
the total energy values for static and dynamic conditions are identical. If the velocity is increased,
the impact values are considerably reduced. For further information, see Ref. 10.

10.6.6 Steady and Impulsive Vibratory Stresses
For steady vibratory stresses of a weight, W, supported by a beam or rod, the deflection of the bar,
or beam, will be increased by the dynamic magnification factor. The relation is given by

dynamic = Static x dynamic magnification factor

An example of the calculating procedure for the case of no damping losses is

»„ - S^ X i _ (^)2 (10.65)

where a) is the frequency of oscillation of the load and O)n is the natural frequency of oscillation of
a weight on the bar.

For the same beam excited by a single sine pulse of magnitude A in./sec2 and a sec duration,
then for t < a a good approximation is

Sstatic(A/g) T 1 / a}\ "I
«<*-. = t J^/y [sin - - ̂  (-) sin ̂ J (10.66)

\47TOjJ

where A/g is the number of g's and o> is TT/a.

10.7 SHAFTS, BENDING, AND TORSION

10.7.1 Definitions
TORSIONAL STRESS. A bar is under torsional stress when it is held fast at one end, and a force acts

at the other end to twist the bar. In a round bar (Fig. 10.23) with a constant force acting, the
straight line ab becomes the helix ad, and a radial line in the cross section, ob, moves to the
position od. The angle bad remains constant while the angle bod increases with the length of the
bar. Each cross section of the bar tends to shear off the one adjacent to it, and in any cross section
the shearing stress at any point is normal to a radial line drawn through the point. Within the
shearing proportional limit, a radial line of the cross section remains straight after the twisting
force has been applied, and the unit shearing stress at any point is proportional to its distance from
the axis.

TWISTING MOMENT, T, is equal to the product of the resultant, F, of the twisting forces, multiplied
by its distance from the axis, p.

RESISTING MOMENT, Tr, in torsion, is equal to the sum of the moments of the unit shearing stresses
acting along a cross section with respect to the axis of the bar. If dA is an elementary area of the
section at a distance of z units from the axis of a circular shaft (Fig. 10.23£), and c is the distance
from the axis to the outside of the cross section where the unit shearing stress is r, then the unit
shearing stress acting on dA is (TZ/C) dA, its moment with respect to the axis is (TZ2Ic) dA, an
the sum of all the moments of the unit shearing stresses on the cross section is J (rz2/c) dA. In

Fig. 10.23 Round bar subject to torsional stress.



this expression the factor J z2 dA is the polar moment of inertia of the section with respect to the
axis. Denoting this by 7, the resisting moment may be written rJIc.

THE POLAR MOMENT OF INERTIA of a surface about an axis through its center of gravity and
perpendicular to the surface is the sum of the products obtained by multiplying each elementary
area by the square of its distance from the center of gravity of its surface; it is equal to the sum
of the moments of inertia taken with respect to two axes in the plane of the surface at right angles
to each other passing through the center of gravity. It is represented by /, inches4. For the cross
section of a round shaft,

J = 1X32TrJ4 or V2TTr4 (10.67)

For a hollow shaft,

/ - '/32TT(J4 - d4) (10.68)

where d is the outside and d1 is the inside diameter, inches, or

J = y27r(r4 - r4) (10.69)

where r is the outside and rl the inside radius, inches.
THE POLAR RADIUS OF GYRATION, kp, sometimes is used in formulas; it is defined as the radius of

a circumference along which the entire area of a surface might be concentrated and have the same
polar moment of inertia as the distributed area. For a solid circular section,

k2
p = Vsd2 (10.70)

For a hollow circular section,

k2 = 1X8(J
2 - d2) (10.71)

10.7.2 Determination of Torsional Stresses in Shafts

Torsion Formula for Round Shafts
The conditions of equilibrium require that the twisting moment, T, be opposed by an equal resisting
moment, Tr, so that for the values of the maximum unit shearing stress, r, within the proportional
limit, the torsion formula for round shafts becomes

Tr = T=T- (10.72)

if T is in pounds per square inch, then Tr and T must be in pound-inches, / is in inches4, and c is in
inches. For solid round shafts having a diameter, d, inches,

J = 1X32TrJ4 and c = 1X2J (10.73)

and

1 (~\T
T = 1A6TTd3T or T= —- (10.74)

TTd3

For hollow round shafts,

7T(d4 ~ d4)
J = —- and c = l/2d (10.75)

and the formula becomes

TTr(J4 - J4) 1671J
T= \ or T= a (10.76)

16J Tr(J4 - d4}

The torsion formula applies only to solid circular shafts or hollow circular shafts, and then only
when the load is applied in a plane perpendicular to the axis of the shaft and when the shearing
proportional limit of the material is not exceeded.



Shearing Stress in Terms of Horsepower
If the shaft is to be used for the transmission of power, the value of T, pound-inches, in the above
formulas becomes 63,030//VAf, where H = horsepower to be transmitted and N = revolutions per
minute. The maximum unit shearing stress, pounds per square inch, then is

321 0007/
For solid round shafts: r = '—— (10.77)

Nd
^91 OOOfjsl

For hollow round shafts: r = ' —— (10.78)
N(d -U1)

If T is taken as the allowable unit shearing stress, the diameter, d, inches, necessary to transmit
a given horsepower at a given shaft speed can then be determined. These formulas give the stress
due to torsion only, and allowance must be made for any other loads, as the weight of shaft and
pulley, and tension in belts.

Angle of Twist
When the unit shearing stress r does not exceed the proportional limit, the angle bod (Fig. 10.23)
for a solid round shaft may be computed from the formula

O = £-. (10.79)(jJ

where 6 = angle in radians; / = length of shaft in inches; G = shearing modulus of elasticity of the
material; T = twisting moment, pound-inches. Values of G for different materials are steel,
12,000,000; wrought iron, 10,000,000; and cast iron, 6,000,000.

When the angle of twist on a section begins to increase in a greater ratio than the twisting moment,
it may be assumed that the shearing stress on the outside of the section has reached the proportional
limit. The shearing stress at this point may be determined by substituting the twisting moment at this
instant in the torsion formula.

Torsion of Noncircular Cross Sections
The analysis of shearing stress distribution along noncircular cross sections of bars under torsion is
complex. By drawing two lines at right angles through the center of gravity of a section before
twisting, and observing the angular distortion after twisting, it as been found from many experiments
that in noncircular sections the shearing unit stresses are not proportional to their distances from the
axis. Thus in a rectangular bar there is no shearing stress at the corners of the sections, and the stress
at the middle of the wide side is greater than at the middle of the narrow side. In an elliptical bar
the shearing stress is greater along the flat side than at the round side.

