
27.1 RATIONALE

The design of modern control systems relies on the formulation and analysis of mathematical models
of dynamic physical systems. This is simply because a model is more accessible to study than the
physical system the model represents. Models typically are less costly and less time consuming to
construct and test. Changes in the structure of a model are easier to implement, and changes in the
behavior of a model are easier to isolate and understand. A model often can be used to achieve
insight when the corresponding physical system cannot, because experimentation with the actual
system is too dangerous or too demanding. Indeed, a model can be used to answer "what if" questions
about a system that has not yet been realized or actually cannot be realized with current technologies.
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The type of model used by the control engineer depends upon the nature of the system the model
represents, the objectives of the engineer in developing the model, and the tools which the engineer
has at his or her disposal for developing and analyzing the model. A mathematical model is a
description of a system in terms of equations. Because the physical systems of primary interest to
the control engineer are dynamic in nature, the mathematical models used to represent these systems
most often incorporate difference or differential equations. Such equations, based on physical laws
and observations, are statements of the fundamental relationships among the important variables that
describe the system. Difference and differential equation models are expressions of the way in which
the current values assumed by the variables combine to determine the future values of these variables.

Mathematical models are particularly useful because of the large body of mathematical and com-
putational theory that exists for the study and solution of equations. Based on this theory, a wide
range of techniques has been developed specifically for the study of control systems. In recent years,
computer programs have been written that implement virtually all of these techniques. Computer
software packages are now widely available for both simulation and computational assistance in the
analysis and design of control systems.

It is important to understand that a variety of models can be realized for any given physical
system. The choice of a particular model always represents a tradeoff between the fidelity of the
model and the effort required in model formulation and analysis. This tradeoff is reflected in the
nature and extent of simplifying assumptions used to derive the model. In general, the more faithful
the model is as a description of the physical system modeled, the more difficult it is to obtain general
solutions. In the final analysis, the best engineering model is not necessarily the most accurate or
precise. It is, instead, the simplest model that yields the information needed to support a decision. A
classification of various types of models commonly encountered by control engineers is given in
Section 27.8.

A large and complicated model is justified if the underlying physical system is itself complex, if
the individual relationships among the system variables are well understood, if it is important to
understand the system with a great deal of accuracy and precision, and if time and budget exist to
support an extensive study. In this case, the assumptions necessary to formulate the model can be
minimized. Such complex models cannot be solved analytically, however. The model itself must be
studied experimentally, using the techniques of computer simulation. This approach to model analysis
is treated in Section 27.7.

Simpler models frequently can be justified, particularly during the initial stages of a control system
study. In particular, systems that can be described by linear difference or differential equations permit
the use of powerful analysis and design techniques. These include the transform methods of classical
control theory and the state-variable methods of modern control theory. Descriptions of these standard
forms for linear systems analysis are presented in Sections 27.4, 27.5, and 27.6.

During the past several decades, a unified approach for developing lumped-parameter models of
physical systems has emerged. This approach is based on the idea of idealized system elements,
which store, dissipate, or transform energy. Ideal elements apply equally well to the many kinds of
physical systems encountered by control engineers. Indeed, because control engineers most frequently
deal with systems that are part mechanical, part electrical, part fluid, and/or part thermal, a unified
approach to these various physical systems is especially useful and economic. The modeling of
physical systems using ideal elements is discussed further in Sections 27.2, 27.3, and 27.4.

Frequently, more than one model is used in the course of a control system study. Simple models
that can be solved analytically are used to gain insight into the behavior of the system and to suggest
candidate designs for controllers. These designs are then verified and refined in more complex models,
using computer simulation. If physical components are developed during the course of a study, it is
often practical to incorporate these components directly into the simulation, replacing the correspond-
ing model components. An iterative, evolutionary approach to control systems analysis and design
is depicted in Fig. 27.1.

27.2 IDEAL ELEMENTS
Differential equations describing the dynamic behavior of a physical system are derived by applying
the appropriate physical laws. These laws reflect the ways in which energy can be stored and trans-
ferred within the system. Because of the common physical basis provided by the concept of energy,
a general approach to deriving differential equation models is possible. This approach applies equally
well to mechanical, electrical, fluid, and thermal systems and is particularly useful for systems that
are combinations of these physical types.

27.2.1 Physical Variables

An idealized two-terminal or one-port element is shown in Fig. 27.2. Two primary physical variables
are associated with the element: a through variable f(t) and an across variable v(t). Through variables
represent quantities that are transmitted through the element, such as the force transmitted through a
spring, the current transmitted through a resistor, or the flow of fluid through a pipe. Through variables
have the same value at both ends or terminals of the element. Across variables represent the difference
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Fig. 27.1 An iterative approach to control system design, showing the use of mathematical
analysis and computer simulation.

in state between the terminals of the element, such as the velocity difference across the ends of a
spring, the voltage drop across a resistor, or the pressure drop across the ends of a pipe. Secondary
physical variables are the integrated through variable h(t) and the integrated across variable x(t).
These represent the accumulation of quantities within an element as a result of the integration of the
associated through and across variables. For example, the momentum of a mass is an integrated
through variable, representing the effect of forces on the mass integrated or accumulated over time.
Table 27.1 defines the primary and secondary physical variables for various physical systems.

27.2.2 Power and Energy

The flow of power P(t) into an element through the terminals 1 and 2 is the product of the through
variable f(t) and the difference between the across variables v2(t) and v̂ t). Suppressing the notation
for time dependence, this may be written as

P = №2 - ̂ 1) = fv2i

A negative value of power indicates that power flows out of the element. The energy E(ta, tb) trans-
ferred to the element during the time interval from ta to tb is the integral of power, that is,

ftb ftb
E= \ P dt = fv21 dt

Jta Jta



Fig. 27.2 A two-terminal or one-port element, showing through and across variables.1

A negative value of energy indicates a net transfer of energy out of the element during the corre-
sponding time interval.

Thermal systems are an exception to these generalized energy relationships. For a thermal system,
power is identically the through variable q(i), heat flow. Energy is the integrated through variable
3G(fa, tb), the amount of heat transferred.

