
and a first prototype) and has been based on a detailed design process. Based
on the system requirements, we adopted Web-based technologies (more precisely
J2E and JSF) that support the distributed and interactive character of the game
as well as an easy deployment.

Figure 3 shows the general architecture and communication structure of Sim-
Parc prototype version 2. In this second prototype, distributed users (the players
and the park manager) interact with the system mediated internally by commu-
nication broker agents (CBA). The function of a CBA is to abstract the fact
that each role may be played by a human or by an artificial agent. A CBA also
translates user messages in http format into multi-agent KQML format and vice
versa. For each human player, there is also an assistant agent offering assistance
during the game session. During the negotiation phase, players (human or arti-
ficial) negotiate among themselves to try to reach an agreement about the type
of use for each landscape unit (sub-area) of the park.

A Geographical Information System (GIS) offers to users different layers of in-
formation (such as flora, fauna and land characteristics) about the park geograph-
ical area. All the information exchanged during negotiation phase, namely users’

Fig. 3. SimParc version 2 general architecture
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logs, game configurations, game results and general management information are
recorded and read from a PostgreSQL database.

4.2 Interface Support

The interface for negotiation is shown at Figure 4. It includes advanced support
for negotiation (rhetoricalmarkers and dialoguefiltering/structuringmechanisms,
see details in [6]), access to different kinds of information about other players, land,
law and the help of a personal assistant. The interface for players decision about
the types of use is shown at Figure 5. In this interface, the players can analyze the
area based in its different layers (e.g., land, hydrography, vegetation. . . ).

4.3 Preliminary Evaluation

The current computer prototype has been tested through two game sessions by
domain expert players in January 2009. The 9 roles of the game and the park
manager were played by humans, Among them, 8 were experts in park manage-
ment (researchers and professionals, one being a professional park manager in
Brazil). The two remaining players were not knowledgeable in park management,
one being experienced in games (serious games and video games) and the other
one a complete beginner in all aspects.

Fig. 4. Current prototype’s negotiation graphical user interface
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Fig. 5. Current prototype’s decision graphical user interface

We analyzed data on the game sessions (written questionnaires, recorded de-
briefing, etc.) and a more detailed analysis is presented in [7]. Overall, the game
was well evaluated by the human players. As one of the player also took part in
a previous game session in September 2007, with no computer support yet, we
could also have some preliminary clues at the benefits of a computer support as
well as the relative loss in modality of interactions between players. That player
acknowledged the progress in structuring and analysis of the negotiation, thanks
to the computer support. An interesting finding after the sessions was also that
all players learned and took benefit of the game. The experts explored and refined
strategies for negotiation and management, whereas the beginner player took ben-
efit of the game as a more general educational experience about environmental
management. In other words, the game appeared to be tolerant to the actual level
of expertise of players, an aspect which had not been planned ahead. Last, the fact
that the prototype is accessible through Internet via a standard Web browser, and
that it does not require preliminary installation of a software on all players com-
puters, was acknowledged as a potential for greater mobility and larger dissem-
ination of this game. In summary, we believe these preliminary results are very
encouraging and we will soon conduct new game sessions with domain experts.

5 Inserting Artificial Agents into the SimParc Game

We are currently inserting artificial agents into the prototype. We consider three
types of artificial agents: the parkmanager, the artificial players and the assistants.



Design of a Decision Maker Agent for a Distributed Role Playing Game 127

The park manager acts as an arbitrator in the game, making a final decision
for types of conservation for each landscape unit and explains its decision to
all players. He may be played by a human or by an artificial agent. We have
implemented a prototype implementation of an artificial park manager, based
on 2 steps: (1) internal/individual decision by the park manager, based on some
argumentation model; (2) merging of the decision by the manager with the votes
by the players, based on decision theory (social choice). Traces of argumentation
may be used for explaining the rationale of the decision. The artificial park
manager architecture is detailed in Section 6.

For the artificial players, we build up on previous experience on virtual play-
ers in a computer-supported role playing game, ViP-JogoMan [1]. The idea is
to potentially replace some of the human players by artificial players (artificial
agents). The two main motivations are: (1) the possible absence of sufficient
number of human players for a game session and (2) the need for testing in a
systematic way specific configurations of players’ profiles. The artificial players
will be developed along the artificial park manager existing architecture, with
the addition of negotiation and interaction modules. We plan to use its argu-
mentation capabilities to generate and control the negotiation process. In a next
stage, we would like to explore the automated analysis of recorded traces of in-
teraction between human players, in order to infer models of artificial players. In
some previous work [5], genetic programming had been used as a technique to
infer interaction models, but we also plan to explore alternative induction and
machine learning techniques, e.g., inductive logic programming.

The last type of artificial agent is an intelligent assistant agent. This agent is
designed to assist a player by performing two main tasks: (1) to help participants
in playing the game, e.g.: the assistant agent tells the player when he should
make decisions; what are the phases of the game; what should be done in each
phase; etc.; (2) to help participants during the negotiations. For this second
task, we would like to avoid intrusive support, which may interfere in his decision
making cognitive process. We have identified some actions, e.g., to identify other
players’ roles with similar or dissimilar goals, which may help the human player
to identify possible coalitions or conflicts. The general main idea for an assistance
for negotiation is thus to combine and classify important information to help
participants to make analysis and do it faster than they would do alone, while
keeping their focus on the game proposal. An initial prototype implementation
of an assistant agent has been implemented [7].

6 The Park Manager Artificial Agent

In this section, we describe an agent architecture to implement the park manager
cognitive decision rationale. As we summarized before, our decision model is
based on two mechanisms. These mechanisms could be viewed as modules of
decision subprocesses. We believe that complex decision making is achievable by
sequential organization of these modules. Before proceeding to the description
of our agent architecture, we present some more detailed motivation for it.
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6.1 Objectives

Participatory management aims to emphasize the role of local actors in man-
aging protected areas. However, the park manager is the ultimate arbiter of all
policy on devolved matters. He acts like an expert who decides on validity of
collective concerted management policies. Moreover, he is not a completely fair
and objective arbiter: he still brings his personal opinions and preferences in the
debate. Therefore, we aim to develop an artificial agent modeling the following
behaviors.

Personal preferential profile: The park manager decision-making process is sup-
posed to be influenced by its sensibility to natural park stakes and conflicts. In
decision theory terms, we can affirm that the park manager’s preferential pro-
file could be intended as a preference relation over conservation policies. One of
the key issues is to understand that we cannot define a strict bijection between
preferential profile and preference relation. The agent’s preference relation is
partially dependent on natural park resources and realities. Moreover, this rela-
tion is not likely to be an order or a preorder. Hence, our agent must be able to
define dynamically its preference relation according with its preferential profile.
We distinguish two preferential profiles:

– Preservationist: aims to preserve ecosystems and the natural environment.
– Socio-conservationist: generally accepts the notion of sustainable yield - that

man can harvest some forest or animal products from a natural environment
on a regular basis without compromising the long-health of the ecosystem.

Taking into account stakeholders’ decisions: A participatory decision-making
leader seeks to involve stakeholders in the process, rather than taking autocratic
decisions. However, the question of how much influence the stakeholders are
given may vary on the manager’s preferences and beliefs. Hence, our objective
is to model the whole spectrum of participation, from autocratic decisions to
fully democratic ones. To do so, we want the park manager agent to generate
a preference preorder over conservation policies. This is because it should be
able to calculate the distance between any two conservation policies. This way,
we can merge the stakeholders’ preference preorders with the manager’s one to
establish one participatory final decision. The autocratic/democratic manager
attitude will be modeled by an additional parameter during the merge process.

Expert decision: The park manager’s final decision must consider legal con-
straints related to environmental management; otherwise, non-viable decisions
would be presented to the players, thus invalidating game’s learning objectives.
These constraints are directly injected in the cognitive process of the agent.
Hence, the agent will determine a dynamic preference preorder, according to its
preferential profile, over allowed conservation levels.

Explaining final decision: In order to favor the learning cycle, the park manager
agent must be able to explain its final decision to the players. We can consider
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that the players could eventually argue about its decision; the agent should then
defend its purposes using some kind of argumentative reasoning. Even if such
cases will be explored in future work, it is our concern to conceive a cognitive
architecture which provides a good basis for managing these situations.

6.2 Architecture Overview

Let us now present an architecture overview of the park manager agent. As
depicted at Figure 6, the agent’s architecture is structured in two phases. We be-
lieve that sequential decision-making mechanisms can model complex
cognitive behaviors along with enhanced explanation capabilities.

The first decision step concerns the agent’s individual decision-making pro-
cess: the agent deliberates about the types of conservation for each landscape
unit. Broadly speaking, the park manager agent builds its preference preorder
over allowed levels of conservation. An argumentation-based framework is imple-
mented to support the decision making. The next step of our approach consists
in taking into account the players’ preferences. The result of the execution is
the modified park manager decision, called the agent participatory decision,
according to the stakeholder’s preferences.

Fig. 6. Park manager agent 2-steps decision process

6.3 Agent Individual Decision

Recently, argumentation has been gaining increasing attention in the multi-agent
community. Autonomous and social agents need to deliberate under complex
preference policies, related to the environment in which they evolve. Gener-
ally, social interactions bring new information to the agents. Hence, preference
policies need to be dynamic in order to take into account newly acquired knowl-
edge. Dung’s work [8] proposes formal proof that argumentation systems can
handle epistemic reasoning under open-world assumptions, usually modeled by
nonmonotonic logics. Argumentation thus becomes an established approach for
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reasoning with inconsistent knowledge, based on the construction and the inter-
action between arguments. Recently, some research has considered argumenta-
tion systems capabilities to model practical reasoning, aimed at reasoning about
what to do [9,10,11]. It is worth noticing that argumentation can be used to select
arguments that support available desires and intentions. Consistent knowledge
can generate conflicting desires. An agent should evaluate pros and cons before
pursuing any desire. Indeed, argumentative deliberation provides a mean for
choosing or discarding a desire as an intention.

We could argue that open-world assumptions do not hold in our context. The
agent’s knowledge base is not updated during execution, since it is not directly
exposed to social interactions. Knowledge base and inference rules consistency-
checking methods are, therefore, not necessary. However, one key aspect here
is to conceive an agent capable of explaining its policy making choices; our
concern is to create favorable conditions for an effective and, thus closed, learning
cycle. We believe that argumentation “tracking” represents an effective choice
for accurate explanations. Conflicts between arguments are reported, following
agent’s reasoning cycle, thus enhancing user comprehension.

From this starting position, we have developed an artificial agent on the basis
of Rahwan and Amgoud’s work [10]. The key idea is to use an argumentation
system to select the desires the agent is going to pursue: natural park stakes
and dynamics are considered in order to define objectives for which to aim.
Hence, decision-making process applies to actions, i.e. conservation levels, which
best satisfy selected objectives. In order to deal with arguments and knowledge
representation, we use first-order logic. Various inference rules were formulated
with the objective of providing various types of reasoning capability. For exam-
ple, a simple inference rule for generating desires from beliefs, i.e. natural park
stakes, is:

Fire → Avoid Fires , 4

where Fire (fire danger in the park) is a belief in agents knowledge base and
Avoid Fires is the desire that is generated from the belief. The value 4 represents
the intensity of the generated desire.

Examples of rules for selecting actions, i.e. level of conservation, from
desires are:

Primitive → Avoid Fires , 0.4

Intangible → Avoid Fires , 0.8

where Primitive and Intangible represent the levels of conservation and 0.4 and
0.8 represent their utilities in order to satisfy the desire Avoid Fires.

6.4 Agent Participatory Decision

Despite participatory ideals, a whole spectrum of park managers, from autocratic
to fully democratic ones, can be measured, depending on how more participatory
and democratic decision-making is operationalized. We propose a method, fitted
into the social-choice framework, in which participatory attitude is a model
parameter.
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Fig. 7. Park manager agent participatory decision

In a real case scenario, a decision-maker would examine each stakeholder’s
preferences in order to reach the compromise that best reflects its participatory
attitude. Our idea is to represent this behavior by weighting each player’s vote
according to the manager’s point of view.

This concept is illustrated at Figure 7. The process is structured in two phases.
Firstly, the manager agent injects its own preferences into the players’ choices
by means of an influence function describing the agent’s participatory attitude.
Stronger influence translates into more autocratic managers. Secondly, the mod-
ified players’ choices are synthesized, using an aggregation function, i.e. Con-
dorcet voting method. The result of the execution will be the agent participatory
decision.

Example: Let the following be players’ choices, where � is a preference relation
(a � b means “a is preferred to b”):

player1 = Intangible � Primitive � Extensive,v1 = (3, 2, 1)

player2 = Extensive � Primitive � Intangible,v2 = (1, 2, 3)

player3 = Primitive � Extensive � Intangible,v3 = (1, 3, 2)

Let Manager individual decision be:

manager ind = Extensive � Primitive � Intangible,vM = (1, 2, 3)
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The players’ choices are converted into numeric vectors specifying the candidates’
rank for each vote. Let the following be the influence function:

�(x, y) =
{

x if x = y
x ∗ 1/|x − y| otherwise

The modified players’ vectors will be:

mv1 = 〈�(v1(1),vM (1)),�(v1(2),vM (2)),�(v1(3),vM (3))〉
= (1.5, 2, 0.5)

mv2 = (1, 2, 3)
mv3 = (1, 3, 2)

In order to find the manager participatory decision, we apply the Choquet inte-
gral Cµ [12] choosing a symmetric capacity measure µ(S) = |S|2/|A|2, where A
is the candidates set.

Cµ(Intangible) = 1.05, Cµ(Primitive) = 2.12, Cµ(Extensive) = 1.27

The result of the execution will then be:

managerpart = Primitive � Extensive � Intangible

Further details about the architecture formal background and implementation
are reported in [13].

6.5 Implementation Framework

The architecture presented in this paper has been implemented in the Jason
multi-agent programming language platform [14]. Besides interpreting the orig-
inal AgentSpeak(L) language, thus disposing of logic programming capabilities,
Jason also features extensibility by user-defined internal actions, written in Java.
Hence, it has been possible to easily implement aggregation methods.

6.6 Examples of Results

The presented manager agent architecture and its first implementation have been
tested over different scenarios. Simulations conducted in laboratory have been
validated by team experts. However, more results from further tests are expected.
We report hereafter an example of explanation for the managers decision over a
landscape unit. Let the manager individual decision be the following:

manager ind = Intangible � Recuperation

Arguments for Intangible are:

Endangered species & Tropical forest → Maximal protection

Intangible → Maximal protection

Arguments for Recuperation are:

Fire & Agricultural activities → Recover deteriorated zone

Recuperation → Recover deteriorated zone
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7 Conclusion

In this paper, we have presented the SimParc project, a role-playing serious game
aimed at computer-based support for participatory management of protected
areas. The lack of human resources implied in RPG gaming process acts as a
constraint to the fulfillment of pedagogical and epistemic objectives. In order
to guarantee an effective learning cycle, park manager role must be played by
a domain expert. Required expertise obviously narrows game’s autonomy and
limits its context of application. Our solution to this problem is to insert artificial
agents into the game. In this paper, we focused on the architecture to implement
park manager cognitive decision rationale. The decision-making agent can justify
its behavior and generate a participatory decision. Our argumentation system is
based on [9,10]: conflicts between arguments can be reported thus enhancing user
comprehension. Moreover, we presented a decision theory framework responsible
for generating a participatory decision. To the best of our knowledge and belief,
this issue has not yet been adressed in the literature. Although more evaluation
is needed, we believe the initial game session tests are encouraging. The final
integration of the park manager agent within the new version of the prototype
is under way. We plan new game sessions with experts in January 2010. Besides
the project specific objectives, we also plan to study the possible generality of
our prototype for other types of human-based social simulations. In the current
architecture of the artificial park manager, only static information about the park
and about the votes by players are considered. We are considering exploring
how to introduce dynamicity in the decision model, taking into account the
dynamics of negotiation among players (the evolution of decisions by players
during negotiation).
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2003), Paris, France (November 2003)

10. Rahwan, I., Amgoud, L.: An argumentation based approach for practical reasoning.
In: 5th International Joint Conference on Autonomous Agents and Multiagent
Systems (AAMAS 2006), Hakodate, Japan, pp. 347–354. ACM, New York (2006)

11. Amgoud, L., Kaci, S.: On the generation of bipolar goals in argumentation-based
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Abstract. This article describes a virtual village we are currently assembling. 
Called NonKin Village, this is a gameworld that brings life to factional agents 
in a sort of an emergent SimCity. It supports street level interaction and dialog 
with agents to learn their issues, needs, grievances, and alignments and to try to 
assist them in countering the agenda of an insurgent faction aimed at ending the 
rule of law. The player can attempt tactical Diplomatic, Information, Military, 
and Economic (DIME) actions and observe Political, Military, Economic, 
Social, Infrastructure, and Information (PMESII) effects unfold, but watch out! 
It’s easy to go wrong in this foreign culture, to undertake operations with 
spurious side-effects. The player’s goal is to learn enough about the foreign 
culture and their situation so as to be successful at influencing the world and 
facilitating a new dynamic to take effect, that of equitable and self-sustaining 
institutions. 

Keywords: training game, cultural terrain, socio-cognitive agents, interactive 
environments. 

1   Introduction 

Immersive training environments have gained interest in a variety of fields and 
industries as a way to effectively teach skills with a large degree of flexible and cost-
effective scenario authoring. Such flexibility, however, can lead to important design 
considerations for managing large and disparate collections of data in editing and run-
time environments. From terrain maps to agent relationships, to cultural context, a 
great deal of information is required to rapidly generate an immersive environment. 
We have developed an architecture to support such an environment by facilitating 
content generation, customization, reuse, and plug-in functionality, as well as 
bridging capability with other technologies and visual platforms.  

The use case for such an architecture is a training game, called NonKin Village, 
where the player(s) interacts with other virtual or real followers and leaders of 
contending factions at a local village level. These factions offer a corrupt SimCity-type 
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of world where one must convince various “crime” families to convert to legit 
operation. NonKin is used to simulate insurgent operations in the village. The insurgent 
leader uses recruits to carry out missions. The player(s) has constrained resources, and 
must use them judiciously to try and influence the world via an array of Diplomatic, 
Intelligence, Military, and Economic (DIME) actions. The outcomes are presented as a 
set of intended and unintended Political, Military, Economic, Social, Informational, and 
Infrastructure (PMESII) effects. 

The goal is to push the player through the three stages of counter-insurgency 
(COIN) theory: survey the social landscape, make friends/co-opt the agenda, and 
foster self-sustaining institutions so the player can safely depart [1]. The player learns 
to use the given resources judiciously and in a culturally sensitive way to achieve 
desired outcomes. All agents in the game are conversational and are able to explain 
their internal states, group grievances, relations/alignments, fears, and wants. The 
agents carry out daily life functions in the village in order to satisfy their internal 
needs for sleep, sustenance, company/belonging, maintaining relationships, prayer, 
etc. The village has places of employment, infrastructure, government and market 
institutions, and the leaders (agents) manage the economic and other institutional 
resources of their factions. 

1.1   Theories of Insurgency/Terrorism 

To begin, one can readily envision an insurgency existing in a world where a number 
of factions or clans range across the spectrum from those desiring the rule-of-law to 
those interested in chaos and regime change for any of a variety of reasons (ethno-
political grievance, greed, crime, etc.). This is depicted across the top of Fig. 1. 
Indeed, in the Maoist theory of armed struggle, the preparatory stage of an insurgency 
is characterized by actions that seek to affect separate factions of the population of the 
nations or regions they are trying to influence, causing different factions to iterate 
(dynamically) through several states ranging from animosity and paralyzing fear to 
sympathy and membership in the insurgent movement [3]. 

 

Fig. 1. Factions and agents in an insurgent area 
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Ideally one would like to realistically simulate such behaviors for the purposes of 
being able to train against it and analyze what influences it in a given area of operation. 
To train/analyze how to co-opt the agenda of an insurgency and mobilize the populace 
toward the rule of law one needs a set of simulated factions and insurgent agents 
readily adapted to any given region. Since members of a given populace will be at 
varying degrees of support for and participation with each side, this implies that the 
aim of counter-insurgency is not solely to destroy groups at the enemy end of the 
spectrum, but also to progressively shift individuals and groups closer to the friendly 
end. In fact, since insurgent cells are often hidden amongst supporting members of the 
population (bottom of Fig. 1), a focus strictly on reaction to insurgent attacks can be 
counter-productive. It will leave the agenda in their hands, cause collateral damage to 
potentially woo-able factions, and make the force for order seem to have no successful 
agenda of its own. Instead one must encourage the force for order to use a “full 
spectrum” of approaches to help diagnose the source of grievance, attempt to 
ameliorate the root causes, and build up whatever services and institutions that are 
lacking and potentially also causing discontent: e.g., see [1-3, 6-8, 13]. 

2   Overview of Socio-Cognitive Agents and Architecture 

We have been assembling an architecture able to support the authoring of games in 
this milieu. This section overviews the main components of the architecture. Sun [12] 
and Zacharias et al. [14] provide a useful survey of the respective fields of social 
agents and cognitive agents and show that there are very few meso-level 
environments that straddle both topics to provide socio-cognitive architectures. Let us 
therefore, briefly review its major layers – social and cognitive. 

2.1   Profiling Cognitive Agents 

PMFserv is a COTS (Commercial off the Shelf) human behavior emulator that drives 
agents in simulated gameworlds. This software was developed over the past ten years 
at the University of Pennsylvania as a “model of models” architecture to synthesize 
many best available models and best practice theories of human behavior modeling 
[10]. PMFserv agents are unscripted, using their micro-decision making to react to 
actions as they unfold and to plan out responses. A performance moderator function 
(PMF) is a micro-model covering how human performance (e.g., perception, memory, 
or decision-making) might vary as a function of a single factor (e.g., event stress, time 
pressure, grievance, and so on.). PMFserv synthesizes dozens of best available PMFs 
within a unifying mind-body framework and thereby offers a family of models where 
micro-decisions lead to the emergence of macro-behaviors within an individual. For 
each agent, PMFserv operates its perception and runs its physiology and 
personality/value system to determine coping style, emotions and related stressors, 
grievances, tension buildup, impact of rumors and speech acts,  and various 
mobilization and collective and individual action decisions to carry out the resulting 
and emergent behaviors. None of these PMFs are "home-grown"; instead they are 
culled from the literature of the behavioral sciences. Users can turn on or off different 
PMFs to focus on particular aspects of interest. When profiling an individual, various 
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personality and cultural profiling instruments are utilized with GUI sliders and web 
interviews to elicit the parameter estimates from a country, leader, or area expert. 

A key concept in PMFserv that assists in modular modeling and object reuse is the 
implementation of Gibson’s affordance theory to manage when and how agents and 
objects may be perceived and acted on. Each entity in the world applies perception 
rules to determine how it should be perceived by each perceiving agent. Objects then 
reveal the actions (and the potential results of performing those actions) afforded to 
the agent. For example, an object representing a car might afford a driving action 
which can result in moving from one location to another. A business might afford 
running it, working there, purchasing goods, and/or attacking and damaging it. These 
affordance markups permit PMFserv agents to perceive and reason about the world 
around them.  

2.2   FactionSim – The Social System Layer 

FactionSim is an environment that captures a globally recurring socio-cultural "game" 
that focuses upon inter-group competition for control of resources (e.g, 
Security/Economic/Political Tanks) [11]. It is a tool that allows conflict scenarios to 
be established in which the factional leader and follower agents all run autonomously 
and are free to employ their micro-decision making as the situation requires. This 
environment facilitates the codification of alternative theories of factional interaction 
and the evaluation of policy alternatives. A faction has roles for one or more leaders; 
various ministers influenced by the leaders and in charge of institutions that tap the 
resources and provide services; and several named and/or archetypical sets of 
followers (e.g., core, fringe, and hierarchies of sub-groups). FactionSim uses 
PMFserv to fill these leader-minister-follower roles. Factions can be clustered into 
super-groups ahead of time. They also may dynamically form or break alliances by 
autonomous agent decision making. Analysts can interact with the FactionSim and 
attempt to employ a set of DIME actions to influence outcomes and PMESII effects. 
FactionSim has recently been extended to handle specific follower groups (military, 
bureaucracy, elites, religious groups, etc.) and a module was added that contains 
economic institutions that manage the allocation and distribution of public and some 
private goods. It also supports various types of economies (i.e., tribal, developmental, 
black market, etc.) and various regime types ranging from authoritarian to 
democracies with election processes. Third party economic models can also be used 
to supplant this set. 

2.3   VillageSim-FactionSim Interactions 

These two simulations – FactionSim and VillageSim, a PMFserv scenario of a village – 
are used together in NonKin Village for investigating complex social environments 
that require multi-resolution models. Fig. 2 illustrates the concept, where 
FactionSim’s scope focuses on macro models at leader, group, and institution levels 
that consider distribution of services, relative power between factions, and other 
societal mechanisms that reverberate down to an individual level. Each group leader 
corresponds to the same agent in the village layer, but the leader’s action set is clearly 
different. Followers, on the other hand, represent several agents in the village and  
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Fig. 2. Multi-resolution simulation architecture 

their decisions center around support and opposition of groups. On the VillageSim 
side, hundreds of agents go about daily life routines and detailed interactions and 
dialogues between these villagers and players are possible.  

The multi-resolution, dual simulation setup can also facilitate investigations in 
emergent behavior. For example, a high-level policy decision made by a leader agent 
or a player in FactionSim can cause second and third-order effects in the village, or 
macro-to-micro causation. Updates in the economy model allocate capital to proxy 
agents, which then get distributed to those represented agents according to their 
individual socio-economic status. Conversely, consider player interactions with 
villagers in real time. Once the specific interactions are completed, the player will 
observe their overall impact either in 15 minute game time intervals if VillageSim is 
controlling the clock, or in a game week if FactionSim controls it. 