It has been found by tests5'11 as well as by mathematical analysis that the torsional resistance of
a section, made up of a number of rectangular parts, is approximately equal to the sum of the
resistances of the separate parts. It is on this basis that nearly all the formulas for noncircular sections
have been developed. For example, the torsional resistance of an I-beam is approximately equal to
the sum of the torsional resistances of the web and the outstanding flanges. In an I-beam in torsion
the maximum shearing stress will occur at the middle of the side of the web, except where the flanges
are thicker than the web, and then the maximum stress will be at the midpoint of the width of the
flange. Reentrant angles, as those in I-beams and channels, are always a source of weakness in
members subjected to torsion. Table 10.8 gives values of the maximum unit shearing stress r and
the angle of twist 6 induced by twisting bars of various cross sections, it being assumed that r is not
greater than the proportional limit.

Torsion of thin-wall closed sections, Fig. 10.24,

T = 2qA (10.80)
q = rt (10.81)

,.^Z^L^Z (10.82)
' L 2A2AG t GJ ^ }

where 5 is the arc length around area A over which r acts for a thin-wall section; shear buckling
should be checked. When more than one cell is used1'12 or if section is not constructed of a single
material,12 the calculations become more involved:

4/t2

J = TTTt (10.83)§ dslt



Table 10.8 Formulas for Torsional Deformation and Stress

TL T
General formulas: B =• —-, T = — , where 9 =» angle of twist, radians; T = twisting moment, in.-lb;

KG Q
L — length, in.; r — unit shear stress, psi; G — modulus of rigidity, psi; K1 in.4; and Q, in.3 are func-

tions of the cross section.

TL
Shape Formula for K in 6 = — Formula for Shear Stress./Y(J

« = £ ~%

K = 1/32TW4 ~ <*14) T = ]6Td

r(d* - d!4)

K - 2/3 ̂ 3
 T = JI_

2irr«2

JTO^ r==-^K ^TT2 -^2

o — ai
7roi3bi3 4 ai 2TK - ^TfJs[(I +5) ~ l]

 q _ 6 -61 T - , a^d+^-n
&1

6V^ _ 2OT
~80~ T - -^T

1 0977
K = 2.696* T = ±?j±

ab3r16 3 3 6 V l - b 4 > l l r _ Oa+ 1.86)7
^ TeLl" a V r2a4yj a2№

^ = 2^2(a - <2)2(6 - <i)2

 r = 7
a<2 + Ui - t£ - tr 2/2(a - ^) (6 - ti)

K = 0.140664 r = 4^I



Ultimate Strength in Torsion
In a torsion failure, the outer fibers of a section are the first to shear, and the rupture extends toward
the axis as the twisting is continued. The torsion formula for round shafts has no theoretical basis
after the shearing stresses on the outer fibers exceed the proportional limit, as the stresses along the
section then are no longer proportional to their distances from the axis. It is convenient, however, to
compare the torsional strength of various materials by using the formula to compute values of r at
which rupture takes place. These computed values of the maximum stress sustained before rupture
are somewhat higher for iron and steel than the ultimate strength of the materials in direct shear.
Computed values of the ultimate strength in torsion are found by experiment to be: cast iron, 30,000
psi; wrought iron, 55,000 psi; medium steel, 65,000 psi; timber, 2000 psi. These computed values of
twisting strength may be used in the torsion formula to determine the probable twisting moment that
will cause rupture of a given round bar or to determine the size of a bar that will be ruptured by a
given twisting moment. In design, large factors of safety should be taken, especially when the stress
is reversed as in reversing engines and when the torsional stress is combined with other stresses as
in shafting.

Fig. 10.24 Thin-walled tube.

Table 10.8 (Continued)

TT T
General formulas: 6 — -̂ - , r •» — , where 6 «• angle of twist, radians; T «• twisting moment, in.-Ib;

KG Q
L — length, in.; r «• unit shear stress, psi; G = modulus of rigidity, psi; K, in.4; and Q, in.9 are func-

tions of the cross section.

TL
Shape Formula for K in 9 — — Formula for Shear Stress

KG

r •» fillet radius
D — diameter largest inscribed circle

. For all solid section* of irregular
A - ZA1 + A2 + t*U form the maximum shear 8treM

K. — 063F- — O 21 - f I — -^-\ "1 occurs at or very near one of the
1 L3 o \ I2a4/J points where the largest inscribed

— I J 7 /f4 \ -i circle touches the boundary, and
X2 - «P - - 0.105? ( 1 — ) of these, at the one where the

L 3 c ^ •92c ' J curvature of the boundary is alge-
b /n nj n n_, r\ braically least. (Convexity rep-

« - - ^0.07 + 0.076 -J regent8 P08J11^ concavity nega_
tive, curvature of the boundary.)

X « 2Xi -f X2 -f ZaD4 At a P°int where the curvature is
. . M \ T positive (boundary of section

Xi — 06* J- — 0.21 - ( 1 —- ) J straight or convex) this maximum
L3 o \ I2o*/ J stress is given approximately by:

X2 - V3 cd3 „0 T
t/ r\ T " °~LC Ql T~ KC

a- - ( 0 . 1 5 + 0 .1 - r ) L K

ti\ ^ b/ where

t - 6 if 6 <d c- 2 x
t - d if d < b 1 + £**
ti-biSb>d 16A*

--"">» E1+-(S-:-!)]
X - Xi -f Xt + ctD4 where D - diameter of largest in-
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Xi - o63 ^- - 0.21 ̂ I- 72^JJ vature of boundary at the point

(positive for this case), A •• area
/C2 - cd» ri - O . J 0 5 - (\ - —^l of tbe »<*«»•

L3 c \ 192(H/J

a - - (0.07 + 0.076 f\
d \ b/



10.7.3 Bending and Torsional Stresses
The stress for combined bending and torsion can be found from Eqs. (10.20), shear theory, and
(10.22), distortion energy, with ay = O:

T=KfHf

For solid round rods, this equation reduces to

crw 16 ,
^ - —- VM2 + T2 (10.85)
2 Trd3

From distortion energy

'-,/IfRrF

For solid round rods, the equation yields

o- = -^r VM2 + 3AT2 (10.87)
rar

10.8 COLUMNS

10.8.1 Definitions
A COLUMN OR STRUT is a bar or structural member under axial compression, which has an unbraced

length greater than about eight or ten times the least dimension of its cross section. On account
of its length, it is impossible to hold a column in a straight line under a load; a slight sidewise
bending always occurs, causing flexural stresses in addition to the compressive stresses induced
directly by the load. The lateral deflection will be in a direction perpendicular to that axis of the
cross section about which the moment of inertia is the least. Thus in Fig. 10.25« the column will
bend in a direction perpendicular to aa, in Fig. 10.25/? it will bend perpendicular to aa or bb, and
in Fig. 10.25c it is likely to bend in any direction.

RADIUS OF GYRATION of a section with respect to a given axis is equal to the square root of the
quotient of the moment of inertia with respect to that axis, divided by the area of the section, that
is

k = Vz ; i = k 2 (10-88)

where 7 is the moment of inertia and A is the sectional area. Unless otherwise mentioned, an axis

Fig. 10.25 Column end designs.



through the center of gravity of the section is the axis considered. As in beams, the moment of
inertia is an important factor in the ability of the column to resist bending, but for purposes of
computation it is more convenient to use the radius of gyration.