By the first law of thermodynamics, the net energy stored within a system at any given instant
must equal the difference between all energy supplied to the system and all energy dissipated by the
system. The generalized classification of elements given in the following sections is based on whether
the element stores or dissipates energy within the system, supplies energy to the system, or transforms
energy between parts of the system.

27.2.3 One-Port Element Laws
Physical devices are represented by idealized system elements, or by combinations of these elements.
A physical device that exchanges energy with its environment through one pair of across and through
variables is called a one-port or two-terminal element. The behavior of a one-port element expresses
the relationship between the physical variables for that element. This behavior is defined mathemat-
ically by a constitutive relationship. Constitutive relationships are derived empirically, by experi-
mentation, rather than from any more fundamental principles. The element law, derived from the
corresponding constitutive relationship, describes the behavior of an element in terms of across and
through variables and is the form most commonly used to derive mathematical models.

Table 27.1 Primary and Secondary Physical Variables for Various Systems1

System
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Through
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Force F

Torque T

Current i
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difference P2l
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Displacement
difference x2l

Angular displacement
difference @2i

Flux linkage A21

Pressure-momentum
r21

Not used in general



Table 27.2 summarizes the element laws and constitutive relationships for the one-port elements.
Passive elements are classified into three types. T-type or inductive storage elements are defined by
a single-valued constitutive relationship between the through variable f(t) and the integrated across-
variable difference x2l(f). Differentiating the constitutive relationship yields the element law. For a
linear (or ideal) T-type element, the element law states that the across-variable difference is propor-
tional to the rate of change of the through variable. Pure translational and rotational compliance
(springs), pure electrical inductance, and pure fluid inertance are examples of T-type storage elements.
There is no corresponding thermal element.

A-type or capacitive storage elements are defined by a single-valued constitutive relationship
between the across-variable difference v2l(t) and the integrated through variable h(f). These elements
store energy by virtue of the across variable. Differentiating the constitutive relationship yields the
element law. For a linear A-type element, the element law states that the through variable is propor-
tional to the derivative of the across-variable difference. Pure translational and rotational inertia
(masses), and pure electrical, fluid, and thermal capacitance are examples.

It is important to note that when a nonelectrical capacitance is represented by an A-type element,
one terminal of the element must have a constant (reference) across variable, usually assumed to be
zero. In a mechanical system, for example, this requirement expresses the fact that the velocity of a
mass must be measured relative to a noninertial (nonaccelerating) reference frame. The constant
velocity terminal of a pure mass may be thought of as being attached in this sense to the reference
frame.

D-type or resistive elements are defined by a single-valued constitutive relationship between the
across and the through variables. These elements dissipate energy, generally by converting energy
into heat. For this reason, power always flows into a D-type element. The element law for a D-type
energy dissipator is the same as the constitutive relationship. For a linear dissipator, the through
variable is proportional to the across-variable difference. Pure translational and rotational friction
(dampers or dashpots), and pure electrical, fluid, and thermal resistance are examples.

Energy-storage and energy-dissipating elements are called passive elements, because such ele-
ments do not supply outside energy to the system. The fourth set of one-port elements are source
elements, which are examples of active or power-supply ing elements. Ideal sources describe inter-
actions between the system and its environment. A pure A-type source imposes an across-variable
difference between its terminals, which is a prescribed function of time, regardless of the values
assumed by the through variable. Similarly, a pure T-type source imposes a through-variable flow
through the source element, which is a prescribed function of time, regardless of the corresponding
across variable.

Pure system elements are used to represent physical devices. Such models are called lumped-
element models. The derivation of lumped-element models typically requires some degree of approx-
imation, since (1) there rarely is a one-to-one correspondence between a physical device and a set
of pure elements and (2) there always is a desire to express an element law as simply as possible.
For example, a coil spring has both mass and compliance. Depending on the context, the physical
spring might be represented by a pure translational mass, or by a pure translational spring, or by
some combination of pure springs and masses. In addition, the physical spring undoubtedly will have
a nonlinear constitutive relationship over its full range of extension and compression. The compliance
of the coil spring may well be represented by an ideal translational spring, however, if the physical
spring is approximately linear over the range of extension and compression of concern.

27.2.4 Multiport Elements
A physical device that exchanges energy with its environment through two or more pairs of through
and across variables is called a multiport element. The simplest of these, the idealized four-terminal
or two-port element, is shown in Fig. 27.3. Two-port elements provide for transformations between
the physical variables at different energy ports, while maintaining instantaneous continuity of power.
In other words, net power flow into a two-port element is always identically zero:

P = faVa + fbVb = 0

The particulars of the transformation between the variables define different categories of two-port
elements.

A pure transformer is defined by a single-valued constitutive relationship between the integrated
across variables or between the integrated through variables at each port:

xb = f(Xa) or hb = f(ha)

For a linear (or ideal) transformer, the relationship is proportional, implying the following relation-
ships between the primary variables:

vb = nva, fb = —fa



Table 27.2 Element Laws and Constitutive Relationships for Various One-Port Elements1
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Nomenclature

A = energy, 9 - power
/ = generalized through-variable, F = force, T = torque, i = current, Q = fluid flow rate, q = heat flow rate
h = generalized integrated through-variable, p = translational momentum, h = angular momentum,

q = charge, /' = fluid volume displaced, 3C = heat
v = generalized across-variable, i; = translational velocity, ft = angular velocity, v = voltage, P = pressure, 6 = temperature
x = generalized integrated across-variable, x = translational displacement, @ = angular displacement,

A = flux linkage, F = pressure-momentum
L = generalized ideal inductance, l/k — reciprocal translational stiffness, UK = reciprocal rotational stiffness,

L = inductance, / = fluid inertance
C = generalized ideal capacitance, m = mass, J = moment of insertia, C = capacitance, C, = fluid capacitance,

C, = thermal capacitance
R = generalized ideal resistance, lib = reciprocal translational damping, l/B = reciprocal rotational damping,

R = electrical resistance, Rj = fluid resistance, Rt = thermal resistance
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Fig. 27.3 A four-terminal or two-port element, showing through and across variables.

where the constant of proportionality n is called the transformation ratio. Levers, mechanical linkages,
pulleys, gear trains, electrical transformers, and differential-area fluid pistons are examples of physical
devices that typically can be approximated by pure or ideal transformers. Figure 27.4 depicts some
examples. Pure transmitters, which serve to transmit energy over a distance, frequently can be thought
of as transformers with n = 1.