2.4   World Objects 

World objects are all physical instances that afford actions to agents. Structures, 
stores, homes and symbolic items are just a small collection of object categories. For 
the purposes of the architecture in providing a functional framework for immersive 
training environments, several taxonomies have been developed to classify object 
types along with their functional affordances (further discussion is outside the scope 
of this paper, but is addressed in [11]). In NonKin a great many objects are pre-
encoded in its libraries using these taxonomies so that training scenario developers 
need not fill in the markups, but only need to link them naturally to structures, areas, 
organizations, etc. of that town or region. 
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2.5   Cultural Context 

Since we are modeling complex social environments with an assumed heterogeneity 
of cultures between agents or players and agents, it is critical to include cultural 
information that may affect decision making and perception. These cultural cues are 
packaged in the gameworld as abstract objects and they are represented in the same 
way as concrete world objects. Indeed, we make use of this representational form to 
store historical grievances and new social transgressions as they occur in the 
simulation. By “social transgression” we mean an offense an agent can commit 
against social rules. We utilize a simple, yet comprehensive taxonomy of the types of 
transgressions possible [5]. All transgressions have a transgressor, a set of victims, 
and a set of effects. Effects are the direct effects of the offending action, not the 
emotional effects on observers. Those events or effects are handled internally by the 
PMFserv agents as described in [10]. Beyond these basic properties, our transgression 
objects keep track of some relations with the transgressor, relations with observers, 
properties of the effects, and relations between the transgressor and observers. The 
transgression objects also keep track of atonement actions emanating from 
transgressors and their agents (e.g., compensation, apology, etc.) and forgiveness 
actions by the victims. 

A major focus of NonKin Village is to provide players with immersive and 
accurate interactions with culturally and socially competent agents. To facilitate this, 
another abstract object called an interaction object is introduced into the world. These 
objects provide a context based on defined cultural and social rules, or norms. From 
mundane daily interactions such as buying coffee, to complex discussions involved in 
business negotiations or a dowry, agents assume roles governed by the class of 
interaction in which they  join at a particular moment. Roles include a relevant action 
set as well as information on how that role should be perceived by others in the 
interaction. These data are part of the authoring process for the developer while the 
implementation is handled by the architecture. 

2.6   The Architecture 

NonKin’s architecture needed to address several general problems. Primarily it 
needed a clean way to integrate multiple data sources and engines together in a 
modular way while still keeping reasonable load times. This was done by breaking 
NonKin into two basic pieces, AESOP and NonKin VillageGame. 

Fig. 3 illustrates a general breakdown of the major pieces involved. AESOP 
(Authoring Electronic Stories for Online Players) is responsible for taking the various 
disconnected pieces of data and “baking” them into a single PMFServ library. This 
library is then pushed into a Data Layer which is responsible for presenting the library 
and its contained data to the NonKin VillageGame executable. Inside NonKin 
VillageGame we have an Interaction Engine that builds context-sensitive simulations 
for agents to operate within, and an Explanation Engine which exposes the various 
models in a conversational manner to the player and other agents. 

NonKin VillageGame is accessed from the outside via a Bridge which exposes 
both the PMFServ Framework in general and the User Interface in particular. The 
User Interface sits inside the simulation and interacts with the world through the same 
model interface as socio-cognitive agents. 
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Fig. 3. NonKin architecture overview 

2.6.1   Data Layer and the NonKinData Object 
The Data Layer is implemented via a “NonKinData Object”, which exists as a 
singleton in global space and serves as the point of access for both running and 
editing villages. NonKinData is responsible for loading either the human readable 
component files or the single baked data file depending on what mode we are running 
in. As described in Section 3, it takes a set of AESOP libraries as inputs and produces 
a single baked PMFServ library which can be loaded into any PMFServ compliant 
environment and examined. 

2.6.2   Components 
The NonKinData object is also responsible for wrapping up (baking) various data 
components (as shown in the top row of Fig. 3) and providing a single point of access 
for asking questions about the village. Each individual component is stored in an 
easily edited intermediate format (XML) until the final step that encodes the pieces 
into a single PMFServ library. The components are described in further detail in 
Section 3.2. 

3   AESOP and Conversational Abilities 

A feature worth mentioning about PMFserv is that the agents are conversational. That 
is, a player may interrogate them about the parameter settings of any of their tanks, 
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goals, standards, preferences, social relations, group dynamics, decision making 
history, opinions about other agents and the actions they have done, opinions about 
FactionSim institutions and organizations, how they feel about transgressions and 
transgressors, whether atonement is possible and how forgivable is the grievance, etc. 
PMFserv includes a narrative engine able to tell stories about what an agent knows 
[9]. In this way, the PMFserv agents can initiate dialogs when they want something 
from the player and they can give qualitative explanations when they talk. In terms of 
explanation, PMFserv agents do not parse natural language queries, but instead 
expose a large list of things you can talk to them about. These lists are dynamic and 
hierarchical so that the conversations are multi-stepped. Further, the agents include a 
“familiarity” scale (1-6) so they will reveal more things they are willing to discuss 
with the player the more familiar and trustworthy the player becomes to them. In 
terms of trustworthiness, the agents apply their full set of cognitions, emotions, social 
relation PMFs, etc., to the player and the player’s group. So this means that they will 
grow closer to the player the more the player does good deeds for them. A player can 
do good deeds in the village in general, or via a structured dialog language make 
“social contracts” with specific agents that spawn objects the agents keep track of. 
Since PMFserv agents keep track of commitments and promises the player makes to 
them, it is equally possible to build trust with them and/or to violate expectations and 
cause their enmity. 

3.1   AESOP and Village Editor 

Given the number of different components that work together in NonKin to produce 
engaging interactions and conversations, it was necessary to solve the problem of how 
to expose these capabilities to knowledge engineers and training developers without 
making the process excessively complex or manual. The first version of the narrative 
editor depended heavily on user edited text files and arbitrary text fields that needed 
to match up between components. This method of editing tended to be labor intensive 
and error prone. It also made it increasingly difficult to add new features or change 
data file formats. 

The solution was to enhance the AESOP editor, both in expanding its existing 
capabilities and giving it a new role in the authoring process. The AESOP editor 
serves two basic roles. Firstly it is responsible for coordinating the data of the various 
components and exposing them as an editor-friendly GUI. Its second task is to handle 
the actual baking of the various components into the final high-speed data file. 

3.1.1   Storage 
Like NonKin proper, AESOP has access to a single data object, NonKinData. 
NonKinData is responsible for tracking the various configuration files and their 
associated components. It is also responsible for providing an interface that allows 
components to access data without needing to be aware if it is working with a baked 
file or independent component data files. 

3.2   Component Plug-Ins 

Within the context of AESOP, a component refers to a package of related information 
that is capable of describing how to perform basic functions on itself like load, save, 
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bake, and edit. Each component is responsible for handling its own data files, 
exposing its editing panel to the AESOP framework, and for providing a ‘bake’ 
function that encodes the component into the final PMFServ file. 

By treating the component as plug-ins we give AESOP the ability to work with 
various village elements in a neutral way. AESOP does not need to know how a 
transgression works or what goes in to making an anthology. All it needs to be aware 
of is that there is a transgression and anthology component and display that 
information to the author. This allows us to add or remove significant functionality 
from a village without having to alter the core AESOP executable. 

In Fig. 3 we saw a list of the major components we use to construct a NonKin 
Village: 
 

Village Data - Village Data contains the bulk of the simulation elements in the 
village. It is broken up into two major pieces, the “library” and the “scenario”. The 
library contains “entities”, which are various agent and object archetypes used in the 
creation of specific instances of the village. For instance, the library might contain 
entries such as “Housewife” or “Sheik”. The scenario on the other hand contains 
simulation-read “instances” of various agents. Instances are complete agents filled 
with the personal information that makes them individuals. For example, “Aridha 
Majid Mukhtar Zakar”, a Shumar-group Housewife, would be an instance in the 
scenario. 

Anthologies - Anthologies represent packages of states that form a single playable 
situation within the village. An anthology tracks which village we are using, what 
scenario implements the situation, which agents and objects are present, and what 
conversational elements are available to them. Anthologies also contain a number of 
possible vignettes, each of which is a self-contained conversational fragment that 
agents can access for conveying information to each other. 

Utterances - The utterance catalog contains a list of culturally relevant statements 
that serve to bridge the high-level conversational capabilities of agents with the low-
level models that implement their various aspects. Each utterance in the catalog 
represents a single line of conversation with markups describing how to pull 
information from underlying models and what information was learned by the 
listener. 

Transgressions - The transgression catalog contains a list of culturally relevant 
transgressions that can potentially exist in the village. These transgression templates are 
baked into the library section of the Village Data and are instantiated into the scenario as 
transgressions occur. The transgression catalog is also responsible for storing grievances, 
which are pre-existing historical transgressions that have already occurred and thus are 
instantiated straight into the scenario at bake time for immediate usage. 

Assessments - Assessments allow the author to explicitly define the criteria for 
successes and failures in a particular training scenario by mapping events and changes 
in properties to custom grading schemes. Assessments help answer the question of 
‘what was the outcome we wanted?’ from a particular set of actions and results. 

3.3   Baking 

The bake process combines the components into a single PMFServ library file. It does 
this by first creating a blank PMFServ file and then iterating over the loaded 
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components, asking each one to “bake” itself into the newly created file. Finally it 
saves this file out as a binary data block (rather then human readable text) in order to 
make it load more efficiently into a NonKinData object. 

3.3.1   Entity Construction 
Historically, most objects are defined explicitly in the village data file. When one is 
authoring an archetype they need to spell out every element every time. Related 
entities that share the bulk of their structure need to be defined each time with the 
small variations being inserted manually. If a meta-archetype needs to change, these 
changes must be performed manually to each archetype based off the larger class. 
This creates a situation where authoring becomes labor intensive and error prone, 
highly discouraging the altering of meta-archetypes. 

The solution, outlined in Fig. 4, involves stepping back from PMFServ’s “entity-
to-instance” relationship. Instead, we create a “proto-entity” within AESOP which is 
split into two separate objects during editing and combined during the bake process. 
This separation of template from metadata allows AESOP to build a catalog of 
reusable object archetypes that contain complex data like afforded actions and have 
simpler objects that contain only the information that makes each object unique. 

An example of this would be a transgression template. An earlier implementation 
involved filling the PMFServ library with a collection of transgression entities. Each 
entity represented an archetype that was identical except for a small number of state 
variables which defined what made the individual template a specific type of 
transgression. If an author wanted to make any changes to what actions were afforded 
to transgressions in general, each transgression had to be changed (and tested) 
manually. 

Under the Bake system however, we can have a single transgression template 
object with all the elements that make up a transgression except the elements that 
differentiate one type of transgression from another. These differences are instead 
stored in smaller metadata objects that allow for editing of just that subset of 
elements. During the bake process these two pieces are combined to create a 
collection of library entities similar to the ones PMFServ was accustomed to already 

 

 

Fig. 4. Flow of object construction from template/metadata to final scenario instance 
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having. These entities can then be instantiated into individual scenarios as they are 
needed. This gives us a smooth scale of “general” to “specific”, exposing the editable 
characteristics at each stage. 

4   NonKin Overview 

FactionSim is abstracted from geo-political considerations and, further, it makes no 
commitment to populating the factional leaders and followers in any sense in real 
locations, occupations, or other roles. We have a country sim generator that does this 
for state and international actor modeling. NonKin is the name of our generator 
intended to bring FactionSim into focus for human terrain in tactical regions. 
Specifically, NonKin is a region scenario generator meant for use to implement 
villages, towns, and city neighborhoods, including connectivity of these areas to 
higher level institutions and assets. It is a SimCity genre of game engine. It is a 
portable/plug-in and role playing game generator that is being outfitted with a 
reusable and extensible library of mock characters, institutions, factions, militias, and 
so on who carry out daily life and various economic, political, familial, and security 
activities in a culturally accurate way. Factions and institutions/organizations and 
roles are defined atop FactionSim, while agents are driven by the PMFserv engine. 

A test scenario is currently being implemented for the United States Marine Corps 
(USMC). This is the hypothetical town of Hamariyah occupied by 200 individuals. 
The USMC staff from their 29 Palms training facility generated Hamariyah and 
descriptions of the town history, its 200 residents, 7 tribal groups, families, jobs, 
institutions, inter-factional grievances, and so on. This is a paper-based description, 
though some of it was provided in csv files that we recast into spreadsheet workbooks 
that were then read by the PMFserv model constructor. It is a plan for a mock town of 
role players that they have since deployed at 29 Palms. 

The high level goals of NonKin include: 

• Easy to use scenario generator -- profile actual personalities, cultures, group norms, 
historical grievances, institutions, infrastructure, etc. (based on turning on/off 
toggles from libraries of reusable agents, organizations, and other types of objects) 

• Easy to use training content generator that offers a library of default training sets 
for the tasks, tactics, and procedures relevant to each of the three phases of the 
COIN theory as espoused in Military Field Manual (FM) 3-24 (See [13] but 
NOTE: since the Tactics, Techniques, and Procedures (TTPs) are unspecified by 
USMC doctrine, the defaults are examples taken from interviewing the 29 Palms 
observer/controllers or Coyotes. The default cases are editable and extensible).  

• Conduct security operations, patrols, checkpoints, etc. 
• Interact in different areas of town, in order to inventory and befriend the 

population. Discover who lives where and the residents’ grievances, hopes, and 
stabilization and reconstruction needs. Also, find out intelligence about bad guys.  

• Visit often, become familiar to the residents, observe the residents going about 
their daily routines, and learn to detect anomalous and suspicious behaviors before 
bad things actually happen. 

• Make reconstruction commitments and further attempt to befriend factions and co-
opt the agenda away from the simulated insurgent faction’s leaders and followers. 
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Try out interventions of the Diplomatic, Information, Military, Economic, 
Financial, Intelligence, and Law Enforcement (DIME-FIL) type and observe 
PMESII effects and their spread through communities. 

• Attempt to understand what is needed community-wide and in the institutional 
organizations that provide services and resources so that a self-sustaining peace 
can take sway and withdrawal is possible. Try to run some transition and NonKin 
agent training so the local leaders and followers can assume running of their own 
services. 

• Commit mistakes and errors in this simulated world so you do not need to commit 
them in the real world that it simulates. Encounter multiple cases and situations for 
the TTPs of each of the COIN phases. 

• Receive missions, in-game coaching, and after-action reviews from PMFserv-
profiled agents. 

4.1   Types of Training Available 

We have spent nearly two years building up these diverse capabilities and have 
working prototypes of many of them. The first year was devoted to COIN phase I 
(inventory the human and cultural terrain), while the current year is aimed at COIN 
phase II (co-opt the agenda, make friends in the village). A series of video clips demo 
these capabilities. 

The training is meant to unfold in three tiers that we are adding to constantly as 
well: 

• Casual Interaction & Cultural Flashcards – This is a short and simple method of 
interacting with a given villager in a given context. It is useful for learning cultural 
norms about interacting with women, children, head of household, etc. Skills 
learned here will help in Lane training. 

• Interaction-Oriented Lanes – Lanes are specific tasks such a searching a house, 
staffing a checkpoint, detaining a suspect, and/or talking to a tribal leader, among 
others. They are isolated tasks and one gets to rehearse and hear feedback on each 
of them separately. 

• Grievance-Oriented FEX Game – This is a full village scenario. If the player does 
nothing, the factional leader and follower agents use their micro-decision making 
to act on their rivalries, grievances, and resource control concerns. If you 
mismanage the situation, various factions and members might be drawn to the 
insurgent faction’s side. Alternatively, through the mechanics of the Interaction 
and Explanation Engines, the user should instead be able to dialog and interact 
with each character to try and influence the world so that a new dynamic takes 
effect, that of cooperation. Attempt tactical DIME actions and observe PMESII 
effects unfold. 

In the next section we show some of the Flashcards to illustrate how trainees interact 
with NonKin Village. 

4.2   Marine Training Flashcards 

Due to space restrictions we can only describe the first of these in the current paper.  
Specficially, “flashcards” are a simplified, functioning demonstration game, and the 
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purpose of each is to train skills and to introduce the player to how NonKin aims to 
train cultural skills. NonKin differs markedly from shooter games in that successful 
intercultural interactions is a primary means of achieving the game objective (i.e. 
stabilizing the village and banishing insurgency) rather than physically destroying an 
enemy, solving puzzles, etc. This is a novel approach and needs some introduction for 
the uninitiated player.  

Many computer games begin with a short “boot camp” version of the game that 
orient the player to the user interface, player movement, game-play strategy, and the use 
of the tools or weapons found in the game. To achieve this in NonKin Village we 
needed to orient the player to the means and method of interacting with the synthetic 
agents and how this interaction affects the state of the village. What was needed was a 
“sandbox” or school where the player was instructed on the possibilities contained in 
NonKin. In the real world the USMC does this in the major pre-deployment exercise 
“Mojave Viper” at 29 Palms, CA. There the units practice population-centric 
counterinsurgency techniques by entering into focused role-playing exercises with non-
English speakers in a mock village. Exercises start small, with restricted scope (“Lane” 
training) and expand to finally include the entire force in one large exercise (“FEX”). 

Flashcards introduce intercultural interactions by isolating the personal interaction 
and having a “trainer” persona introduce the situation and give feedback on the 
player's actions.  Flashcards is composed of 6 vignettes dealing with some useful 
examples of interacting with persons in the conduct of a mission: 

• Greetings and introductions 
• Honor and property 
• Women 
• Children 
• Detaining a person 
• Rapport building 

Note that nothing about these topics is “built-in” to the AESOP editor or NonKin 
Village. The person using AESOP to develop training scenarios has full discretion as 
to what content to put in place.  These examples were gleaned from the extensive 
materials provided by USMC Center for Advance Operational Culture Learning 
(CAOCL) and from the USMC Mojave Viper role-playing scenarios [15]. 

4.2.1   Authoring the Flashcard Vignettes with AESOP  
Each of the above vignettes is represented on the Hamariyah village map as a test 
station and the player receives instructions that they should visit each station for an 
orientation on using NonKin Village. Within each vignette the structure is the same: 

• Trainer introduces a Hamariyah villager who will assist in this training exercise. 
• Trainer indicates that after the interaction the player may query the villager on their 

feelings. 
• Trainer introduces the situation.  
• Player is presented with several statements they may make to the villager. 
• After the villager processes any transgressions that might be associated with the 

statement and reacts the trainer gives a critique of the interaction.  
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Finally the player is given the following set of statements they may select from: 

1. To trainer: I'd like to try another situation. 
2. To trainer: I'd like to try this situation again. 
3. To trainer: I think I'm finished with this station. 
4. To villager: How do you feel about my actions? 
5. To villager: May I ask you a question? 

The agent’s response is non-deterministic; it depends on the agent’s current emotional 
state and their goals, standards and preferences (personality and values) as 
represented in its PMFServ model. The agent perceives the transgression and adapts 
its model accordingly. Then when the agent is presented with a choice of statements 
to make to the player, the agent examines the potential personal effects of saying each 
statement and decides which is most beneficial toward improving its emotional state. 
Below are two figures showing the AESOP editor being used to configure this 
process. While the top of these figures show the tabs for authoring each of the 
NonKinData components mentioned earlier, to limit the length of this chapter we will 
only describe using AESOP in the authoring of a single flashcard, that of interacting 
with women. 

 

Fig. 5. User statement with transgression 
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Fig. 5 shows beat 1 of the “Interacting with Women” Flashcard vignette, in which the 
player has two dialog choices. The selected option is marked up with a transgression. 
The other option has no transgression. Fig. 6 shows beat 1-1 with the agent’s possible 
responses, each of which is marked with an activation (utility of this particular response 
applied to values and personality nodes). The prior transgression, if it occurred, would 
have had a negative effect on the agent’s esteem. The agent would therefore process this 
selected response option (which will positively affect the agent’s esteem) as most 
beneficial to the agent’s emotional state. “Esteem” is a parameter from a pull-down 
menu exposing internal models that the agent reasons about. 

After the agent reacts, the statements to the trainer allow the player (in beat b2) to 
access another interaction in the same vignette, retry the interaction, or leave to try 
another station. The statements directed to the villager allow the villager to express its 
inner state to the player via NonKin's Explanation Engine.  One choice gives direct 
access to the agent's feelings about the player and may return, for example, “I 
disapprove of Squad Leader's actions”. The other allows access to a special query 
vignette where the player has an array of questions to pose to the agent. Some 
examples are: “Tell me about your family”, “Tell me about yourself”, “Tell me about 
the groups you know”. To the latter the agent would respond, “which one?” and the 
player would select a group, e.g. the Shumar tribe in Hamariyah Village. Then the agent 
might respond, “I distrust the Shumar”. Using the Explanation Engine to access the  
 

 

Fig. 6. Agent response with activation affordances 
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agent's internal representation of self and surroundings is of limited utility in the scope of 
these simple flashcards, but having it included introduces the concept to the player. 

As we see from this example, player actions (in this case, narrative statements) 
make an impression on the agent by way of transgressions attached to the player 
actions. Transgressions can be set on a 10-point scale over the unit interval along 4 
separate axes of Faux Pas, Violence, Taboo and Materialistic transgression. 
Transgressions are intended, over time and with varying intensity, to change the 
agent’s perception of the player, the player’s group, and other agents and objects 
associated with the player/player group. Flashcards does not have enough scope of 
play for this to really happen, but the transgressions are available to demonstrate post-
vignette assessment of the training of the player (see Section 4.3).  

4.3   Illustrative Vignette 

After the NonKin Data Layer bakes the flashcard into the library, this section shows 
what the player interaction with it looks like. Here is a listing of the dialog that appears 
screen by screen in the village dialog window. Figure 7 shows a piece of this in context. 

Vignette: Interacting with Women   

Initial Trainer statement: Marine, at this station we are practicing interacting with 
women. The objective is to understand what is appropriate and inappropriate conduct 
in several common situations. This is Aridha Majid Mukhtar Zakar, middle-aged 
resident of Hamariyah, member of the Shumar tribe, and housewife. She will assist 
you in this exercise. Feel free to make mistakes. She may be offended, but that's her 
job in this exercise. To begin you need to search her house.  

Player statement options: 

1. Ma'am, please come outside so we can search your house. 
2. Come on outside lady, we have to search here.  [lead outside] 
3. Ma'am, we have to search your house. Is there a Neighbor or relative nearby who 

can sit with you while we conduct the search? 

If player chooses statement 2, a transgression with the following intensity values is 
instantiated:  

− Faux pas: 0.25 
− Violence: 0.25 
− Taboo: 0.75 
− Materialistic: 0 

Agent response: Aayb[shame on you]! How dare you touch me!  

Trainer critique: You have greatly offended this woman by touching her and taking 
her out of her home. Her relatives will be very upset as well. Go back and try it 
differently or try a different situation. 

Player queries Agent: “What do you think of me, Mrs. Mukhtar Zakar? 

Agent response: “I am angry with SquadLeader”. 
Note that due to how we authored this in Section 4.1, the agent has to choose her 

response based on the emotional affordance of the statement alternatives (see Fig. 6). 
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Her choice was not scripted or hardwired to follow a link to another node of a finite 
state machine. If her emotional model or value priorities were different, this 
affordance might not be so significant to her and her choice might be different.  

Having now completed one cycle of the interaction, the player may now review 
an assessment of the interaction by exiting the vignette, selecting the assessments 
tab in the “Rucksack” and clicking “Run Assessments” (Fig. 8). The player will  

 

 

Fig. 7. Illustrative vignette in NonKin Village game 

 

Fig. 8. Rucksack assessments panel 
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see “Partially Trained” for CAOCL TCAT 005: “Professionalism (demonstrate 
professional behavior when interacting with locals, mindful of status, perspective 
and perceptions of the people with whom they interact and are not condescending 
or demeaning; demonstrate respect for women by exercising deference as much as 
the situation allows; seek permission to enter homes when it is practical to do so).” 

4.4   Rucksack Tool 

The rucksack UI is the place where the player stores collected information (orders, 
intel), reviews agent/player interactions, sees analysis of groups and events, and 
reviews after-action reports (assessments). Assessments may be configured on a per-
vignette basis using specific training assessment metrics as defined by CAOCL. Areas 
such as rapport building, leader engagement, communication, and professionalism are 
assessed as “trained”, “partially trained” and “ineffective”. The player’s path through 
the vignette and transgressions accrued along this path can be parsed to generate a 
rucksack assessment of the player’s training. In a game sense this is his “score”, and 
being able to assess training performance is very important to the USMC. 

Having completed one cycle of flashcard interaction in an example in Section 4.2, 
the player may now review an assessment of the interaction by exiting the vignette, 
selecting the assessment tab in the “Rucksack” and clicking “Run Assessments”  
(Fig. 8). The player will see “Partially Trained” for CAOCL TCAT 005: 
“Professionalism (demonstrate professional behavior when interacting with locals, 
mindful of status, perspective, and perceptions of the people with whom they interact 
and are not condescending or demeaning; demonstrate respect for women by 
exercising deference as much as the situation allows: seek permission to enter homes 
when it is practical to do so).” 

5   Conclusions and Next Steps 

This article has described a virtual village we are currently assembling for the US 
Marine Corp. Called NonKin Village, this is a gameworld that brings life to agents of 
all factions in sort of a SimCity style of play although it supports street level 
interaction and dialog with agents to learn their issues, needs, grievances, and 
alignments and to try to assist them in countering the agenda of the insurgent faction. 

On the technology side, this research thus far concerned how to merge three 
successful tools from our lab – a cognitive sim emulator (PMFserv), a social layer 
(FactionSim), and a story engine (AESOP). The goal was to develop a prototype 
synthesis that preserves the strengths of each tool. This synthesis was summarized in 
Section 2 in terms of the separate social and cognitive model suites that were 
integrated.  Section 3 then explained the “baking process” that seamlessly integrates 
all data needs of both suites to a common village file. The theories contained in the 
default version of NonKin straddle individual psycho-physiological ones (stress, 
emotion, sacred values, etc.) as well as social ones (belonging, mobilization and 
grievance, group membership, motivational congruence). One can edit these starting 
theories and their parameter sets with the internal editors of FactionSim and PMFserv 
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and with the AESOP editor module. As such, NonKin serves as a successful proof-of-
existence test for a socio-cognitive agent architecture. 