LENGTH OF A COLUMN is the distance between points unsupported against lateral deflection.
SLENDERNESS RATIO is the length / divided by the least radius of gyration k, both in inches. For

steel, a short column is one in which Uk < 20 or 30, and its failure under load is due mainly to
direct compression; in a medium-length column, Uk= about 30-175, failure is by a combination
of direct compression and bending; in a long column, Ilk > about 175-200, failure is mainly by
bending. For timber columns these ratios are about 0-30, 30-90, and above 90 respectively. The
load which will cause a column to fail decreases as Ilk increases. The above ratios apply to round-
end columns, If the ends are fixed (see below), the effective slenderness ratio is one-half that for
round-end columns, as the distance between the points of inflection is one-half of the total length
of the column. For flat ends it is intermediate between the two.

CONDITIONS OF ENDS. The various conditions which may exist at the ends of columns usually are
divided into four classes: (1) Columns with round ends; the bearing at either end has perfect
freedom of motion, as there would be with a ball-and-socket joint at each end. (2) Columns with
hinged ends; they have perfect freedom of motion at the ends in one plane, as in compression
members in bridge trusses where loads are transmitted through end pins. (3) Columns with flat
ends; the bearing surface is normal to the axis of the column and of sufficient area to give at least
partial fixity to the ends of the columns against lateral deflection. (4) Columns with fixed ends;
the ends are rigidly secured, so that under any load the tangent to the elastic curve at the ends
will be parallel to the axis in its original position.

Experiments prove that columns with fixed ends are stronger than columns with flat, hinged,
or round ends, and that columns with round ends are weaker than any of the other types. Columns
with hinged ends are equivalent to those with round ends in the plane in which they have free
movement; columns with flat ends have a value intermediate between those with fixed ends and
those with round ends. If often happens that columns have one end fixed and one end hinged, or
some other combination. Their relative values may be taken as intermediate between those repre-
sented by the condition at either end. The extent to which strength is increased by fixing the ends
depends on the length of column, fixed ends having a greater effect on long columns than on short
ones.

10.8.2 Theory
There is no exact theoretical formula that gives the strength of a column of any length under an axial
load. Formulas involving the use of empirical coefficients have been deduced, however, and they give
results that are consistent with the results of tests.

Euler's Formula
Euler's formula assumes that the failure of a column is due solely to the stresses induced by sidewise
bending. This assumption is not true for short columns, which fail mainly by direct compression, nor
is it true for columns of medium length. The failure in such cases is by a combination of direct
compression and bending. For columns in which Uk > 200, Euler's formula is approximately correct
and agrees closely with the results of tests.

Let P = axial load, pounds; / = length of column, inches; / = least moment of inertia, inches4;
k = least radius of gyration, inches; E — modulus of elasticity; 3; = lateral deflection, inches, at any
point along the column, that is caused by load P. If a column has round ends, so that the bending
is not restrained, the equation of its elastic curve is

d2y
EI-^= -Py (10.89)

when the origin of the coordinate axes is at the top of the column, the positive direction of x being
taken downward and the positive direction of y in the direction of the deflection. Integrating the
above expression twice and determining the constants of integration give

P = (lTT2 J^ (10.90)

which is Euler's formula for long columns. The factor U is a constant depending on the condition
of the ends. For round ends H = I ; for fixed ends il = 4; for one end round and the other fixed
fl = 2.05. P is the load at which, if a slight deflection is produced, the column will not return to its
original position. If P is decreased, the column will approach its original position, but if P is increased,
the deflection will increase until the column fails by bending.



For columns with value of Ilk less than about 150, Euler's formula gives results distinctly higher
than those observed in tests. Euler's formula is now little used except for long members and as a
basis for the analysis of the stresses in some types of structural and machine parts. It always gives
an ultimate and never an allowable load.

Secant Formula
The deflection of the column is used in the derivation of the Euler formula, but if the load were truly
axial it would be impossible to compute the deflection. If the column is assumed to have an initial
eccentricity of load of e in. (see Ref. 7, for suggested values of e), the equation for the deflection y
becomes

ym = e (sec ̂ £-l) (10-91)

The maximum unit compressive stress becomes

-K1 + ?"6^) <10-92>
where / = length of column, inches; P = total load, pounds; A = area, square inches; / = moment
of inertia, inches4; k = radius of gyration, inches; c = distance from neutral axis to the most com-
pressed fiber, inches; E = modulus of elasticity; both I and k are taken with respect to the axis about
which bending takes place. The ASCE indicates ec/k2 = 0.25 for central loading. Because the
formula contains the secant of the angle (1/2) \/PIEI, it is sometimes called the secant formula. It
has been suggested by the Committee on Steel-Column Research13-14 that the best rational column
formula can be constructed on the secant type, although of course it must contain experimental
constants.

The secant formula can be used also for columns that are eccentrically loaded, if e is taken as
the actual eccentricity plus the assumed initial eccentricity.

Eccentric Loads on Short Compression Members
Where a direct push acting on a member does not pass through the centroid but at a distance e,
inches, from it, both direct and bending stresses are produced. For short compression members in
which column action may be neglected, the direct unit stress is PIA, where P = total load, pounds,
and A = area of cross section, square inches. The bending unit stress is McII, where M = Pe =
bending moment, pound-inches; c — distance, inches, from the centroid to the fiber in which the
stress is desired; I = moment of inertia, inches4. The total unit stress at any point in the section is
a = PIA + PeelI, or a = (/VA)(I + ec/k2), since / = AA;2, where k = radius of gyration, inches.

Eccentric Loads on Columns
Various column formulas must be modified when the loads are not balanced, that is, when the resultant
of the loads is not in line with the axis of the column. If P = load, pounds, applied at a distance e
in. from the axis, bending moment M = Pe. Maximum unit stress CT, pounds per square inch, due to
this bending moment alone, is a = McII = Pec/Ak2, where c = distance, inches, from the axis to
the most remote fiber on the concave side; A = sectional area in square inches; k = radius of gyration
in the direction of the bending, inches. This unit stress must be added to the unit stress that would
be induced if the resultant load were applied in line with the axis of the column.

The secant formula, Eq. (10.92), also can be used for columns that are eccentrically loaded if e
is taken as the actual eccentricity plus the assumed initial eccentricity.

Column Subjected to Transverse or Cross-Bending Loads
A compression member that is subjected to cross-bending loads may be considered to be (1) a beam
subjected to end thrust or (2) a column subjected to cross-bending loads, depending on the relative
magnitude of the end thrust and cross-bending loads, and on the dimensions of the member. The
various column formulas may be modified so as to include the effect of cross-bending loads. In this
form the modified secant formula for transverse loads is

-i[1 + (e + ̂ Fse4vi] + S (10-93)

In the formula, CT = maximum unit stress on concave side, pounds per square inch; P = axial
end load, pounds; A = cross-sectional area, square inches; M — moment due to cross-bending load,



pound-inches; y = deflection due to cross-bending load, inches; k = radius of gyration, inches; / =
length of column, inches; e = assumed initial eccentricity, inches; c = distance, inches, from axis
to the most remote fiber on the concave side.