A pure gyrator is defined by a single-valued constitutive relationship between the across variable
at one energy port and the through variable at the other energy port. For a linear gyrator, the following
relations apply:

i
vb = rfa, fb = —va

where the constant of proportionality is called the gyration ratio or gyrational resistance. Physical
devices that perform pure gyration are not as common as those performing pure transformation. A
mechanical gyroscope is one example of a system that might be modeled as a gyrator.

In the preceding discussion of two-port elements, it has been assumed that the type of energy is
the same at both energy ports. A pure transducer, on the other hand, changes energy from one physical
medium to another. This change may be accomplished either as a transformation or a gyration.
Examples of transforming transducers are gears with racks (mechanical rotation to mechanical trans-
lation), and electric motors and electric generators (electrical to mechanical rotation and vice versa).
Examples of gyrating transducers are the piston-and-cylinder (fluid to mechanical) and piezoelectric
crystals (mechanical to electrical).

More complex systems may have a large number of energy ports. A common six-terminal or
three-port element called a modulator is depicted in Fig. 27.5. The flow of energy between ports a
and b is controlled by the energy input at the modulating port c. Such devices inherently dissipate
energy, since

Pa + Pc > pb

although most often the modulating power Pc is much smaller than the power input Pa or the power
output Pb. When port a is connected to a pure source element, the combination of source and
modulator is called a pure dependent source. When the modulating power Pc is considered the input
and the modulated power Pb is considered the output, the modulator is called an amplifier. Physical
devices that often can be modeled as modulators include clutches, fluid valves and couplings,
switches, relays, transistors, and variable resistors.

27.3 SYSTEM STRUCTURE AND INTERCONNECTION LAWS

27.3.1 A Simple Example
Physical systems are represented by connecting the terminals of pure elements in patterns that ap-
proximate the relationships among the properties of component devices. As an example, consider the
mechanical-translational system depicted in Fig. 27.6a, which might represent an idealized automobile
suspension system. The inertial properties associated with the masses of the chassis, passenger com-
partment, engine, and so on, all have been lumped together as the pure mass ml. The inertial prop-
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Fig. 27Ab Examples of transformers and transducers: pure mechanical transformers and
transforming transducers.2

erties of the unsprung components (wheels, axles, etc.) have been lumped into the pure mass w2.
The compliance of the suspension is modeled as a pure spring with stiffness ̂  and the factional
effects (principally from the shock absorbers) as a pure damper with damping coefficient b. The road
is represented as an input or source of vertical velocity, which is transmitted to the system through
a spring of stiffness k2, representing the compliance of the tires.

27.3.2 Structure and Graphs
The pattern of interconnections among elements is called the structure of the system. For a one-
dimensional system, structure is conveniently represented by a system graph. The system graph for
the idealized automobile suspension system of Fig. 27.6a is shown in Fig. 21.6b. Note that each
distinct across variable (velocity) becomes a distinct node in the graph. Each distinct through variable
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Linkage Rack and pinion
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Fig. 27.6 An idealized model of an automobile suspension system: (a) lumped-element model,
(jb) system graph, (c) free-body diagram.

Fig. 27.5 A six-terminal or three-port element, showing through and across variables.



(force) becomes a branch in the graph. Nodes coincide with the terminals of elements and branches
coincide with the elements themselves. One node always represents ground (the constant velocity of
the inertial reference frame vg), and this is usually assumed to be zero for convenience. For non-
electrical systems, all the A-type elements (masses) have one terminal connection to the reference
node. Because the masses are not physically connected to ground, however, the convention is to
represent the corresponding branches in the graph by dashed lines.

System graphs are oriented by placing arrows on the branches. The orientation is arbitrary and
serves to assign reference directions for both the through-variable and the across-variable difference.
For example, the branch representing the damper in Fig. 27.6b is directed from node 2 (tail) to node
1 (head). This assigns vb — v2l = v2 - vl as the across-variable difference to be used in writing the
damper elemental equation

fb = bvb = bv2l

The reference direction for the through variable is determined by the convention that power flow
Pb = fbvb into an element is positive. Referring to Fig. 27.6a, when u21 is positive, the damper is in
compression. Therefore, fb must be positive for compressive forces in order to obey the sign
convention for power. By similar reasoning, tensile forces will be negative.

27.3.3 System Relations
The structure of a system gives rise to two sets of interconnection laws or system relations. Continuity
relations apply to through variables and compatibility relations apply to across variables. The inter-
pretation of system relations for various physical systems is given in Table 27.3.

Continuity is a general expression of dynamic equilibrium. In terms of the system graph, conti-
nuity states that the algebraic sum of all through variables entering a given node must be zero.
Continuity applies at each node in the graph. For a graph with n nodes, continuity gives rise to n
continuity equations, n - 1 of which are independent. For node i, the continuity equation is

2 /,; = 0
j

where the sum is taken over all branches (i, j) incident on /.
For the system graph depicted in Fig. 27.6b, the four continuity equations are

node 1: fkl + fb - fmi = 0
node 2: fk2 - fkl - fb - fm2 = 0
node 3: /, - fk2 = 0
node g: fmi + fm2 - fs = 0

Only three of these four equations are independent. Note, also, that the equations for nodes 1 through
3 could have been obtained from the conventional free-body diagrams shown in Fig. 27.6c, where
fmi and fm2 are the D'Alembert forces associated with the pure masses. Continuity relations are also
known as vertex, node, flow, and equilibrium relations.