As Section 4 described, this exercise was successful in producing a first training 
synthesis, a proof of concept that a fuller featured synthesis could be accomplished. 
Today, one can play NonKin Village flashcards, LANES, and FEX levels and not 
realize that previously non-communicative technologies are now interoperable in the 
background. 

To support NonKin, we successfully implemented first versions of several features 
that are now open for further research as we spiral toward the next version. In fact, 
there are a host of further research directions that a project like NonKin opens up. We 
mention but a few of these here.  

An important goal of our research is to instantiate sufficient content in the models, 
objects, and markups of the NonKin generator so that it will be largely a matter of 
turning things off when trying to set up NonKin for a new village or region of the 
world. Our approach for doing that relies on filling the sim with social science 
theories about descriptive and profiling methods. Thus the PMFserv holds hundreds 
of models whose parameters have been tested and shown to pertain in applications for 
North and South Asia, Africa, the Mid-East, and so on. In addition, we are evolving 
object taxonomies for the range of objects mentioned in this paper – transgressions, 
events, interactions, etc. – that will support migrating the village to new settings. 
There is much to be done, but ultimately, we will add editors that permit non-
programmers to readily turn off features not needed and to adjust others to the setting 
of interest. We have achieved this style of editing before with our Athena’s Prism 
world diplomacy game and believe it is repeatable here. 

In the expectation that NonKin will ultimately be fielded in remote locations, we 
have teamed with a company (IMC Corp) that is capable of supporting NonKin 
applications and users around the world. Also, they have begun looking into ways to 
automatically instantiate a village game directly from intelligence and event 
databases. If successful, this would turn NonKin into a recreation of actual rather than 
mock villages. That would make it useful for tactical purposes, a topic perhaps best 
reserved for a different paper. 

To support the NonKin trainee, we also added a rucksack where the player keeps a 
journal and can do analysis on what has transpired (Section 4.3). This is also where 
the player can find copies of his current orders, dialogs-to-date held with all 
characters, after action reports, and feedback on his training thus far relative to 
pedagogical objectives for the village. A Colonel agent gives orders and a feedback 
agent exists – both of whom the player can converse with. Each of these player 
support elements are items of continual refinement. 

As a final note, we have just begun a collaboration with a 3-D videogame 
authoring group who has an immersive world where the player interacts with 
individual agents to learn task- relevant foreign languages, gestures and basic matters 
of courtesy -- Alelo TLT‘s Tactical Language Training System [4]. The NonKin 
project hopes to benefit from the use of their services to provide its village interaction, 
cultural training, and COIN operations in an immersive 3-D rehearsal and training 
environment. This should enhance the immersive nature of the training experiences 
and help players to more rapidly transfer lessons to the real world. 
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Abstract. With the recent upsurge in interest in agents for ‘serious
games,’ there has been a focus on the ‘believability’ of agents in these
settings. In this paper, I argue that when evaluating agents in this con-
text, believability is often in fact of relatively minor importance, and
indeed that focusing on this criteria can detract from the ultimate goals
of the games. I present this argument in the context of a project for
which the aim was to extend the BDI agent framework to better support
human modelling in serious games.

1 Introduction

In games that are developed purely for entertainment, one of the key goals is to
create ‘believable’ characters; this “does not mean an honest or reliable character,
but one that provides an illusion of life, thus permitting the audience’s suspension
of disbelief” [1]. In other words, so long as the behaviour of the character isn’t
such that the viewer stops to question it, it doesn’t matter if in reality the
behaviour is implausible; what is important is that the viewer is carried along
with the story, and that the character behaves ‘sensibly’ within the context of
the story.

However ‘serious games’ is a label that has been termed to apply to a di-
verse range of gaming applications whose primary purpose is not entertainment.
Sawyer and Smith have presented a taxonomy of these games, where the pur-
pose ranges from from training and education through to advertising [2]. With
these different goals, it is important to acknowledge that believability (as defined
above) will not necessarily be the primary evaluation criterion for the charac-
ters within these games. For example in a training scenario, characters that will
respond realistically – in terms of both physical and cognitive constraints – to
a leader’s instructions are more important than ones that simply engage the
user in the story. If unrealistic behaviours in the characters go unnoticed by the
trainee due to their believability, this may in fact ill prepare the trainee for the
behaviour of real people in the real world.

The issues involved in evaluating agents that are designed to model human
behaviour in serious games are explored in this paper using examples from a
project that aimed to extend a BDI-based agent framework to better support

F. Dignum et al. (Eds.): Agents for Games and Simulations, LNAI 5920, pp. 155–169, 2009.
c© Springer-Verlag Berlin Heidelberg 2009



156 E. Norling

human modelling [3]. It is important to note though that the focus here is on
the evaluation of particular extensions to the framework. No knowledge of the
underlying framework, or the details of the implementations of the extensions, is
necessary in the discussion of how these extensions are evaluated. The motivation
for the project came from the use of BDI-based models of human behaviour in
military simulation applications, but the discussion of how agent-based models
of human behaviour should be evaluated applies more broadly to other classes
of serious games (and indeed, even to games that are purely for entertainment
purposes).

The aim of this paper is then to clarify then how we should go about evaluating
agents that are designed to model human behaviour in these serious games.
Firstly, we must determine on what criteria we should evaluate these agents, as
discussed in Section 2. The next step is to determine what type of evaluation is
suitable for those criteria, as in Section 3. It is also important to recognise that
the target system will not necessarily be the ideal testbed for this evaluation. The
simulated worlds of serious games are often quite complex, and as discussed in
Section 4 it may in fact be easier to evaluate agent behaviour in a more controlled
specialised testbed. The two examples mentioned above are then introduced in
section 5, along with the details of their evaluation, and the paper concludes
with a summary of the key points raised.

2 On What Criteria Should These Agents Be Evaluated?

This question must be answered by considering two things: first, what is the aim
of the application (for example training for a real-world scenario, or recruitment
to a particular profession), and second, what is the purpose of the agents within
this application (for example background ‘colour’ versus close team-mates). In
some sense, the goal is to produce human-like behaviour, but what is meant by
‘human-like’ is going to vary depending on the answers to these two questions.
Broadly speaking, it means either ‘more believable’ or ‘more realistic,’ where
‘realism’ here focuses on accurately capturing particular aspects of human be-
haviour, while ‘believability’ focuses on creating models that are superficially
plausible, and do not detract from the overall flow of the game, but may have
unrealistic behaviours and/or abilities.

It is important to note however that regardless of whether the focus is believ-
ability or realism, evaluations must sometimes rely on qualitative, and often sub-
jective, judgements. Although some aspects of human behaviour can be precisely
quantified – such as the time to react to a stimulus – others are more nebulous.
For example when evaluating whether an agent’s decision-making strategy (that
is, choice of which set of actions to follow) is realistic, even though the agent
might sometimes make an obviously wrong choice (in terms of obviously being
unable to achieve its goal), this is not necessarily wrong in terms of behaviour,
because people will also sometimes make the wrong choice. The question is really
whether the agent’s choices are plausible, which is a subjective judgement that
must be made.
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3 Performing the Evaluation

Cohen’s book, Empirical Methods for Artificial Intelligence [4] is an excellent
reference book when approaching the evaluation of agent-based models of human
behaviour. It looks at the various types of statistical analysis that can be used
to evaluate AI systems, explaining the assumptions of each and the conditions
under which it is appropriate to use them. However the examples and discussions
in this book assume that there is a quantifiable measure to work with. In some
examples, such as the mycin case study [4, Sect. 3.1.2], the quantifiable measure
is based on qualitative judgements, but as this qualitative judgement is reduced
to a simple accept/reject decision, discarding most of the information. He then
goes on to perform statistical analysis of this result.

However a common mistake – not one made in Cohen’s book I hasten to add –
when translating qualitative data into numerical results is to assume an under-
lying linear relationship, which rarely exists. The most common occurrence of
this mistake is with the use of Likert scales. Likert scales are typically used
thus: questionnaire respondents are presented with a series of statements, and
are asked to give a response on a five point scale, with for example ‘1’ on this
scale being ‘strongly disagree’, ‘3’ being ‘neutral’ and ‘5’ being ‘strongly agree.’
The number of points on the scale can vary, although there is usually an odd
number (allowing for a neutral response). The questions may also vary, so that,
for example, the numbers might represent the scale ‘much worse’ to ‘much bet-
ter,’ or indeed anything that could be expressed on such a comparative scale.
The problem arises when statistical analysis that assumes a linear relationship
between the points on the scale is applied to the results. Although it is safe
to assume that respondents will treat it as an ordered scale, it should not be
assumed that, for example, the difference between “strongly disagree” and “dis-
agree” is the same as the difference between “disagree” and “neutral.” Nor is
it safe to assume that one person’s choice of “agree” is equivalent to another’s.
Indeed rankings may actually be lexicographic (as in Cohen [5]) rather than
numeric. So for example if respondents are asked to rate features of an item,
rated from “very unimportant” to “very important,” an object with three “very
important” features might be more desirable than any object with only two
“very important” features, regardless of the relative numbers of “important”
features.

What is the significance of this? Unless this condition of strict linearity holds,
few statistical manipulations of the numerical values are valid. If it does not
hold, it is for example meaningless to report an ‘average score for respondents’.
The respondents can be instructed that they should treat the scale as a linear
one, but it is important to recognise that simply by adding labels to points
on the scale, their meaning is loaded. It may be more appropriate to simply
ask the respondents to ‘rank the importance of each feature, on a scale of one
to five.’ The alternative is to collapse the scale into a binary choice (as in the
mycin analysis), usually around the midpoint of the scale. In this case, standard
techniques can be applied.
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4 Requirements of a Testbed

When developing agent-based models of human behaviour in games, each model
is often a relatively small component in the overall application. The game en-
gine itself usually provides a rich simulated world, and there are often many
other agents with which to interact. This can make it difficult to conduct con-
trolled, repeatable experiments within the application, meaning that it may be
appropriate to use an alternate testbed for evaluating the models.

Whatever measure is being used for evaluation, be it qualitative or quanti-
tative, it is also important to consider how the models will be constructed and
how they will be judged. If domain knowledge will be required to construct the
models, the experts who will supply this knowledge should be readily accessi-
ble. If the model results are going to be directly compared against human data,
are there existing data sets available, or will this data need to be collected for
comparison? In the case of qualitative assessment, who is qualified to make that
assessment, and are these people readily available?

The three essential characteristics of an environment for testing and evaluation
are then

1. That it provide the means and opportunity for the model to perform
appropriate tasks to demonstrate the desired features,

2. That there be easy access to the experts who perform these tasks that will
be modelled, to facilitate development of the models, and

3. That the impact of the desired features can be measured in some way, and
if qualitative judgements must be made, that suitably qualified judges are
available.

This last point has only been touched upon so far, but is important. It may be
possible to draw from the same set of experts as would be drawn upon when
gathering knowledge to construct the models, but in some cases these may not be
the best judges of whether or not behaviour is more human-like. An alternative is
to use behaviour experts – people who are expert at analysing human behaviour,
but not necessarily expert at the task being performed. In this second case, it
is important that the task is not too highly specialised, so that the behaviour
experts can understand and judge it.

As well as these essential characteristics of the testing environment, there
are a number of additional characteristics to consider. The characteristics in
this second set are not essential characteristics; each must be considered in the
context of the features to be demonstrated. If the characteristic is necessary for
the demonstration, it should be included, and if it is not, it may be desirable to
avoid it, since it may confound results. These characteristics are:

– That there be multiple means of achieving tasks, giving the agent the op-
portunity to choose,

– That the environment be only partially controllable, so that the outcome of
an agent’s action is not guaranteed,
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– That the environment be rich, with many sensory inputs (not necessar-
ily relevant to the task), and many different types of action that can be
performed,

– That the world contains stressors and moderators (physical or mental) that
can act upon the agent,

– That the agent is forced to make short term time-critical decisions as well
as long term strategic decisions,

– That the environment supports extended time frames, and
– That there are other autonomous entities with whom the agent may interact.

It is possible – indeed likely – that after identifying the desired characteristics,
there may be one or more existing environments that could be used as testbeds
(see Section 4.1), and of course there is always the option of developing a tailored
environment as a testbed (Section 4.2).

4.1 Avoiding the Pitfalls of Pre-existing Environments

Pre-existing environments are used in two ways. They may be the core part of
an existing application, for which new models of human behaviour are being
developed. Alternatively, as mentioned above, an existing environment may be
identified as a suitable testbed for a new or modified framework. Whether the
existing environment is being used because it is part of the target application or
because it is deemed a suitable testbed for a framework, a number of issues can
arise due to the lack of control over the agent-environment interface.

Perception. Problems with perception are not limited to interfaces having
graphical representations. Even when features of the environment are labelled,
they are not necessarily labelled appropriately from the agent’s perspective. For
example, if a tree is simply labelled with its position, in the form (tree, (x, y, z)),
there are many unknowns. Is it big enough to hide behind? Can it be climbed?
The way in which it has been labelled means that the agent has no way of telling,
although if a human accessed the environment through a graphical interface,
he/she would be able to use the visual information to answer these questions. Of
course these questions are only important if the subject being modelled makes
reference to these features – if the only thing that the subject does with trees is
go around them, then a simple label with the position is sufficient.

Another problem is that the environment doesn’t always provide the right
sense data at a given point in time. In some cases the environment does a calcu-
lation of what the agent should be able to see and sends only that information,
but in other cases that is left to the agent. The most common situation is a
compromise. The environment sends a limited set of information, but that set is
still more than the agent should really be able to sense – a first pass estimate,
if you like. The agent must then make a second pass to determine which of this
data it can really see or hear.

If such problems are encountered, what can be done? In the case of under-
representation – for example if the agent wants to know if a tree is big enough
to hide behind but it is only labelled with position – the only fix can be on the
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environment side. If there is no means of changing the environment, and hiding
behind trees is an essential element in the agent’s performance of the task, the
chosen environment is inadequate. However if the problem is that the information
is available but difficult to interpret it may be possible to handle on either side of
the interface. If it is not possible to adjust the environment, it should be possible,
given appropriate resources, to perform the necessary processing in the agent. It
comes down to an engineering decision: is it easier to label the environment, or
to let the agents ‘see’? There is no easy answer to that question, in part because
the ease of labelling the environment is going to depend upon the environment
being used. (See the Heinze’s doctoral thesis for a detailed exploration of this
issue [7].)

Action. There are related problems that can arise with the actions to be per-
formed in the environment, largely due to the coarse granularity of actions that
can be performed. When the agent is interacting with the same interface as the
human, sending simulations of the same mouse movements or key clicks that a
human player would (as in both of the testbeds presented in Section 5), this is-
sue is avoided. This are relatively unusual cases, where the models were actually
performing the same tasks as the human. (That is, the agents were operating
in the exact environment as the subjects that they were modelling.) More com-
monly, the models are performing a simulation of the tasks that the humans
perform, and the actions that they are able to perform are modelled at a far
coarser granularity than mouse movements and key clicks.

In an environment involving movement over terrain for example, there are
a variety of ways in which the interface could accept movement specification,
such as:

1. Move to a specified point.
2. Move in a specified direction for a specified amount of time.
3. Move a single step, or turn.

Each of these three alternatives gives a different amount of control over the
path to the agent. In the first case, the path planning is handled entirely in
the environment, and there may well be no way for the agent to interrupt the
movement. In the last case, the agent has complete control over its path, but must
send many more commands via the interface. It may be possible to decompose
1) or 2) into the third case by issuing commands for a series of very short
movements, but the granularity of the environment itself sometimes restricts this.
It may only be possible to move to a series of fixed points in the environment,
making single steps impossible in some cases.

Like the under-representation problem in perception, this problem is one that
can only be dealt with on the environment side of the interface. If there is no
chance to modify the environment, it is essential to determine the granularity
of actions that will be performed early in development. If it is essential to be
able to perform actions at a finer grain than is supported by the interface, an
alternate environment must be found.
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Another problem that can occur is that entities may not be able to use spe-
cific objects or features in the environment in the that they would expect. For
example, there may be ledges that should allow handholds but do not, or small
rocks that can’t be picked up. Such a problem will be familiar to any computer
game player, who was frustrated at not being able to climb a wall, or not be-
ing able to use a flaming torch as a defensive weapon. In the world of military
simulation the problem is less common (perhaps because aesthetics are less of
a concern, so there is less ‘clutter’), but does crop up on occasion. In this case,
it is possible to argue that the problem is actually a bug in the environment
model, and there is a chance that the developers will fix it. If not, once again an
alternate environment must be found if the action is essential to the task.

Timing. The timing of pre-existing environments can also sometimes cause
problems. Even when environments operate continuous time (as opposed to
stepped-time), entities that connect to the environment usually receive sense
data and have the opportunity to perform actions in fixed time slices. For most
purposes, these time slices are frequent enough as to be effectively continuous
(in the order of a few hundred milliseconds), but for applications where timing
is critical, it is important to compare the timing of the environment with that
required by the agent.

4.2 (The Problem with) Building Tailored Environments

With all these potential problems with pre-existing environments, it might seem
that the solution would be to create tailored environments whenever possible. In
such environments, the agent-environment interface can be carefully designed so
as to avoid the aforementioned problems. The difficulty in this approach is the
magnitude of the task. The pre-existing environments that have been mentioned –
be they game engines or military simulation environments – have been developed
by teams of programmers over several years. A tailored environment may take
somewhat less than this, as unnecessary detail can be omitted, but there is still
a huge amount of work required to create an environment of the complexity that
would be required.

A sample tailored environment was developed for the very early stages of de-
veloping the decision-making strategy extension to the BDI framework that is
mentioned in Section 5. The aim of that work was to provide an extension
that gave the framework a more realistic decision-making strategy. In order
to demonstrate this extension, the environment needed to provide sufficient
detail that models built using the extended framework could exercise the en-
hanced decision-making strategy. In order to do this, the following scenario was
considered:

Suppose an agent has a goal of getting from one side of the business
district of town to the other (a distance of about 3km). She may have
three plans for handling this goal: the first involves walking; the second
involves driving; and the third involves catching the train. Each of these
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plans has a context. The walking plan might specify that it is only appli-
cable if the agent has at least 40 minutes to achieve the goal, and that it
is not applicable if it is raining heavily. The driving plan might indicate
it is only applicable if the car has fuel. And the context of the train plan
might be that it is only applicable between 6am and midnight (trains
don’t run all night).[8]

The world required to support this scenario is extremely limited, and it it pro-
vided only the barest minimum for the preliminary testing of the decision-making
strategy. Nevertheless, the effort required to construct this simulated environ-
ment was considerably more than that required to construct the models that
inhabited it. The experience gained from developing this simple environment
largely contributed to the decision to use a pre-existing environment for future
work.

4.3 Back to the Target Application?

Given the above-mentioned problems with both alternative existing environ-
ments and purpose-built environments for testing, does it not make more sense
just to stick with the target application? The answer to this is a qualified ‘yes.’
Because of the difficulty in controlling the experiments in many games, it often
makes sense to perform initial experiments and sensitivity analysis in a more sim-
ple and constrained testbed. However particularly when it comes to the more
subjective judgements that are sometimes required, which can only be made in
similar scenarios to those that arise within the target application, it is generally
this application that should be used. The pitfalls above might be encountered
when developing the models for the application, and some sort of workaround
must be incorporated into the model (or the application itself modified). How-
ever in these cases the pitfalls must be addressed for the final system in any
case, whereas if they are encountered in an alternative environment, consider-
able effort might be needed to address them when they are not a problem in the
target system.

5 Two Cases in Point

These issues were highlighted in the previously-mentioned project, that aimed
to extend a BDI-based agent framework to better support human behaviour
modelling [3]. The work was motivated by the ongoing use of BDI-based models
of human behaviour at Defence Science and Technology Organisation (DSTO),
Australia (for example [9], [10], [11], [12], [13] and [14]). Rather than developing
agent-based models of human behaviour for a particular application, the aim
was to demonstrate how the BDI framework could be extended to better support
human behaviour modelling. To illustrate the methodology that was proposed,
two particular extensions were implemented, one providing a limited model of
perception and action, and another providing an alternative decision-making
strategy to agents.
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Because these extensions were not developed with a particular application in
mind, there was no target application available in which they could be evalu-
ated, and so it was necessary to choose suitable testbeds for evaluation. Each
extension was evaluated in isolation (and in fact technical issues prevented the
full evaluation of the decision-making strategy extension), and the analysis of
the needs for evaluation of each extension meant that very different testbeds
were used.

5.1 Evaluating the Perception and Action Extension

The perception and action extension to the framework that was implemented
included only limited capabilities, allowing the model to interact with a mouse-
driven, java-based interface, assuming that the ‘user’ is seated directly in front
of the computer screen in an optimal position for viewing. In order to test and
evaluate this extension, a simple telephone-dialling task was developed, along
the lines of one used by Ritter et al when working on a similar extension for
Soar [15].

Fig. 1 shows two different telephone interfaces with which the models and
human subjects would have to interact. The different button sizes in the two
interfaces should lead to different times for telephone dialling tasks, because the
smaller the buttons, the more accurate the movements must be. The subject
(human or model) was required to read instructions from the top line of the
interface, each of which instructed him/her/it to dial a particular number, then
click OK.

The telephone numbers that the users were instructed to dial were numbers
that they knew well, such as their home or office numbers. The idea was that
the users should not have to think about the numbers – doing so would add
time to the task of the human subjects that was not accounted for in the agent
models. Because this meant that different subjects dialled different numbers, and
some numbers are naturally more easy to dial than others (for example 5-5-5

Fig. 1. Two sample interfaces with which the model and human can interact
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versus 1-9-4), models were compared against individuals on a case-by-case basis,
although the only difference in each model was the numbers that it used for
dialling.

Although this was a very simple task, the invariance of perception and action
over tasks meant that if there was a correlation between human and model results
on this task, the results should also hold for more complex tasks.

5.2 Evaluating the Decision-Making Extension

As has already been mentioned in passing, evaluating the decision-making exten-
sion was somewhat more complicated than evaluating the perception and action
extension. One point is that the extension provides one new form of decision
making to the agent, but it is freely acknowledged that in real life, people use
a range of decision-making strategies, with recognition-primed decision making
(the strategy implemented in the extension) being just one of them. Thus one
wouldn’t expect an agent implemented with this extension to make strategies
exactly as a real person would. It should however produce a model that makes
more human-like decisions than one built using the standard framework. There
could be some decisions that are still obviously ‘wrong,’ in that a real person
wouldn’t make them, and there will probably be some decisions that are ‘wrong’
in that they are sub-optimal (just as a real person makes sub-optimal decisions).

Preliminary work on this extension used a simple testbed that required the
model to choose between different strategies for getting across town. The expe-
rience of developing this testbed, coupled with the realisation that a far more
complex environment would ultimately be needed to evaluate the extension lead
to the decision to find a suitable pre-existing environment for this evaluation.
Military simulation environments were the target area of application, but access
to these is obviously restricted, so an alternative was sought. The solution was to
use a commercial game engine (in this case, Quake 2) for the testbed. However
although this game engine provided a rich environment for observing behaviour,
it was not possible to carefully control situations and events. Thus a more sim-
ple environment was also used for the sensitivity analysis of the implementation
(which included a number of free parameters). This simple environment did not
allow the agents to display the full richness of human behaviour, but did allow
controlled experiments to examine the parameter settings.

Sensitivity Experiments. The experimental testbed for this stage was a sim-
ple path-finding task in a gridworld, as shown in Figure 2. The aim is for the
agent to find a path from any point on the grid to a goal (green) square, while
avoiding the anti-goal (red) squares. The configuration shown here is a sample
one – the grid can have any combination of penalty or reward squares. Moreover,
it is possible to change this configuration at run-time, and observe how the agent
behaves in a dynamic environment. The agent’s goal is to find a shortest path
to the goal square, from any point on the map. The task itself is modelled upon
one used by Masson to demonstrate Q-learning [16].

As Masson explains in the description of his Q-learning demo, “it would be
silly to build a path finder using Q-learning” [16]; for this problem there are
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Map A Map B Map C

Fig. 2. Three sample maps in the gridworld testbed

specifically-tailored techniques that are more appropriate. However this some-
what artificial demonstration does allow exploration of the parameters, and has
some correspondence to the real world decision problems that this extension is
designed to deal with. Firstly, the number of options at any point is about right:
faced with a particular goal, a person typically does not consider a wide range
of possible options, usually no more than three [17]. Secondly, the idea of there
being certain ‘good’ states, certain ‘bad’ states, but a large number of indetermi-
nate states is also true of real-world problems. Moving one step closer to a goal
square is equivalent to completing a sub-plan in a real-world problem: it might
get you that little bit closer to the ultimate goal, but unless it has unexpected
consequences (good or bad), it is usually fairly insignificant in the scheme of
things.

The Testbed for Qualitative Evaluation. In order for the ‘standard’ and
‘enhanced’ models to be compared, the testbed needed to exercise the enhanced
features, that is the modified decision-making strategy, in the enhanced frame-
work. The decision-making strategy that was implemented (recognition-primed
decision making [18]) is one that is typically used by experts operating in par-
ticular types of environments, namely, ones with the following characteristics:

– Ill-structured problems
– Uncertain, dynamic environments
– Shifting, ill-defined or competing goals
– Action-feedback loops
– Time stress
– High stakes
– Multiple players

In other types of environments, or for people operating outside their area of
expertise, other decision-making strategies are likely to be used, and so it was
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important that the testbed demonstrate these characteristics. Many of the en-
vironments used in military simulation do display these characteristics, but due
to the restricted access to both the environment and the experts to be modelled
these were inappropriate environments for this work.

Action games were identified as a suitable alternative to these military simu-
lation environments. They had the benefit of being readily available, with many
local and easily accessible experts, while at the same time having the above
characteristics (with some variation from one game to another). There were sev-
eral possible game engines that could have been used; Quake 2 was was selected
because it had already been used for similar research (for example in Laird’s
work [19]), considerable information regarding its working were available on the
web (facilitating agent connections to the engine). At the time this project com-
menced, the most significant alternative, the GameBots engine [20], was not yet
public, and in any case the two environments are very similar.