10.8.3 Wooden Columns

Wooden Column Formulas
One of the principal formulas is that formerly used by the AREA, PfA = (T1(I - 1/6Od), where
PIA = allowable unit load, pounds per square inch; Cr1 = allowable unit stress in direct compression
on short blocks, pounds per square inch; / = length, inches; d — least dimension, inches. This formula
is being replaced rapidly by formulas recommended by the ASTM and AREA. Committees of these
societies, working with the U.S. Forest Products Laboratory, classified timber columns in three groups
(ASTM Standards, 1937, D245-37):

1. Short Columns. The ratio of unsupported length to least dimension does not exceed 11. For
these columns, the allowable unit stress should not be greater than the values given in Table
10.9 under compression parallel to the grain.

2. Intermediate-Length Columns. Where the ratio of unsupported length to least dimension is
greater than 10, Eq. (10.94), of the fourth power parabolic type, shall be used to determine
allowable unit stress, until this allowable unit stress is equal to two-thirds of the allowable
unit stress for short columns.

J-,[,-!(£)•]

where P = total load, pounds; A = area, square inches; Cr1 = allowable unit compressive
stress parallel to grain, pounds per square inch (see Table 10.9); / = unsupported length,
inches; d = least dimension, inches; K= Ud at the point of tangency of the parabolic and
Euler curves, at which PIA = 2Aa1. The value of K for any species and grade is
TT/2VE/6Cr1, where E = modulus of elasticity.

3. Long Columns. Where PIA as computed by Eq. (10.94) is less than 2XsCr1, Eq. (10.95) of the
Euler type, which includes a factor of safety of 3, shall be used:

'-&]

Timber columns should be limited to a ratio of Ud equal to 50. No higher loads are allowed for
square-ended columns. The strength of round columns may be considered the same as that of square
columns of the same cross-sectional area.

Use of Timber Column Formulas
The values of E (modulus of elasticity) and Cr1 (compression parallel to grain) in the above formulas
are given in Table 10.9. Table 10.10 gives the computed values of K for some common types of
timbers. These may be substituted directly in Eq. (10.94) for intermediate-length columns, or may
be used in conjunction with Table 10.11, which gives the strength of columns of intermediate length,
expressed as a percentage of strength (Cr1) of short columns. In the tables, the term "continuously
dry" refers to interior construction where there is no excessive dampness or humidity; "occasionally
wet but quickly dry" refers to bridges, trestles, bleachers, and grandstands; "usually wet" refers to
timber in contact with the earth or exposed to waves or tidewater.

10.8.4 Steel Columns

Types
Two general types of steel columns are in use: (1) rolled shapes and (2) built-up sections. The rolled
shapes are easily fabricated, accessible for painting, neat in appearance where they are not covered,
and convenient in making connections. A disadvantage is the probability that thick sections are of
lower-strength material than thin sections because of the difficulty of adequately rolling the thick
material. For the effect of thickness of material on yield point, see Ref. 14, p. 1377.

General Principles in Design
The design of steel columns is always a cut-and-try method, as no law governs the relation between
area and radius of gyration of the section. A column of given area is selected, and the amount of
load that it will carry is computed by the proper formula. If the allowable load so computed is less
than that to be carried, a larger column is selected and the load for it is computed, the process being
repeated until a proper section is found.



Table 10.9 Basic Stresses for Clear Material*

Species
Softwoods

Baldcypress (Southern cypress)
Cedars

Redcedar, Western
White-cedar, Atlantic (Southern

white-cedar) and northern
White-cedar, Port Orford
Yellow-cedar, Alaska (Alaska

cedar)
Douglas-fir, coast region
Douglas-fir, coast region, close-

grained
Douglas-fir, Rocky Mountain

region
Douglas-fir, dense, all regions
Fir, California red, grand, noble,

and white
Fir, balsam
Hemlock, Eastern
Hemlock, Western (West Coast

hemlock)
Larch, Western
Pine, Eastern white (Northern

white), ponderosa, sugar, and
Western white (Idaho white)

Pine, jack
Pine, lodgepole
Pine, red (Norway pine)
Pine, southern yellow
Pine, southern yellow, dense
Redwood
Redwood, close-grained
Spruce, Engelmann
Spruce, red, white, and Sitka
Tamarack

Hardwoods
Ash, black
Ash, commercial white
Beech, American
Birch, sweet and yellow
Cottonwood, Eastern
Elm, American and slippery

(white or soft elm)
Elm, rock
Gums, blackgum, sweetgum (red

or sap gum)
Hickory, true and pecan
Maple, black and sugar (hard

maple)
Oak, commercial red and white
Tupelo
Yellow poplar

Extreme
Fiber in
Bending

or Tension
Parallel to

Grain

1900

1300
1100

1600
1600

2200
2350

1600

2550
1600

1300
1600
1900

2200
1300

1600
1300
1600
2200
2550
1750
1900
1100
1600
1750

1450
2050
2200
2200
1100
1600

2200
1600

2800
2200

2050
1600
1300

Maximum
Horizontal

Shear

150

120
100

130
130

130
130

120

150
100

100
100
110

130
120

120
90

120
160
190
100
100
100
120
140

130
185
185
185
90

150

185
150

205
185

185
150
120

Compres-
sion Per-

pendicular
to Grain

300

200
180

250
250

320
340

280

380
300

150
300
300

320
250

220
220
220
320
380
250
270
180
250
300

300
500
500
500
150
250

500
300

600
500

500
300
220

Compres-
sion

Parallel
to Grain

Ud = 11
or Less

1450

950
750

1200
1050

1450
1550

1050

1700
950

950
950

1200

1450
1000

1050
950

1050
1450
1700
1350
1450
800

1050
1350

850
1450
1600
1600
800

1050

1600
1050

2000
1600

1350
1050
950

Modulus
of

Elasticity
in Bending

1,200,000

1,000,000
800,000

1,500,000
1,200,000

1,600,000
1,600,000

1,200,000

1,600,000
1,100,000

1,000,000
1,100,000
1,400,000

1,500,000
1,000,000

1,100,000
1,000,000
1,200,000
1,600,000
1,600,000
1,200,000
1,200,000

800,000
1,200,000
1,300,000

1,100,000
1,500,000
1,600,000
1,600,000
1,000,000
1,200,000

1,300,000
1,200,000

1,800,000
1,600,000

1,500,000
1,200,000
1,100,000

*These stresses are applicable with certain adjustments to material of any degree of seasoning.
(For use in determining working stresses according to the grade of timber and other applicable factors.
All values are in pounds per square inch. U.S. Forest Products Laboratory.)



