
17.1 INTRODUCTION
This chapter presents an overview of optimization theory and its application to problems arising in
engineering. In the most general terms, optimization theory is a body of mathematical results and
numerical methods for finding and identifying the best candidate from a collection of alternatives
without having to enumerate and evaluate explicitly all possible alternatives. The process of optim-
ization lies at the root of engineering, since the classical function of the engineer is to design new,
better, more efficient, and less expensive systems, as well as to devise plans and procedures for the
improved operation of existing systems. The power of optimization methods to determie the best
case without actually testing all possible cases comes through the use of a modest level of mathe-
matics and at the cost of performing iterative numerical calculations using clearly defined logical
procedures or algorithms implemented on computing machines. Because of the scope of most engi-
neering applications and the tedium of the numerical calculations involved in optimization algorithms,
the techniques of optimization are intended primarily for computer implementation.
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17.2 REQUIREMENTS FOR THE APPLICATION OF OPTIMIZATION METHODS
In order to apply the mathematical results and numerical techniques of optimization theory to concrete
engineering problems it is necessary to delineate clearly the boundaries of the engineering system to
be optimized, to define the quantitative criterion on the basis of which candidates will be ranked to
determine the "best," to select the system variables that will be used to characterize or identify
candidates, and to define a model that will express the manner in which the variables are related.
This composite activity constitutes the process of formulating the engineering optimization problem.
Good problem formulation is the key to the success of an optimization study and is to a large degree
an art. It is learned through practice and the study of successful applications and is based on the
knowledge of the strengths, weaknesses, and peculiarities of the techniques provided by optimization
theory.

17.2.1 Defining the System Boundaries
Before undertaking any optimization study it is important to define clearly the boundaries of the
system under investigation. In this context a system is the restricted portion of the universe under
consideration. The system boundaries are simply the limits that separate the system from the re-
mainder of the universe. They serve to isolate the system from its surroundings, because, for purposes
of analysis, all interactions between the system and its surroundings are assumed to be frozen at
selected, representative levels. Since interactions, nonetheless, always exist, the act of defining the
system boundaries is the first step in the process of approximating the real system.

In many situations it may turn out that the initial choice of system boundary is too restrictive. In
order to analyze a given engineering system fully it may be necessary to expand the system bound-
aries to include other subsystems that strongly affect the operation of the system under study. For
instance, suppose a manufacturing operation has a point shop in which finished parts are mounted
on an assembly line and painted in different colors. In an initial study of the paint shop we may
consider it in isolation from the rest of the plant. However, we may find that the optimal batch size
and color sequence we deduce for this system are strongly influenced by the operation of the fabri-
cation department that produces the finished parts. A decision thus has to be made whether to expand
the system boundaries to include the fabrication department. An expansion of the system boundaries
certainly increases the size and complexity of the composite system and thus may make the study
much more difficult. Clearly, in order to make our work as engineers more manageable, we would
prefer as much as possible to break down large complex systems into smaller subsystems that can
be dealt with individually. However, we must recognize that this decomposition is in itself a poten-
tially serious approximation of reality.

17.2.2 The Performance Criterion
Given that we have selected the system of interest and have defined its boundaries, we next need to
select a criterion on the basis of which the performance or design of the system can be evaluated so
that the "best" design or set of operating conditions can be identified. In many engineering appli-
cations, an economic criterion is selected. However, there is a considerable choice in the precise
definition of such a criterion: total capital cost, annual cost, annual net profit, return on investment,
cost to benefit ratio, or net present worth. In other applications a criterion may involve some tech-
nology factors, for instance, minimum production time, maximum production rate, minimum energy
utilization, maximum torque, and minimum weight. Regardless of the criterion selected, in the context
of optimization the "best" will always mean the candidate system with either the minimum or the
maximum value of the performance index.

It is important to note that within the context of the optimization methods, only one critrion or
performance measure is used to define the optimum. It is not possible to find a solution that, say,
simultaneously minimizes cost and maximizes reliability and minimizes energy utilization. This again
is an important simplification of reality, because in many practical situations it would be desirable
to achieve a solution that is "best" with respect to a number of different criteria. One way of treating
multiple competing objectives is to select one criterion as primary and the remaining criteria as
secondary. The primary criterion is then used as an optimization performance measure, while the
secondary criteria are assigned acceptable minimum or maximum values and are treated as problem
constraints. However, if careful considerations were not given while selecting the acceptable levels,
a feasible design that satisfies all the constraints may not exist. This problem is overcome by a
technique called goal programming, which is fast becoming a practical method for handling multiple
criteria. In this method, all the objectives are assigned target levels for achievement and a relative
priority on achieving these levels. Goal programming treats these targets as goals to aspire for and
not as absolute constraints. It then attempts to find an optimal solution that comes as "close as
possible" to the targets in the order of specified priorities. Readers interested in multiple criteria
optimizations are directed to recent specialized texts.1'2



17.2.3 The Independent Variables
The third key element in formulating a problem for optimization is the selection of the independent
variables that are adequate to characterize the possible candidate designs or operating conditions of
the system. There are several factors that must be considered in selecting the independent variables.

First, it is necessary to distinguish between variables whose values are amenable to change and
variables whose values are fixed by external factors, lying outside the boundaries selected for the
system in question. For instance, in the case of the paint shop, the types of parts and the colors to
be used are clearly fixed by product specifications or customer orders. These are specified system
parameters. On the other hand, the order in which the colors are sequenced is, within constraints
imposed by the types of parts available and inventory requirements, an independent variable that can
be varied in establishing a production plan.

Furthermore, it is important to differentiate between system parameters that can be treated as
fixed and those that are subject to fluctuations which are influenced by external and uncontrollable
factors. For instance, in the case of the paint shop, equipment breakdown and worker absenteeism
may be sufficiently high to influence the shop operations seriously. Clearly, variations in these key
system parameters must be taken into account in the production planning problem formulation if the
resulting optimal plan is to be realistic and operable.

Second, it is important to include in the formulation all of the important variables that influence
the operation of the system or affect the design definition. For instance, if in the design of a gas
storage system we include the height, diameter, and wall thickness of a cylindrical tank as independent
variables, but exclude the possibility of using a compressor to raise the storage pressure, we may
well obtain a very poor design. For the selected fixed pressure we would certainly find the least cost
tank dimensions. However, by including the storage pressure as an independent variable and adding
the compressor cost to our performance criterion, we could obtain a design that has a lower overall
cost because of a reduction in the required tank volume. Thus, the independent variables must be
selected so that all important alternatives are included in the formulation. Exclusion of possible
alternatives, in general, will lead to suboptimal solutions.