Using a commercial game engine has several advantages. First of these is that
the worlds of these engines are rich, dynamic worlds, which the researchers can
use rather than creating their own. Moreover they are worlds in which people
(players) regularly operate, so there are many subjects who can be modelled.
Even people who have never played the games usually have some concept of
what is involved in the game, and so the models themselves are meaningful to a
wide range of people. And the numerous players are available as critical judges
of the models, as well as subjects to be modelled.

The Proposed Qualitative Evaluation. Technical difficulties that arose
when interfacing the agent with the Quake 2 engine prevented this proposed
evaluation from being completed, but it is presented here to illustrate how a
qualitative evaluation could proceed. The plan was to have experienced Quake 2
players evaluate the models. These players would be invited to play against
models built using both the standard (unmodified) and enhanced frameworks.
They would give their feedback via a written questionnaire that included both
open-ended and Likert-scaled responses.

In the proposed evaluation, the evaluators would be split into two groups. The
first group would play first against the models built with the standard frame-
work and then against models built with the enhanced framework. The second
group would be a control group, playing against models built with the standard
framework in both cases – although they would still be told that the models
in the second game were built using the enhanced framework. The intention
here would be to detect whether the belief that they were using an enhanced
framework would influence the way that the players judged the models.

A further variation that could provide another control case would be to have a
third group of evaluators who played first against models built with the standard
framework and then against the actual players who were modelled. Rather being
told that they were doing this, they would be told that they too were playing
against models built using an enhanced framework, and presented with the same
questionnaire as in the first two groups. The aim with this group would be to
detect how well the players were able to detect changes in play. The downside of
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such a case would be the commitment needed by the players who served as sub-
jects – they had already been involved in several hours of interviews during the
knowledge elicitation process, and this evaluation would require several hours
involvement in game play (each game in the evaluation taking twenty minutes).
To avoid overburdening these volunteers, an alternative would be to run a se-
quence of games involving standard models, enhanced models and the human
subjects, and recording these games. The evaluation would then involve viewing
replays of these games, rather than playing against the models and subjects. It
is not clear however whether the game players would be able to make the same
judgements from watching the replays as they would from actually participating
in the games.

The questionnaire itself (which is included as an appendix in [3]) consists
of three parts: one to gather information about the evaluator, one about their
judgement of the ‘standard’ models, and the final about their judgement of the
‘enhanced’ models. The questions were a mixture of free-form responses and
responses constrained by Likert scales. The free-form responses were intended to
provide a basis for future work (such as what characteristic should be considered
for the next enhancement) as well as detailed feedback about the implemented
enhancement.

Two questions with Likert scale responses are included in the questionnaire.
The first asks the respondent to compare the standard models with their con-
ception of an expert human player, and the second asks them to compare the
‘human-ness’ of the models in the first game with those in the second. Given the
discussion on the pitfalls of the use of Likert scales in Section 3, what justification
is there for the inclusion of these questions? The answer is that as in Cohen’s
description of the mycin evaluation, the responses would be reduced to binary
decisions for the purposes of statistical manipulation. So the responses to the first
of these questions would be placed into one of two categories: ‘equal to or better
than an expert human player’ and ‘worse than an expert human player.’ For the
second of these questions, the categories would be ‘less or equally human-like’
or ‘more human-like.’ These binary distributions could then be used for analysis
and comparison between the two groups of respondents.

Why then ask respondents for the finer-grained distinction that is provided by
a Likert scale? The answer is that there is more information in these responses
than in a binary response, although admittedly there may be more information
still in the open-ended responses. The full detail from a Likert scale responses
may not be used for the statistical analysis of the feedback, but it can be useful
in the qualitative analysis, particularly as a precursor to a related open-ended
question (as in the case here), where it can focus the responses. These responses
to these questions might also be used to formulate more directed questions for
focus groups as part of ongoing research.

6 Conclusions

The purpose of this paper has been to highlight the fact that when considering
models of human behaviour in serious games, believability is not necessarily a
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primary evaluation criterion – and in some cases believability can even detract
from the primary goal of the application (for example giving ‘false training’).
Thus before evaluating any agent-based models of human behaviour in these
types of applications, it is first necessary to consider what is the aim of the
application concerned, and then what is the role of the models of human be-
haviour within them. In many cases, it will be more important for models to
behave realistically in particular ways than to produce behaviour that is overall
believable.

When considering realism of particular aspects of behaviour, the approach to
evaluation will depend upon the aspect(s) of interest. Some can be compared
with human performance in a quantifiable way, which in general leads to rela-
tively straightforward evaluation. However other aspects of human performance,
such as the decision-making strategies mentioned here are not easily quantifi-
able, and in such cases, qualitative evaluations are required. The two examples
presented in Section 5 illustrate how one may proceed in each of these cases.
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Abstract. First, we explain the Iceblox game, which has its origin in the Pengo
game. After carefully listing requirements on game playing, the contents of plans,
their execution and planning problem generation, we design a set of benchmarks
to select good playing candidates among currently available PDDL-based plan-
ners. We eventually selected two planners which are able to play the Iceblox
video game well and mostly in real time. We describe both the predicates and
some of the operators we designed. Then, we give details on our planning ar-
chitecture and in particular discuss the importance of the generation of PDDL
planning problems. We wish to report that no planner was tweaked during the
benchmarks.

1 Introduction

On one side, the quality of the Artificial Intelligence is part of today’s game eval-
uations and on the other planning systems still wait for going mainstream. Could a
close encounter of both be fruitful? Over the years planning has occurred in the video-
game domain with some success (e.g. [1]), with the work on the Goal Oriented Action
Planning architecture being probably the most sucessful [2]. This time, we would like
video-gaming to occur in the planning domain: designing and implementing a game
and connect it to today’s planners. First, thanks to the International Planning Compe-
tition [3], today’s planners all accept planning problems written in PDDL [4] which is
going to ease the selection of a good planner for video-gaming. Then, it is not only
a matter of constructing a plan but also to generate PDDL planning problems from a
video-game situation. Third, it is also a matter of executing plans in a video-game. And
finally, what shall happen when the dynamics of video-games makes useless the plan
currently executed? These matters and questions have rarely been addressed in the case
of the close encounter of planning and video-games and it is the purpose of this paper
to report the sparks.

This paper is organized as follows. We begin with a description of the Iceblox ar-
cade game and argue why this game is a good choice for testing the performances of
PDDL-based planners coping with planning problems from this domain. The next sec-
tion presents and discusses the necessary requirements on a planning system playing
an arcade game such as Iceblox. Then, we report on the selection process of avail-
able PDDL-based planners, from a wide perspective (simple Iceblox situations, several
planners, various planning problem properties) to a narrow perspective where two plan-
ners were tested against more realistic Iceblox situations. Finally, we outline the main
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procedures of our arcade game playing architecture: the generation of PDDL planning
problem and the plan execution process and discuss the importance of path planning.

2 Iceblox

Description. In the Iceblox video game [5], the player presses the arrow keys to move
a penguin (named Pixel Pete) horizontally and vertically in rectangular mazes made of
ice blocks and rocks, in order to collect coins. But flames patrol the maze (their speed is
that of the penguin) and can kill the penguin in a collision; moreover, each coin is iced
inside an ice block which must be cracked several times before the coin is ready for
collection. The player can push (space bar) an ice block which will slide until it collides
with another ice block, a rock or any of the four side of the game. A sliding ice block
stops when it collides into another ice block, a rock or any of the four sides of the game
and kills a flame when passing over it. If the player pushes an ice block which is next
to another ice block, a rock or a side of the game, it cannot slide freely and shall begin
to crack. Once cracked, an ice block cannot move any more and thus pushing a cracked
ice block eventually results, after seven pushes, in its destruction. An ice block which
contains a coin slides and cracks as does an ordinary ice block. A coin cannot slide; it
can only be collected once revealed after the seventh push. The player gets to the next,
randomly generated, level when all coins have been collected. Killed flames reappear
from any side of the game and from time to time, as in Figure 1, it happens that locking
the flames is a better strategy than killing them: since there is no constraint on time to

Fig. 1. An Iceblox game in progress
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Fig. 2. A Pengo game in progress [7]

finish any level of Iceblox, this strategy gives the player all the latitude to collect coins.
The number of flames and rocks increase during several levels and then cycle back to
their initial values. Finally, the player gets 200 points for each collected coin, 50 points
for each killed flames and begins the game with three spare lives.

Why Iceblox?. Iceblox is an open and widely available java implementation [6, pages
264–268] of the Pengo arcade game, published by Sega in 1982 (see Figure 2). In
Pengo, there are pushable and crackable ice blocks but neither rocks nor coins; the
main objective of the game is to kill all the bees patrolling the ice blocks mazes. Bees
hatch from eggs contained in some ice blocks; the destruction of an ice block contain-
ing eggs results in the destruction of these eggs. In Pengo, bees can be killed with a
sliding ice block and by a collision with the penguin when they are stunned. Pushing
a side of the game when a bee is next to this side shall stun the bee for some short
time. The player is given 60 seconds to kill all the bees of any of the 16 levels of the
game (after the sixteenth level, the game cycles back to the first level). Bees accelerate
when reaching the 60 seconds time limit and the player is given a short extra time to
kill them before they vanish, thus making the level impossible to finish. There also are
pushable diamonds which cannot be collected but must be aligned to score extra points.
As in any arcade game of the time, there are many bonuses, making the high score a
complex goal; and both the killing of the bees and the alignment of the diamonds score
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differently according to the situation. We refer the reader to [7] for further details about
the game.

Iceblox obviously is easier than Pengo: no time constraint, uniform speed and scor-
ing, no bonuses,. . . Main targets (coins) fixed rather than moving (bees or flames),
flames cannot push ice blocks and fighting them is optional,. . . However, the locking
of flames in a closed maze of ice blocks and rocks possesses a geometrical spirit similar
to that of the alignment of diamonds in the Pengo game.

Consequently, we chose Iceblox because it is a simpler start in the world of arcade
video games than the commercial games of the time.

3 Requirements

Game playing. On its way to collect coins, the planning system playing the Iceblox
game shall badly either fight or avoid flames: disorganized movements or paths longer
than necessary shall be allowed as long as they do not prevent Pixel Pete from collecting
coins. Both the fighting and avoidance of flames shall be realized in (near) real time:
game animation might look sometimes slow or sometimes irregular but shall never stop;
in particular, flames shall always be patrolling the maze, even when traditional problem
solving (that is, Planning) shall take place.

Plans (what’s in a plan?). A plan shall be a set of partially ordered operators which
represent actions in the Iceblox domain. What kind of actions shall we allow to be part
of a plan?

Let us distinguish five kinds of actions that may happen in an arcade video game
such as (Pengo or) Iceblox:

1. Drawing a frame to animate a sprite; this is the pixel kind of action. Animation
always takes place, even if the player does nothing: for instance, a flame is always
animated in the Iceblox game, even in the case where it cannot move because it is
surrounded by ice blocks.

2. Basic moving of one step left, right, up or down and pushing an ice block. This is
the sprite kind of action which is not interruptible for a certain number of pixels,
usually the number of pixels of a side of the rectangle where the sprite is drawn (in
the case of Iceblox, sprites are squares of 30 by 30 pixels). Each action of this kind
exactly corresponds to a key pressed by the player: arrows keys to move left, right,
up and down and the space bar to push an ice block.

3. Moving horizontally or vertically in a continuous manner, that is making several
consecutive basic moves in the same direction; this is the path-oriented kind of
action and means following a safe path in the maze.

4. Avoiding, fleeing, fighting or locking the flames in a closed maze of ice blocks and
rocks. This is the problem solving kind of action and concerns survival and basic
scoring. Ice block cracking until destruction to collect a coin also is a problem
solving kind of action.

5. Defining goals and setting priorities on them; this is the game level strategy kind
of action and is oriented towards finishing the game with the highest score. In the
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case of Iceblox, this means ordering the collection of coins, noticing the opportu-
nity to lock the flames in a maze and setting its importance in finishing the level;
or else seizing the opportunity to seek cover behind ice blocks of a geometrical
configuration created during game playing.

Out of the five kinds of action, only push actions of kind 2, abstract Moves based on
rectilinear moves of kind 3 and the coin collection action of kind 4 shall be represented
as operators.

The Plans just described are not as simple as they may appear: it is not the case
that either their construction shall be too simple or their use shall be redundant with
the player’s actions. First, these Plans look like the plans for the storage domain which
is part of the deterministic IPC benchmarks [3]. Second, as Table 1 shows, current
planners agree with their non easiness. Third, there are Plans (both constructed and
executed [8] or only executed [1]) in commercial video-games which are shorter and
simpler.

Plan execution. The plan execution system receives a plan from the Planning system in
order to execute it in the Iceblox game. Execution of a plan means executing the play-
ers actions (that is, actions of kind 2) corresponding to the operators of the plan, in an
order compliant with the partial order of the plan. For instance, the plan execution sys-
tem shall decide of several basic moves actions to execute a Move operator in the plan;
which can include ice block pushing to facilitate the realization of the Move operator.
The plan execution system shall also decide of taking advantage of the current Iceblox
situation to avoid pushing an ice block when a flame is no longer aligned with it, to
choose a new weapon or to avoid unexpected flames. These decision shall result from
a local analysis and no global situation assessment shall be realized to take such ad-
vantages. The plan execution system shall eventually warn the user when it terminates
(whatever the outcome, success or failure). The player can terminate the plan execution
at any time by pressing any arrow key or else the space bar.

In case of emergency situations (e.g. no weapon is locally available, fleeing seems
locally impossible, etc), the plan execution system shall call for re-Planning.

Planning. Planning refers to the plan formation activity. The player shall intentionally
start the planning activity by pressing a designated key (e.g. the “p” key). Once running,
planning shall not stop the Iceblox game: flames shall patrol the maze and sliding ice
blocks shall continue to slide while the plan formation activity is running. The user shall
be warned when the activity ends, either with success or else failure (e.g. a different
sound for each case). If any of the arrow keys or else the space bar (push) is pressed
before the end of the planning activity, then it is terminated. The user shall be able to
play at any time.

Planners. The main objective of the work reported in this paper is to determine whether
any of today’s planners is able to play the Iceblox game: no planner shall be specifically
designed to play Iceblox and no existing planner shall be tweaked to play Iceblox.

Due to the on-going effort of the International Planning Competition (IPC) [3], many
planners are available today and most of them accept Planning data (i.e. states, oper-
ators) written in the PDDL language. Because of this wide acceptance, the overhead



A PDDL-Based Planning Architecture to Support Arcade Game Playing 175

of both generation and processing of PDDL shall first be ignored; writing directly to a
planner’s data structures shall be considered only if game playing requirements are not
met. Consequently, the Planning activity in the Iceblox domain shall take as input an
initial state, a final state and a set of operators all written in the PDDL language.

Available planners are in general more ready to process PDDL text files than ready
to be connected to a video game. We shall thus begin with the design of a set of Iceblox
planning problems of increasing difficulty, in the spirit of the IPC: executable files for
the planners, PDDL Iceblox problems files and scripts files to automate this Iceblox
benchmarking process. If a planner fails these off line tests then it shall not be a good
candidate for Iceblox video game playing.

What shall demonstrate that a planner is a good candidate for a connection to Ice-
blox? Solving the Iceblox benchmarks fast enough seems the obvious answer. Rather,
the question should be: what is the time limit beyond which the current Iceblox situa-
tion is so dangerous that an action has to be taken right away, thus changing the initial
state of the planning problem and consequently asking for re-planning? Iceblox has a
good playability when the frame rate is about 30 frames per second, that is, when the
flames coordinates (in pixel) are updated about 30 times per second. Luckily, the sprites
are 30 by 30 pixels; it then takes about 1 second for a flame to move from one cross-
road to another. According to the Iceblox code, a flame gets a random new direction
between 1 and 4 crossroads, while keeping in mind that the new direction at the fourth
crossroad might just be the same than the previous one. We can then consider that the
limit is when Pixel Pete is 4 crossroads away from a flame, which gives a plan search
runtime of at most 4 seconds. If a plan has been found then it needs to be executed,
which undoubtedly takes time to trigger. Consequently, the flame should not reach the
fourth crossroad and since movement between two crossroads is not interruptible, the
flame should not reach the third crossroad before the plan search ends, which gives us
a time limit of 3 seconds.

A planner shall be a good candidate for Iceblox video-game playing if it can (off
line) solve Iceblox planning problems within the time limit of 3 seconds. This time
limit sorts out dangerous flames from harmless flames.

4 Minimal Iceblox Situations

Three examples. We here describe three Iceblox planning problems of increasing dif-
ficulty which we designed in order to get a set of good candidate planners. Both plan
length and planning problem size shall be used as criteria of difficulty: the larger num-
ber of predicates describing both the initial and the final states and the larger number of
operators in the plan solution, the more difficult the problem.

It is necessary to collect a coin in each of the three problems. Figures 3, 4, 5 contain
a screen shot of an iceblox planning problem and its PDDL code. See Figure 3 for
the simplest of our three problem; this is obviously a ”Welcome-to-Iceblox-world!”
problem. In Figure 4, we introduce danger from one flame with only one weapon to kill
this flame. In Figure 5, we set the case for two weapons to kill a flame guarding a coin.
The properties of these three problems are the following:
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See Figure 3 4 5
Requires flame fighting? No Yes Yes
Number of weapons 0 1 2
Number of predicates 7 10 13
(initial and final states)
Number of typed objects 4 8 10
Number of paths leading
to the coin

1 1 2

Length of solution plan 2 4 4 or 5

Why these three problems? First because their number of predicates all are very small
and yet they cover the basics of Iceblox game playing: these situations are so simple that
if a planner fails at these problems then it is certainly not able to play iceblox. Moreover,
although more problems have been designed, they confirm the results of Table 1. Given
as Iceblox levels to an Iceblox planning system, these problems can be solved in real
time; screen shots of the final Iceblox situations are gathered in Figure 6.

Planning problems predicates. The following predicates are used to describe both the
initial and final states of the planning problems of Figures 3, 4 and 5 (crossroadi,j

denotes the location at the intersection of line i and column j):

– (position i j): a sprite (Pixel Pete, ice block, iced coined, weapon) is at the
crossroadi,j.

– (extracted i j): the coin at the crossroadi,j has been collected by the player.
– (guard i1 j1 i2 j2): the flame at the crossroadi1,j1 guards the coin at the

crossroadi2,j2 . The idea of guarding a coin is linked to the 3 seconds time con-
straint (see the planners requirements): a flame makes dangerous the collection of
a coin when it is within a range of 3 crossroads.

– (iced-coin i j): there is an ice block at the crossroadi,j which contains a coin.
– (protected-cell i j): there exists a path towards the crossroadi,j . This path is safe:

no flame makes this path dangerous.
– (reachable-cell i j): there exists a path towards the crossroadi,j; there exists at least

one flame putting this path in danger.
– (weapon i1 j1 i2 j2 i3 j3): there exists a weapon at the crossroadi2,j2 ; Pixel Pete

should push this weapon from the crossroadi1,j1 . The weapon shall stop sliding at
the crossroadi3,j3 ; this is useful information when an ice block needs more than
one push before the final kick at a flame.

Operators use two more predicates:

– (blocked-path i j): there is an ice block on the path to crossroadi,j.
– (blocked-by-weapon i1 j1 i2 j2): the weapon at crossroadi2,j2 is on the path to

crossroadi1,j1 .

Over all the operators we designed, 4 proved to be critical for Iceblox game play-
ing: move-to-crossroad, destroy-weapon, kick-to-kill-guard and extract. We hope their
names are self explanatory. There are more (e.g. pushing a block to lock flames in a
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maze of ice blocks and rocks) but basic Iceblox playing is impossible if you don’t get
those 4 operators. Due to space limitations, we only give the PDDL code of kick-to-
kill-guard and extract; these operators are given to the planners for benchmarking and
playing:

(:action extract
:parameters (?coinx - coord-i ?coiny - coord-j )
:precondition (and (protected-cell ?coinx ?coiny)

(iced-coin ?coinx ?coiny) (position ?coinx ?coiny)
(reachable-cell ?coinx ?coiny))

:effect (and (extracted ?coinx ?coiny)
(not (iced-coin ?coinx ?coiny))
(not (protected-cell ?coinx ?coiny))
(not (reachable-cell ?coinx ?coiny))))

(:action kick-to-kill-guard
:parameters

(?reachablewx - coord-i ?reachablewy - coord-j
?weaponx - coord-i ?weapony - coord-j
?newweaponx - coord-i ?newweapony - coord-j
?guardx - coord-i ?guardy - coord-j
?coinx - coord-i ?coiny - coord-j
?blockedx - coord-i ?blockedy - coord-j)

:precondition (and (iced-coin ?coinx ?coiny)
(position ?reachablewx ?reachablewy)
(guard ?guardx ?guardy ?coinx ?coiny)
(weapon ?reachablewx ?reachablewy ?weaponx ?weapony

?newweaponx ?newweapony)
(reachable-cell ?weaponx ?weapony)
(protected-cell ?weaponx ?weapony))

:effect (and (position ?weaponx ?weapony)
(protected-cell ?coinx ?coiny)
(blocked-by-weapon ?blockedx ?blockedy ?newweaponx ?newweapony)
(reachable-cell ?newweaponx ?newweapony)
(protected-cell ?newweaponx ?newweapony)
(not (reachable-cell ?weaponx ?weapony))
(not (protected-cell ?weaponx ?weapony))
(not (reachable-cell ?blockedx ?blockedy))
(not (guard ?guardx ?guardy ?coinx ?coiny))
(not (weapon ?reachablewx ?reachablewy ?weaponx ?weapony

?newweaponx ?newweapony))))

These operators can be much simpler and indeed we designed and used very simple
versions of them. But of course, there is a compromise between simplicity which ques-
tions the overall utility of all this, and complexity which gets the planners nowhere. It
is very easy to put more information in the operators than necessary; and then: bye bye
runtimes!

Results. Several planners have been tested against these three problems (and others),
with a 3.2 GHz Pentium 4 PC, loaded with 1Gb of memory. The runtimes, in seconds,
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(define (problem first-case)
(:domain iceblox-strips)
(:objects i-1 - coord-i i-12 - coord-i j-1 - coord-j j-4 - coord-j)
(:init (position i-1 j-1) (iced-coin i-12 j-4)
(protected-cell i-1 j-1) (reachable-cell i-1 j-1)
(protected-cell i-12 j-4) (reachable-cell i-12 j-4))
(:goal (extracted i-12 j-4)))

Fig. 3. The danger is away, the path is obvious: you’re fired if you can’t solve this one

(define (problem second-case)
(:domain iceblox-strips)
(:objects i-4 - coord-i i-12 - coord-i i-11 - coord-i j-2 - coord-j
j-4 - coord-j j-3 - coord-j j-11 - coord-j j-10 - coord-j)
(:init (position i-4 j-2) (iced-coin i-12 j-4)
(protected-cell i-4 j-2) (reachable-cell i-4 j-2)
(guard i-11 j-4 i-12 j-4) (protected-cell i-11 j-3)
(weapon i-11 j-2 i-11 j-3 i-11 j-10 i-11 j-11)
(reachable-cell i-11 j-3) (reachable-cell i-12 j-4))
(:goal (extracted i-12 j-4)))

Fig. 4. There is danger, but the fight is easy

(define (problem third-case)
(:domain iceblox-strips)
(:objects i-4 - coord-i i-12 - coord-i i-11 - coord-i i-9 - coord-i i-
10 - coord-i j-2 - coord-j j-4 - coord-j j-3 - coord-j j-11 - coord-j
j-10 - coord-j)
(:init (position i-4 j-2) (iced-coin i-12 j-4)
(protected-cell i-4 j-2) (reachable-cell i-4 j-2)
(guard i-11 j-4 i-12 j-4) (protected-cell i-10 j-4)
(weapon i-9 j-4 i-10 j-4 i-11 j-4 i-12 j-4)
(weapon i-11 j-2 i-11 j-3 i-11 j-10 i-11 j-11)
(protected-cell i-11 j-3) (reachable-cell i-10 j-4)
(reachable-cell i-11 j-3) (reachable-cell i-12 j-4))
(:goal (extracted i-12 j-4)))

Fig. 5. Two unsafe paths: one shorter, one longer. . .

averaged over ten runs, are gathered in Table 1. The planners appearing in Table 1
reflect all the cases which happened during the tests: some planners rejected part or all
of the PDDL files, reporting PDDL mistakes and some planners found no solution to
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Fig. 6. When off line benchmarking becomes real time Iceblox playing. The red and white track
marks the path followed by the penguin during the plan execution.

Table 1. Performances of several planners on PDDL files of the 3 problems of Figures 4, 5 and 6.
A typed and untyped coordinates version was tested for each problem. All times, averaged over
ten runs, are in seconds; planners were given 120 seconds to search for a solution although the
required time limit is 3 seconds (see the requirements for planners).

Typed Untyped
Fig. 3 Fig. 4 Fig. 5 Fig. 3 Fig. 4 Fig. 5

FF [9] 0.01 0.49 1.83 0.01 > 120

HSP2 [12] PDDL Syntax errors
Metric-FF [13] 0.01 0.33 1.07 0.01 > 120

Qweak [10] 0.01 0.02 0.02 0.02 0.02 0.02
SGPlan [14] 0.01 0.35 1.14 0.01 > 120

STAN [15] 0.18 PDDL Syntax errors 0.2 > 120

TSGP [16] 0.03 25 > 120 0.05 > 120

YAHSP [17] 0.01 No plan found 0.01 No plan found

the problems. Hopefully, others correctly read the PDDL files; among those planners,
some found solutions within the time limit and others did not. All the solutions found
were correct: no planner we tested returned an incorrect plan.

Four planners, FF, Metric-FF, Qweak and SGPlan compose the set of good candi-
dates for playing Iceblox. We eventually reduced the set to the well known and success-
ful FF [9] and the less known and fastest but exotic Qweak [10][11].

Again, no planner was tweaked during both benchmarking and game playing (see
the requirements for planners).