Table 10.10 Values of K for Columns of Intermediate Length

ASTM Standards, 1937, D245-37

Continuously Dry Occasionally Wet Usually Wet

Species Select Common Select Common Select Common

Cedar, western red 24.2 27.1 24.2 27.1 25.1 28.1
Cedar, Port Orford 23.4 26.2 24.6 27.4 25.6 28.7
Douglas fir, coast region 23.7 27.3 24.9 28.6 27.0 31.1
Douglas fir, dense 22.6 25.3 23.8 26.5 25.8 28.8
Douglas fir, Rocky Mountain region 24.8 27.8 24.8 27.8 26.5 29.7
Hemlock, west coast 25.3 28.3 25.3 28.3 26.8 30.0
Larch, western 22.0 24.6 23.1 25.8 25.8 28.8
Oak, red and white 24.8 27.8 26.1 29.3 27.7 31.1
Pine, southern 27.3 28.6 31.1
Pine, dense 22.6 25.3 23.8 26.5 25.8 28.8
Redwood 22.2 24.8 23.4 26.1 25.6 28.6
Spruce, red, white, Sitka 24.8 27.8 25.6 28.7 27.5 30.8

A few general principles should guide in proportioning columns. The radius of gyration should
be approximately the same in the two directions at right angles to each other; the slenderness ratio
of the separate parts of the column should not be greater than that of the column as a whole; the
different parts should be adequately connected in order that the column may function as a single
unit; the material should be distributed as far as possible from the centerline in order to increase the
radius of gyration.

Steel Column Formulas
A variety of steel column formulas are in use, differing mostly in the value of unit stress allowed
with various values of Ilk. See Ref. 15, for a summary of the formulas.

Test on Steel Columns
After the collapse of the Quebec Bridge in 1907 as a result of a column failure, the ASCE, the
AREA, and the U.S. Bureau of Standards cooperated in tests of full-sized steel columns. The results
of these tests are reported in Ref. 16, pp. 1583-1688. The tests showed that, for columns of the
proportions commonly used, the effect of variation in the steel, kinks, initial stresses, and similar

Table 10.11 Strength of Columns of Intermediate Length, Expressed as a Percentage of
Strength of Short Columns

ASTM Standards, 1937, D245-37
Values for expression {1 - 1/3(//Kc/)4} in eg. 33

Ratio of Length to Least Dimension in Rectangular Timbers, //d

K 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
22 97 96 95 93 91 88 85 81 77 72 67
23 98 97 9594 92 90 87 84 81 77 72 67
24 98 97 96 95 93 92 89 87 84 80 76 72 67
25 98 98 97 96 94 93 91 89 86 83 80 76 72 67
26 99 98 97 96 95 93 92 91 89 86 83 80 76 72 67
27 99 98 98 97 96 95 93 92 90 88 85 82 79 74 71 67
28 99 98 9897 96 95 94 93 91 89 87 85 82 79 75 71 67
29 99 99 9898 97 96 95 94 92 91 89 87 84 82 79 75 71 67 . . . . . .
30 99 99 98 98 97 97 96 95 94 92 90 88 86 84 81 78 75 71 67 ..
31 99 99 99 98 98 97 96 95 94 93 92 90 88 86 84 81 78 75 71 67

Note. This table can also be used for columns not rectangular, the Ud being equivalent to 0.289//&,
where k is the least radius of gyration of the section.



defects in the column was more important than the effect of length. They also showed that the thin
metal gave definitely higher strength, per unit area, than the thicker metal of the same type of section.

10.9 CYLINDERS, SPHERES, AND PLATES

10.9.1 Thin Cylinders and Spheres under Internal Pressure
A cylinder is regarded as thin when the thickness of the wall is small compared with the mean
diameter, or dlt > 20. There are only tensile membrane stresses in the wall developed by the internal
pressure p

(T1 cr? p

J1
+R2 = I (1°'96)

In the case of a cylinder where R1, the curvature, is R and R2 is infinite, and the hoop stress is

pR
CT1= <Th = ~ (10.97)

If the two equations are compared, it is seen that the resistance to rupture by circumferential stress
[Eq. (10.97)] is one-half the resistance to rupture by longitudinal stress [Eq. (10.98)]. For this reason
cylindrical boilers are single riveted in the circumferential seams and double or triple riveted in the
longitudinal seams.

From the equations of equilibrium, the longitudinal stress is

pR
^ = °L = % (1°'98)

For a sphere, using Eq. (10.96), R1 = R2 = R and Cr1 = cr2, making

pR
a, = CT2 = - (10.99)

In using the foregoing formulas to design cylindrical shells or piping, thickness t must be increased
to compensate for rivet holes in the joints. Water pipes, particularly those of cast iron, require a high
factor of safety, which results in increased thickness to provide security against shocks caused by
water hammer or rough handling before they are laid. Equation (10.98) applies also to the stresses
in the walls of a thin hollow sphere, hemisphere, or dome. When holes are cut, the tensile stresses
must be found by the method used in riveted joints.

Thin Cylinders under External Pressure
Equations (10.97) and (10.98) apply equally well to cases of external pressure if P is given a negative
sign, but the stresses so found are significant only if the pressure and dimensions are such that no
buckling can occur.

10.9.2 Thick Cylinders and Spheres

Cylinders
When the thickness of the shell or wall is relatively large, as in guns, hydraulic machinery piping,
and similar installations, the variation in stress from the inner surface to the outer surface is relatively
large, and the ordinary formulas for thin wall cylinders are no longer applicable. In Fig. 10.26 the
stresses, strains, and deflections are related1'18'19 by

Fig. 10.26 Cylindrical element.



*-rb***-rM;*'£]
,,. ̂  («,.„,,, ̂  [£ + ,S] „„,„„

where E1 is the modulus and ^ is Poisson's ratio. In a cylinder (Fig. 10.27) that has internal and
external pressures, pt and p0\ internal and external radii, a and b; K = bla\ the stresses are

-F^ K)-^r K)
PJ (. b2} P^ (. «2\ n n u m"r = ̂ 77 (l - ^) - J^l (l - ^J (10-103)

if p0 = O, and at, crr are maximum at r = a; if pt, = O, at is maximum at r = a\ and crr is maximum
at r = b.

In shrinkage fits, Fig. 10.27, a hollow cylinder is pressed over a cylinder with a radial interference
8 at r = b. pf, the pressure between the cylinders, can be found from

S^(£l±|+,U^(^_,) (10,04)
E0 \c2 - b2 ) E1 \b2 - a2 )

The radial deflection can be found at a which shrinks and c which expands by knowing ar is zero
and using Eqs. (10.100) and (10.101):

ua = ̂ a, uc = ̂ c (10.105)
E1 E0

Spheres
The stress, strain, and deflections19'20 are related by

*, = -,—^ fe + ̂ i = i—^r; [- + " ?! (10-106)
1 - v - 2v2 1 - v — 2v2 Lr drJ

o-, = 1 -̂Tl P^ + (1 - v)6j = ^- [21; - + (1 - v) ̂ l (10.107)
\ — v — 2v2 \ — v — 2v2 L r ^rJ

The stresses for a thick wall sphere with internal and external pressure, p{ and p0, and K = bIa are

Fig. 10.27 Cylinder press fit.



pt(l + b*/2r3) PoK
3(l + a3/2r3)

*'-S^i— J P - I (10-108)

ar_»<£w>_pw-_w (10,09)

If Pf = O, ar = O at r - a, then

ua = (I - v)^;a (10.110)
ii

Conversely, if p0 = O, crr = O at r = b, then

ub = (l- v)?j b (10.111)

10.9.3 Plates
The formulas that apply for plates are based on the assumptions that the plate is flat, of uniform
thickness, and of homogeneous isotropic material, thickness is not greater than one-fourth the least
transverse dimension, maximum deflection is not more than one-half the thickness, all forces are
normal to the plane of the plate, and the plate is nowhere stressed beyond the elastic limit. In Table
10.12 are formulas for deflection and stress for various shapes, forms of load and edge conditions.
For further information see Refs. 12 and 21.