Finally, a third consideration in the selection of variables is the level of detail to which the system
is considered. While it is important to treat all of the key independent variables, it is equally important
not to obscure the problem by the inclusion of a large number of fine details of subordinate impor-
tance. For instance, in the preliminary design of a process involving a number of different pieces of
equipment—pressure vessels, towers, pumps, compressors, and heat exchangers—one would nor-
mally not explicitly consider all of the fine details of the design of each individual unit. A heat
exchanger may well be characterized by a heat-transfer surface area as well as shell-side and tube-
side pressure drops. Detailed design variables such as number and size of tubes, number of tube and
shell passes, baffle spacing, header type, and shell dimensions would normally be considered in a
separate design study involving that unit by itself. In selecting the independent variables a good rule
to follow is to include only those variables that have a significant impact on the composite system
performance criterion.

17.2.4 The System Model
Once the performance criterion and the independent variables have been selected, then the next step
in problem formulation is the assembly of the model that describes the manner in which the problem
variables are related and the performance criterion is influenced by the independent variables. In
principle, optimization studies may be performed by experimenting directly with the system. Thus,
the independent variables of the system or process may be set to selected values, the system operated
under those conditions, and the system performance index evaluated using the observed performance.
The optimization methodology would then be used to predict improved choices of the independent
variable values and the experiments continued in this fashion. In practice most optimization studies
are carried out with the help of a model, a simplified mathematical representation of the real system.
Models are used because it is too expensive or time consuming or risky to use the real system to
carry out the study. Models are typically used in engineering design because they offer the cheapest
and fastest way of studying the effects of changes in key design variables on system performance.

In general, the model will be composed of the basic material and energy balance equations,
engineering design relations, and physical property equations that describe the physical phenomena
taking place in the system. These equations will normally be supplemented by inequalities that define
allowable operating ranges, specify minimum or maximum performance requirements, or set bounds
on resource availabilities. In sum, the model consists of all of the elements that normally must be
considered in calculating a design or in predicting the performance of an engineering system. Quite
clearly the assembly of a model is a very time-consuming activity, and it is one that requires a
thorough understanding of the system being considered. In simple terms, a model is a collection of
equations and inequalities that define how the system variables are related and that constrain the
variables to take on acceptable values.



From the preceding discussion, we observe that a problem suitable for the application of optim-
ization methodology consists of a performance measure, a set of independent variables, and a model
relating the variables. Given these rather general and abstract requirements, it is evident that the
methods of optimization can be applied to a very wide variety of applications. We shall illustrate
next a few engineering design applications and their model formulations.

17.3 APPLICATIONS OF OPTIMIZATION IN ENGINEERING
Optimization theory finds ready application in all branches of engineering in four primary areas:

1. Design of components of entire systems.
2. Planning and analysis of existing operations.
3. Engineering analysis and data reduction.
4. Control of dynamic systems.

In this section we briefly consider representative applications from the first three areas.
In considering the application of optimization methods in design and operations, the reader should

keep in mind that the optimization step is but one step in the overall process of arriving at an optimal
design or an efficient operation. Generally, that overall process will, as shown in Fig. 17.1, consist
of an iterative cycle involving synthesis or definition of the structure of the system, model formulation,
model parameter optimization, and analysis of the resulting solution. The final optimal design or new
operating plan will be obtained only after solving a series of optimization problems, the solution to
each of which will have served to generate new ideas for further system structures. In the interest of
brevity, the examples in this section show only one pass of this iterative cycle and focus mainly on
preparations for the optimization step. This focus should not be interpreted as an indication of the
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Fig. 17.1 Optimal design process.



dominant role of optimization methods in the engineering design and systems analysis process. Op-
timization theory is but a very powerful tool that, to be effective, must be used skillfully and intel-
ligently by an engineer who thoroughly understands the system under study. The primary objective
of the following example is simply to illustrate the wide variety but common form of the optimization
problems that arise in the design and analysis process.

17.3.1 Design Applications
Applications in engineering design range from the design of individual structural members to the
design of separate pieces of equipment to the preliminary design of entire production facilities. For
purposes of optimization the shape or structure of the system is assumed known and optimization
problem reduces to the selection of values of the unit dimensions and operating variables that will
yield the best value of the selected performance criterion.

Example 17.1 Design of an Oxygen Supply System
Description. The basic oxygen furnace (BOF) used in the production of steel is a large fed-

batch chemical reactor that employs pure oxygen. The furnace is operated in a cyclic fashion: ore
and flux are charged to the unit, are treated for a specified time period, and then are discharged. This
cyclic operation gives rise to a cyclically varying demand rate for oxygen. As shown in Fig. 17.2,
over each cycle there is a time interval of length tl of low demand rate, D0, and a time interval
O2 - J1) of high demand rate, D1. The oxygen used in the BOF is produced in an oxygen plant.
Oxygen plants are standard process plants in which oxygen is separated from air using a combination
of refrigeration and distillation. These are highly automated plants, which are designed to deliver a
fixed oxygen rate. In order to mesh the continuous oxygen plant with the cyclically operating BOF,
a simple inventory system shown in Fig. 17.3 and consisting of a compressor and a storage tank
must be designed. A number of design possibilities can be considered. In the simplest case, one
could select the oxygen plant capacity to be equal to D1, the high demand rate. During the low-
demand interval the excess oxygen could just be vented to the air. At the other extreme, one could
also select the oxygen plant capacity to be just enough to produce the amount of oxygen required
by the BOF over a cycle. During the low-demand interval, the excess oxygen production would then
be compressed and stored for use during the high-demand interval of the cycle. Intermediate designs
could involve some combination of venting and storage of oxygen. The problem is to select the
optimal design.

Formulation. The system of concern will consist of the O2 plant, the compressor, and the storage
tank. The BOF and its demand cycle are assumed fixed by external factors. A reasonable performance
index for the design is the total annual cost, which consists of the oxygen production cost (fixed and
variable), the compressor operating cost, and the fixed costs of the compressor and of the storage

Fig. 17.2 Oxygen demand cycle.



Fig. 17.3 Design of oxygen production system.

vessel. The key independent variables are the oxygen plant production rate F (Ib O2/hr), the com-
pressor and storage tank design capacities, H (hp) and V (ft3), respectively, and the maximum tank
pressure, p (psia). Presumably the oxygen plant design is standard, so that the production rate fully
characterizes the plant. Similarly, we assume that the storage tank will be of a standard design
approved for O2 service.

The model will consist of the basic design equations that relate the key independent variables.
If /max is the maximum amount of oxygen that must be stored, then using the corrected gas law

we have

V = % - z (17.1)
M p

where R = the gas constant
T = the gas temperature (assume fixed)
z = the compressibility factor

M = the molecular weight of O2

From Fig. 17.1, the maximum amount of oxygen that must be stored is equal to the area under
the demand curve between tl and t2 and D1 and F. Thus,

/^x = O ) 1 - F X f 2 - O (17.2)

Substituting (17.2) into (17.1), we obtain

y= (P1-FX^r1)Jg;
M p

The compressor must be designed to handle a gas flow rate of (D1 - F)(t2 ~ I1)Jt1 and to
compress it to the maximum pressure of p. Assuming isothermal ideal gas compression,3

g_ C P 1 - F X ^ I j T / p N
*1 kA \Po/

where ^1 = a unit conversion factor
k2 = the compressor efficiency
P0 — the O2 delivery pressure



In addition to (17.3) and (17.4), the O2 plant rate F must be adequate to supply the total oxygen
demand, or

D0J + D1(J2 - f,)
F > — — (17.5)

?2

Moreover, the maximum tank pressure must be greater than the O2 delivery pressure,

P ^ Po (17.6)

The performance criterion will consist of the oxygen plant annual cost,

Q($/yr) = a, + a2F (17.7)

where av and a2 are empirical constants for plants of this general type and include fuel, water, and
labor costs.