Compatibility expresses the fact that the magnitudes of all across variables are scalar quantities.
In terms of the system graph, compatibility states that the algebraic sum of the across-variable
differences around any closed path in the graph must be zero. Compatibility applies to any closed
path in the system. For convenience and to ensure the independence of the resulting equations,
continuity is usually applied to the meshes or "windows" of the graph. A one-part graph with n
nodes and b branches will have b — n + 1 meshes, each mesh yielding one independent compati-
bility equation. A planar graph with p separate parts (resulting from multiport elements) will have
b - n + p independent compatibility equations. For a closed path q, the compatibility equation is

Table 27.3 System Relations for Various Systems

System Continuity Compatibility

Mechanical Newton's first and third laws Geometrical constraints
(conservation of momentum) (distance is a scalar)

Electrical Kirchhoff's current law Kirchhoff's voltage
(conservation of charge) law (potential is a

scalar)
Fluid Conservation of matter Pressure is a scalar
Thermal Conservation of energy Temperature is a scalar



S vtj = 0
q

where the summation is taken over all branches (/, j) on the path.
For the system graph depicted in Fig. 27.6b, the three compatibility equations based on the meshes

are

path 1 -*• 2 —> g —> 1: -vb + vm2 - vmi = 0
path 1 -> 2 -> 1: -vkl + ub = 0
path 2 -> 3 -> g -> 2: -ute - uff - ymz = 0

These equations are all mutually independent and express apparent geometric identities. The first
equation, for example, states that the velocity difference between the ends of the damper is identically
the difference between the velocities of the masses it connects. Compatibility relations are also known
as path, loop, and connectedness relations.

27.3.4 Analogs and Duals
Taken together, the element laws and system relations are a complete mathematical model of a system.
When expressed in terms of generalized through and across variables, the model applies not only to
the physical system for which it was derived, but to any physical system with the same generalized
system graph. Different physical systems with the same generalized model are called analogs. The
mechanical rotational, electrical, and fluid analogs of the mechanical translational system of Fig.
27.6a are shown in Fig. 27.7. Note that because the original system contains an inductive storage
element, there is no thermal analog.

Systems of the same physical type, but in which the roles of the through variables and the across
variables have been interchanged, are called duals. The analog of a dual—or, equivalently, the dual
of an analog—is sometimes called a dualog. The concepts of analogy and duality can be exploited
in many different ways.

27.4 STANDARD FORMS FOR LINEAR MODELS
The element laws and system relations together constitute a complete mathematical description of a
physical system. For a system graph with n nodes, b branches, and s sources, there will be b — s

Fig. 27.7 Analogs of the idealized automobile suspension system depicted in Fig. 27.6.



element laws, n - 1 continuity equations, and b — n + 1 compatibility equations. This is a total of
2b — s differential and algebraic equations. For systems composed entirely of linear elements, it is
always possible to reduce these 2b — s equations to either of two standard forms. The input /output
or I/O form is the basis for transform or so-called classical linear systems analysis. The state-variable
form is the basis for state-variable or so-called modern linear systems analysis.

27AA I/O Form
The classical representation of a system is the "black box," depicted in Fig. 27.8. The system has a
set of p inputs (also called excitations or forcing functions}, Uj(f),j = 1, 2, ...,/?. The system also
has a set of q outputs (also called response variables}, yk(t\ k = 1, 2, ...,#. Inputs correspond to
sources and are assumed to be known functions of time. Outputs correspond to physical variables
that are to be measured or calculated.

Linear systems represented in I/O form can be modeled mathematically by IIO differential equa-
tions. Denoting as ŷ (t) that part of the &th output yk(t) that is attributable to they'th input Uj(t), there
are (p X q) I/O equations of the form

dnyt dn~lykj dyk, dmUj dm~luf duf
^ + «.-.̂  + - - - + «.ir + w0 = ̂ + ̂^ + -" + ̂  + M('>

where j = 1, 2, ...,/? and k = 1, 2, ...,#. Each equation represents the dependence of one output
and its derivatives on one input and its derivatives. By the principle of superposition, the &th output
in response to all of the inputs acting simultaneously is

yk(t) = E jv«
7=1

A system represented by nth-order I/O equations is called an nth-order system. In general, the order
of a system is determined by the number of independent energy-storage elements within the system,
that is, by the combined number of T-type and A-type elements for which the initial energy stored
can be independently specified.

The coefficients 00, al, . . . , an_l and b0, bl, . . . , bm are parameter groups made up of algebraic
combinations of the system physical parameters. For a system with constant parameters, therefore,
these coefficients are also constant. Systems with constant parameters are called time-invariant sys-
tems and are the basis for classical analysis.

27.4.2 Deriving the I/O Form—An Example
I/O differential equations are obtained by combining element laws and continuity and compatibility
equations in order to eliminate all variables except the input and the output. As an example, consider
the mechanical system depicted in Fig. 27.9a, which might represent an idealized milling machine.
A rotational motor is used to position the table of the machine tool through a rack and pinion. The
motor is represented as a torque source T with inertia / and internal friction B. A flexible shaft,
represented as a torsional spring K, is connected to a pinion gear of radius R. The pinion meshes
with a rack, which is rigidly attached to the table of mass m. Damper b represents the friction
opposing the motion of the table. The problem is to determine the I/O equation that expresses the
relationship between the input torque T and the position of the table x.

The corresponding system graph is depicted in Fig. 21.9b. Applying continuity at nodes 1, 2, and
3 yields

node 1: T - Tj - TB - TK = Q
node 2: TK - Tp = 0
node 3: -fr - fm - fb = 0

Fig. 27.8 Input/output (I/O) or "black box" representation of a dynamic system.



Fig. 27.9 An idealized model of a milling machine: (a) lumped-element model,3
(b) system graph.