10.9.4 Trunnion
A solid shaft (Fig. 10.28) on a round or rectangular plate loaded with a bending moment is called a
trunnion. The loading generally is developed from a bearing mounted on the solid shaft. For a round,
simply supported plate

IBM
OV = ̂ - (10.112)

yM
O = Jf (10.113)

O _ 1 Q(0.7634-l.252*) ^ £

i f^Ao l5\0<x = -<\ (10.114)log y = 0.248 - TTC15J a

For the fixed-end plate

Q = IQd-1.959x) ~] fr

i A I T O a ^ i s f t X * = ̂ 1 (10.115)log y = 0.179 - 3.75jc15J a

The equations for /3, y are derived from curve fitting of data (see, for example, Refs. 2, 4th ed., and
21).

10.9.5 Socket Action
In Fig. 10.29a, summation of moments in the middle of the wall yields

„ r/V A/2 Al „/ A% 2X3 2JHH)
af = ̂  \F (a+ ^]I (10.116)

* L \ Z/J

Summation of forces in the horizontal gives

a/ = y (10.117)

At B, the bearing pressure in Fig. 10.29c is



Table 10.12 Formulas for Flat Plates3

Notation: W = total applied load, Ib; w = unit applied load, pea; t — thickness of plate, in.; or = stress at surface
of plate, psi; y — vertical deflection of plate from original position, in.; E =» modulus of elasticity; m — reciprocal of v,
Poisson's ratio, q denotes any given point on the surface of plate; r denotes the distance of q from the center of a circu-
lar plate. Other dimensions and corresponding symbols are indicated on figures. Positive sign for o indicates tension
at upper surface and equal compression at lower surface; negative sign indicates reverse condition. Positive sign for y
indicates upward deflection, negative sign downward deflection. Subscripts r, t, a, and 6 used with a denote, respectively,
radial direction, tangential direction, direction of dimension a, and direction of dimension b. AU dimensions are in inches.
All logarithms are to the base e (log, x - 2.3026 logio x).

TND" SUPPORT0 FORMULAS FOR STRESS AND DKFLECTION

CIRCULAR FLAT PLATES

At center:
-3W „ , f . 3TF(m - l)(5m -f 1)az

"""-" = S^ (3m+l) ^* = HrhV
At?:

"--S=SO+0O-S)] --^[0-+"-(-+S)?]
3Jf(m2- l ) |-(5m+l)a2 T^ _ (3m +Dr2H

V ZvEmW L 2(m + 1) 2a2 m + \ J

At center:
3PP(m+1) 3TP(ro2-l)a2

« — —8^r- -»» MMi-
Mq:

-=8^[(3m+I)5-(ro+l)] *.-S[("+»?-(-+i)3
= -3TP(m2 - 1) r(a2-r2)2"|

^ 167r£m¥ L a2 J

At g, r < TQ:

Tr = - -^2 [m + (m+ I) log- - (m - 1) £ - (3m+ I)-^l
2irmt* L ro 4o2 4ro2 J

"--^[" + ̂  + "K-6-"c-(»+s>6]

^-!^-'[^-^+-.-^+W)^^-2'-"-1':^"^16jr£m^° L TQ-* TQ (m + I)O^
8m(o2-r2)-|

"*" m + 1 J
At q, r > TQ:

*-^[*n-.)^-«.-.)g+c.-n£]

« —^[(-«) + (. + »^-(—i)g-o.-i)g]
= _ 3If (m2 -~ 1) [-(12m + 4)(a2-r2) _ 2(m - I)r0

2(o2 - r2)
lfcrflm2*3 L OT+t (ro+l)a*

-(8rs + 4r0
2)log^]

At center:

-""-"--^[- + c- + ')^"^"0?']
maX, = -3^2-'^^ + ̂ 2-^^!^^ + 3^

KnEmW L TO+1 ° gr0 m + ! J

0 By permission from Ref. 22.

Outer edges sup-
ported. Uniform
load over entire
airfare.

Outer edges fixed.
Uniform load over
entire surface.

Outer edges sup-
ported. Uniform
load over concen-
tric circular area
of radius r0.



Table 10.12 (Continued)

FORMULAS FOR STRESS AND DEFLECTION

CIRCULAR FLAT PLATES
At q, r < TQ:

max<r r==(T*=--^2H(Tn- I) + (m + I) log- - (m - I)^-I
2wmr L 2 ro 2c2 J

•--^l^SSSr*-*+'*^*-'*
_(m-Qr0V-r2)1

2(ro+l)a2 J
At <7, r > TQ:

•^ —^[(- + '"««; + <»- ')p-<»- '>s]

«--&[<"- '>+<"+ I> l"r<»- I >p- (»- I >£i]
3Tr(m2-l)|-(3m + 'K-»8-ri) , 2 a (m - Dr0V - r*n

» Sî v" L 20. +1) (r + r°) log; 2(m+i)0* J
At g, r < ro:

3TT r. I ,x i a , , , i \ roz /-, , I N r2 T
»r - - 2 (» + I) log - + (m + 1) -ps - (3m + I ) T - J !

2*mt2 L r0 4a2 4r0
2 J

" = -2^[(M + I)I% + (m+l )^- (m + 3)^]

, = _ !^f) iy _ (8r2+w) I061 - ̂ -!+4 - */j
I6ir£m2r L ro <r ro2 J

At q, T > rot

«rr=-T^2[(m + 1)log" + (m+1)^ + (m-1)^-m]

°t --JE1[Cm+!) log? + (m+ I)I^ -(m- I)^-H
2irm/2 L r 4o2 4r2 J

, = - "̂ " [*,* - (8r. + W) log'- - *¥ - *« + Vl
lDTfiinn* L r a* J

At center:

a,. = fft = - JE- f(m + 1) log - + (m + 1) -^l = max <rr when r0 < 0.588a
2vmP L ro 4az J

3F(m2- 1) T. 2 .̂ 2 i a a 2!
max v =

 v ' 4a2 - 4r0
2 log 3r0

2

\6vEm2t3 L ro J

At qt r < ro:

«rr = ̂  = --^2 [(«+l)(2 log-+ ̂ -Al = max «r when r < 0.31a

^^J^^[lfl^)(a^^-^ + r^^^+^^r^l
2vEm*t* L2 V a2/ ro J

'''--^[^+'K2108;+^)+^-1^2-2"1]_-i-[(M+,,(2,<+^)-<m-,,^-2]
—^s^rK'^:)^-^-'^^-;]

At center:
3F(m2-1) Tl / * 2. « . o nm a z y = = - v -(a2 - r0

2) - r0
2 log -

2irEm*r L 2 r<)J

Ttpm or LOAD
AND SUPPORT

Outer edges sup-
ported. Uniform
load on concentric
circular ring oi
radius ro.