As you can notice, ice blocks in this design can only be pushed for killing flames
guarding an iced coin and there is no action to crush an ice block. Indeed, we imple-
mented the crushing of ice blocks in the execution module. Then, by carefully designing
our levels, both FF and Qweak were able to play large Iceblox levels (i.e. 12 lines by
12 columns with at most 3 flames and several ice blocks) almost in real-time.

In the next section, we see how to plan the pushing and crushing of ice blocks with
FF and Qweak.
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5 Game Playing Situations

The previous game situations might be perfect for the selection of PDDL-based plan-
ners, but they are far from real iceblox game playing situations. In this section we carry
on testing and see how more realistic game playing situations can be handled by the
planners FF and Qweak. Looking at figure 1 we can observe that putting more objects
in an Iceblox game level produces more realistic game situations: more ice blocks, more
coins, more flames, more weapons,. . . We need problems with more objects, and con-
sequently more predicates and more actions. However, FF’s instantiation mechanism is
sensible to more actions with more parameters. Consequently, if we propose more ac-
tions to the planners, we should be careful with the number of objects of our problems.

The first four problems we designed have the following properties:

See figure 7 top-left top-right bottom-left bottom-right
Requires flame fighting? No Yes Yes Yes
Number of weapons 0 1 1 4
Number of predicates 7 10 10 19
(initial and final states)
Number of typed objects 5 8 8 15
Number of paths leading to the coin 1 1 2 4
Length of solution plan 2 4 5 7

As you can observe, the size of these problems (except the bottom-right) correspond
to the size of the problems of figures 3, 4 and 5. However, our domain file now has 7
actions instead of 4 and our new kick-to-kill-guard action now possesses 11 parameters
while our push action has 6 parameters; the crush action, given below, only possesses 4
parameters.

New planning problem predicates are the following:

– (guard f i1 j1 i2 j2): the flame f at the crossroadi1,j1 guards the coin at the
crossroadi2,j2 . This predicate now possesses a new parameter f to record a flame
number to facilitate the execution process: we may have already killed this flame,
thus making needless to focus on it any longer; or it is another flame which is now
dangerous and a new plan must be computed.

– (blocked-by-cell i1 j1 i2 j2): there is an ice block at the crossroadi1,j1 which can be
either pushed or else crushed when at the crossroadi2,j2 ; this predicate is a rewriting
of the two predicates (blocked-path i j) and (blocked-by-weapon i1 j1 i2 j2).

– (crushable i j): the ice block at the crossroadi,j can be crushed so that (reachable-
cell i j) becomes true.

– (pushable i1 j1 i2 j2): the ice block at the crossroadi1,j1 can be pushed; if pushed,
it shall stop at the crossroadi2,j2 .

One operator use one more predicate:

– (connected-with-cell i1 j1 i2 j2): this new predicate is always used in conjunc-
tion with the predicate (reachable-cell i2 j2) thus asserting that the cell at the
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crossroadi1,j1 also is reachable (see the set-reachable action below). In fact, any
crossroad is reachable in the Iceblox game since it is always possible to push or
crush an ice block to reach it. So, in theory, we should generate this predicate for
many interesting positions we could detect and in particular around weapons. How-
ever, the dynamics of the game render this generation useless: flames move and
weapons change.

We first implemented ice block crushing in the execution module (see next section) but
we soon realized it was not coherent with our design of PDDL actions: crushing an ice
block is a 7 push action in the same direction. Consequently, we designed an abstract
push action gathering several basic pushes as our move action gathers several basic
moves:

(:action crush-iceblock
:parameters

(?crushablex - coord-i ?crushabley - coord-j
?blockedx - coord-i ?blockedy - coord-j)

:precondition (and (position ?crushablex ?crushabley)
(reachable-cell ?crushablex ?crushabley)
(protected-cell ?crushablex ?crushabley))
(crushable-cell ?crushablex ?crushabley)
(blocked-by-cell ?blockedx ?blockedy ?crushablex ?crushabley))

:effect (and (reachable-cell ?blockedx ?blockedy)
(not (reachable-cell ?crushablex ?crushabley))
(not (crushable-cell ?crushablex ?crushabley))))

As discussed for the new predicate connected-with-cell, we designed an action to com-
pute, through planning, the transitive closure of reachable-cell predicate. In practice,
solution plans are rarely generated with this action.

(:action set-reachable
:parameters

(?cellx - coord-i ?celly - coord-j ?cellu - coord-i ?cellv - coord-j)
:precondition (and (reachable-cell ?cellx ?celly)

(connected-with-cell ?cellu ?cellv ?cellx ?celly))
:effect (and (reachable-cell ?cellu ?cellv))))

Results. We tested both FF and Qweak against typed versions of the four problems of
figure 7; anticipating bad runtimes, we traded our previous every-office-of-yesterday-
machine to a newer 2.20GHz T7500 core duo loaded with 3Gb of memory. FF solves
the first two problems in, respectively, 30 milli-seconds and 200ms, and fails to solve
the last two, running out of memory: as predicted, FF’s instantiation mechanism can be
blamed for these failures. We thus decided to test Metric-FF and SGPLan as well, but
with no more success than FF. Qweak solves the first three problems at about the same
speed of 30ms and solves the last problem in 140ms: a faster machine entails faster
runtimes.

Again, no planner was tweaked during these tests, but we did correct a couple of
bugs in Qweak which appeared when testing even bigger problems.

Realistic iceblox levels can be solved in real-time. However, to achieve good playa-
bility in the video-game domain, everything must be fast: the construction of plans, of
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Fig. 7. The Penguin starts in line 1 and column 1 and its objective is to extract the only coin in each
problem. When pushed, an ice block can slide only when its other side is free; an ice block can be
crushed if its opposite side is not free. A flame dies when it collides with a sliding ice block which
is then called a weapon. Because there even is no flame at all, the top-left problem is simpler than
that of figure 3 and the top-right problem is similar to that of figure 4. The lower-left problem
corresponds to that of figure 5: when pushed to kill the flame, the ice block in line 4 and column 8
shall stop just above the iced coin thus blocking the path to the iced coin; then, the Penguin must
either walk round the ice blocks to reach the left side of the iced coin or else destroy the weapon
which stopped sliding on the upper side of the iced coin. The lower-right problem appears to be
more difficult than all other previous problems: first, there are four weapons which, once pushed,
could collide with the flame; second, there is an obstacle on the path to these weapons: the entry
point between the two rooms is blocked and an ice block must be crushed and another one must
be pushed. Now, go to figure 8 to see how difficult these problems really are.



A PDDL-Based Planning Architecture to Support Arcade Game Playing 183

Fig. 8. The moment of truth for the planning problems described in figure 7. The four problems
must be solved so we feed the planner with actions to push and crush ice blocks: 7 actions and
12 predicates in the domain file are now necessary to solve these problems whereas 4 actions and
10 predicates were needed for the problem of figures 3, 4 and 5. Current IPC planners can solve
the two problems of the top line on today’s machines but only when objects are typed and the
:typing requirement appears in the PDDL problem file (several milliseconds for FF [9] on the
top-left problem and 0.2s for the top-right problem). However, the two problems on the bottom
line are too difficult: all planners but Qweak [10] fails to find a solution within 120 seconds: the
11 parameters of the kick-to-kill-guard action, the 6 parameters of the push action and the number
of weapons in the lower-right problem create too many search alternatives for the planners. The
red and white track marks the path followed by the penguin during the plan execution.
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course, but also the generation of PDDL problems and the execution of plans and prob-
ably above all, the coupling of all these procedures to the game must not slow down the
game. The next section digs our game playing architecture and, in particular, the on line
generation of PDDL problems.

6 Game Playing Architecture

This section outlines the plan execution procedure and the generation of PDDL planning
problem from Iceblox game situations. Finally we discuss path planning in the Iceblox
domain.

6.1 The Plan Execution Process

Table 2 outlines the plan execution process; it is implemented as a thread and can give
orders to the game through a global variable which usually contains the key just pressed
by the user.

The tricky part is the compiling of the PDDL actions of the plan returned by the
PDDL-based planner into basic instructions (the keys pressed by the user) for the game.
This allows a regular sensing of danger and gives regular opportunities to response to
unexpected events.

6.2 The Generation of PDDL Planning Problems

Table 3 presents how the collection-of-a-single-coin is generated as a PDDL planning
problem during game playing. This very fast procedure, also implemented as a thread,

Table 2. The plan execution thread

Repeat
If the first operator of the plan is Move-To-Crossroad(i,j) then

Compute a path from current location to crossroadi,j

Repeat
Execute one basic move following that path

Until crossroadi,j is reached
Else

If the ice block at crossroadi,j is not destroyed
Execute a push action in direction of crossroadi,j

Else
Execute a basic move towards crossroadi,j

End if
End if
Delete the first operator of the plan

When the flame is no longer dangerous
Ignore it

When the flame is no longer aligned with the weapon or
an unexpected flame becomes dangerous

Find a weapon and use it
When the penguin must leave the computed path

Remember the current crossroadi,j

Get the penguin back to crossroadi,j as soon as possible
Until the plan is empty
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Table 3. The PDDL Planning problem generation thread for the collection of a single coin

Document-the-path-to(object)
Compute a path for this object
Generate (reachable-cell i-object j-object)
If this path is clear then

Generate (protected-cell i-object j-object)
Else

For each ice block on this path do
Generate (blocked-by-cell i-object j-object i-block j-block)
If this ice block can be moved with a simple push then

Generate (pushable-cell i-block j-block i-stop j-stop)
Else /* this ice block cannot move and must be crushed */
Generate (crushable-cell i-block j-block i-crush j-crush)
End if

End for each
End if

End Document-the-path-to

Generate PDDL planning problem header
Generate PDDL initial state header
Generate (position i-penguin j-penguin)
Find the (nearest or possibly flame-less) iced coin
Generate (iced-coin i-coin j-coin)
Document-the-path-to(iced-coin)
For each flame do

If this flame is less than four crossroads away from the (iced-coin i-coin j-coin) then
Generate (guard flame i-flame j-flame i-coin j-coin)
For each nearest weapon in each of the four direction do

Generate (weapon i-push j-push i-weapon j-weapon i-stop j-stop)
Document-the-path-to(weapon)

End for each
End if

End for
Generate PDDL final state header and (extracted i-coin j-coin)

first computes what to do (either push or else crush) with ice blocks on its path to an
iced coin. Then it finds weapons by looking in the four directions around a dangerous
flame while managing the ice blocks it encounters on its path to these weapons.

6.3 Path Planning

Path planning is obviously used to compute paths from a location to another. This path
planning procedure is first called during the generation of PDDL planning problem (see
table 3) and then during the plan execution process (see table 2): path planning is an
essential activity.

We implemented the A* [20] algorithm with ideas from [21]: for instance, we added
a penalty for each direction change to the cost of a path in order to get more rectilinear
paths, following our requirements on actions of kind 3 (see section 3 above). However,
Iceblox is not a free path world and destructive operations must happen to find paths:
searching on empty crossroads is not sufficient to find paths. Pushing and crushing ice
blocks often are necessary actions to find paths, but both modify the game level in an
irreversible manner: for the sake of completeness of the A* algorithm, modified game
levels must be saved as new search spaces for path planning, which obviously costs
memory and therefore time.
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Fig. 9. On the horizontal axis are runtimes (milliseconds) from our implementation of A* which
computes paths in Iceblox randomly generated levels (10 lines by 12 columns); Pixel Pete appears
in the top left corner, and 9 rocks, 5 coins and 35 pushable ice blocks are randomly placed in this
order on the remaining cells. This makes an amazing 10 342 621 660 587 151 106 372 657 654
037 758 770 942 528 117 680 different game levels (see section 6.3). The cost of a path is the
cost of actions (this cost is 1 for a basic move in each of the four directions, 1 for pushing an ice
block and 7 for crushing an ice block) plus the number of corners (i.e. direction changes) plus
the manhattan distance to the goal position. 200 levels were randomly generated; we recorded
both the runtime to compute a path from one coin to Pixel Pete (the lowest curve) and from Pixel
Pete to the same coin (the second curve); the five coins of each level were tested. Consequently,
1000 paths have been computed in each of the two directions. How fast (or slow?) are these
computations? As we can observe in the above figure, 85% of the computations from a coin took
less than 2OO milli-seconds whereas 87% of the computations from Pixel Pete took less than
200ms; so should we prefer to compute a path always from Pixel Pete? The answer is no: the
computations from Pixel Pete produced 513 of the fastest runtimes while the computations from a
coin produced 547 of the fastest runtimes (60 tests produced the same runtime). But despite these
547 fastest runtimes, the lowest curve in the above figure shows that it generally takes a little
more time to compute a path from a coin than from Pixel Pete. However, if we choose the fastest
runtime of the two available runtimes for each coin, it appears that 97% of the computations took
less than 200ms which is just fine (the highest curve).

The figure 9 shows the proportions (vertical axis) of runtimes (horizontal axis) in
milli-seconds above a given runtime for paths computed from Pixel Pete to a coin (the
middle curve) and from a coin to Pixel Pete (the lowest curve). For instance, 95% of
the runtimes are below 800ms, which clearly is unsatisfactory for real-time playabil-
ity. If we look for path planning runtimes equivalent to PDDL-based plan construction
runtimes, we observe that around 86% of the runtimes are below 200ms (which is not
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very fast yet). 1000 paths (in both ways: 2000 paths in total) have been computed over
200 generated levels where Pixel Pete appears in line 1 and column 1, 9 blocks, 5 coins
and 35 ice blocks are placed at random on the remaining cells, in this order. The ini-
tial position of the penguin is fixed so we first have to choose 9 cells among the 119
remaining cells to place the rocks, then choose 5 cells among the 110 remainings cells
and finally choose 35 cells among the 105 remaining cells; let lc be number of lines
times the number of columns, we have:

(
(lc − 1)

9

)
×

(
(lc − 10)

5

)
×

(
(lc − 15)

35

)
=

(lc − 1)!
5! 9! 35! (lc − 50)!

This total number of such levels has to do with astronomy and we leave the compu-
tations to the numbers lovers; it is, however, not difficult to remark that 200 gener-
ated levels is a desperately small number compared to the numbers provided by the
above formula. However, it seems that more tests only reinforce the observed results of
figure 9.

By taking the minimum value of the two available runtimes for each coin, we get
the highest-curve in figure 9, where 97% of these minimum runtimes are less than 200
ms. Consequently, we are left with several options: (i) let the two computations (from
Pixel Pete and from a coin) run concurrently and take the first returned path, (ii) search
in a destructive manner (whatever the path), (iii) investigate a bi-directional search
procedure, (iv) spend some time optimizing any step of our A* implementation, in the
spirit of [22] and (v) focus on something else. After failing to gain much with the third
and fourth options, perhaps strangely, we chose the fifth option: it happens that, finally,
the gaming experience is not much affected by a somewhat slow but nicely correctly
implemented path planning procedure. Now, we advise the wise programmer to first
investigate option (ii) before trying option (i).

7 Conclusions

This paper reports on the design and implementation of a PDDL-based planning system
(problem generator, planner and plan execution) which, most of the time, is able to play
an arcade game in real-time. We detailed engineering decisions because this research
project showed us that an efficient planner itself (PDDL-based or not) certainly is not
sufficient to achieve real-time playability. In the case of an arcade game, everything
must be fast; or, if preferred, nothing must be slow. To avoid slowing the game, many
planning knowledge oriented decisions must be taken: which predicates must be de-
signed to represent a gaming situation? What is the balance between detailed planning
operators and a clever plan execution system? What can be put in a thread? What part
of planning computations can be distributed over multiple graphic frames? This paper
proposes answers to these questions, mainly from an engineering perspective and not
from a theoretical perspective: decisions have, most of the time, been made in favour of
the game playability.

Due to the good quality of the path planning computation, Pixel Pete looks pretty
rational at the speed of the flames. Sincerely, we thought many times we’d never make it
and the granularity of our Plans is crucial to achieve our goal: we just produce Planning
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problems with a small number of predicates. Since then, we have reused our architecture
in the commercial serious game domain; we successfully coupled our planning system
to Virtual Battle Space 2 [23] [24], in a bottom-up manner. We are actually working on
extending this coupling.
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Abstract. In the recent years, game engines have been increasingly used
as a basis for agent-based applications and multi-agent systems, alongside
traditional, more dedicated, simulation platforms. In this paper, we test
and compare different control strategies for specified high-level maneuvers
in aircraft within a gaming simulation environment, each aircraft repre-
sented by an independent agent, focusing on communication necessities
and maneuver effectiveness. An overview of the simulation environment’s
capabilities, with focus on the structured experiences system, shows the
potentials of this platform as a basis for the more comprehensive goals
of our project, allowing for the definition and execution of cooperative
missions, such as surveillance and search & rescue operations.

1 Introduction

Simulation tools are widely used in several fields of research, providing re-
searchers with the means to develop their work in a cost- and time-effective
manner. These and other advantages of simulation environments have led to a
significant growth in their general use by the scientific community, as well as in
several business areas, supporting decision-making processes, planning, training,
and many other tasks. Alongside professional simulation tools, designed specif-
ically to the research purpose they are used in, game engines and gaming tools
are being adopted more and more by the scientific community as serious tools
in their work. Serious gaming explores the use of games and game-like applica-
tions in training or learning, or using them as decision support tools, to improve
business processes. Not only the entertainment organizations use of these new ap-
plications, but also governmental and military organizations, mainly for training
purposes, be it in the leadership and management areas, or in a more technical
approach, using primarily simulation tools [1].

One field of research where simulator tools are extensively used is aviation.
In fact, simulators used in this area range from multi-million dollar full hard-
ware and software simulators used to train professional pilots to freely available
flight simulators, which have been used mainly for entertainment purposes and
by aviation enthusiasts. As an example, one of the world’s most famous simula-
tors, NASA’s VMS (Vertical Motion Simulator), is a full simulator capable of six

F. Dignum et al. (Eds.): Agents for Games and Simulations, LNAI 5920, pp. 190–205, 2009.
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degrees-of-freedom movements, housed in a ten-story building in Ames Research
Center, California [2][3]. This simulator is capable of providing different simu-
lation experiences, thanks to the ICAB (Interchangeable Cab) feature, which
allows for a modular interior of the simulation cabin, presenting the pilot with
different cockpit interfaces. An impressive 1300 variables can be retrieved from
the simulator, allowing for thorough data analysis of simulation sessions. This
simulator has been used for pilot and astronaut training but also in cooperation
with other entities [4]. On the other end, flight simulators such as FlightGear
(an open-source flight simulator1) are available for download at no cost or at a
reduced price. Some of these low-cost flight simulators have, in the latest years,
achieved a high level of realism, both in the simulation of aircraft systems, kine-
matics and weather conditions, and also in the visualization of all these aspects
with a realistic and detailed terrain. Some of them have been certified by the
FAA (Federal Aviation Administration) for pilot training, when used in conjunc-
tion with the proper hardware simulator. For instance, the X-Plane simulator2

is used by some simulator companies, such as Simtrain as the software basis for
simulation [5].

In the recent years, simulators in several areas have evolved into more complex
systems, and in many cases a multi-agent system approach has been adopted. In
these systems, the participating entities are represented by independent agents,
which in turn communicate with each other, coordinating information and ac-
tions. In the aeronautical area, this approach has also been adopted, usually
with each agent representing one aircraft (or even several agents representing
the several systems of one single aircraft, if a more detailed simulation of a spe-
cific system is required). Such systems are used to develop new strategies to solve
problems such as collision avoidance among UAVs (Unmanned Aerial Vehicles)
[6], formation flight or fault tolerance [7], among others. These systems should
also address the interaction with human beings, allowing for a real-time aware-
ness of the situation and the possibility to define missions, or even to override
decisions made by the agents [8].

The authors’ vision is to make use of such a system in order to develop strate-
gies to use in cooperative missions, such as surveillance and search & rescue sce-
narios. This paper focuses on control strategies for aircraft within the simulation
environment, and their effectiveness in terms of both communication necessities
and maneuver smoothness and accuracy. Three distinct strategies were tested to
control different aircraft, and the experimental results were analyzed as to assess
which of the methods is most suited to use in the simulator. As to provide with a
more comprehensive context on the project, the following paragraphs summarize
the steps that were previously taken.

The main goals of the overall project are to use a simulation platform as a
basis for the design and cooperative execution of joint missions. These missions
are to be performed by a team of heterogeneous vehicles, including planes, heli-
copters, land vehicles, and submersible vehicles, capable of communicating with

1 More information available online at http://www.flightgear.org/
2 More information available online at http://www.x-plane.com/
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one another, in order to coordinate their actions. The applications of such a sys-
tem are diverse, including surveillance (forest surveillance that provides an early
fire detection system; coastal and border patrol, in order to detect and track
illegal activities, such as smuggling; urban observation that would detect dense
traffic patterns, preventing larger traffic jams; and many other applications),
reconnaissance and target tracking (especially useful in military operations and
law enforcement activities, to provide real-time valuable information about en-
emy movements, or to follow a fugitive until apprehended by competent entities),
aiding in search & rescue operations, and many other applications.

The project’s envisioned architecture incorporates the chosen simulator, a
number of external agents, each representing one vehicle within the team, as well
as some valuable peripheral services, such as a monitoring application, capable of
real-time vehicle tracking, as briefly mentioned in the results section, simulation
logging that enables mission replay and further analysis, and an interface with
external modules, for interaction with real vehicles.

1.1 Simulation Engine

Previous work on this project included a thorough study of simulation plat-
forms, which resulted in the choice of Microsoft Flight Simulator X (FSX)3 as
the platform to be used. This was based on the platform’s admirable graphical
features, simulation of aircraft dynamics and interaction with the environment,
possibility to inject failures in certain aircraft systems and sensors, excellent
application programming interface documentation, with hundreds of simulation
variables that can be read and written to, hundreds of events that can be sent to
the simulator, and many other features (which allow an external application to
interact with the simulator in real-time), as well as the available mission system,
with its outstanding possibilities [9].

FSX’s programming interface, SimConnect, provides a flexible, powerful and
robust client-server communications protocol that allows asynchronous access to
hundreds of simulation variables and events. Some of these variables can only
be read, but nearly two hundred can also be written to; several hundred events
can be sent to the simulator, and there are several dozens of functions to deal
with the weather system, missions, in-game menus, AI objects, communication
and data access and manipulation, among other useful features.

Structured experiences, or missions, as they are commonly known, are a fea-
ture of FSX that allows regular users to have a different, interactive experience
of flight, with measurable goals. FSX includes numerous missions, ranging from
tutorials that teach the user how to fly an aircraft, to racing missions, simulating
the Red Bull Air Race environment, as well as several transport or rescue op-
erations, among others. The mission system allows for the definition of objects,
areas, triggers and actions that can be linked to work together in an orchestrated
manner, producing diverse, realistic and complex missions [10].

Microsoft has also already recognized the advantages of simulation in var-
ious business areas and the potential of these structured experiences, and is
3 More information available online at http://www.fsinsider.com/
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commercializing the engine behind FSX as a new enterprise-oriented product,
called ESP [11]. There are numerous applications of this technology, and sev-
eral high-profile companies have already signed partnerships with Microsoft for
the use of ESP, such as FlightSafety International, SAIC, Lockheed Martin and
Northrop Grumman [11] [12]. These companies, as well as others that use this
product, will be able to use it to train staff (not only in piloting skills, but also
management skills for airline companies and airports, for instance), learning,
research or decision support – by simulating different scenarios, the most favor-
able one can be identified, problems and design flaws can be corrected, business
processes can be improved.

1.2 Autopilot Systems

Although autopilot systems are usually associated with aircraft, they can be
used in any kind of vehicle, including boats, cars, or even missiles. In this paper,
however, the focus is on aircraft autopilot systems. There is a variety of autopi-
lots commercially available for small unmanned aircraft, usually comprised of
light-weight hardware to connect to the aircraft, and a control station, also of-
ten including some software to interact with the system. These autopilots range
from simple one-axis controllers to full three-axis systems, including redundant
processors, sensor diagnostics and failure tolerance, medium- to long-range com-
munication system and many other useful features when dealing with payloads
[13]. Integration and testing of autopilot systems with the aircraft has to be care-
fully executed, as to calibrate the system to the aircraft in question [14]. Com-
mercial aircraft also feature autopilot systems, which can control the aircraft
from takeoff to land without human intervention (these systems are, however,
usually only used during the leveled part of the flight, and during landing, when
visibility conditions are below certain limits). These full autopilot systems use
redundant computers to ensure that control decisions are correct, and provide
a more stable flight than human pilots would, lowering fuel consumption at the
same time.

The rest of this paper is organized as follows. In the next section, the three ap-
proaches that were compared are explained in more detail. Section three presents
the settings for the experiments that were conducted and section four presents
the results that were attained, comparing the approaches. Finally, in the last
section, some conclusions are withdrawn and lines of future work are presented.

2 Control Strategies

In this section, the three devised control strategies are presented and briefly
compared. The first approach consists on direct manipulation of the aircraft
controls, such as aileron and elevators through a PID controller. The two other
approaches use autopilot systems. The second one makes use of the autopilot
system available to actual pilots, delegating the handling of aircraft controls to
the system. The third approach uses the AI autopilot, used by the simulator
to perform automated flights. The differences between these methods and the
specifics of each one are detailed in the following subsections.



194 D.C. Silva et al.

2.1 PID Controller

The first approach to controlling an aircraft within the simulation environment is
to recreate the actions of a pilot when attempting to follow a certain route. This
was accomplished by direct manipulation of the main controls of the aircraft,
namely the throttle, aileron and elevator. The throttle control is used to control
the speed of the aircraft. The elevator control is used to control the pitch angle
of the aircraft (sometimes referred to as angle of attack, pitch measures the nose
up or down angle of an aircraft), and, when used in conjunction with the throttle
control, it allows to control the altitude of the aircraft – in order to climb, the
elevator must be set to a positive value, and the throttle should be set to full
throttle; in order to descend, the elevator must be set to a negative value, and
the throttle should be set to idle. The aileron control is used to control the bank
angle of the aircraft (also called roll, it is the angle of rotation of the plane
about its longitudinal axis). In order to make a turn, the aircraft rolls toward
the inner part of the desired turn. By using these controls together, higher-level
maneuvers are executed.