The capital cost of storage vessels is given by a power-law correlation,

C2($) = ^V*2 (17.8)

where ^1 and b2 are empirical constants appropriate for vessels of a specific construction.
The capital cost of compressors is similarly obtained from a correlation,

C3(S) = b3H»< (17.9)

The compressor power cost will, as an approximation, be given by

b5t,H

where b5 is the cost of power.
The total cost function will thus be of the form,

Annual cost = a, + a2F + dfaV*2 + b3H
b4} + Nb5I1H (17.10)

where N = the number of cycles per year
d = an appropriate annual cost factor

The complete design optimization problem thus consists of the problem of minimizing (17.10),
by the appropriate choice of F, V, H, and p, subject to Eqs. (17.3) and (17.4) as well as inequalities
(17.5) and (17.6).

The solution of this problem will clearly be affected by the choice of the cycle parameters (N,
D0, D1, J1, and t2), the cost parameters (al, a2, bl-b5, and d), as well as the physical parameters (T,
P0, Ic2, z, and M).

In principle, we could solve this problem by eliminating V and H from (17.10) using (17.3) and
(17.4), thus obtaining a two-variable problem. We could then plot the contours of the cost function
(17.10) in the plane of the two variables F and p, impose the inequalities (17.5) and (17.6), and
determine the minimum point from the plot. However, the methods discussed in subsequent chapters
allow us to obtain the solution with much less work. For further details and a study of solutions for
various parameter values the reader is invited to consult Ref. 4.

The preceding example presented a preliminary design problem formulation for a system con-
sisting of several pieces of equipment. The next example illustrates a detailed design of a single
structural element.

Example 17.2 Design of a Welded Beam
Description. A beam A is to be welded to a rigid support member B. The welded beam is to

consist of 1010 steel and is to support a force F of 6000 Ib. The dimensions of the beam are to be
selected so that the system cost is minimized. A schematic of the system is shown in Fig. 17.4.

Formulation. The appropriate system boundaries are quite self-evident. The system consists of
the beam A and the weld required to secure it to B. The independent or design variables in this case
are the dimensions h, I, t, and b as shown in Fig. 17.4. The length L is assumed to be specified
at 14 in. For notational convenience we redefine these four variables in terms of the vector of
unknowns x,



Fig. 17.4 Welded beam.

x = [X1, Jt2, X3, x4]
T = [h, /, t, b]T

The performance index appropriate to this design is the cost of a weld assembly. The major cost
components of such an assembly are (a) set-up labor cost, (b) welding labor cost, and (c) material
cost:

F(X) = C0 + C1+ C2 (17.11)

where F(x) = cost function
C0 = set-up cost
C1 = welding labor cost
C2 = material cost

Set-Up Cost: C0. The company has chosen to make this component a weldment, because of the
existence of a welding assembly line. Furthermore, assume that fixtures for set-up and holding of
the bar during welding are readily available. The cost C0 can, therefore, be ignored in this particular
total cost model.

Welding Labor Cost: C1. Assume that the welding will be done by machine at a total cost of
$10 per hour (including operating and maintenance expense). Furthermore, suppose that the machine
can lay down 1 in.3 of weld in 6 min. Therefore, the labor cost is

c, = (101)(^V6 2 ^ W = i (AU
1 \ hr/ \60min/ \ in.3/ w \in.3/ w

where Vw = weld volume, in.3

Material Cost: C2.

C2 = C3 Vw + C4V5

where C3 = $/volume of weld material = (0.37)(0.283)($/in.3)
C4 - $/volume of bar stock - (0.17)(0.283)($/in.3)
V8 = volume of bar A (in.3)

From the geometry,

Vw = 2(^h2I) - h2l and VB = tb(L + /)

so

C2 = C3H
2I + CJb(L + /)

Therefore, the cost function becomes

F(x} = H2I + C3H
2I + c4tb(L + /) (17.12)

or, in terms of the x variables

F(X) = (/ + c3)jt?;t2 + C4Jc3Jc4(L + jc2) (17.13)



Note all combinations of Jt1, X2, X3, and X4 can be allowed if the structure is to support the load
required. Several functional relationships between the design variables that delimit the region of
feasibility must certainly be defined. These relationships, expressed in the form of inequalities, rep-
resent the design model. Let us first define the inequalities and then discuss their interpretation.

The inequities are:

S1(Jt) = rd- T(X) > O (17.14)

g2(x) = ad- G-(X) > O (17.15)

g3(x) = X4 - Jf1 > O (17.16)

g4(x) = Jt2 > O (17.17)

S5(X) = Jt3 > O (17.18)

S6(Jt) = Pc(x) - F > O (17.19)

gl(x) = x,- 0.125 > O (17.20)

S8(Jt) = 0.25 - DEL(x) > O (17.21)

where rd = design shear stress of weld
T(JC) = maximum shear stress in weld; a function of x

crd = design normal stress for beam material
CT-(JC) = maximum normal stress in beam; a function of Jt

PC(X) — bar buckling load; a function of Jt
DEL(X) = bar end deflection; a function of x

In order to complete the model it is necessary to define the important stress states.

Weld stress: T(X). After Shigley,5 the weld shear stress has two components, T' and T", where
T' is the primary stress acting over the weld throat area and T" is a secondary torsional stress:

T' = FfV^x1X2 and T" = MRIJ

with M = F[L + (x2/2)]
R = {(xl/4) + [(X3 + ^)/2]2}1/2

J = 2(0.707Jt1Jt2[JtI/12 + (X3 + Jt1) II)2}}

where M = moment of F about the center of gravity of the weld group
/ = polar moment of inertia of the weld group

Therefore, the weld stress r becomes

T(X) = [(T')2 + 2rV cos 6 + (r")2]172

where cos B = x2/2R.

Bar Bending Stress: cr(x). The maximum bending stress can be shown to be equal to

0-(Jt) - 6FLIx4Xl

Bar Buckling Load: Pc(x). If the ratio tlb = Jt3/Jt4 grows large, there is a tendency for the bar
to buckle. Those combinations of Jt3 and Jt4 that will cause this buckling to occur must be disallowed.
It has been shown6 that for narrow rectangular bars, a good approximation to the buckling load is

4.Qi3Vl^r X3 EI-]
P<(X)~ L- L 2 l V « J

where E = Young's modulus = 30 X 106 psi
/ - Vi2Jt3Jt4

5

a = 1AGx3Xl
G = shearing modulus = 12 X 106 psi

Bar deflection: DEL(x). To calculate the deflection assume the bar to be a cantilever of length
L. Thus,



DEL(x) = 4FL3/Exlx4

The remaining inequalities are interpreted as follows.
£3 states that it is not practical to have the weld thickness greater than the bar thickness. g4 and

g5 are nonnegativity restrictions on X2 and X3. Note that the nonnegativity of Jc1 and X4 are implied
by #3 and g7. Constraint g6 ensures that the buckling load is not exceeded. Inequality g1 specifies
that it is not physically possible to produce an extremely small weld.