Outer edges fixed.
Uniform load over
concentric circular
area of radius ro.

Outer edges fixed.
Uniform load on
concentric circular
ring of radius ro.



Table 10.12 (Continued)

FORUTTLAS FOR STRESS AND DEFLECTION

CIRCULAR FLAT PLATES WITH CONCENTRIC CIRCULAR HOLB

At inner edge:

max a = Vi « _ 2 ̂  2 f~a4(3m + I) -f 64(m - 1) - 4roaV - 4(m + I)a262 log ̂ l

max „ = _ 3w(m* ~ ]) f a4<5m + D , &4(7m + 3) _ o2b2(3m + l)
2mW L 8 ( m + l ) 8(m-f1) 2 ( m + l )

, a262(3m-M)t a 2a264(m+D /, ON 2 T
+ 2(m - I) g 6 ~ (a 2 -6 2 ) (O T - I ) V°g 6/ J

At inner edge:
3JF r2a2(ro+ I ) 1 a , , ,.-|

max<r - <r< = - —-; 2
V ^2

 log I + (m ~ ])

2xmr L a2 — 62 6 J

ax 3 I f (m 2 - l ) r (a 2 -6 2 ) (3m+l) 4a262(m+D /, a\2l
^ ^i'm2/3 L (w + I) ^ (m - l)(o2 - 62) V g 6/ J

At inner edge:
3IF r2a2(m + 1)1 c , , ,xC2-^2!

""'•"•-SSL-Srir^j+O"-"?^?]

At inner edge:

maX<r = <r, = ̂ 2J2", &2) [4a4(m + 1) log| + 4a262 + 64(m - 1) -o4(m + 3)]

At outer edge:

max V m 3T^l3
0 f*4^'+ 3> + 6^5m + '> - «2&2(12m + 4)I o£i m t L.

4a 2 & 2 (3m+D(m+l) 1 a , I6o462(m+l)2 ^1 a\*-|
(^Tl) Kb + (a*-b*)(m-\)\ *b) J

At outer edge:

I" 64(m- I ) - 464(m+ 1)log? -fa262(m+ 1)1

«—r-^[a«-»«+ Q 2 ( m_1 ) + 6 2 ( m + 1 ) J -ma*.

At inner edge:

[~ a4-64-4a262 log^ 1
3ic(m2-1) S-

mal<r< 4m/2 La2(m- l )+6 2 (m+l ) J

^^-^TSirC'14 + 564-^62+864108^
{ I- 8&6(m 4- D + 4a264(3m -f D + 4a462(m + I)] log ~ - 16a264(m + 1) (log f\ ] "]
1 6 ^ &/^ M
( + 4a^64 ~ 2o462(m + D + 266(m - 1) [

a 2 ( m - l ) + 6 2 ( m + l ) J

TTPB OF LOAD
AND SUPPORT

Outer edge sup-
ported. Uniform
load over entire
surface.

Outer edge sup-
ported. Uniform
load along inner
edge.

Supported along
concentric circle
near outer edge.
Uniform load
along concentric
circle near inner
edge.

Inner edge sup-
ported. Uniform
load over entire
surface.

Outer edge fixed and
supported. Uni-
form load over
entire surface.



Table 10.12 (Continued)

Fig. 10.28 Simply supported trunnion.

TTPB OF LOAD
AND SUPPORT

Outer edge fixed and
supported. Uni-
form load along
inner edge.

Outer edge fixed.
Uniform moment
along inner edge.

Outer edge sup-
ported. Unequal
uniform moments
along edges.

FORMUIAS FOR STRESS AND DEFLECTION

CIRCULAR FLAT PLATES WITH CONCENTRIC CIRCULAR HOLE
At outer edge:

f 2m&2-262(m + Dlog^1
3JF , H , o ^ ^ „max OY = —— I 2 — — - = max <r when - < 2.4
271-J2L a2(m — 1) -j-62(m + 1) J 6

At inner edge:

[ roa2(m - 1) - mb2(m + D - 2(m2 - l)a2 log -1
3Tr I 1 1 b I

maX<T' 2^i2L1+ a » ( « - l ) + 6 a ( « + l ) J

= max a when - > 2.4
6

3F(m2-l)^
"""-- 4«, W X

[ 2m62(a2 - 62) - 8ma2^2 !02 - + 4a''Y2(m + 1) ( log " ) 1
«> .0 "

0 6 + a2(m- l ) + 6 2 ( m + l ) J

At inner edge:
6M

max ffr = -g"

6M(^-Df"a262-64-2a262l0g?l
maX y m^3 L o2(m - I ) + 62(m + I ) J

At outer edge:
6M r 2mfc2 -J

ffr <2 L (m+Di 2 + (m- Da2J

At q:

"•w- »•)[•'*• ^-°r'^-«]
"-^r^L^-^^^-H

From outer edge level:
12(m2 - D fa2 - '* /a*~M* ~ b*Mb\ L , o /^a262(Ma -Af6)M

^ ^(a2-62)L 2 ( m + 1 >) + ̂  r V " * - 1 JJ



Fig. 10.29 Socket action near an edge.

a) + a) (10.118)
a

InEq. (10.102)/?0 - O and

Pi F1 _, / * Vl
^ = JTZT [1 + (5/2] J

At A in Fig. 10.29c

_ <ft8F

^"^M

where 2bld = 2,4 and <£ = 4.3, 4.4;

F = (a/ + co")/

If a pin is pressed into the frame hole, crt created by pf [Eq. (10.104)] must be added. Furthermore,
if the pin and frame are different metals, additional cr, will be created by temperature changes that
vary/^.

The stress in the pin can be found from the maximum moment developed by a/ and o>", and then
calculating the bending stress.

10.10 CONTACTSTRESSES
The stresses caused by the pressure between elastic bodies (Table 10.13) are of importance in con-
nection with the design or investigation of ball and roller bearings, trunnions, expansion rollers, track
stresses, gear teeth, etc.

Contact Stress Theory
H. Hertz23 developed the mathematical theory for the surface stresses and the deformations produced
by pressure between curved bodies, and the results of his analysis are supported by research. Formulas
based on this theory give the maximum compressive stresses which occur at the center of the surfaces
of contact, but do not consider the maximum subsurface shear stresses nor the maximum tensile
stresses which occur at the boundary of the contact area. In Table 10.13 formulas are given for the
elastic stress and deformation produced by bodies in contact. Numerous tests have been made to
determine the bearing strength of balls and rollers, but there is difficulty in interpreting the results



Character of Surfaces

Two spheres

Sphere and plane

Sphere and hollow sphere

Cylinder and plane

Two cylinders

General case of two bodies in
contact

Maximum Pressure, s, at Radius, r, or Width, b, of
Center of Contact, psi Contact Area, in.