In order to handle these aircraft controls, a PID (Proportional-Integral-
Derivative) controller was used. A PID controller is a generic control loop feed-
back mechanism that attempts to correct the error between a measured variable
and the desired value by calculating a corrective action that can adjust the pro-
cess accordingly. It is a well-known controller from the control theory field, and
has been used successfully in the industry for many years. Its numeric imple-
mentation consists on the evaluation of (1), where e is the difference between
the reference value and the feedback measured value, τ is the time in the past
contributing to the integral response and Kp, Ki and Kd are the proportional,
integral and derivative gains, respectively. The proportional term adjusts the
output signal in direct proportion to the error, the integral term is proportional
to both magnitude and duration of the error, and the derivative term measures
the approximate rate of change of the error. Tuning the gain factors of the PID
controller is an important step, to assure optimal values for the desired control
response [15].

output (t) = kpe (t) + ki

∫ t

0

e (τ) dτ + kd
de

dt
. (1)

For this approach, the control agent communicates with the simulated aircraft
at a given rate, in order to send the current values, calculated with the PID
controller. Ideally, the communication would be uninterrupted, since continuous
adjustments to the aircraft controls should be made in order to maintain the
desired flights settings. However, the simulator only sends and accepts values
once per simulation cycle, and to send data at a higher rate would be a waste of
processing time. Moreover, one has to account for communication latencies that
make it difficult to receive data from a given simulation cycle and to send the
corrective values that reach the simulator in time for the following cycle.

There is a simulation variable that is modified by the control agent for each
of the three aircraft controls that are manipulated by the controller, and other
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variables that can be read in order to assess the current position, speed and
attitude of the aircraft, used in the calculations as mentioned above.

In order to make a banked turn with a given radius (for circling maneuvers, for
instance), some additional information has to be taken into account. The radius
of a banked turn is given by (2), where v is the true airspeed of the aircraft, g
is the acceleration due to gravity and θ is the bank angle of the aircraft.

R =
v2

g tan θ
. (2)

Given (2), one can determine the necessary bank angle to generate a banked
turn with a given radius at a given speed.

2.2 Autopilot

In this approach, the autopilot features of aircraft are used. Autopilot systems
assume various forms, ranging from simple wing-levelers to complete systems,
capable of controlling an aircraft from takeoff to land. Most modern aircraft
feature altitude, heading and speed controls, allowing the pilot to set the desired
values for each feature. The altitude control manipulates the elevator and throttle
(if auto-throttle is available) in order to reach and maintain a certain altitude.
The heading control manipulates the aileron in order to make a banked turn
until the desired heading is reached, and the speed control automatically adjusts
the throttle to maintain the desired airspeed. This approach uses the available
autopilot systems as a pilot would, to adjust the aircraft’s course to the desired
settings.

There is a straightforward limitation to this approach, which is the necessity
for the presence of an autopilot system. In fact, many smaller, older aircraft do
not possess an autopilot system, or it is only comprised of the already mentioned
wing-levelers, capable only of maintaining a straight level flight (but unable to
change altitude, heading or speed). The authors, however, feel that this limi-
tation does not impose a major problem, since there are several commercially
available autopilot systems for small unmanned aircraft, such as the Piccolo au-
topilot system, from CloudCap Technology [16], which are usually used for the
type of aircraft that are intended to be used in real-life experiments.

With this approach, there are limits that need to be taken into account when
planning the maneuvering scenarios, such as the autopilot system limits for the
bank angle, for instance. As previously seen, the bank of a plane influences the
radius of the curve, and as such, a minimum radius for turns is calculated based
on the aircraft cruise speed and maximum bank angle at the beginning of the
simulation, and that minimum value is enforced on maneuvers that require the
plane to move in a circular fashion.

Since these systems do not allow for a direct control of the bank angle (some
systems have the capability to further limit the maximum bank angle to usually
half of that value, to produce smoother flights), a circular path is a bit more
complicated to achieve. For circular paths, several points along the turn are
calculated, and used as a basis for heading determination. By providing the
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aircraft with regular changes in the desired heading, a smooth circular path
is achieved. The number of points in the path is directly proportional to the
difference between the desired radius and the minimum radius – if the desired
radius coincides with the minimum radius at the current aircraft speed, there is
no need to use more than two alternating points to update the heading control.
As with the PID approach, this approach also requires frequent communication
with the aircraft, in order to send the desired values for the autopilot system.

2.3 AI Autopilot

The third approach makes use of the AI autopilot within the simulator to con-
trol the aircraft. This AI autopilot can be used in every aircraft, independently of
the existence of an autopilot system such as the one described in the previous ap-
proach. It is used by the simulator to guide the generated air traffic from departure
to arrival airports.

As with the previous approach, this autopilot also features limitations, namely
the bank angle. When an autopilot system is available, the maximum bank angle
is used to calculate the minimum radius for a turn, just as in the previous
approach. When no autopilot system is present, the default value of twenty-
five degrees is used – this is the most common value for autopilot systems, and
experimental activities have demonstrated that this is also the most usual value
for this AI autopilot.

This approach has, however, a few more limitations. In this case, all navigation
is based on waypoints, which specify not only the latitude/longitude/altitude
coordinates of the desired point, but also the desired speed or throttle percentage
to be applied. Having this limitation in mind, and similarly to the previous
approach, several points have to be calculated and fed to the aircraft for circular
paths. This approach, however, does not require frequent communication with
the aircraft – all points of a maneuvering sequence can be sent at the same time,
in a waypoint list structure. The exception to this behavior is the existence of
loops in the path – if a portion of a path is to be repeated until some external
event occurs (such as human intervention), the waypoints that represent that
loop have to be sent at the beginning of that loop, with a flag indicating that
after the last waypoint, it should return to the first; when the loop is to be
broken, the remaining waypoint must then be sent, replacing the previous ones.

2.4 High-Level Maneuvering and Waypoint Computation

In order to compare these methodologies, some high-level maneuvers were con-
sidered, namely the ’go to point’ instruction, the circle and the helix maneuvers.
Additional instructions could be issued to the aircraft, including desired airspeed,
heading or altitude and target vehicle interception. These additional instructions
would force the aircraft to accelerate or decelerate to attain the desired airspeed,
turn and maintain the desired heading or climb or descend in order to reach and
maintain the given altitude. The target interception instruction provides the
aircraft with the most probable point of interception with the target vehicle,
if possible (aircraft and target vehicle speed, distance and heading are used to
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determine if interception is possible), updating the interception point every few
seconds. The authors believe the three first instructions to be sufficient to test
the efficiency of vehicle control, since others can be achieved by using the a
combination of the first ones or a similar method.

The ’go to point’ instruction has three logical parameters: latitude, longitude
and altitude of the point to be reached. The altitude is perceived as altitude
above the mean sea level, and not altitude above ground level. The circle ma-
neuver, also called loiter, is defined by the central point (latitude, longitude and
altitude), the radius of the circle and the number of laps, if not to loop indefi-
nitely. The helix is defined by a central line (latitude and longitude), the initial
and final altitudes, the radius of the helix and the number of laps. As previously
mentioned, the radius for the last two maneuvers is conditioned by the aircraft’s
maximum bank angle and airspeed. Also, the number of laps to be executed
in the helix maneuver is constrained by the difference between initial and final
altitudes and the aircraft’s maximum safe rate of climb/descend (vertical speed).

In order to compute the points used by the latter two maneuvers in the two
approaches that use autopilot systems, some considerations were made. First, the
number of points to consider is directly proportional to the difference between
the intended radius and the aircraft minimum turn radius. Second, and most
importantly, the order in which those points are presented can deeply influence
the path of the aircraft. For a smoother transition, a tangential approach to the
virtual circle is preferred, especially when the circle has a radius closer to the
minimum turn radius. The following algorithm was used to determine the first
point and the order of the remaining points: a list of points is determined for
the given radius, ordered as to form a circle; the distances between the aircraft
and the points are determined; the first point is the (N/2)th closest point to
the aircraft, N being the number of points in the circle; the second point is
the point further away from the aircraft, chosen among the two points that
are adjoining the first point in the original list of points. The remaining points
are determined according to the order in which they were initially determined.
Figure 1(a) illustrates the choice of the first and second points in a hypothetical
8-point circle and subsequent direction of turn.

(a) Waypoint Determination (b) Aircraft Position Adjustment

Fig. 1. Waypoint Determination and Aircraft Position Adjustment
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The current aircraft position is used if the circle or helix maneuver is to be
executed immediately; if the maneuver is to be queued after other maneuvers,
the final point of the previous maneuver is used. Also, the aircraft position to
consider may be adjusted to a position where the aircraft’s heading is towards
the region of the desired maneuver, considering a turn with the minimum radius
at current speed, as illustrated in Fig. 1(b).

3 Experimental Settings

In this section, the experimental settings for the conducted experiments are
presented. As already mentioned, FSX was the chosen simulator. Different ex-
perimental conditions were recreated for each control approach, with three main
controllable variables – aircraft type, weather conditions and maneuver sequence.

Different aircraft types were used to assess how generic the approach was, or
if it had limitations, namely regarding the size or type of aircraft. A total of
three distinct aircraft were used in the experiments, which include a Piper J-3
Cub (a single-engine two-seater light aircraft, with a wingspan of 10.6 meters
and a maximum speed of 74 knots), a Beechcraft Baron 58 (a twin-engine six-
seater with a wingspan of 11.5 meters and a cruise speed of 200 knots) and
a Bombardier Learjet 45 (a twin-engine-jet nine-seater with a wingspan of 14.6
meters and a cruise speed of 464 knots). Since this project is to be used with small
to medium-sized aircraft, the authors felt no need to conduct the experiments
with larger aircraft. Although the Piper J-3 Cub does not possess an autopilot
system, the authors think it was important to include this aircraft, as to test the
performance of the two other approaches on a smaller, slower plane.

Different weather conditions were used to test the control performance under
adverse conditions, and to see how flexible the approach was to the existence
of uncontrollable and unpredictable external factors. The experiments were con-
ducted under two different weather conditions – fair weather and gray and rainy.
The authors felt that harsher weather conditions would not be necessary, since
the intended aircraft would not fly under more adverse weather conditions.

Different high-level maneuvering sequences were also tested, as to assess how
the approach would handle maneuver transition and how smooth the final flight
would be. Basic high-level components were used to compose the three maneu-
vering scenarios used in the experiments. These high-level instructions include a
’go to point’ command, indicating that the aircraft should pass through a given
latitude/longitude/altitude point; circle, indicating that the aircraft should circle
a given point with a given radius, either one time or continuously; helix motion,
either climbing or descending from one initial altitude to a final altitude though
a series of turns around a central point.

All experiments begin with the selected aircraft stopped in the end of a run-
way (34R) of the selected airport – Seattle-Tacoma International – with idled
engines, facing the runway. The first command of the maneuvering sequence is
always a ’go to point’ command, with a point directly in front of the aircraft, ap-
proximately 500 feet above the runway, in order to assure both a smooth takeoff
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and that the aircraft attains its cruise speed. Slight variations in the scenarios
were introduced for the three aircraft, due to their different cruising speeds. As
already mentioned in the section above, the radius of a banked turn is propor-
tional to the square of the velocity of the aircraft, and hence, a larger radius
was used for faster aircraft in the circle and helix commands. As a result, other
commands were also modified in terms of longitude/latitude, in order to accom-
modate for the larger radius of these commands, in an attempt to maintain the
overall proportions between the several control points.

Data from the simulation sessions was collected, as to be further analyzed, as
described in the following section.

4 Results

In this section, the results that were attained through the experiments that
were conducted, and as described in the previous section, are presented. For
a more structured arrangement, the results are divided into two categories –
communication necessities and maneuver effectiveness.

4.1 Communication Necessities

The first dimension that was analyzed is communication requirements. Although
this is not a major issue when working in a simulated environment, the future
use of real vehicles connected to the platform requires this to be analyzed. In
this subject, the third approach is far less demanding. While both the first and
second approaches need to communicate with the aircraft at regular intervals,
the third approach only communicates in the beginning of the experiment and,
in the case of the third scenario, two other times, due to the existence of a
user-controlled loop.

In a more detailed view, the first approach needs to send elevator, throttle
and aileron data at regular intervals. In the experiments that were conducted,
the values were sent every second. Although this was more than enough for
the simulated experiments, it is believed that this kind of approach would re-
quire, in real live, more frequent adjustments to the aircraft controls to produce
a stable flight. The second approach also sent data at regular intervals, even
though a higher two-second interval was used. The data sent in this approach
consists of heading, speed and altitude values for the autopilot knobs. With
the third approach, and considering the mentioned exception of user-controlled
loops, all data is sent before-hand. This data consists of a list of a waypoint-
describing structure, containing the latitude, longitude and altitude of the point,
desired speed or throttle and some flags, indicating how the waypoint should be
interpreted.

4.2 Maneuver Effectiveness

Maneuver effectiveness was evaluated on a more subjective level, by analyzing
and comparing the paths the aircrafts flew through. On a more immediate level,
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(a) Monitoring Tool (b) Logging Tool

Fig. 2. Monitoring and Logging Tools

the experiment flights were accompanied in real-time, using both the simulator’s
graphical interface and the developed monitoring tool. This tool uses collected
aircraft data as well as information about the determined waypoints to display
the current position and orientation of the aircraft, as well as the positions and
order of the various waypoints. This was done using the Google Maps and Google
Earth APIs, to render the desired icons on top of the two- or three-dimensional
representation of the surrounding environment in a plugin using an embedded
web browser. Figure 2(a) shows the developed monitoring application, with the
several waypoints that define a circle, and a visible aircraft between points five
and six. In addition to this immediate and inaccurate visual inspection of aircraft
data, information about aircraft position, speed and attitude was collected at
regular intervals and stored in a log file. The developed logging application then
converted this information into two formats: KML format (Keyhole Markup
Language), and CSV format, as can be seen from Fig. 2(b).

The first format, KML, allows for a visual inspection of the paths in an ap-
plication such as Google Earth. Figures 3(a) and 3(b) show the results of two
experiments conducted for the first scenario, using two distinct aircraft.

It is clear by analyzing both Fig. 3(a) and 3(b) how a faster aircraft required
a change in the location of the circle and helix centers, in order to accommodate
the increase of the minimum turn radius, maintaining at the same time a similar
overall proportion. The CSV format can be imported to an external application,
such as Microsoft Excel, which was then used to generate three-dimensional
graphs, as to facilitate in a further, more thorough, inspection of the flight paths
without additional visual distractions.

Figures 4(a) and 4(b) show the results from the two experiments above in
three-dimensional graphs. A more detailed assessment of the efficiency of the
control approaches can be made with these graphs, especially in the altitude
dimension. As previously stated, experiments were conducted with three dis-
tinct aircraft, using three distinctive scenarios and under two different weather
conditions. As to assess the influence of each of these three factors in the
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(a) Flight Path A (b) Flight Path B

Fig. 3. Google Earth Preview of Flight Paths A and B

(a) 3D Graph of Flight Path A (b) 3D Graph of Flight Path B

Fig. 4. 3D Graphs of Flight Paths A and B

tested approaches, the results were evaluated by grouping experiments with two
common variables and analyzing the results in respect to the third one.

Considering different aircraft, and as previously stated, the second approach
could not be tested in the smallest aircraft, since there is no autopilot system
available to the pilot. The first aircraft had a similar performance with both
the first and third approaches. The second aircraft showed a slightly better
performance when using the first and third approaches, compared to the second
one. The third and largest aircraft had a comparable performance for all three
approaches.

Regarding the three distinct scenarios, there were no significant differences
among the three approaches. The three scenarios diverged in the complexity of
the intended course, each scenario adding more maneuvers and decreasing the
space between maneuvering areas. This caused the aircrafts to make more abrupt
turns, but all approaches handled this without posing any problem.
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In respect to the influence of weather conditions in maneuver effectiveness,
they were similar with all three approaches. The resulting paths were a bit more
unstable, presenting more variations in altitude and in some cases widening the
radius of the circling maneuvers. In the cases when this happened, the second
and third approaches were more susceptible to erroneous maneuvering. In three
cases, when using the third scenario, two with the second approach and one
with the third approach, the aircraft performed a full circle in order to pass
through a point it had previously missed. As for the first approach, the influence
of deteriorating weather conditions was also felt in the form of course shifting.
This was particularly visible with smaller aircraft, performing circle maneuvers,
each lap slightly warped in the direction of the wind.

5 Conclusions and Future Work

In this section, some conclusions that can be withdrawn from the three tested
approaches and the experimental results are presented. Also, some lines of future
work are presented.

From a more theoretical point of view, one can draw some conclusions from
the three approaches that were devised. The PID controller approach is a general
method, which works with any aircraft that has the necessary controls (throttle,
aileron and elevator). However, it requires an almost constant communication
with the aircraft, in order to send the current values. Moreover, most aircraft
now have some sort of autopilot system, which performs the same calculations
as the PID controller, and, most probably, in a more effective manner, having
the gains already tuned for the specific aircraft. The autopilot approach is not
a general method, as can be seen from the chosen aircraft for the experimental
activities – not all aircraft have autopilot systems. Moreover, it also requires an
almost constant communication with the aircraft, just as the first approach. It
does, however, require a lot less calculations to be made in the control agent
side, leaving them to the autopilot system. The third approach is also a general
approach, given that any aircraft can be used with the AI autopilot system. It
is far less demanding in what concerns to communications requirements, since
it only needs to communicate once. This is, however, a burst in communication,
with far more data to be transmitted than any of the other methods. In addition
to that, some substantial waypoint calculation has to be previously performed
by the control agent.

From a more practical point of view, one has to consider the results that
were attained through experimentation, as presented in section 4. In respect to
maneuver execution effectiveness, there are no significant differences among the
three approaches. However, and although the second approach is viable when
dealing with real aircraft, as already explained in section 2.2, it is not practical
to use that approach in the simulated environment, since it would exclude some
aircraft from being used. The use of different aircraft does not seem to influ-
ence the performance of the approaches, with the only visible impact being the
increase of the turn radius caused by the increase of the aircraft speed. Also,
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all approaches seem to be equivalently affected by deteriorating weather condi-
tions, although the autopilot-based approaches are more susceptible to missing
one waypoint. This can, however, be easily corrected if one increases the dis-
tance at which the aircraft is considered to have reached a waypoint when the
weather conditions deteriorate. Regarding communication requirements, one has
to conclude that the third approach, based on the AI autopilot, is the best ap-
proach, since it does not require a constant communication with the aircraft,
and therefore the possibility of error due to a failure in the communication with
the aircraft is reduced to a minimum. The first two approaches, which had to
communicate every second or once every two seconds, are more susceptible to
errors caused by a communications malfunction, which could lead to an erratic
maneuver performance, or even to more serious and unpredictable consequences,
if the communication breakdown extents for a longer period of time. With the
third approach, and even in the case of a complete communication crash, the
aircraft would simply continue with the original flight plan and return to the
base as originally intended to.

In spite of the project’s overall success, some improvement opportunities have
been identified. One possible improvement in maneuver definition and execution
is the possibility to specify whether the circle and helix movements should be
executed banking to the right or to the left. Currently, this is determined by
the algorithm as described in section 2.4, resulting in some unpredictability.
Another possible improvement would be to automate landing procedures, by
automatically selecting the best runway for landing and determining a series of
waypoints as to align the aircraft with the runway. Some additional factors that
would increase the level of realism of the simulation could be achieved by fault
injection, such as the introduction of noise in communication, as well as failures
in some aircraft systems, sensors and actuators.

The next step of this project is to select an agent platform as to facilitate
communication between agents, to assist in the execution of cooperative mis-
sions. When completed, the system will allow for the cooperative planning and
execution of missions, such as surveillance of given areas, such as forests (to
facilitate early fire detection) or coast lines (to detect and help prevent illegal
activities) or even areas affected by pollution, to detect the source and probable
progression of the polluting chemicals. The system can also be used to assist in
military operations, such as search & rescue operations, covering a larger search
area, or enemy surveillance operations.

As a final summary, one can say that the simulation environment shows
promising capabilities, namely when referring to structured experiences; the air-
craft control approaches were tested successfully, and the future of the project
is promising, with many possible useful applications.
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Abstract. Increasing complexity in serious games and the need to reuse
and adapt games to different purposes and different user needs, requires
distributed development approaches. The use of software agents has been
advocated as a means to deal with the complexity of serious games.
Current approaches to dynamic adjustability in games make it possible
for different elements to adjust to the player. However, these approaches
most use centralized control, which becomes impractical if the complexity
and the number of adaptable elements increase. The serious games we are
investigating are constructed using complex and independent subtasks
that influence each other. In this paper, we propose a model for game
adaptation that is guided by three main concerns: the trainee, the game
objectives and the agents. In particular we focus on how the adaptation
engine determines tasks to be adapted and how agents respond to such
requests and modify their plans accordingly.

1 Introduction

Increasing complexity of software games, in particular of serious games [12, 13],
and the need to reuse and adapt games to different purposes and different user
needs, requires distributed development approaches. As games become more and
more sophisticated in terms of graphical and technological capabilities, higher
demands are also put on their content and believability. The use of software
agents has been advocated as a means to deal with the complexity of serious
games [8]. In these often many different characters performing complicated tasks
interact with each others and with the trainee. In the case of the fire command
training game, one could think of a situation where characters playing the role
of fire agents need to be replaced by soldiers (for instance, when the disaster
increases to a very complex situation). It would be very useful if this could be
done without rewriting the complete strategy. Serious games are applications de-
veloped with game technology and game design principles for non-entertainment
purposes, including games used for educational, persuasive, political, or health
purposes. The goal of a serious game is to teach certain pre-specified tasks to the
trainee of the game (the trainee). In serious games, quality is measured in terms
of how well the components in the game are composed, how they encourage the
player (or trainee) to take certain actions, the extent to which they motivate
the player, i.e. the level of immersiveness the game provides, and how well does
the gaming experience contributes to the learning goals of the trainee [3].

F. Dignum et al. (Eds.): Agents for Games and Simulations, LNAI 5920, pp. 206–220, 2009.
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Believability is a main driver of game development. The search for enhanced
believability has increasingly led game developers to exploit agent technology
in games [8]. In particular, dynamic response, multiple conflicting goals, team
work and cognitive models are all agent research issues that are relevant for game
developers. Furthermore, serious games need to be suitable for many different
people. Currently this adjustment is either done externally by experts that need
to guide the adaptation, or the game provides a number of predefined levels
based on (learner) stereotypes. While the use of expert guidance to adaptation
usually results in quite effective training, such experts are rare, not available
during the training session, and expensive. The use of predefined adaptation
levels may lead to less optimal adaptation in the case trainees do not fit well
with the stereotypes. Furthermore, the enhancement of the learning experiences
requires to (automatically) adjust the game online.

Three requirements for online game adaptation have been identified [1]. First,
the initial level of the player must be identified. Second, the possible evolutions
and regressions in the player’s performance must be tracked as closely and as
fast as possible. Third, the behavior of the game must remain believable. In this
paper we will mainly concentrate on the third aspect while trying to achieve the
first two. In order to optimize learning, serious games should provide the trainee
an ordered sequence of significantly different and believable tasks. Without a
clear organization structure, adaptation can quickly lead to a disturbed storyline
and the believability of the game will be diminished. Furthermore, characters in
serious games are usually active for relatively long periods in serious games.
This poses an extra burden on the believability of the game, namely coherence
of long-term behavior [9].

The realization of the tasks of the trainee require the coordination of the ac-
tions of many different characters. For example, a serious game for training a
fire commander includes scenarios aiming at learning how to make sure the vic-
tims in a burning building are saved. Adaptability to learning objectives implies
these characters to show a spectrum of behavior. The victims could be more or
less mobile or they could be located in simple or difficult locations. There may
be bystanders that could obstruct the medics. The police could autonomously
control the bystanders or could only act if ordered by the fire commander. Also
the behavior of the medical personnel affects the difficulty of the task. As be-
comes clear from this example the difficulty of the trainee’s task is very much
dependent on the behavior of all the characters in the scenario, resulting in many
variations of the same global task.

Performance of each subtask can not be measured separately because all be-
haviors influence each other. If all characters are allowed to adapt to the trainee
without coordination, situations will occur where all adapt simultaneously re-
sulting in unwanted scenarios for the trainee. For example, all victims become
less mobile, all police agents become less autonomous and bystanders provide
higher obstruction to medics. Consequently, adaptation should be coordinated
according to the learning objectives while maintaining a coherent storyline. In
previous work [15] we proposed the use of multi-agent organizations to define
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a storyline in such a way that there is room for adaptation while making sure
that believability of the game is preserved. In this paper, we discuss the effect
of these approach to adaptation on the design of the agents.

The paper is organized as follows. In the next section, we introduce GAM,
the model for game adaptation. The background and motivation for this model
are discussed in section 3. In section 4 we describe the task selection mecha-
nism based on user and game model, and in section 5 the consequences of the
adaptation model in terms of agent architecture are described. Extensions and
conclusions are discussed in the last section.

2 Game Adaptation Model

Systems of learning agents are usually very unpredictable. This is not a prob-
lem for applications like simulations or optimizations where only the end result
matters. But for games, where the agents are adapting to the trainee during
the game and thus the adaptation must have a direct beneficial influence, the
system needs to be a lot more predictable. Therefore, adapting the game to the
trainee in complex learning applications requires both learning capabilities and
decentralized control. In order to guarantee the successful flow of the game and
the fulfillment of the learning objectives, the system also needs to be able to
describe and maintain global objectives and rules.