Finally, the two parameters rd and crd in ^1 and g2 depend on the material of construction. For
1010 steel Td = 13,600 psi and crd = 30,000 psi are appropriate.

The complete design optimization problem thus consists of the cost function (17.13) and the
complex system of inequalities that results when the stress formulas are substituted into (17.14)
through (17.21). All of these functions are expressed in terms of four independent variables.

This problem is sufficiently complex that graphical solution is patently infeasible. However, the
optimum design can readily be obtained numerically using the methods of subsequent sections. For
a further discussion of this problem and its solution the reader is directed to Ref. 7.

17.3.2 Operations and Planning Applications
The second major area of engineering application of optimization is found in the tuning of existing
operations. We shall discuss an application of goal programming model for machinability data op-
timization in metal cutting.8

Example 17.3 An Economic Machining Problem with Two Competing Objectives
Consider a single-point, single-pass turning operation in metal cutting wherein an optimum set of
cutting speed and feed rate is to be chosen which balances the conflict between metal removal rate
and tool life as well as being within the restrictions of horsepower, surface finish, and other cutting
conditions. In developing the mathematical model of this problem, the following constraints will be
considered for the machining parameters:

Constraint 1: Maximum Permissible Feed.

f ^ /M (17.22)

where / is the feed in inches per revolution. /max is usually determined by a cutting force restriction
or by surface finish requirements.9

Constraint 2: Maximum Cutting Speed Possible. If v is the cutting speed in surface feet per
minute, then

v ^ ymax (17.23)

where

*PAU
v^ = —^-

and

^max = maximum spindle speed available on the machine

Constraint 3: Maximum Horsepower Available. If Pmax is the maximum horsepower available
at the spindle, then

Pmax(33,000)vf*—*r-
where a, /3, and ct are constants.9 dc is the depth of cut in inches, which is fixed at a given value.
For a given Pmax, ct, (3, and dc, the right-hand side of the above constraint will be a constant. Hence,
the horsepower constraint can be written simply as

vfa ^ constant (17.24)

Constraint 4: Nonnegativity Restrictions on Feed Rate and Speed.

v, f i= O (17.25)



In optimizing metal cutting there are a number of optimality criteria that can be used. Suppose we
consider the following objectives in our optimization: (i) maximize metal removal rate (MRR), (ii)
maximize tool life (TL). The expression for MRR is

MRR = I2vfdc m.3/min (17.26)

TL for a given depth of cut is given by

TL = -^ (17.27)

where A, n, and H1 are constants. We note that the MRR objective is directly proportional to feed
and speed, while the TL objective is inversely proportional to feed and speed. In general, there is no
single solution to a problem formulated in this way, since MRR and TL are competing objectives
and their respective maxima must include some compromise between the maximum of MRR and the
maximum of TL.

A Goal Programming Model
Goal programming is a technique specifically designed to solve problems involving complex, usually
conflicting multiple objectives. Goal programming requires the user to select a set of goals (which
may or may not be realistic) that ought to be achieved (if possible) for the various objectives. It then
uses preemptive weights or priority factors to rank the different goals and tries to obtain an optimal
solution satisfying as many goals as possible. For this, it creates a single objective function that
minimizes the deviations from the stated goals according to their relative importance.

Before we discuss the goal programming formulation of the machining problem, we should dis-
cuss the difference between the terms "real constraint" and "goal constraint" (or simply "goal") as
used in goal programming models. The real constraints are absolute restrictions placed on the behavior
of the design variables, while the goal constraints are conditions one would like to achieve but are
not mandatory. For instance, a real constraint given by

X1 + X2 = 3

requires all possible values of Jc1 + X2 to always equal 3. As opposed to this, if we simply had a
goal requiring X1 + X2 = 3, then this is not mandatory and we can choose values of Jt1, X2 such that
Jc1 + Jc2 ^ 3 as well as Jc1 + Jt2 < 3. In a goal constraint positive and negative deviational variables
are introduced as follows:

Jc1 + Jc2 + d\ - d\ = 3, dl9 d\ > O

Note that if d\ > O, then Jc1 + Jt2 < 3, and if d\ > O, then Jc1 + Jc2 > 3. By assigning suitable
preemptive weights on d j~ and d ± , the model will try to achieve the sum Jc1 + X2 as close as possible
to 3.

Returning to the machining problem with competing objectives, suppose that management con-
siders that a given single-point, single-pass turning operation will be operating at an acceptable
efficiency level if the following goals are met as closely as possible.

1. The MRR must be greater than or equal to a given rate M1 (in.3/min).
2. The tool life must equal T1 (mm).

In addition, management requires that a higher priority be given to achieving the first goal than the
second.

The goal programming approach may be illustrated by expressing each of the goals as goal
constraints as shown below. Taking the MRR goal first,

I2vfdc + di - dl = M1

where (I1 represents the amount by which the MRR goal is underachieved, and d J" represents any
overachievement of the MRR goal. Similarly, the TL goal can be expressed as

^77^ + K - ̂  = T1



Since the objective is to have an MRR of at least M1, the objective function must be set up so
that a high penalty will be assigned to the underachievement variable d\. No penalty will be assigned
to d\. In order to achieve a tool life of T1, penalties must be associated with both d2 and JJ so
that both of these variables are minimized to their fullest extent. The relative magnitudes of these
penalties must reflect the fact that the first goal is considered to be more important that the second.
Accordingly, the goal programming objective function for this problem is

Minimize z = P1(I2 + P2W2 + ^J)

where P1 and P2 are nonnumerical preemptive priority factors such that P1 »> P2 (i.e., P1 is
infinitely larger than P2). With this objective function every effort will be made to satisfy completely
the first goal before any attempt is made to satisfy the second.

In order to express the problem as a linear goal programming problem, M1 is replaced by M2,
where

M1
M> = !24

The goal T1 is replaced by T2, where

T - A

^"T1

and logarithms are taken of the goals and constraints. The problem can then be stated as follows:

Minimize z = P1^ + P2(W2 + d$)

Subject to

(MRR goal) log v + log / + d\ - d\ = log M2

(TL goal) (I In) log v + (1//I1) log / + d2 - d2 = log T2

(/max constraint) log / ^ log /max

(Vmax constraint) log v ^ log vmax

(Horsepower constraint) log v + a log / ^ log constant

log u, log/, di, d+, d2, d+ ^ O

We would like to reemphasize here that the last three inequalities are real constraints on feed, speed,
and horsepower that must be satisfied at all times, while the equations for MRR and TL are simply
goal constraints. For a further discussion of this problem and its solution, see Ref. 8. An efficient
algorithm and a computer code for solving linear goal programming problems is given in Ref. 10.
Readers interested in other optimization models in metal cutting should see Ref. 11. The textbook
by Lee12 contains a good discussion of goal programming theory and its applications.