Substituting the elemental equation for each of the one-port elements into the continuity equations
and assuming zero ground velocities yields

node 1: T - Ĵ  - B^ - K / (cut - cû dt = 0
node 2: K f (̂  - a)2)dt - Tp = 0
node 3: -fr - mv - bv = 0

Note that the definition of the across variables for each element in terms of the node variables, as
above, guarantees that the compatibility equations are satisfied. With the addition of the constitutive
relationships for the rack and pinion

cu2 - - v and Tp = -Rfr

there are now five equations in the five unknowns o^, a)2, v, Tp, and fr. Combining these equations
to eliminate all of the unknowns except v yields, after some manipulation,

d3v d2v dv , „
â  + â  + a>* + a°v = b>T

where
IK K

a3 = Jm, al — — + Bb 4- mK, bl = —
R R

RK
a2 = Jb + mB, a0 = — + Kb

Differentiating yields the desired I/O equation



d}x d2x dx , dT
â  + â  + a<Jt + a°X = b^t

where the coefficients are unchanged.
For many systems, combining element laws and system relations can best be achieved by ad hoc

procedures. For more complicated systems, formal methods are available for the orderly combination
and reduction of equations. These are the so-called loop method and node method and correspond to
procedures of the same names originally developed in connection with electrical networks. The
interested reader should consult Ref. 1.

27.4.3 State-Variable Form

For systems with multiple inputs and outputs, the I/O model form can become unwieldy. In addition,
important aspects of system behavior can be suppressed in deriving I/O equations. The "modern"
representation of dynamic systems, called the state-variable form, largely eliminates these problems.
A state-variable model is the maximum reduction of the original element laws and system relations
that can be achieved without the loss of any information concerning the behavior of a system. State-
variable models also provide a convenient representation for systems with multiple inputs and outputs
and for systems analysis using computer simulation.

State variables are a set of variables x̂ t), x2(t), . . . , xn(t) internal to the system from which any
set of outputs can be derived, as depicted schematically in Fig. 27.10. A set of state variables is the
minimum number of independent variables such that by knowing the values of these variables at any
time t0 and by knowing the values of the inputs for all time t > t0, the values of the state variables
for all future time t > 10 can be calculated. For a given system, the number n of state variables is
unique and is equal to the order of the system. The definition of the state variables is not unique,
however, and various combinations of one set of state variables can be used to generate alternative
sets of state variables. For a physical system, the state variables summarize the energy state of the
system at any given time.

A complete state-variable model consists of two sets of equations, the state or plant equations
and the output equations. For the most general case, the state equations have the form

*i(0 = №i(0,*2(0, • • • , xn(t\u,(t\u2(t\ . . . , up(t)]

X2(t) = /2[*l(0,*2(0, • • • • Xn(t)tUi(t),U2(t)9 . . . , Up(t)]

*n(t) = /»[*l(0,*2(0, • • - , JtB(0,Mi(0,M2(0, • . • , Up(t)]

and the output equations have the form

y\(t) = gi[*i(0,*2(0, • • • , xn(t\u,(t\u2(t\ . . . , up(t)]

y2(i) = g2[xl(t\x2(t\ . . . , ̂ w(0,w1(r),M2(0, . . . , up(t)]

yjft = gq\x,(t\x2(t\ . . . , xn(t\Ul(t\u2(t\ . . . , up(t)]

These equations are expressed more compactly as the two vector equations

x(t) = f[x(t\u(f)}

y(t) = g[x(t),u(ij]

Fig. 27.10 State-variable representation of a dynamic system.



where

x(t) = the (n X 1) state vector
u(t) = the (p X 1) input or control vector
y(f) = the (q X 1) output or response vector

and / and g are vector-valued functions.
For linear systems, the state equations have the form

Xl(t) = an(t)Xl(t) + ••• + fllBttxn(f) + ̂ u(r)Ml(r) + ••- + blp(t)up(t)

x2(f) = a2l(t)x,(t) + ••• + a2n(i)xn(i) + b2l(i)u,(f) + ••• + b2p(f)up(f)

xn(t) = anl(t)Xl(t) + • • • + fl^fKW + M0"i(0 + • • • + MOw/0

and the output equations have the form

7i(0 = Cu(0*iW + ••• + cln(t)xn(t) + dn(f)Ul(t} + ••• + dlp(t)up(t)

y2(f) = c21(0-*i« + • • • + c2nOK(0 + d2l(t)ul(t) + • • • + d2p(f)up(t)

yjfi = c,i(0*i(0 + • • • + c,n(0̂(0 + dql(t)Ul(t) + • • • + d̂ ftufi)

where the coefficients are groups of parameters. The linear model is expressed more compactly as
the two linear vector equations.

*(0 - A(OXO + *(rXO
y(0 - C(0*(0 + D(f)u(f)

where the vectors jc, w, and y are the same as the general case and the matrices are defined as

A = [dy] is the (n X n) system matrix

B = [bjk] is the (n X p) control, input, or
distribution matrix

C = [ĉ ] is the (q X n) output matrix

D ~ [dik\ is the (q X p) output distribution matrix

For a time-invariant linear system, all of these matrices are constant.

27.4.4 Deriving the "Natural" State Variables—A Procedure
Because the state variables for a system are not unique, there are an unlimited number of alternative
(but equivalent) state-variable models for the system. Since energy is stored only in generalized
system storage elements, however, a natural choice for the state variables is the set of through and
across variables corresponding to the independent 7-type and A-type elements, respectively. This
definition is sometimes called the set of natural state variables for the system.

For linear systems, the following procedure can be used to reduce the set of element laws and
system relations to the natural state-variable model.

Step L For each independent T-type storage, write the element law with the derivative of the
through variable isolated on the left-hand side, that is, / = L~lv.

Step 2. For each independent A-type storage, write the element law with the derivative of the
across variable isolated on the left-hand side, that is, v = C~lf.

Step 3. Solve the compatibility equations, together with the element laws for the appropriate D-
type and multiport elements, to obtain each of the across variables of the independent T-type elements
in terms of the natural state variables and specified sources.

Step 4. Solve the continuity equations, together with the element laws for the appropriate D-type
and multiport elements, to obtain the through variables of the A-type elements in terms of the natural
state variables and specified sources.

Step 5. Substitute the results of step 3 into the results of step 1; substitute the results of step 4
into the results of step 2.