Adaptation in games is guided by three main concerns: the trainee, the game
objectives and the agents. The trainee, its capabilities, learning objectives and
learning style are central to the adaptation. The purpose of the game is to
provide a suitable environment for the trainee, so the primary requirement for
adaptation is the need to determine trainee’s initial state, objectives and style.
As important is the game setup. In order to ensure believability and therefore
contribute to the learning experience of the trainee, adaptation should maintain
coherence of the storyline and integrate seamlessly to the scene where the trainee
is situated. In our approach, agents provide the behavior for different game
elements. Agents can be behind a game character, but also control some other
(non living) elements, such as the strength of the fire and the quality of obstacles
in the fire commander training example given above. Each agent pursues its own
goals, and should be able to adapt its behavior by providing different plans for
a goal or a range of alternative goals. GAM (Game Adaptation Model) includes
the elements described above as depicted in figure 1.

Based on the current state of the trainee and on the current moment in the
game storyline, the adaptation engine should be able to determine what type of
behavior should be requested from the agents. Based on this request, each agent
can determine its own possibilities for adaptation (or a range of possibilities)
that should fit with the agent’s own goals and its own perception of its role
in the storyline. Based on the proposals by the agents, the adaptation engine
will determine the overall adaptation and request the chosen agents to change
their behavior accordingly. Finally, the resulting game scene is presented to the
trainee.
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Fig. 1. The Game Adaptation Model

In training applications it usually is possible to make an estimation of the
difficulty of a certain task. This can be done using domain expert knowledge
that associates different task implementations with a specific difficulty level.
These estimates can be updated in an offline learning phase and will get more
accurate if more users have used the application. Having this information in
advance significantly speeds up the adaptation because the algorithm not only
needs to learn the strength relations between the different task implementations
but is even able to directly select appropriate implementations for a given trainee
skill level. The coordination of the difficulty of the tasks of the different agents is
done using the organizational description of the storyline as given in the Game
Model. If the trainee is performing above expectation and all the agents decide
to increase the difficulty at the same time the application will probably be too
difficult the next time. The adaptation engine will determine how much agents
are allowed to adapt.

3 Background

As described in the previous section, we advocate to bring together three issues
in order to adapt serious games to the user. The adaptation should be distributed
over the separate elements that constitute the story line, these elements should
adapt themselves online using some machine learning technique and they should
do it in an organized fashion to maintain the general story line. In this section,
we discuss the related work that can be used for these aspects.

3.1 Adaptation in Games

Even though many commercial games do not use any adaptation [10], already
some research has been done on adaptation in games. However, most of this
research focuses on adaptation of certain simple quantitative elements in the
game. For example better aiming by opponents or adding more or a stronger
type of opponents.

Most commercial computer games that have varying degrees of difficulty do
not use online adaptation. They have a number of preset difficulty levels that
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need to be selected in the beginning of the game. Offline learning could be used
for these predefined levels but usually these are just scripted by hand. Current
research on online adaptation in games is based on a centralized approach [6, 14].
Centralized approaches define the difficulty of all the subtasks from the top down.
This is only feasible if the number of adaptable elements is small enough and
if the separate adaptable elements have no separate time lines that need to be
taken into account. In shooting games, for example, these requirements are not
problematic. The games only adapt to the shooting skill of the trainee and most
characters only exist for a very limit period of time.

Another important aspect of adaptation in (serious) games is the distinction
between direct and indirect adaptation. Direct adaptation occurs when the de-
signer specifies possible behavior of the agents in advance and specifies how and
when to change this behavior. The designer also specifies what input informa-
tion should be used. Direct adaptation only allows adaptation to aspects that
the designer has foreseen. No unexpected behavior can emerge when using direct
adaptation. On the other hand, in indirect adaptation performance is optimized
by an algorithm that uses feedback from the game world. This requires a fitness
function and usually takes many trials to optimize. If indirect optimization is
used the algorithm also needs to be able to cope with the inherent randomness
of most computer games. In this paper, we will use an approach that has the
benefits of direct adaptation without the need for the designer to directly spec-
ify how the adaptation should be done. The designer is able to specify certain
conditions on the adaptation to guarantee the game flow but does not have to
specify which implementations are chosen after each state.

Research has been done on using reinforcement learning in combination with
adaptation to the user [2, 14]. Most of these algorithms rely on learning relatively
simple (sub-)tasks. Moreover, the aim of these adaptation approaches is learning
the optimal policy (i.e. making it as difficult as possible for the user). In order
to avoid that the system becomes too good for the user, some approaches filter
out the best actions to adjust the level of difficulty to the user. This results
in unrealistic behavior where characters that are too successful suddenly start
behaving worse again. Little attention is paid to preserving the story line in
present online adaptation mechanisms, because they only adjust simple (sub-)
tasks that do not influence the storyline of the game. Typical adjustments are for
example, changing the aiming accuracy of the opponents or adding more enemies.
However, even when adding more enemies the algorithm should already take into
account that they can only be added in unexplored areas and do not influence
the progress of the game.

3.2 Agent Organizations

Adapting the game to the trainee for complex learning applications requires
both learning capabilities and decentralized control. However, in order to guar-
antee successful flow of the game and the fulfillment of the learning objectives,
the system needs to be able to describe global objectives and rules. Although
many applications with learning agents exist, multi-agent systems with learning
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agents are usually very unpredictable. This is not a problem for applications
like simulations or optimizations where only the end result matters. But for
(serious) games, where the agents are adapting during the game and thus the
adaptation directly has to have a beneficial influence, the system needs to be a
lot more predictable. Systems with this type of characteristics have been suc-
cessfully modelled using agent organization frameworks such as OperA [5]. In
this framework it is possible to define conditions when certain plans are allowed
or not. The ordering of the different possible plans can also be defined in this
framework. This allows the designer to make sure that the users are not exposed
to tasks that are not suitable yet or would ruin the storyline. In previous work
we have shown how to use agent organizations to specify the boundaries of the
game [15].

The OperA model for agent organizations enables the specification of organi-
zational requirements and objectives, and at the same time allows participants
to have the freedom to act according to their own capabilities and demands. In
OperA, the designer is able to specify the flow of the game by using landmarks.
The different sub-storyline definitions of the game are represented by scenes (the
boxes in the figures are separate scenes) which are partially ordered without the
need to explicitly fix the duration and real time ordering of all activities. That
is, OperA enables different scenes of the game to progress in parallel. In the
scenes, the results of the interaction are specified and how and in what order the
different agents should interact.

Such an interaction structure defines the ordering of the scenes and when it is
allowed to transition to the next scene. The scenes are defined by scene scripts
that specify which roles participate and how they interact with each other. The
definition of the organization can be so strict that it almost completely defines
the strategy. But it is also possible to specify the organization in such a way that
all the agents in the game work towards achieving the goals of the game but are
still able to do this using different strategies. It is also possible to define norms
in the scene description. This makes it possible to put extra restrictions on the
behavior of the agent. In a scene script, it is also possible to define certain time
constraints to make sure that the game progresses fast enough.

3.3 Adaptation with BDI-Agents

Autonomous game characters should be able to ensure that they maintain a
believable storyline. They also have to make complex decisions during to game
because not all information is known before the game started. Using BDI agents
is a suitable implementation because it allows us to create intelligent characters
that are goal directed and able to deliberate on their actions. For the imple-
mentation of the BDI agents we will use the 2apl [4] language. 2APL is an ef-
fective integration of programming constructs that support the implementation
of declarative concepts such as belief and goals with imperative style program-
ming such as events and plans. Like most BDI-based programming languages,
different types of actions such as belief and goal update actions, test actions, ex-
ternal actions, and communication actions are distinguished. These actions are
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composed by conditional choice operator, iteration operator, and sequence op-
erator. The composed actions constitute the plans of the agents. Like existing
agent programming languages, 2APL provides rules to indicate that a certain
goal can be achieved by a certain pre-compiled plan. Agents may select and
apply such rules to generate plans to achieve their goals.

Most BDI architectures do not provide learning abilities. However, an exten-
sion of 2apl for learning agents is available, in which multiple equivalent 2apl
plans are available that are suitable for different skill levels [7].

4 Game Adaptation Engine

As discussed in the previous sections, current work on game adaptation does
not fulfill the requirements of complex distributed serious game applications. We
propose an adaptation approach that uses expert knowledge for the adaptation
but is more flexible than current direct adaptation methods.

Important to keep in mind is that the task that needs to be executed by the
trainee follows from the behavior of the agents. Each agent is responsible for
adapting its own subtask(s) while making sure that believability is preserved.
Think of the example where the trainee is a fire commander that needs to secure
victims inside a burning building. Example of a subtask is controlling the fire,
which can easily be increased in difficulty by letting the fire spread and grow
more or less rapidly. However it would be unrealistic if the fire suddenly doubles
in size without a gradual increase. In the same way, many more agents’ subtasks
influence the performance of the trainee. The bystanders could be obstructing
the medical personal more if time progresses but it would be unbelievable if the
number of bystander suddenly doubles. A typical example of subtasks directly
interacting with each other occurs when there is a police agent that has the
ability to influence the bystanders. These are however subtasks from the training
perspective. The trainee needs to give orders to the police man if he is not
performing well while dealing with the bystanders is a different task.

4.1 Task Selection

The goal of the game engine as depicted in figure 1 is to select the best tasks
that suit the needs of the user. Speed of adaptation is important in games to
ensure a continuous flow, therefore, to make adaptation as fast as possible we use
a flexible form of direct adaptation in the online phase. This means that all the
different possible behavior variations for all agents are implemented a priori and
stay fixed. The adaptation task is then to select a subset from this set of possible
behaviors that is most suitable task for the user at a given moment. It should
be noted that the tasks to be performed by the trainee are dependent on the
game environment but even more on the possibilities provided by the (adaptive)
agents. These agents can perform different plans based on task preference. For
example, a task could be made easier if a cooperative agent is autonomously
performing a large portion of the task without requiring lots of input from the
user.
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Assuming an user model indicating the user aims, capabilities and learning
objectives, the game engine will select a task that is most suitable for the trainee
but also preserves the storyline and gameflow. We assume that the storyline is
defined by an agent organization framework, such as OperA. At the beginning
of the game, a default user model is used, which may be not a very accurate
representation of the trainee but this model will be adapted according to the
trainee’s performance. On the other hand, each agent has it own preferences and
these preferences are likely to conflict with each other. We have chosen to use a
kind of combinatorial auction [11] to select the best suitable plans for all the
agents.

The main objective of the adaptation engine is to choose the most optimal
task for the trainee, given the user model, the game flow and the capabilities
of the agents. The task of the trainee is created by combining the subtasks of
the agents. The agents representing the different adaptable elements will make
different possible variants of their subtasks available that can be executed in the
next time step. The actual selection is thus dependent on the required task for
the trainee and on the preferences of the agents.

Figure 1 shows a schematic overview of the whole task selection process. This
is optimized on the skills of the trainee but also most fitting with the preferences
of the agents. The preferences of the agents are different because they have as
a goal to stay as consistent and believable as possible and to follow their own
preferred ordering of tasks. The agent uses information from the Game Model
where the ordering of tasks can be specified. During this task selection we also
use the restrictions from the Game Model to select a fitting task according to
the organizational requirements. An example of this is that in the organization
it is specified that one agent always goes left and one agent goes right. In the
case that one agent specified no preference while the other agent prefers to go
right, the agent without a preference should select the variations where it goes
left.

The resulting ”selected task” is a combination of all the plans that will be
executed by the agents. This task has a certain combined difficulty for all the
separate learning tasks. After the task is completed this information can be used
to update the user model. The update of the user model is also dependent on
the performance of the user.

4.2 Formalization

In this section we will formalize some important aspects of a training simulation.
Of each of these aspects, we will discuss how to obtain the values of these.

Definition 1. (Training)
The complete training consist of a partially ordered set of tasks:

(D1) M = ({tiT }, Pc)

with Pc the partial ordering.

For a given task T ,
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(D2) VT = {t1T , ..., tnT }
are the possible variations of T .

Each variation tiT is formed as a partially ordered set of subtasks:

(D3) tiT = (X i
T ⊆ S, P i

T )

The partial ordering Px is selected from a number of predefined partial orderings
VP = {P1, . . . , Pn} belonging to each task T .

S consists of all possible atomic subtasks:

(D4) S = {s1, . . . , sx}
Where each subtask corresponds to an optional agent plan.

Subtask belong to different skill categories that need to be learned by the trainee.
Skills correspond to a certain user task type such as extinguishing a fire or giving
team orders.

Definition 2. (Difficulty)
The difficulty for a variation is determined separately for each skill l. The diffi-
culty for a skill is only dependent on the subtasks that correspond to that skill:

(D5) d(tiT , l) = g({hd(s)|s ∈ X i
T ∧ L(s) = l})

Function g determines the total difficulty for a skill category from the difficulty of
the separate subtasks that belongs to the corresponding skill category. Currently
function g uses the average difficulty but this can be improved in the future.
Function hd determines the difficulty of the separate tasks, this depends on the
selected subtask execution and are defined by a human expert. These values
vary between 0 and 1. These values indicate the expected needed skill of a
trainee to perfectly complete the task. For instance, on a task with a value of
0.5 on some property, a trainee with a skill level of 0.2 is expected to have
difficulty completing the task, while a trainee with a skill of 0.6 should be able
to perform the task perfectly. The assumption is that tasks with a skill level a
little higher than the skill level of a user for certain properties can be expected to
be challenging enough to be valuable for training, but not too hard to complete.

Definition 3. (Weights)
The weights for each skill category are dependent on the partial ordering Px:

(D6) wgt(tiT , l) = hw(P i
T , l)

The possible partial ordering and the corresponding weight for each skill cat-
egory are predefined by a human expert (function hw). These values indicate
how much each skill is needed for the task. These weights will be used to de-
termine how much to update each skill level of a trainee that performed the
corresponding task. We require each weights value to be a real valued number
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0 ≤ hw(P i
T , l) ≤ 1. There are two equivalent ways to establish these weight vari-

ables in a useful way. In the first case, each weight corresponds to the amount of
impact that each property has on the training as a whole. For instance, one way
to determine such weights is to use the expected amount of time needed for a
certain subtask corresponding to a certain skill. Note that this is an orthogonal
concept to difficulty, because subtasks that make up the largest part of a task
are not necessarily also the hardest parts of that task. In the second case, a
perhaps easier way to handle these weights variables is to separate the impact
on learning as a whole from the make up of a certain task. Then, the weights
of a task could be required to sum to one over all skills. The interpretation of
a weight then is the part of that skill that is needed to perform this task. Such
a tuple may be somewhat easier to construct, for instance by human experts.
However, an indication of the size of the task compared to the training as a
whole is needed, that should be stored in a different number V .

A reinforcement function is needed to evaluate the performance of the trainee.
Such a function should be defined for each task, such that it can give feedback
about the level of performance of the trainee on that task. The output of a
reinforcement function is a number r, that can range from 0 to 1, where the
interpretation is that when a trainee receives a reinforcement of r = 1 the task
was performed perfectly. Conversely, a reinforcement of r = 0 indicates that
the trainee failed to complete the task at all. We only consider reinforcement
functions that are constructed by human experts, although for most domains
some metrics such as the time needed to complete a task compared to the average
time needed to complete the task by similar users could be used as reinforcement.

Definition 4. (User Model)
This model is a tuple of size l:

(D7) U = (u1, u2, . . . , ul)

where each element indicates the expected skill level of the user on each
corresponding skill category.

This model is hard to obtain a priori, since it would require a screening of each
user on all the relevant skills. Therefore, in the next section we will discuss ways
to update this model automatically.

The game organization model describes which combinations of subtasks are
allowed at any state of the game. Each agent is able to provide some of the
subtasks at a certain difficulty level. Furthermore, the user model will indicate
the desired difficulty level for each skill category for the user task, dU,p. Then,
the objective of the adaptation engine is to determine a ordered set of subtasks
that is allowed according to the game model, possible to be executed by a set of
agents, and which difficulty is ∀l : dfclt(tiT , l) = dU,l.

4.3 Updating User Models

As mentioned in the previous section, a user model is a tuple of size l containing
estimates of skill levels for the user. For instance, these could be instantiated
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with a value of 0 for each skill, meaning we do not expect the user to be able to
perform any skill to a desired level yet. For instance, these could be instantiated
with a value of 0 for each skill, meaning we do not expect the trainee to be able to
perform any skill to a desired level yet. We now allow a trainee to try to perform
some scenario. This scenario will consist of a number of tasks that can potentially
be divided further into subtasks. For each task we assume the difficulty D =
(d1, . . . , dl) (using di = dfclt(tiT , i)) and weights W = (w1, . . . , wl) (using wi =
wgt(tiT , i)) are calculated and stored in tuples and that a reinforcement function
exist. After a trainee completes any subtask for which each of these aspects is
defined, we can update the user model as follows:

∀ui ∈ U : ui = (1 − αiwi)ui + αiwir max(di, ui), (1)

where 0 ≤ αi ≤ 1 is a step size learning parameter. First assume that ui < di.
Since we required that wi is between 0 and 1, the effect of this update is as
follows: if the task was performed perfectly, r = 1 and ui will get updated
towards di with a step size dependent on αi and wi. If, on the other hand, the
task failed completely, the update results in an update of ui towards zero. It can
be easily verified that for skills that are not needed for the task the trainee skill
is not updated, since wi is then equal to zero. Typically, we will want αi to be
reasonably high in order to learn quickly from the received reinforcements. It is
however possible to set αi to zero, for instance when the main goal of a certain
task is to only update specific parts of the user model.

When ui > di, the trainee is assumed to be able to perform a task with
difficulty di perfectly. If that is indeed the case, r = 1 and the trainee is updated
towards ui. This implies the user model is not updated. However, if the trainee
is not perfect and r < 1, the trainee will get a negative update that is dependent
on how low the reinforcement in fact is. This update should ensure that the
skill levels in the user model will converge to the actual skill of the user. We
note that the expected user skill ui will get updated positively every time that
rdi > ui. This implies that for difficult tasks, a trainee with low skill does not
need to perform perfectly to increase the expected skill. In general, we want
users to increase their skill levels, so we want them to perform tasks where
the expected reward is higher than ui/di. If we are correct in estimating these
expected reinforcements, we can easily determine which tasks are fruitful options
for training. This brings us to the following important point: estimating the
expected reinforcements.

5 Agent Perspective

5.1 Action Selection

Agents are modelled according to the BDI architecture, which allows for plan
and goal selection. In particular, we use a modified version of 2APL that provides
learning capabilities to the agents [7]. It should be noted that in our approach,
the individual agents are not responsible for the learning rate of the trainee.
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That is taken care of by the adaptation engine. However, the goals of the agents
are explicitly determined to facilitate the trainee’s objectives. Furthermore, we
assume that all agents aim at being as helpful as possible and rather act in a
scene, to support the trainee, than they are idle. This means that the agent
is primarily responsible for fulfilling its own goals. This means that all tasks
performed by the agents contribute in some way to the learning of the trainee,
but agents are not directly responsible for finding the right combination of plans
or to coordinate their tasks with the other agents.

Usually, the agent will propose to the adaptation engine multiple different
plans that it would like to execute, according to its goals. We make a distinction
between different types of plan sets that the agent can propose. At the highest
level we have plans that are different because they are designed to fulfill different
goals. Next, we have plans that are in a different class because they are designed
to fulfill the same goal but use different action types to achieve this. For example,
an agent could have multiple actions for satisfying the goal to extinguish a fire.
It can achieve this by using water, or oxygen deplete the fire by using explosives.
And finally we have multiple plans that use the same action type but have
a different execution of this action that is similar but are created to propose
different difficulty levels. For example, there could be multiple implementations
of using a water hose to extinguish a fire with different degrees of effectiveness.

Based on the information on the required difficulty of the subtask set, provided
by the adaptation engine, an agent will generate one or more fitting proposals.
The agent has two conflicting concerns when proposing actions to the adaptation
engine. One the one hand, the agent has certain preferences related to keeping
its behavior as consistent and believable as possible. On the other end should the
agent also propose actions that allow for a suitable combination for the trainee.
Suggesting suitable plans is not only dependent on the desired difficulty but also
on information of the current environment and of past occurrences. For example,
the agent can observe that another agent is already performing a certain task
and the agents knows that only one agent can perform this task at the same
time. The numbers of plans proposed by the agents have a big influence on the
whole system. In the extreme case that each agent only proposes one option,
the adaptation engine can only select which agents participate in the scene not
what behavior they perform and which variation is used. This allows for little
possible adaptation to the user and a higher chance that no valid combinations
can be made. An advantage of proposing very few options is that the behavior
of the agent is more believable because the agents propose actions that are best
fitting with their own preferences (staying as believable as possible). In the other
extreme where the agents propose all valid actions, there are a lot more possible
combinations, allowing multiple valid solutions and more possibilities to adapt to
the user. A disadvantage is that the agents could end up performing actions that
do not fit their storyline very well. The agents are able to give preferences on the
actions they propose but it depends on the adaptation engine to which degree
these preferences are used. The optimal solution will lie somewhere between these
extremes. Agents should provide enough plans to allow for proper adaptation to
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trainee but not propose unrealistic plans, while the adaptation engine should
keep the preferences of the agent into account.

The adaptation engine not only selects the best matching combination of
plans but also is able to influence plans proposed by the agents to achieve a
better combination for the trainee. If the organization detects the trainee would
be best served if more agents suggest plans related to a certain action type at
a certain time, it can request this from the agents. Remember that the agents
already propose all reasonable options so this request should not be used to try
to let the agents propose different plans without a special reason. One reason
could be that there is no valid combination possible with the current bids, but
this should not happen frequently. A situation that will occur more often is that
agents are performing actions that continue for longer periods of time but can
be terminated upon request. If this is not the case, the organization could have
the agent switch plans with an active plan that should not be terminated at
that time. Or if the organization always waits for the agents to finish its active
plan before assigning a new plan, some plans that very easily could be switched
might not be executed because the agent is performing a simple plan that takes
a very long time (possible infinite) to complete.

Both the timing of switching plans as well as the decision to comply with a
request from the adaptation engine are the responsibility of the agents. In some
cases the agent is able to perform certain plans (and thus can be requested by
the organization) that at that time would not fit the storyline of the game very
well. Even though the expected combined difficulty of the task might be less
suitable for the trainee if the agent does not comply to the request, it could still
be a wise decision if the storyline of the game is better preserved.

We assume that when the default internal reasoning of the agents suggests
preferences on actions, the behavior of the agent is more natural. This provides
an advantage when compared with top-down orchestration of all the plans.

Definition 5. (Agent Proposal)
An agent proposal is defined as a set of actions with their corresponding
preference:

(D5) Prop = {(s, pref(s))|xl ≤ hd(s) ≤ yl ∧ s ∈ Sok}
With xl and yl defining the boundaries of the difficulty and Sok defines the actions
that are legal in regards to the storyline.

5.2 Learning Agents

Agents are able to adapt their behavior in order to optimize achieving its own
goals. On the level of individual adaptation, it is preferable that the agents do not
learn completely new plans, as learning new plans is slow in online adaptation.
Another disadvantage of learning new plans is that it requires exploration which
might actually degrade performance. This leaves the agent with the ability to
learn which of its predesigned behaviors to select. The performance measure for
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this task is separate from the adaptation model. The agent still needs to explore
different actions but all the available actions are viable options.

Three different methods can be used when doing this online adaptation. The
most simple approach is to predefine expected outcomes for each action type.
If the performance is worse than the predefined expected outcome then the
agent should try a different action type. For tasks which can have the same
feedback parameter for the different actions, reinforcement learning can be used
to optimize the agents performance.1 Agents can use reasoning for selecting
different action types. For example, if the agent knows that a truck is blocking
the road than it could better execute a different action where access to the road
is not needed.

6 Conclusion

In this paper we discussed online adaptation in serious games. The basis for the
adaptation lays with the use of learning agents. In order to coordinate the adaption
of the agents we use an organizational framework that specifies the limitations of
the adaptation in each context. We have shown how GAM, the Game Adaptation
Model, meets the requirements posed on adaptation of the game. I.e. it is done
on-line, takes care of a natural flow of the game and optimizes the learning curve
of the user. In order to fulfill the requirements the GAM uses a user model, the
preferences of the agents and uses the guidelines from the organization model.

We argued that an agent based approach for adapting complex tasks is more
practical than a centralized approach. It is much more natural if the different ele-
ments are implemented by separate software agents that are responsible for their
own believability. For complex games where characters play roles over extended
periods of time this increases the believability of the whole game. However, the
system does not only need to be flexible, the designer also must be able to de-
fine the storyline and put certain restrictions on the combined behavior of the
agents. Agent organization frameworks are very suitable for creating a flexible
system that still must follow a certain progression and behave according to cer-
tain norms. Hence the use of OperA for the specification of the organization of
the agents in the game.

The proposed model for game adaptation selects tasks that are most suitable
for the trainee while following the specification of the game model and keeping
the preferences of the separate agents into account. The combination of adap-
tations selected at each moment is done through a kind of auction mechanism
that provides a balance between local optimization of the task and believability
of the agent and overall difficulty of the situation for the trainee.

1 It is beyond the scope of the article to discuss the implementation of the adaptation
using reinforcement learning. As we discussed in the related work section we have
already done some experiments with online learning using an extended version of
2apl. The learning will go very quickly because of the limited number possible action
type.
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The next steps will be the actual testing of a complete serious game on fire-
fighting with actual firefighters in the Netherlands and a professional simulation
environment provided by VSTEP using the Quest3D engine. This is set up to
take place in the near future.
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Intelligent Agent Modeling as Serious Game

Towards Integrating Microworlds, Tutoring and Evolution
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Abstract. Educators increasingly turn to serious games to let students
explore complex worlds in a safe environment. In serious games for ill-
defined problem domains such as infrastructures and markets, students
often interact with preconceived agents at an operational level. We hy-
pothesize however that students could discover more about a domain’s
complexity at a strategic level by building and testing their own delegate
agents. Testing this requires an environment where students and teachers
can construct agents at their own level of expertise with recent modeling
technologies. For instance, students may create agents not just directly,
by building or modifying comprehensive agent models with visual pro-
gramming languages, but also indirectly, by shaping agent behavior as
it evolves in user-defined training scenarios or by enacting example be-
havior which agents learn to imitate. We propose a serious game concept
that combines such modeling methods within a single intelligent simula-
tion platform so that it becomes a low-threshold interface for continuous
knowledge exchange and gain between teachers, students and agents.