17.3.3 Analysis and Data Reduction Applications
A further fertile area for the application of optimization techniques in engineering can be found in
nonlinear regression problems as well as in many analysis problems arising in engineering science.
A very common problem arising in engineering model development is the need to determine the
parameters of some semitheoretical model given a set of experimental data. This data reduction or
regression problem inherently transforms to an optimization problem, because the model parameters
must be selected so that the model fits the data as closely as possible.

Suppose some variable y is assumed to be dependent on an independent variable x and related to
x through a postulated equation y — f ( x , S1, S2], which depends on two parameters S1 and S2. To
establish the appropriate values of S1 and S2, we run a series of experiments in which we adjust the
independent variable x and measure the resulting y. As a result of a series of N experiments covering
the range of x of interest, a set of y and x values (y,, X1), i = 1, . . . , N, is available. Using these
data we now try to "fit" our function to the data by adjusting B1 and S2 until we get a "good fit."
The most commonly used measure of a "good fit" is the least squares criterion,

L(S1, S2) = E [?, - /(*/, 0i, 02)]
2 (17.28)

1=1



The difference y. - f(xt, O1, O2) between the experimental value y. and the predicted value f(xf,
Q1, B2) measures how close our model prediction is to the data and is called the residual The sum
of the squares of the residuals at all the experimental points gives an indication of goodness of fit.
Clearly, if L(O1, O2) is equal to zero, then the choice of O1, O2 has led to a perfect fit; the data points
fall exactly on the predicted curve. The data-fitting problem can thus be viewed as an optimization
problem in which L(O1, O2) is minimized by appropriate choice of O1 and O2.

Example 17.4 Nonlinear Curve Fitting
Description. The pressure-molar-volume-temperature relationship of real gases is known to de-

viate from that predicted by the ideal gas relationship

Pv = RT

where P = pressure (atm)
v = molar volume (cm3/g • mol)
T = temperature (K)
R = gas constant (82.06 atm • cm3/g • mol • K)

The semiempirical Redlich-Kwong equation

/> = _*! « H729)
v - b T11^v(V + b) ( '

is intended to direct for the departure from ideality but involves two empirical constants a and b
whose values are best determined from experimental data. A series of PvT measurements listed in
Table 17.1 are made for CO2, from which a and b are to be estimated using nonlinear regression.

Formulation. Parameters a and b will be determined by minimizing the least squares function
(17.28). In the present case, the function will take the form

I [p< ~ ̂ b + r'v". * J (I730)

where P- is the experimental value at experiment i, and the remaining two terms correspond to the
value of P predicted from Eq. (17.29) for the conditions of experiment / for some selected value of
the parameters a and b. For instance, the term corresponding to the first experimental point will be

/ _ 82.06(273) a V
\ 500 - b (273)1/2(500)(500 + b))

Function (17.30) is thus a two-variable function whose value is to be minimized by appropriate
choice of the independent variables a and b. If the Redlich-Kwong equation were to precisely match
the data, then at the optimum the function (17.30) would be exactly equal to zero. In general, because
of experimental error and because the equation is too simple to accurately model the CO2 nonideal-
ities, Eq. (17.30) will not be equal to zero at the optimum. For instance, the optimal values of a =
6.377 X 107 and b = 29.7 still yield a squared residual of 9.7 X 10~2.

Table 17.1 PyT Data for CO2

Experiment
Number P (atm) v (cm3/g • mol) 7~°(K)

1 33 500 273
2 43 500 323
3 45 600 373
4 26 700 273
5 37 600 323
6 39 700 373
7 38 400 273
8 63.6 400 373



17.4 STRUCTURE OF OPTIMIZATION PROBLEMS
Although the application problems discussed in the previous section originate from radically different
sources and involve different systems, at root they have a remarkably similar form. All four can be
expressed as problems requiring the minimization of a real-valued function f(x) of an TV-component
vector argument x = (X1, X2, . . . , XN) whose values are restricted to satisfy a number of real-valued
equations hk(x) = O, a set of inequalities gj(x) ^ O, and the variable bounds x$u) S= Jt1- ^ xf\ In
subsequent discussions we will refer to the function f(x) as the objective function, to the equations
hk(x} = O as the equality constraints, and to the inequalities gj(x) ^ O as the inequality constraints.
For our purposes, these problem functions will always be assumed to be real valued, and their number
will always be finite.

The general problem,

Minimize f(x)

Subject to hk(x) = O k = 1, . . . , K

gj(x) ^ O j = 1, . . . , /

xf> ^ xt ^ x^ i = 1, . . . , #

is called the constrained optimization problem. For instance, Examples 17.1, 17.2, and 17.3 are all
constrained problems. The problem in which there are no constraints, that is,

J = K=O

and

X(U) = _X(L) = ̂  i = \ , . . . , N

is called the unconstrained optimization problem. Example 17.4 is an unconstrained problem. Optim-
ization problems can be classified further based on the structure of the functions /, hk, and g, and
on the dimensionality of x. Figure 17.5 illustrates one such classification. The basic subdivision is
between unconstrained and constrained problems. There are two important classes of methods for
solving the unconstrained problems. The direct search methods require only that the objective function
be evaluated at different points, at least through experimentation. Gradient-based methods require the
analytical form of the objective function and its derivatives.

An important class of constrained optimization problems is linear programming, which requires
both the objective function and the constraints to be linear functions. Out of all optimization models,
linear programming models are the most widely used and accepted in practiced. Professionally written
software programs are available from all major computer manufacturers for solving very large linear
programming problems. Unlike the other optimization problems that require special solution methods
based on the problem structure, linear programming has just one common algorithm, known as the
"simplex method," for solving all types of linear programming problems. This essentially has con-
tributed to the successful applications of linear programming models in practice. In 1984, Narendra
Karmarkar,13 an AT&T researcher, developed an interior point algorithm, which was claimed to be
50 times faster than the simplex method for solving linear programming problems. By 1990, Kar-
markar's seminal work had spawned hundreds of research papers and a large class of interior point
methods. It has become clear that while the initial claims are somewhat exaggerated, interior point
methods do become competitive for very large problems. For a discussion of interior point methods,
see Refs. 14 and 15.

Integer programming (IP) is another important class of linearly constrained problems where some
or all of the design variables are restricted to be integers. But solutions of IP problems are generally
difficult, time-consuming, and expensive. Hence, a practical approach is to treat all the integer vari-
ables as continuous, solve the associated LP problem, and round off the fractional values to the
nearest integers such that the constraints are not violated. This generally produces a good integer
solution close to the optimal integer solution, particularly when the values of the variables are large.
However, such an approach would fail when the values of the variables are small or binary valued
(O or 1). A good rule of thumb is to treat any integer variable whose value will be at least 20 as
continuous and use special purpose IP algorithms for the rest. For a complete discussion of integer
programming applications and algorithms, see Refs. 16 and 17.