Step 6. Collect terms on the right-hand side and write in vector form.



27.4.5 Deriving the "Natural" State Variables—An Example
The six-step process for deriving a natural state-variable representation, outlined in the preceding
section, is demonstrated for the idealized automobile suspension depicted in Fig. 27.6:

Step 1

/fa = Mfa. /fa = *2*>fa

Step 2

vmi = wr7mi, vm2 = m2lfm2

Step 3

Ufa = Vb = Vm2 ~ Vmi, Vk2 = ~Vm2 - Vs

Step 4

fmi = /*, + fb = /*, + b~\vm2 - vmi)

fm2 = /fa - /fa - /* = /fa - /fa - b~\vm2 - vmi}

Step 5

/*, = ̂m2 - vmi\ vmi = m̂ l[fkl + b'\vm2 - vmi)]

/fa = ̂ 2(-̂ m2 - U,), Vm2 = ̂ 2lUk2 - fki - b~1(Vm2 - Vmi)]

Step 6

"/fai r o o -*i *i ]r/fa] r o"
^ /fa = 0 0 0 -fc2 /fa + -̂
dt vmi l/ml 0 -\lrnj) l/mvb vmi 0

uW2 — l/m2 l/m2 l/m2b —\lmjb vm2 0

27.4.6 Converting from I/O to "Phase-Variable" Form
Frequently, it is desired to determine a state-variable model for a dynamic system for which the
I/O equation is already known. Although an unlimited number of such models is possible, the easi-
est to determine uses a special set of state variables called the phase variables. The phase variables
are defined in terms of the output and its derivatives as follows:

*i(0 = XO

X2(t) = X,(t) = - XO

d2
x3(t) = x2(t) = — XO

*n(0 =*»-l(0 = ̂ plXO

This definition of the phase variables, together with the I/O equation of Section 27.4.1, can be shown
to result in a state equation of the form

"̂ (o ~| r o i o ••• o "irxw I ro"
;c2(0 0 0 1 0 jc2(0 0

I : = : : : • • . : : + : ll»
-̂i(0 0 0 0 ••• 1 ^̂ (0 0

_xn(t) J \_-OQ -al -a2 '- -fln_iJL^n(0 J LL

and an output equation of the form



y(t) = [b0 Vfcjp1®
X2(f)

*n(t}_

This special form of the system matrix, with ones along the upper off-diagonal and zeros elsewhere
except for the bottom row, is called a companion matrix.

27.5 APPROACHES TO LINEAR SYSTEMS ANALYSIS
There are two fundamental approaches to the analysis of linear, time-invariant systems. Transform
methods use rational functions obtained from the Laplace transformation of the system I/O equations.
Transform methods provide a particularly convenient algebra for combining the component sub-
models of a system and form the basis of so-called classical control theory. State-variable methods
use the vector state and output equations directly. State-variable methods permit the adaptation of
important ideas from linear algebra and form the basis for so-called modern control theory. Despite
the deceiving names of "classical" and "modern," the two approaches are complementary. Both
approaches are widely used in current practice and the control engineer must be conversant with
both.

27.5.1 Transform Methods
A transformation converts a given mathematical problem into an equivalent problem, according to
some well-defined rule called a transform. Prudent selection of a transform frequently results in an
equivalent problem that is easier to solve than the original. If the solution to the original problem
can be recovered by an inverse transformation, the three-step process of (1) transformation, (2)
solution in the transform domain, and (3) inverse transformation, may prove more attractive than
direct solution of the problem in the original problem domain. This is true for fixed linear dynamic
systems under the Laplace transform, which converts differential equations into equivalent algebraic
equations.

Laplace Transforms: Definition
The one-sided Laplace transform is defined as

Too
F(J) = £[/(*)] = f(t}e~stdtJo

and the inverse transform as

f(t) = £-l[F(s)] = -̂  P" F(s)e~st ds
2 TT/ Ja-jcj

The Laplace transform converts the function /(/) into the transformed function F(s); the inverse
transform recovers f(t) from F(s). The symbol £ stands for the "Laplace transform of"; the symbol
£-1 stands for "the inverse Laplace transform of."

The Laplace transform takes a problem given in the time domain, where all physical variables
are functions of the real variable t, into the complex-frequency domain, where all physical variables
are functions of the complex frequency s = a + yco, where j = V—f is the imaginary operator.
Laplace transform pairs consist of the function f(t) and its transform F(s). Transform pairs can be
calculated by substituting f(t) into the defining equation and then evaluating the integral with s held
constant. For a transform pair to exist, the corresponding integral must converge, that is,

/Q |/(f)|*--*'<&< oo

for some real a * >0. Signals that are physically realizable always have a Laplace transform.

Tables of Transform Pairs and Transform Properties
Transform pairs for functions commonly encountered in the analysis of dynamic systems rarely need
to be calculated. Instead, pairs are determined by reference to a table of transforms such as that given
in Table 27.4. In addition, the Laplace transform has a number of properties that are useful in
determining the transforms and inverse transforms of functions in terms of the tabulated pairs. The
most important of these are given in a table of transform properties such as that given in Table 27.5.



Table 27.4 Laplace Transform Pairs

Fifes) f(t), t 5* 0

1. 1 6(0, the unit impulse at t = 0

2. - 1, the unit step

* "!
3'̂

4 e-<*
s + a

5 —!— _l_r-i€-
' (5 + 0)" (n - 1)!

6. 1 - e~at
s(s + a)

1 (e~at - e~bt)
(s + a)(s + b) (b-ay

8. — [(p - d)e~at - (p - b)e~bt]
(s + a)(s + b) (b - a) LVF ' ^

1 e~at e~bt e~ct
' (s + a)(s + b)(s + c) (b - a)(c - a) + (c - b)(a - b} + (a - c}(b - c}

s + p (p - a)e~at (p - b)e~bt (p - c)e~ct
W' (s + a)(s + b)(s + c) (b - a)(c - a) + (c - b)(a - b) + (a - c)(b - c)

11. — TT sin bt
s2 + b2

12. . S f. cos bt
s2 + b2

13. = e~at sin bt
(s + a)2 + b2

14.- n; r; e~at cos bt(s + a)2 + b2
O)2 0)n .