1 Introduction

After decades of educational games, today we are witnessing the third generation
educational use of computer games: serious games [1]. At the 2008 Game Develop-
ers Conference, serious game proponents Sawyer and Peters presented a compre-
hensive taxonomy that shows how serious games are increasingly being embraced
for diverse purposes, ranging from training, education and research to advertise-
ment, production and design [2]. The authors show that this trend appears not just
in public sectors like government and NGO’s, defense, health care and education,
but also private sectors for marketing & communications, corporate and industrial
applications. In fact, these collaborative human-in-the-loop simulation games, de-
signed either to educate players about particular phenomena or to study human
behavior within simulated environments, have become an important medium for
many applications and the body of related research is growing rapidly.
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We propose a new type of serious game in which users explore and delegate
their strategies to adaptive agents with intelligent support at their own exper-
tise level. Inspired by agent modeling games like StarLogo TNG1 [3] and the
Neuro-Evolving Robotic Operatives2 or nero game [4], our interest is in com-
bining various agent modeling methods with intelligent tutoring in ill-defined
domains such as operations management in infrastructures and marketplaces.
By extending the educational Global Supply Chain Game3 or gscg [5] with a
range of intelligent agent and tutoring techniques, we may be able to deter-
mine how agent and tutoring technologies can enhance simulation games to help
students learn more about strategy in ill-defined problem domains compared
to manual operation. In this chapter we argue that the required technologies
for intelligent agent modeling games exist, holding great potential for many
educational, scientific and societal applications including ill-defined domains.

Educational Settings. Users can design and exchange agents able to make
many more decisions than the players could themselves. Since the game simply
executes the user-defined agent models it does not need to wait for user input
on each decision, the game environment complexity can increase much further
as players gain experience. Also, since the behavior is already formalized in a
model, the game environment can evaluate the behavior much more effectively
to determine whether learning goals are being achieved and provide suitable
challenges or hints as is common in intelligent tutoring systems.

Scientific Settings. User-defined agent models provide much richer game data
to study than traditional game action histories do, since agent models also pro-
vide the reasoning behind the actions. Instead, one may now much more easily
track changes in the agent models and observe whether and when learning oc-
curs. Moreover, the formalized models enable the use of statistical methods to
generalize behavioral patterns from the user-defined models gathered over many
sessions to serve as human representative agents in less expensive simulations
that no longer require humans present.

Societal Settings. An easy-to-use behavior modeling language might open up
the realm of multi-agent simulation besides computer scientists and students
to a large audience of lay users. Non-programmer employees of corporations
and governments could still compare and experiment with new strategies in
their particular domain, since the modeling language allows them to understand
how the agents behave. Similarly, individual consumers would be able to define
exactly how they would like their negotiator agent to represent them in for
instance electronic markets or legal courts.

To show how implementations of such agent modeling games might be
achieved in ill-structured problem domains, we first review some of the existing
theory related to intelligent agent modeling in serious games and simulations.
We then describe the basic ideas and novelty of our game concept in more detail.
Finally we conclude with a summary and discuss future work.
1 http://education.mit.edu/starlogo-tng/
2 http://www.nerogame.org/
3 http://www.gscg.org/
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2 Related Theory

We are interested in using intelligent agents both as pedagogical and as analyt-
ical tools for education and inquiry purposes by novice and expert users. This
section reviews various candidate agent technologies and identifies a number
of challenges that arise if we want to integrate them into an intelligent agent
modeling game in ill-structured domains such as operations management.

2.1 Learning by Building Agents

Agent modeling has been applied as an educational tool in a number of
ways. Most notable is the work by Seymour Papert and colleagues on Tur-
tle Geometry, a mathematical programming environment or microworld in
which kids try to solve geometrical problems by programming a turtle-shaped
agent using the lisp-based logo4 language [6]. Many more of these learn-
ing environments have emerged since then such as Boxer 5 [7], Alice6 [8],
ToonTalk7 [9], Stagecast Creator 8 [10], Scratch9 [11], Etoys10 [12] and the re-
cent Kodu Game Lab11 [13]. Educators use these environments in elementary
and high schools for constructionist learning, that is, kids ‘construct’ their knowl-
edge as they create increasingly complex agents to solve ever more complex tasks.
Kids not only learn new ways of tackling problems, that mistakes are essential
for debugging your thinking, or that there are often many solutions, but they
also gain a new, more personal perspective on the subject matter [6].

Unfortunately, education scholars criticize this approach for its lack of stu-
dent guidance [14]. Furthermore, while agents are typically used as pedagogi-
cal tools in highly structured, well-defined domains such as science, technology,
engineering and mathematics, for ill-structured problem domains such as oper-
ations management, agent modeling and intelligent tutoring seem problematic.
For instance in (serious) games, the modeling effort consists of no more than
switching city governor priorities in Civilization [15], programming train sched-
ules in Transport Tycoon [16], queuing factory production and setting way points
in real-time strategy games such as Dark Reign [17] or Homeworld: Cataclysm
[18], setting stock reorder levels in Industry Masters12 [19], etc. We are inter-
ested in creating microworlds with higher level strategic agent programming to
educate students about the complexity in infrastructures and markets. Typically,
only expert (game) agent designers can typically model such complex behaviors
to meet today’s demand for intelligent and realistic human-like opponents.

4 http://el.media.mit.edu/logo-foundation/
5 http://www.soe.berkeley.edu/boxer/
6 http://www.alice.org/
7 http://www.toontalk.com/
8 http://www.stagecast.com/
9 http://scratch.mit.edu/

10 http://www.squeakland.org/
11 http://research.microsoft.com/en-us/projects/kodu/
12 http://www.industrymasters.com/
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Novel modeling environments are starting to appear such as Pogamut13 [20] or
PMFserv14 [21] for beginner or non-computer experts to model their own agents
for existing game environments. These however still require some programming
expertise and fine tuning from the developer in order to arrive at the desired
agent behavior, and the modeling itself has no educational or empirical purpose.
Given the limited success of agent modeling in ill-structured problem domains
together with the proven success of agent modeling in well-defined domains such
as mathematics, physics and games, we propose the following:

Proposal 1. Provide students with malleable agents that enhance learning in
ill-structured problem domains.

2.2 Making Complex Models Easy

From the social studies such as economy and biology came computational mod-
els to describe whole societies and the effects of their interactions on particular
global measures such as the distribution of wealth or health. As computation
becomes cheaper and more powerful, simulations are moving from differential
equations assuming homogeneous populations towards heterogeneous models
with much more complexity. According to Parunak and colleagues, “agent-based
modelling is most appropriate for domains characterised by a high degree of
localisation and distribution and dominated by discrete decision” [22].

Agent-based modeling is an approach that has gained great popularity in so-
cial and economic sciences to study and educate about phenomena emerging
from the interactions of large heterogeneous populations. The recent establish-
ment of the Open Agent Based Modeling Consortium15 [23] mirrors the field’s
growing popularity. Well-known examples of such agent-based models (ABMs)
include John Conway’s Game of Life, Wolfram’s class of cellular automata, Ep-
stein and Axtell’s SugarScape [24], and today topics range from the evolution
of epidemics, traffic jams to the self-organization of ants, sensor networks and
unmanned aerial vehicles.

Papert’s microworlds evolved into increasingly powerful agent-based model-
ing and simulation engines. Nikolai and Madey survey many more agent based
modeling toolkits [25] such as StarLogo [26], NetLogo16 [27], mason17 [28] and
RePast18 [29] which are widely used in social and life sciences. Their successful
application in empirical work is also due to the user-friendly interfaces that make
programming and debugging agents relatively easy. Thanks to the transparency
of the agent models and of their effect on emergent social properties through
their interactions, we are gaining insight on how to design and control robust
collectives of simple individuals that together act intelligently.
13 http://artemis.ms.mff.cuni.cz/pogamut/
14 http://www.seas.upenn.edu/ barryg/HBMR.html
15 http://www.openabm.org/
16 http://ccl.northwestern.edu/netlogo/
17 http://cs.gmu.edu/˜eclab/projects/mason/
18 http://repast.sourceforge.net/
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Some of the agent modeling environments mentioned earlier, including StarL-
ogo TNG [3], Alice [8], ToonTalk [9], Stagecast Creator [10], Scratch [11], Etoys
[12] and Kodu Game Lab [13], provide a visual programming language sim-
ple enough for children to create their own games and animations. Most vi-
sual languages are based on the LogoBlocks research developed at MIT, which
later evolved into OpenBlocks [30]. These are powerful languages that make effi-
cient use of shapes and colors to represent command structures, procedures and
data types. However, the programming blocks usually map directly onto tra-
ditional programming commands. Interesting addition to such languages might
be multiple complexity layers in the block semantics and control over learning
mechanisms that agents may use to learn and improve their own behavior.

Proposal 2. Provide students with clear and simple interfaces that show how
their agent models contribute to overall system performance.

2.3 Validating Interactive Simulations

Simulation games are also applied increasingly as research method, either to
study or even to capture the richness of human behavior in complex systems
through human-in-the-loop simulation. By examining how players (subjects) be-
have, researchers can potentially replicate their behavior in agent-based simula-
tions that would otherwise contain only simple heuristic rules and assumptions.
For instance, the Trust and Tracing game is used to study cultural differences in
trade by playing the game with players of different backgrounds and the Mango
Chain Game studies the searching and bargaining sources of transaction costs
[31]. The next step could be to use such games as interfaces to elicit or capture
expert knowledge on how to behave in complex multi-actor systems.

Unfortunately, the simulation engines mentioned above which are frequently
used by sociologists, biologists and economists have little or no specification of
the simulation formalisms that describe the underlying assumptions. Existing
formalisms could clearly separate models from their reference or source systems
as well as from the simulator as Zeigler and colleagues propose in their the-
ory of modeling and simulation [32]. In fact, the authors argue that the discrete
event system specification (DEVS) formalism is the most general type which can
be applied to cellular automata simulations as implemented in aforementioned
simulation engines (which is possible if one considers the cells to be agents).
For example, Müller recently presented a formal semantics for DEVS-based
multi-agent simulation [33].

Dolk proposes to “apply model management design principles to design
a generalized agent-based modeling environment (GAME) with ABMS lan-
guage(s) and accompanying interfaces that support the entire spectrum of poten-
tial users: programmer, analyst, decision-maker, and also cross-fertilizes with
existing OR/MS modeling paradigms” [34]. Similarly, Schut proposes a gener-
alized agent-based simulation approach [35]. By adopting a single simulation
formalism that separates a model from its simulator, the following issues could
be resolved:
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– reusability, the simulation engine can be applied to new models and vice
versa (for instance run NetLogo models in Repast);

– maintenance, the engine and/or model can be maintained separately;
– consistency, the models can be proven to have certain properties before run-

ning any simulation; and
– validity, the model can be validated and verified on other simulators.

Creating a programming environment for agent behaviors that suits any type of
domain will require a generalized behavior modeling and simulation formalism.
Dolk also mentions a caveat: “Model management was successful in capturing
structural dimension of models, not the dynamic aspects prevalent in simulation”
[34, p.6]. Furthermore, the formalism must accommodate procedural commands
(if-then, for-next, etc.), domain specific concepts (strategy-x, object-y, etc.), as
well as model adaptation due to learning or evolution, so a combination of for-
malisms may perhaps be a better solution. In order to have generalizable results
from our simulation game concept, we propose the following:

Proposal 3. Adopt general simulation formalisms to ensure validity of models
across simulation environments and studies.

2.4 Providing High-Level Reasoning

From the fields of Distributed Artificial Intelligence and Cognitive Psychology
many frameworks have emerged that support the design and validation of com-
plex organizations with (multiple) intelligent agents to respectively mimic or
study their (collective) intelligence. Wooldridge and Jennings define these agents
as processes implemented on a computer that have autonomy (they control their
own actions); social ability (they interact with other agents through some kind
of ’language’); reactivity (they can perceive their environment and respond to
it); and pro-activity (they are able to undertake goal-directed actions) [36].

The Multi-Agent Systems (MAS) paradigm is already being adopted as a new
framework for software development to extend the service-oriented approach
for developing robust scalable software systems. Thanks to agent middleware
or platforms such as jade19 [37] or AgentScape20 [38], autonomous and mobile
agents can go out on the Internet to interact on their owner’s behalf. Today entire
organizations are modeled and validated thanks to human-readable reasoning
frameworks. A widely used approach is the Beliefs-Desires-Intentions or BDI
paradigm applied in frameworks like desire [39], AgentSpeak [40] (implemented
in the jack21 [41] and jason22 [42] platforms), goal23 [43] and 2apl24 [44].

19 http://sharon.cselt.it/projects/jade/
20 http://www.agentscape.org/
21 http://www.agent-software.com.au/products/jack
22 http://jason.sourceforge.net/
23 http://mmi.tudelft.nl/˜koen/goal.html
24 http://www.cs.uu.nl/2apl/
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These frameworks offer advanced reasoning methods for agents and help to
produce human-readable explanations of agent actions useful in human-agent
collaboration. For example, air force pilots could delegate reconnaissance tasks
to a group of BDI agents (e.g. unmanned aerial vehicles) and keep updated
on their goals and plans during a mission. This behavioral transparency makes
the delegate agents dependable parts of a cooperative man-machine team dur-
ing critical situations. Such explainable artificial intelligence (XAI) has already
proven useful in human-robot collaboration as well as for education purposes,
for instance in tutoring tactical behavior [45] or virtual firemen training [46].

However, due to their complexity, their computational overhead and their lim-
ited or lack of visual programming interface, programming agents with these lan-
guages is currently suited only for computer programmers and scientists rather
than our intended players of (serious) games. Using a different modeling ap-
proach, an interesting project that avoids these problems is Betty’s Brain25 de-
veloped by [47] and [48] where students design concept models to represent their
current knowledge and teach an agent to solve reasoning tasks in role-playing
games. These concept models serve as scaffolds to help students structure their
own knowledge and gain a deeper understanding. Leelawong and Biswas report
that this approach taught students meta-cognitive skills which students suc-
cessfully transferred to new learning environments [49]. The models can also
be analyzed statistically to study student learning behaviors [50]. Given these
results we are convinced that automated reasoning techniques for human-agent
collaboration are viable education methods in games. We propose to:

Proposal 4. Employ standardized reasoning methods readable by both machines
and humans to increase generalizability.

2.5 Learning with Intention

While human-readable agent reasoning has great value across application do-
mains like human-robot collaboration and education, the popular BDI frame-
work has two main drawbacks: a lack of learning competencies and of explicit
multi-agent functionality. Guerra-Hernandez and colleagues try to overcome
these deficiencies by letting agents adapt the reasoning process using logical
decision trees [51]. Lokuge and Alahakoon also extend BDI with learning capa-
bility for container terminal planning but use an adaptive neuro-fuzzy inference
system which applies neural networks to optimize fuzzy agent models [52].

Besides regression with trees or neural nets, another approach to adaptive
BDI may be to apply population-based evolutionary algorithms. These apply
variation and selection mechanisms, principles of evolution known to be success-
ful for finding innovative solutions in a large variety of problems ranging from
design and art to scheduling and control. Especially in complex, poorly under-
stood, nonlinear, multi-objective domains, the basic mechanisms of evolution
have proven to be powerful optimization tools [53].

25 http://www.teachableagents.org/
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There are different dialects in evolutionary algorithms, including genetic al-
gorithms, evolutionary strategies and symbolic regression. Genetic algorithms in
particular have been combined with other machine learning paradigms to solve
(agent) control problems. Genetic algorithms can be integrated with neural net-
works to produce evolving neural networks or neuroevolution, combining the
innovative power of evolution with the pattern recognition power of the neural
nets [54]. These evolved neural nets typically optimize agent control, for instance
in collective behavior tasks like construction [55]. Another example is the nero
game, in which players evolve teams of specialist soldiers to compete against
other teams [4]. Neural networks are hardly readable even for experts, let alone
for novices and non-computer scientists. Therefore this evolutionary method,
although proven successful, appears unsuitable for educational and inquiry pur-
poses where transparent agent models are desirable.

Genetic algorithms can be combined with production rules to become learning
classifier systems which produce control models that are much more transparent
due to the readable if-then structure of the evolved rule sets [56]. Evolved rule
sets may be less accurate than evolved neural nets, but in return provide clearer
insight into how and why the controller works or not. We suggest that in a similar
fashion, adaptive BDI controllers can be made using evolutionary optimization
while respecting the BDI paradigm. Although this hypothesis requires further
study, we propose the following:

Proposal 5. Enable the agent system to self-improve using machine learning
algorithms for behavior optimization.

3 The Agent Modeling Game Concept

This section introduces our agent modeling game concept that integrates several
of the agent and learning technologies outlined above. The system is an intelligent
simulation game that tutors students as they model their delegate agents directly,
using visual programming, or indirectly, using machine learning techniques such
as evolution or imitation. We also discuss the system’s components.

3.1 Integrating Direct and Indirect Agent Modeling

We have seen a number of techniques for modeling agents: direct modeling tech-
niques where students use visual programming languages to edit the agent model,
but also indirect modeling methods where students simply reward observed be-
havior as the agent models evolve, or students enact the desired behavior from
which an agent model is generalized or imitated.

Direct Agent Modeling. Visual agent modeling languages are gaining mo-
mentum thanks to environments like StarLogo TNG [3], Alice [8] and Kodu
Game Lab [13]. Their success is likely due to the clarification of typical coding
conventions with familiar metaphors. For instance, colors and shapes represent
types of variable and object, agent states include ‘happy’ and ‘sad’, etc.
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Still, we noted above some challenges that we are interested in resolving. The
first is a typical lack of general systems specifications, which in case of ‘real-
istic’ simulations could facilitate external validation of the simulation results
through reproduction. We suggested the DEVS formalism as a probable candi-
date. The second limitation is the lack of more abstract, higher-level reasoning
in these environments such as the Beliefs-Desires-Intentions paradigm. Thirdly,
we mentioned the limitation of these environments to well-defined domains such
as maths, physics and programming education. Another important addition to
agent programming microworlds might be intelligent tutoring to provide students
with more guidance as they explore the simulated environment. And finally, cur-
rent (visual) agent programming languages feature little autonomous knowledge
discovery by the agents, even though there seem to be many suitable machine
learning algorithms readily applicable.

For domain experts or teachers, building a comprehensive agent model di-
rectly as described above may be a suitable method to build an agent that
performs particular by-the-book or typical strategies for students to play with
or compete against. Except for the intelligent tutor providing much needed stu-
dent guidance as they model their agent, this mode of agent modeling is fairly
standard. Nonetheless, for some this is arguably a rather challenging approach
to creating an intelligent delegate agent, especially for students who may have
little or no experience with programming nor with the domain that the agent
must tackle. We are thus also interested in developing possibilities where one
explores a domain with delegate agents without directly dealing with the agent
model.

Indirect Agent Modeling Challenges. What makes our intelligent tutoring
game concept different from current genres (serious) games is the extension of
(visual) agent programming with evolutionary agent modeling techniques, in-
spired in particular by the Neuro-Evolving Robotic Operatives26 or nero game
by Stanley and colleagues [4]. In their novel kind of game, the user’s objective
is to train an army by designing increasingly complex learning environments
in a sand box. Here intelligent agents evolve to optimize a user-defined reward
function, before being combined into an army containing various specialties that
will battle another army in a more complex environment. Such coaching by de-
signing increasingly complex challenges is known in biology as shaping [57]. In
stead of telling each soldier exactly what to do or programming their behavior to
the letter, users become drill sergeants and think about how best to train their
agents so they can be trusted to execute the desired strategy. We will investigate
applying this method to the serious games.

Another approach to creating visibly intelligent agent behavior is training the
agents to imitate human behavior as is done in academic strategy games [58] or
even commercial first-person shooters [59]. Unfortunately these advanced imi-
tation approaches typically train off-line, that is between actual game sessions,
and may be less suited for interactively training agents.

26 http://www.nerogame.org/
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Fig. 1. Intelligent simulation game concept where students build controllers for their
delegate agents, enact the behavior to be imitated (dashes) or shape an agent controller
as it is evolved (dots) with help from a tutor (dot-dashes)

By contrast, educational environments also exist where students interactively
train an agent on-line. For instance in Sophie’s Kitchen [60] students teach a
learning agent by example how to bake a cake. Some interesting lessons were
learned in this project, for instance that people use reward channels not only
for feedback, as is common in machine learning, but also for future-directed
guidance and motivation [61]. Whether this result holds when training advanced
agents such as those of the nero game remains an open research question.

3.2 System Components

Our intelligent agent modeling game concept as shown in Fig. 1 includes users
(circles), fixed and dynamic processes (rectangles), data objects (parallelo-
grams), internal store (squares) and external stores (cylinders), a display and
a manual input. First we explain the data objects and stores:

Action. In simulation games, usually teachers or students play the role of par-
ticular actors and select actions to perform. In our concept agents can take
over and perform actions according to a preprogrammed strategy represented
within its controller. Actions are stored internally in the Logs store.

Scenario. Teachers can build test scenarios containing environments or worlds
with learning goals that students must meet using their agents. Students can
also build training scenarios with incrementally complex worlds in which to
evolve their agents. Scenarios are stored externally in the Scenarios store.

Controller. The core objects of this system are agent controllers. They describe
how agents should act in various world states. Teachers can build controllers
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for agents serving as adversaries or to provide exemplar behavior for stu-
dents. Students can build controllers to cope with various adversaries, roles
and scenarios. Controllers can also be created through imitation or evolution.
Controllers are stored externally in the Controllers store.

Reward. Students can reward an agent’s controller based on observed perfor-
mance in order to evolve its behavior. Controllers receiving higher rewards
get a better chance of survival during the game and thus for recombination
to produce offspring (with some mutations) that later might replace them.

State. The world state describes the current condition of the simulated envi-
ronment and all agents within it. The simulator determines the next world
state based on its current state, the world model and the selected agent
actions. To provide a historic perspective, to improve tutor guidance, to im-
itate stored behavior and to evolve improved controllers, world states are
stored internally in the Logs store.

Help. Tutoring guidance or help contains hints for the student to solve current
challenges. This advise may be derived from agent behavior logs stored pre-
viously. Help is provided as students enact the desired behavior or as they
build new controllers.

Components present in any agent-based simulator are the simulator, agent, input
and display. Processes that make this simulation game concept intelligent are
the tutor, the imitator and the evolver.

Simulator. The system’s core process is the simulator which takes a world
model and actions selected by agents or students to generate future world
states. It must be robust and suited to host many different types of sim-
ulation environments such as cellular automata, graphs or 3D spaces. We
are planning to implement the general DEVS formalism using the DSOL27

(Distributed Simulation Object Library) framework [62].
Agent. Agents observe the world state and require a controller to derive the

next action to perform. The bidirectional arrow implies that (adaptive)
agents may modify their controller during a simulation.

Input and Display. Based on current and previous world states, the input and
display provide an interactive representation of the game status. When the
teacher or student is not selecting new worlds or agent controllers, this inter-
face displays the world state, agent controller and performed action, perfor-
mance statistics, the current reward settings used to shape agent controller
evolution, student learning progress in the current world, and for students
possibly some tutor help. Rule activation may be visualized such that users
are able to determine what part of the agent’s controller is responsible for
the delegate agent’s successes or failures.

Tutor. Intelligent tutors typically contain a teacher model, a student model,
and a domain model. This component derives a student model from the stu-
dent behavior stored in the logs and provides appropriate remedial feedback
such as hints and suggestions. This help is based on a teacher model that is

27 http://www.simulation.tudelft.nl/
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generalized from stored behaviors of other students. This way the tutor can
self-improve its help as more students play the current world. Given that
the scenarios will easily become very complex, the difficulty will lie in de-
termining the user’s current skill level and which existing agent controllers
have tackled relevant problems which the user is currently unable to solve.

Evolver. The evolver recombines and mutates agent controllers, selecting new
agents that optimize some user-defined reward or fitness function. Natu-
rally, fitness functions will vary across domains and designing this function
is critical to defining the limits of the evolutionary approach. The user also
provides training scenarios with incremental difficulty levels that to chal-
lenge their agents such that they learn the desired behavior. The interface
should provide an easy-to-use scenario editor for this process to add value
as alternative agent modeling method.

Imitator. This process induces an agent controller that imitates some desired
behavior. Generalizing student decisions to new, unseen situations requires
some example behavior enacted by the user. From a machine learning per-
spective, this may be one of the most challenging processes to implement.
However this approach is valuable particularly for inquiry with automatically
generated models of actual human behavior.

More detailed information as to each component’s operation are purposely left
out of this general concept and can be filled in by game designers in whatever
way they see fit.

4 Conclusion

This chapter presented a new serious game concept that revolves around tutored
end-user modeling of intelligent agents for knowledge transfer (education) and
discovery (inquiry). Simulation platforms that support end-user modeling of in-
telligent agents may not only prove to be powerful inquiry methods but also
methods especially suited in education, for as the Latin proverb says: docendo
discimus (by teaching we learn).

To realize such a concept we made a number of proposals that are based
on combining existing solutions and frameworks from various research areas.
We propose the adoption of a single simulation formalism such as DEVS, the
adoption of a human-readable reasoning method such as BDI, the integration
of human-readable reasoning methods with evolutionary algorithms such as
classifier systems, and finally the adoption of a visual programming language
generated from a shared ontology.

There remain some important questions that need answering before we know
whether this is a successful approach for gaining and transferring knowledge. For
instance: can users actually apply building, shaping and imitation, do they want
to, and what kind of results can we expect in terms of validity and performance?
In future work we hope to answer these questions.
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Köster, Michael 33

Lim, Mei Yii 107

Mainzer, David 33
Melo, Gustavo 119
Might, Robert 135
Monteiro, Ivan Medeiros 48

Nijholt, Anton 95
Norling, Emma 155
Novák, Peter 33

Oliveira, Eugénio 190

Paiva, Ana 107
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Štolba, Michal 1
Sollenberger, Derek J. 79
Sordoni, Alessandro 119

Theune, Mariët 95
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