The next class of optimization problems involves nonlinear objective functions and linear con-
straints. Under this class we have the following:

1. Quadratic programming, whose objective is a quadratic function.
2. Convex programming, whose objective is a special nonlinear function satisfying an important

mathematical property called "convexity."
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3. Linear fractional programming, whose objective is the ratio of two linear functions.

Special-purpose algorithms that take advantage of the particular form of the objective functions are
available for solving these problems.

The most general optimization problems involve nonlinear objective functions and nonlinear con-
straints and are generally grouped under the term "nonlinear programming." The majority of engi-
neering design problems fall into this class. Unfortunately, there is no single method that is best for
solving every nonlinear programming problem. Hence, a host of algorithms is available for solving
the general nonlinear programming problem, some of these algorithms are reviewed in the next
section.

Nonlinear programming problems wherein the objective function and the constraints can be ex-
pressed as the sum of generalized polynomial functions are called geometric programming problems.
A number of engineering design problems fall into the geometric programming framework. Since its
earlier development in 1961, geometric programming has undergone considerable theoretical devel-
opment, has experienced a proliferation of proposals for numerical solution techniques, and has
enjoyed considerable practical engineering applications (see Refs. 18 and 19).

Nonlinear programming problems where some of the design variables are restricted to be discrete
or integer valued are called mixed integer nonlinear programming (MINLP) problems. Such problems
arise in process design, simulation optimization, industrial experimentation, and reliability optimi-
zation. MINLP problems are generally more difficult to solve since the problems have several local
optima. Recently, simulated annealing and genetic algorithms have been emerging as powerful heu-
ristic algorithms to solve MINLP problems. Simulated annealing has been successfully applied to
solve problems in a variety of fields, including mathematics, engineering, and mathematical program-
ming (see, for example, Refs. 20-22).

Genetic algorithms are heuristic search methods based on the two main principles of natural
genetics, namely, entities in a population reproduced to create offspring and the survival of the fittest
(see, for example, Refs. 23 and 21). For a discussion of the successful applications of genetic al-
gorithms and the areas of research in the field, see Ref. 24.

17.5 OVERVIEW OF OPTIMIZATION METHODS
Optimization methods can be viewed as nothing more than numerical hill-climbing procedures in
which the objective function, presenting the topology of the hill, is searched to identify the highest
point—or maximum—subject to constraining relations that might be equality constraints (stay on
winding path) or inequality constraints (stay within fence boundaries). While the constraints do serve
to reduce the area that must be searched, the numerical calculations required to ensure that the search
stays on the path or within the fences generally do constitute a considerable burden. Accordingly,
optimization methods for unconstrained problems and methods for linear constraints are less complex
than those designed for nonlinear constraints. In this section, a selection of optimization techniques
representative of the main families of methods will be discussed. For a more detailed presentation
of individual methods the reader is invited to consult Ref. 25.

17.5.1 Unconstrained Optimization Methods
Methods for unconstrained problems are divided into those for single-variable functions and those
appropriate for multivariable functions. The former class of methods are important because single-
variable optimization problems arise commonly as subproblems in the solution of multivariable prob-
lems. For instance, the problem of minimizing a function f(x) for a point x° in a direction d (often
called a line search) can be posed as a minimization problem in the scalar variable a:

Minimize /(jc° + ad)

Single Variable Methods
These methods are roughly divided into region elimination methods and point estimation methods.
The former use comparison of function values at selected trial points to reject intervals within which
the optimum of the function does not lie. The latter typically use polynomial approximating functions
to estimate directly the location of the optimum. The simplest polynomial approximating function is
the quadratic

/(jc) = ax2 + bx + c

whose coefficients a, b, c can be evaluated readily from those trial values of the actual function. The
point at which the derivative of / is zero is used readily to predict the location of the optimum of
the true function

x = -b/2a



The process is repeated using successively improved trial values until the differences between suc-
cessive estimates x become sufficiently small.

Multivariable Unconstrained Methods
These algorithms can be divided into direct search methods and gradient-based methods. The former
methods only use direct function values to guide the search, while the latter also require the com-
putation of function gradient and, in some cases, second derivative values. Direct search methods in
widespread use in engineering applications include the simplex search, the pattern search method of
Hooke and Jeeves, random-sampling-based methods, and the conjugate directions method of Powell
(see Chap. 3 of Ref. 25). All but the last of these methods make no assumptions about the smoothness
of the function contours and hence can be applied to both discontinuous and discrete-valued objective
functions.

Gradient-based methods can be grouped into the classical methods of steepest descent (Cauchy)
and Newton's method and the modern quasi-Newton methods such as the conjugate gradient,
Davidson-Fletcher-Powell, and Broyden-Fletcher-Shanno algorithms. All gradient-based methods
employ the first derivative or gradient of the function at the current best solution estimate Jc to compute
a direction in which the objective function value is guaranteed to decrease (a descent direction). For
instance, Cauchy's classical method used the direction.

d = -Vf(x)

followed by a line search from x in this direction. In Newton's method the gradient vector is pre-
multiplied by the matrix of second derivatives to obtain an improved direction vector

d = -(V2JfW)-1VfW

which in theory at least yields very good convergence behavior. However, the computation of V2/ is
often too burdensome for engineering applications. Instead, in recent years quasi-Newton methods
have found increased application. In these methods, the direction vector is computed as

d = -HVf(x)

where H is a matrix whose elements are updated as the iterations proceed using only values of
gradient and function value difference from successive estimates. Quasi-Newton methods differ in
the details of H updating, but all use the general form

Hn+l = ffn + Cn

where Hn is the previous value of H and Cn is a suitable correction matrix. The attractive feature of
this family of methods is that convergence rates approaching those of Newton's method are attained
without the need for computing V2/ or solving the linear equation set

V2f(x)-d = -f(x)

to obtain d. Recent developments in these methods have focused on strategies for eliminating the
need for detailed line searching along the direction vectors and on enhancements for solving very
large problems. For a detailed discussion of quasi-Newton methods the reader is directed to Refs. 25
and 26.

17.5.2 Constrained Optimization Methods
Constrained optimization methods can be classified into those applicable to totally linear or at least
linearly constrained problems and those applicable to general nonlinear problems. The linear or
linearly constrained problems can be well solved using methods of linear programming and exten-
sions, as discussed earlier. The algorithms suitable for general nonlinear problems comprise four
broad categories of methods:

1. Direct search methods that use only objective and constraint function values.
2. Transformation methods that use constructions that aggregate constraints with the original

objective function to form a single composite unconstrained function.
3. Linearization methods that use linear approximations of the nonlinear problem functions to

produce efficient search directions.
4. Successive quadratic programming methods that use quasi-Newton constructions to solve the

general problem via a series of subproblems with quadratic objective function and linear
constraints.