15.- g-^sin a)nVl - £2 t, £<l
s2 + 2£a>ns + <»2n Vl - f2

W2 J
16 1 + —== £?-**' sin(wM V1 - £2 f + d>)

s(s2 + 2£a>ns + a>2) VT̂ T2
VT̂ T2

<j) = tan 1 + 77

(third quadrant)

Poles and Zeros
The response of a dynamic system most often assumes the following form in the complex-frequency
domain

N(s) bmsm + b̂ s"-1 + - - - + blS + b0
W D(s) s" + an_lS"~l + '- + alS + a0 ( }

Functions of this form are called rational functions, because these are the ratio of two polynomials
N(s) and D(s). If n > m, then F(s) is a proper rational function; if n > m, then F(j) is a strictly
proper rational function.

In factored form, the rational function F(s) can be written as

F(s) = M = ̂ (J-^iKJ-^)'"(J-O (27 2)
D(5) (S - pjXs - /72) ' • ' (5 - pn)



Table 27.5 Laplace Transform Properties

m F(s) = ]>e"s'dt

1. fl/j(0 + bf2(t) aF}(s) + bF2(s)

2. ̂  sF(s) - /(O)
at
d2f df

3. ̂  *FV> - sm - - ̂

rnf SnF(s) ~ ̂  J'̂ flfc-!

4 ̂ Ldtn __ dk~lf

§k~l " A*"1 ,=0
F(s) } /i(0)

f 5 5
5. /(*)* f

A(0) = /« *
r=0

, /O, t<D\
6-{f(t-D), t*DJ e~sDF̂

1. e~atf(t} F(s + a)

8. f\A aF(as}

9. /(O - [' Jc(r - r)Xr) rfr F(s) = X(s)Y(s)Jo

= Jo y(t - r)x(r) dr

10. /(oo) - lim jF(j)
s-*0

11. /(0+) - lim sF(s)
5-»oo

The roots of the numerator polynomial N(s) are denoted by z,, 7 = 1, 2, . . . , m. These numbers are
called the zeros of F(», since F(zj) = 0. The roots of the denominator polynomial are denoted by
p,., 1, 2, . . . , n. These numbers are called the poles of F(s), since lim̂ p. FO) = ±<».

Inversion by Partial-Fraction Expansion
The partial-fraction expansion theorem states that a strictly proper rational function F(s) with distinct
(nonrepeated) poles pt, i = 1, 2, . . . , n, can be written as the sum

A, A2 A_ " / 1 \
F(s) = — + —?— + •- + —— = 2 4- ——} (27.3)

s - pl s - p2 s ~ Pn i-i V* - A7

where the Ai9 i = 1, 2, . . . , n, are constants called residues. The inverse transform of F(s) has the
simple form

/(O = A^ + A2ep2t + • • • + AX«r = J£ A,̂ ^
1=1

The Heaviside expansion theorem gives the following expression for calculating the residue at
the pole Pi,

A, = (s- p̂ F(s)\s=pi for i = 1, 2, .... /i

These values can be checked by substituting into Eq. (27.3), combining the terms on the right-hand



side of Eq. (27.3), and showing the result yields the values for all the coefficients bj9j= 1, 2, . . . ,
m, originally specified in the form of Eq. (27.3).

Repeated Poles
When two or more poles of a strictly proper rational function are identical, the poles are said to be
repeated or nondistinct If a pole is repeated q times, that is, if/?. = pi+l = ••• = pi+q-i, then the
pole is said to be of multiplicity q. A strictly proper rational function with a pole of multiplicity q
will contain q terms of the following form

A-i + Ai2 + ... + î
(s-Py (s-p^~l "' CS-A-)

in addition to the terms associated with the distinct poles. The corresponding terms in the inverse
transform are

(crh)?̂ *-"+ crh)! A-̂ 2) + -+A*)eP"

The corresponding residues are

An = (s ~ p̂ F(s)\s=pi

4-2 = (j [(s - pyF(s)]\
\ / S=pi

^ = (̂(|Ŝ-Â)])_

Complex Poles
A strictly proper rational function with complex conjugate poles can be inverted using partial-fraction
expansion. Using a method called completing the square, however, is almost always easier. Consider
the function

B}s + B2
F(s) =

(s + a- - ja>)(s + cr + ja>}
B^ + B2

s2 + 2as + a2 + co2
B^ + B2

(s + cr)2 + o>2

From the transform tables the Laplace inverse is

f(t) = e~at[Bl cos at + 53 sin Mt]

= Ke~at cos(a>t + </>)

where B3 = (l/to)(B2 - aBJ
K = V#2 + B2
cf> = -tan'1 (B̂ B̂

Proper and Improper Rational Functions
If F(s) is not a strictly proper rational function, then N(s) must be divided by D(s) using synthetic
division. The result is

™=lH»+i?

where P(s) is a polynomial of degree m — n and N*(s) is a polynomial of degree n — 1. Each term
of P(s) may be inverted directly using the transform tables. N*(s)/D(s) is a strictly proper rational
function and may be inverted using partial-fraction expansion.



Initial-Value and Final-Value Theorems
The limits of /(/) as time approaches zero or infinity frequently can be determined directly from the
transform F(s) without inverting. The initial-value theorem states that

/(0+) = lim sF(s)
S—*cc

where the limit exists. If the limit does not exist (i.e., is infinite), the value of /(0+) is undefined.
The final-value theorem states that

/(oo) = lim sF(s)
s-+Q

provided that (with the possible exception of a single pole at s = 0) F(s) has no poles with nonneg-
ative real parts.