, - 0.616 {IPS' ("l + *V r- 0.88. •№ ( d^ }
V V did, ) \E\d1 + dJ

3 /pE»2 3 /T>J
• -0.6l6\Fr- r - 0.881 \/—\ a \ E

s = 0.6.6 tlr* (d* -.."'Y r - 0.881 •> ( d^ \
V V didi J \E Vd2 - dj

, = 0.591-^ »-2.15^\ o \ E

. - 0.591 -it* Cdl + "2>) 6 - 2 . 1 5 \/Pl ( d^ \
\ V did2 ) \ E Vd1 + d2/

3 /S
c = « V"^

1.5P v A

-">S
4

1 + ' + ' + '
^i Rz RI Rz

K _ 8 #i£2

^^d-^i^+^id-^2)

/ f / _ L _ 1 V + ^ 1 , 1 V
^ = arc cos ^ a / J V ^ Ri'' ^ R* ''4 V I ^(i-s-')(i-i)««*
& 0° 10° 20° 30° 40° 50° 60° 70° 80° 90°

a oo 6.612 3.778 2.731 2.136 1.754 1.486 1.284 1.128 1.00

ft O 0.319 0.408 0.493 0.567 0.641 0.717 0.802 0.893 1.00

Table 10.13 Areas of Contact and Pressures with Two Surfaces in Contact

Poisson's ratio =» 0.3; P = load, Ib; PI = load per in. of length, Ib; E = modulus of elasticity.



for lack of a satisfactory criterion of failure. One arbitrary criterion of failure is the amount of
allowable plastic yielding. For further information on contact stresses see Refs. 2, 24, and 25.

10.11 ROTATING ELEMENTS

10.11.1 Shafts
The stress1 in the center of a rotating shaft or solid cylinder is

—li^i (T)''
vya>2

°< = W^r° (iai20)

where v is Poisson's ratio, aj is in rad/sec, y is the density in lb/in.3, and g is 386 in./sec2. The
limiting a> can be found by using distortion energy; however, most shafts support loads and are
limited by critical speeds from torsional or bending modes of vibration. Holzer's method and Dunk-
erley's equation are used.

10.11.2 Disks
A rotating disk1'9-19 of inside radius a and outside radius b has ar = O at a and b, while at is

^ = ̂ ^2(b2 + JT->2) <10-121>

^ = Sr^2(a2 + jrH (10J22)

Substitution in Eq. (10.105) gives the outside and inside radial expansions.
The solid disk of radius b has stresses at the center

o-t= ar = ̂ -^ yc*2b2 (10.123)
°£

Substitution into the distortion energy [Eq. (10.22)] can give one the limiting speed.

10.11.3 Blades
Blades attached to a rotating shaft will experience a tensile force at the attachment to the shaft. These
can be found from dynamics of machinery texts; however, the forces developed from a fluid driven
by the blades develop more problems. The blades, if not in the plane, will develop additional forces
and moments from the driving force plus vibration of the blades on the shaft.

10.12 DESIGN SOLUTION SOURCES AND GUIDELINES
Designs are composed of simple elements, as discussed here. These elements are subjected to tem-
perature extremes, vibrations, and environmental effects that cause them to creep, buckle, yield, and
corrode. Finding solutions to model these cases, as elements, can be difficult and when found the
solutions are complex to follow, let alone to calculate. See Refs. 2, 21, and 26-32 Handbooks
cataloging known solutions. Always cross-check with another reference. The Handbooks of Roark
& Young and Blevins have been computerized using a TK solver and are distributed by UTS software.
These closed form solutions would ease some of the more complicated calculations and checks finite
element solutions using a computer.

10.12.1 Computers
Most computer set-ups use linear elastic solutions where the analyst supplies mechanical properties
of materials such as yield and ultimate strengths and cross-sectional properties like area and area
moments of inertia. When solving more complex problems, some concerns to keep in mind:

Questions to Be Asked

1. Will I know if this model buckles?
2. Can one use a non-linear stress-strain curve?
3. Is there any provision for creep and buckling?



4. How large and complex a structure can be solved? Look at a solved problem and relate it to
future problems.

Things to Watch and Note

1. Press fit joints, flanges, pins, bolts, welds and bonds, and any connection interface present
modeling problems. The stress analysis of a single loaded weld is not a simple task. The
stress solution for a trunnion with more complexity, such as seal grooves in the plate, requires
many small finite elements to converge to a closed form solution (Eq. 10.112).

2. Vibration solutions with connection interfaces can give frequency solutions with 50% error
with many connections and still have 10-15% error with no connections. The computer
solution appears to be always on the high side.

3. Detailed fatigue stresses on elements can be derived out of the loads by printing out the force
variation.

4. Materials. The materials have good operating range33 and limitations for spring stress relax-
ation at higher temperatures or lower limits can be applicable to structural members.

Nickel Alloys, Inconels and similar -30O0F < T < 102O0F
materials.
300, 400, 17-4, 17-7 stainless or austenitic, -UO0F < T < 57O0F
martensite, and precipitation-hardening
stainless steels.
Spring steels -50F < T < 43O0F
Patented cold drawn carbon steels UO0F < T < 30O0F
Copper Beryllium -33O0F < T < 26O0F
Titanium Alloys
Bronzes -4O0F < T < 1750F
Aluminum -30O0F < T < 40O0F
Magnesium -30O0F < T < 35O0F

The high temperatures are for the onset of creep and stress relaxation and lower mechanical
properties with higher temperature. The low temperatures show higher mechanical properties but are
shock-sensitive. Always examine for the mechanical properties for the temperature range and thermal
expansion.34^37 The mechanical properties at room temperature have predictable distributions with
ample sample sizes, but if the temperature is varied, similar published results are not readily available.

Rubber, plastics, and elastomers have glassy transition temperatures below which the material is
putty-like and above which the material is rock-like and brittle. All material mechanical properties
vary a great deal due to temperature. This makes computer solutions much more complex. Testing
is the final reliable check.

10.12.2 Testing
Most designs must pass some sets of vibration, environmental, and screen testing before delivery to
a customer. It is at this time that design flaws show up and frequencies, stresses, and so on are
verified. Some preliminary testing might help:

1. Compare impact hammer frequency test of part of or an entire system to the computer and
hand calculations. The physical testing includes the boundary values sometimes difficult to
simulate on a computer.

2. Spot bond optical parts to dissimilar metal structural frame, which must be hot and cold soak
tested to see if the bonding fractures the optical parts. Computers cannot predict a failure of
this type well.

3. Check testing of joints and seal surfaces with pressure-sensitive gaskets to see if the developed
pressures are sufficient to maintain the design to proper requirements. Then use operational
testing to check for thermal warping of these critical surfaces.

4. Pressurize or load brazed, welded, or soldered part to check the process and its calculations
for the pressures and loads.

5. Rapid Prototyping.38 This method could be used to check a photoelastic model by vibrating
it or freezing stresses in the model from static loads. It also could define areas of high stress
for a smaller grid finite element modeling. Stress coating on a regular plastic model could
also point out areas of high stress.
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