Direct Search
The direct search methods essentially consist of extensions of unconstrained direct search procedures
to accommodate constraints. These extensions are generally only possible with inequality constraints
or linear equality constraints. Nonlinear equalities must be treated by implicit or explicit variable
elimination. That is, each equality constraint is either explicitly solved for a selected variable and
used to eliminate that variable from the search or the equality constraints are numerically solved for
values of the dependent variables for each trial point in the space of the independent variables.

For example, the problem

Minimize /(x) = X1X2X3

Subject to /Z1(X) = Jc1 + X2 + X3 - 1 = O

/I2(X) = JC2JC3 + X2X\ + X2l ~ 2 = O
O < (JC1, JC3) < V2

involves two equality constraints and hence can be viewed as consisting of two dependent variables
and one independent variable. Clearly, /Z1 can be solved for Jc1 to yield

JC1 = 1 — JC2 — JC3

Thus, on substitution the problem reduces to

Minimize (1 - X2 - ^3)Jc2Jc3

Subject to (1 - Jc2 - Jc3)
2Jc3 + jc2jc| + Jc2

 [(1 - Jc2 - Jc3) 2 = O
O < 1 - Jc2 - Jc3 < V2

O < Jc3 < V2

Solution of the remaining equality constraint for one variable, say Jc3, in terms of the other is
very difficult. Instead, for each value of the independent variable Jc2, the corresponding value of Jc3

would have to be calculated numerically using some root-finding method.
Some of the more widely used direct search methods include the adaptation of the simplex search

due to Box (called the complex method}, various direct random-sampling-type methods, and com-
bined random sampling/heuristic procedures such as the combinatorial heuristic meethod27 advanced
for the solution of complex optimal mechanism design problems.

A typical direct sampling procedure is given by the formula,

xiP = XI x Z1-(2r - 1)*, for each variable jc,., i = 1, . . . , H

where Jc1 = the current best value of variable i
Z1- = the allowable range of the variable i
r = a random variable uniformly distributed on the interval 0-1
k = an adaptive parameter whose value is adjusted based on past successes or failures in the

search

For given Jc, z, and k, r is sampled N times and the new point xp evaluated. If xp satisfies all
constraints, it is retained; if it is infeasible, it is rejected and a new set of N r values is generated. If
xp is feasible, f ( x p ) is compared to /(Jc), and if improvement is found, xp replaces Je. Otherwise Jc^
is rejected. The parameter A: is an adaptive parameter whose value will regulate the contraction or
expansion of the sampling region. A typical adjustment procedure for k might be to increase A: by 2
whenever a specified number of improved points is found or to decrease it by 2 when no improvement
is found after a certain number of trials.

The general experience with direct search and especially random-sampling-based methods for
constrained problems is that they can be quite effective for severely nonlinear problems that involve
multiple local minima but are of low dimensionality.

Transformation Methods
This family consists of strategies for converting the general constrained problem to a parametrized
unconstrained problem that is solved repeatedly for successive values of the parameters. The ap-
proaches can be grouped into the penalty/barrier function constructions, exact penalty methods, and
augmented Lagrangian methods. The classical penalty function approach is to transform the general
constrained problem to the form



P(x, R) = /W + £l(R9 g(x)9 h(x))

where R = the penalty parameter
H = the penalty term

The ideal penalty function will have the property that

P(v P\ - I-fW' if x is feasible
"(X. K) — "\ . ~ . . f. ., ,

[°°, if x is infeasible

Given this idealized construction, P(JC, /?) could be minimized using any unconstrained optimi-
zation method, and, hence, the underlying constrained problem would have been solved. In practice
such radical discontinuities cannot be tolerated from a numerical point of view, and, hence, practical
penalty functions use penalty terms of the form

/ \2

Q(R9 8,K)=R(^1 hk(x) + tf(2(min(0, 8j(x)))2)
\ * /

A series of unconstrained minimizations of P(JC, R) with different values of R are carried out
beginning with a low value of R (say R = 1) and progressing to very large values of R, For low
values of /?, the unconstrained minima of P(JC, R) obtained will involve considerable constraint vio-
lations. As R increases, the violations decrease until in the limit as R —+ <», the violations will approach
zero. A large number of different forms of the U function have been proposed; however, all forms
share the common feature that a sequence of problems must be solved and that, as the penalty
parameter R becomes large, the penalty function becomes increasingly distorted and thus its mini-
mization becomes increasingly more difficult. As a result the penalty function approach is best used
for modestly sized problems (2-10 variables), few nonlinear equalities (2-5), and a modest number
of inequalities. In engineering applications, the unconstrained subproblems are most commonly min-
imized using direct search methods, although successful use of quasi-Newton methods is also
reported.

The exact penalty function and augmented Lagrangian approaches have been developed in an
attempt to circumvent the need to force convergence by using increasing values of the penalty pa-
rameter. One typical representative of this type of method is the so-called meethod of multipliers.28

In this method, once a sufficiently large value of R is reached, further increases are not required.
However, the method does involve additional finite parameters that must be updated between sub-
problem solutions. Computational evidence reported to date suggests that, while augmented Lagran-
gian approaches are more reliable than penalty-function methods, they, as a class, are not suitable
for larger dimensionality problems.

Linearization Methods
The common characteristic of this family of methods, is the use of local linear approximations to
the nonlinear problem functions to define suitable, preferably feasible, directions for search. Well-
known members of this family include the method of feasible directions, the gradient projection
meethod, and the generalized reduced gradient (GRG) method. Of these, the GRG method has seen
the widest engineering application.

The key constructions of the GRG method are the following:

1. The calculation of the reduced objective function gradient V/.
2. The use of the reduced gradient to determine a direction vector in the space of the independent

variables.
3. The adjustment of the dependent variable values using Newton's method so as to achieve

constraint satisfaction.

Given a feasible point jc°, the gradients of the equality constraints are evaluated and used to form
the constraint Jacobian matrix A. This matrix is partitioned into a square submatrix J and the residual
rectangular matrix C where the variable associated with the columns of / are the dependent variables
and those associated with C are the independent variables.

If J is selected to have nonzero determinant, then the reduced gradient is defined as

V/(jc°) - V/ - VfJ-1C

where V/ is the subvector of objective function partial derivatives corresponding to the (dependent)
variables and f is the corresponding subvector whose components correspond to the independent
variables. The reduced gradient Vf provides an estimate of the rate of change of f(x) with respect



to the independent variables when the dependent variables are adjusted to satisfy the linear approx-
imations to the constraints.

Given _V/, in the simplest version of GRF algorithm, the direction sub vector for the independent
variables d is selected to be the reduced gradient descent direction

3= -v/

For a given step a in that direction, the constraints are solved iteratively to determine the value of
the dependent variables x that will lead to a feasible point. Thus, the system

hk(x° + ad, Jc) = O, k = 1, . . . , K

is solved for the K unknown variables x. The new feasible point is checked to determine whether an
improved objective value has been obtained and, if not, a is reduced and the solution for x repeated.
The overall algorithm terminates when a point is reached at which the reduced gradient is sufficiently
close to zero.

The GRG algorithm has been extended to accommodate inequality constraints as well as variable
bounds. Moreover, the use of efficient equation solving procedures, line search procedures for a, and
quasi-Newton formulas to generate improved direction vectors d have been investigated. A commer-
cial quality GRG code will incorporate such developments and thus will constitute a reasonably
complex software package. Computational testing using such codes indicates that GRG implemen-
tations are among the most robust and efficient general purpose nonlinear optimization methods
currently available.29 One of the particular advantages of this algorithm, which can be critical in
engineering applications, is that it generates feasible intermediate points; hence, it can be interrupted
prior to final convergence to yield a feasible solution. Of course, this attractive feature and the general
efficiency of the method are attained at the price of providing (analytically or numerically) the values
of the partial derivatives of all of the model functions.

Successive Quadratic Programming (SQP) Methods
This family of methods seeks to attain superior convergence rates by employing subproblems con-
structed using higher-order approximating functions than those employed by the linearization meth-
ods. The SQP methods are still the subject of active research; hence, developments and enhancements
are proceeding apace. However, the basic form of the algorithm is well established and can be
sketched out as follows.

At a given point jc°, a direction finding subproblem is constructed, which takes the form of a
quadratic programming problem:

Minimize VTf -d + V2d
 TH d

Subject to hk(x°) + VThk(x°) d = O

gj(x°) + V7S/*0) d>0

The symmetric matrix H is a quasi-Newton approximation of the matrix of second derivatives of
a composite function (the Lagrangian) containing terms corresponding to all of the functions /, hk,
and gj. H is updated using only gradient differences as in the unconstrained case. The direction vector
d is used to conduct a line search, which seeks to minimize a penalty function of the type discussed
earlier. The penalty function is required because, in general, the intermediate points produced in this
method will be infeasible. Use of the penalty function ensures that improvements are achieved in
either the objective function values or the constraint violations or both. One major advantage of the
method is that very efficient methods are available for solving large quadratic programming problems
and, hence, that the method is suitable for large scale applications. Recent computational testing
indicates that the SQP approach is very efficient, outperforming even the best GRG codes.30 However,
it is restricted to models in which infeasibilities can be tolerated and will produce feasible solutions
only when the algorithm has converged.

17.5.3 Code Availability
With the exception of the direct search methods and the transformation-type methods, the develop-
ment of computer programs implementing state-of-the-art optimization algorithms is a major effort
requiring expertise in numerical methods in general and numerical linear algebra in particular. For
that reason, it is generally recommended that engineers involved in design optimization studies take
advantage of the number of good quality implementations now available through various public
sources.

Commercial computer codes for solving LP/IP/NLP problems are available from many computer
manufacturers and private companies who specialize in marketing software for major computer sys-
tems. Depending on their capabilities, these codes vary in their complexity, ease of use, and cost



(see, for example, Ref. 34). LP models with a few hundred constraints can now be solved on personal
computers (PCs). There are now at least a hundred small companies marketing LP software for PCs.
For a 1995 survey of LP software for personal computers, see Ref. 35.

Nash36 presents a 1995 survey of nonlinear programming software that will run on PC compati-
bles, Macintosh systems, and UNIX-based workstations. Detailed product descriptions, prices, and
capabilities of 30 NLP software are included in the survey. There are now LP/IP/NLP solvers that
can be invoked directly from inside spreadsheet packages. For example, Microsoft Excel and Micro-
soft Office for Windows and Macintosh contain a general-purpose optimizer for solving small-scale
linear, integer, and nonlinear programming problems. Borland's Quattro-Pro also has a built-in solver
for optimization. In both spreadsheet programs, the LP optimizer is based on the simplex algorithm,
while the NLP optimizer is based on the GRG algorithm.

There are now modeling languages that allow the user to express a model in a very compact
algebraic form, with whole classes of constraints and variables defined over index sets. Models with
thousands of constraints and variables can be defined in a couple of pages, in a syntax that is very
close to standard algebraic notation. The algebraic form of the model is kept separate from the actual
data for any particular instance of the model. The computer takes over the responsibility of trans-
forming the abstract form of the model and the specific data into a specific constraint matrix. This
has greatly simplified the building, and even more the changing, of optimization models. There are
several modeling languages available for PCs. The two high-end products are GAMS (General Al-
gebraic Modeling System) and AMPL (A Mathematical Programming Language). For a reference on
GAMS, see Ref. 37. For a general introduction to modeling languages, see Refs. 34 and 38, and for
an excellent discussion of AMPL, see Ref. 39.

Readers with access to the Internet can get a complete list of optimization software available for
LP, IP, and NLP problems at the following NEOS web site:

http: / /www.mcs.anl.gov/home/otc

This site provides access not only to the software guide but also to the other optimization-related
sites that are continually updated. The NEOS guide on optimization software is based on the textbook
by More and Wright,40 an excellent resource for those interested in a broad review of the various
optimization methods and their computer codes. The book is divided into two parts. Part I has an
overview of algorithms for different optimization problems, categorized as unconstrained optimiza-
tion, nonlinear least squares, nonlinear equations, linear programming, quadratic programming,
bound-constrained optimization, network optimization, and integer programming. Part II includes
product descriptions of 75 software packages that implement the algorithms described in Part I. Much
of the software described in this book is in the public domain and can be obtained through the
Internet.

17.6 SUMMARY
In this chapter an overview was given of the elements and methods comprising design optimization
methodology. The key element in the overall process of design optimization was seen to be the
engineering model of the system constructed for this purpose. The assumptions and formulation
details of the model govern the quality and relevance of the optimal design obtained. Hence, it is
clear that design optimization studies cannot be relegated to optimization software specialists but are
the proper domain of the well-informed design engineer.

The chapter also gave a structural classification of optimization problems and a broad brush review
of the main families of optimization methods. Clearly this review can only hope to serve as entry
point to this broad field. For a more complete discussion of optimization techniques with emphasis
on engineering applications, guidelines for model formulation, practical solution strategies, and avail-
able computer software, the readers are referred to the text by Reklaitis, Ravindran, and Ragsdell.25

The Design Automation Committee of the Design Engineering Division of ASME has been spon-
soring conferences devoted to engineering design optimization. Several of these presentations have
subsequently appeared in the Journal of Mechanical Design, ASME Transactions. Ragsdell31 presents
a review of the papers published up to 1977 in the areas of machine design applications and numerical
methods in design optimization. ASME published, in 1981, a special volume entitled Progress in
Engineering Optimization, edited by Mayne and Ragsdell.32 It contains several articles pertaining to
advances in optimization methods and their engineering applications in the areas of mechanism
design, structural design, optimization of hydraulic networks, design of helical springs, optimization
of hydrostatic journal bearing, and others. Finally, the persistent and mathematically oriented reader
may wish to pursue the fine exposition given by Avrial,33 which explores the theoretical properties
and issues of nonlinear programming methods.
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