Transfer Functions
The Laplace transform of system I/O equation may be written in terms of the transform 7(5) of the
system response y(t) as

_ G(s)N(s) + F(s)D(s)
Y(S) ~ P(s)D(s)

= (GM\(NW\ + FW
\P(s))\D(s)) P(s)

where (a) P(s) = ansn + an_l + •• • + a-^s + a0 is the characteristic polynomial of the system,
(b) G(s) = bmsm + bm_l sm~l + ••• + b\s + b0 represents the numerator dynamics of the

system,
(c) U(s) = N(s)/D(s) is the transform of the input to the system, u(t\ assumed to be a rational

function, and

/ dy \
(d) F(s) = any(Q)sn~l + K -T (0) + a«-iXO) sn~2 + • • •\ at /

/ d"~ly dn~2y \
+ (a» ~d̂  (0) + ""-* * (0) + ''' + ̂J(0) j

reflects the initial system state [i.e., the initial conditions on y(t) and its first n — 1 derivatives].
The transformed response can be thought of as the sum of two components,

Y(s) = Yzs(s) + Ŷ s)

where (e) Ŷ s) =[G(s)/P(s)][N(s)/D(s)] = H(s)U(s) is the transform of the zero-state response, that
is, the response of the system to the input alone, and

(f) Ŷ s) = F(s)/P(s) is the transform of the zero-input response, that is, the response of the
system to the initial state alone.

The rational function
(g) H(s) = Yzs(s)/U(s) = G(s)/P(s) is the transfer function of the system, defined as the

Laplace transform of the ratio of the system response to the system input, assum-
ing zero initial conditions.

The transfer function plays a crucial role in the analysis of fixed linear systems using transforms
and can be written directly from knowledge of the system I/O equation as

bmsm + • • • + b0
H(s) = :

â  + â sT-1 + -- + alS + a0



Impulse Response
Since U(s) = 1 for a unit impulse function, the transform of the zero-state response to a unit impulse
input is given by the relation (g) as

Ya(s) = H(s)

that is, the system transfer function. In the time domain, therefore, the unit impulse response is

f 0 for t < 0
() [ST̂ ŝ)] for t > 0

This simple relationship is profound for several reasons. First, this provides for a direct characteri-
zation of time-domain response h(t) in terms of the properties (poles and zeros) of the rational
function H(s) in the complex-frequency domain. Second, applying the convolution transform pair
(Table 27.5) to relation (e) above yields

Yzs(i) = JT h(r)u(t - T) dr

In words, the zero-state output corresponding to an arbitrary input u(t) can be determined by con-
volution with the impulse response h(f). In other words, the impulse response completely characterizes
the system. The impulse response is also called the system weighing function.

Block Diagrams
Block diagrams are an important conceptual tool for the analysis and design of dynamic systems,
because block diagrams provide a graphic means for depicting the relationships among system var-
iables and components. A block diagram consists of unidirectional blocks representing specified
system components or subsystems, interconnected by arrows representing system variables. Causality
follows in the direction of the arrows, as in Fig. 27.11, indicating that the output is caused by the
input acting on the system defined in the block.

Combining transform variables, transfer functions, and block diagrams provides a powerful graph-
ical means for determining the overall transfer function of a system, when the transfer functions of
its component subsystems are known. The basic blocks in such diagrams are given in Fig. 27.12. A
block diagram comprising many blocks and summers can be reduced to a single transfer function
block by using the diagram transformations given in Fig. 27.13.

27.5.2 Transient Analysis Using Transform Methods
Basic to the study of dynamic systems are the concepts and terminology used to characterize system
behavior or performance. These ideas are aids in defining behavior, in order to consider for a given
context those features of behavior which are desirable and undesirable; in describing behavior, in
order to communicate concisely and unambiguously various behavioral attributes of a given system;
and in specifying behavior, in order to formulate desired behavioral norms for system design. Char-
acterization of dynamic behavior in terms of standard concepts also leads in many cases to analytical
shortcuts, since key features of the system response frequently can be determined without actually
solving the system model.

Parts of the Complete Response
A variety of names is used to identify terms in the response of a fixed linear system. The complete
response of a system may be thought of alternatively as the sum of:

Input Block Output
** operation "̂

Causality

Fig. 27.11 Basic block diagram, showing assumed direction of causality or loading.



Input-Output Relations

Time Transform
Type Domain Domain Symbol

(a) Multiplier y(t) = Kv(t) Y(s) = KF(s)

(b) General
transfer y(t) = S~l [T(s}V(s}} 7(s) = T(s)V(s)
function

(c) Summer y(t) = Vj(0 + v2(f) Y(s)=Vl(s)+V2(s)

(d) Comparator y (t) = vi(f) - v2(r) Y(s)= KI(S) - K2(s)

(e) Takeoff
point J>(0 = v(0 7(s)=K(s)

Fig. 27.12 Basic block diagram elements.4

1. The free response (or complementary or homogeneous solution) and the forced response (or
particular solution). The free response represents the natural response of a system when inputs
are removed and the system responds to some initial stored energy. The forced response of
the system depends on the form of the input only.

2. The transient response and the steady-state response. The transient response is that part of
the output that decays to zero as time progresses. The steady-state response is that part of
the output that remains after all the transients disappear.

3. The zero-state response and the zero-input response. The zero-state response is the complete
response (both free and forced responses) to the input when the initial state is zero. The zero-
input response is the complete response of the system to the initial state when the input is
zero.

Test Inputs or Singularity Functions

For a stable system, the response to a specific input signal will provide several measures of system
performance. Since the actual inputs to a system are not usually known a priori, characterization of
the system behavior is generally given in terms of the response to one of a standard set of test input
signals. This approach provides a common basis for the comparison of different systems. In addition,
many inputs actually encountered can be approximated by some combination of standard inputs. The
most commonly used test inputs are members of the family of singularity functions, depicted in Fig.
27.14.

First-Order Transient Response
The standard form of the I/O equation for a first-order system is

dy 1 1-L + - y(f} = _ u(t)
dt T T

where the parameter r is called the system time constant. The response of this standard first-order
system to three test inputs is depicted in Fig. 27.15, assuming zero initial conditions on the output
y(t). For all inputs, it is clear that the response approaches its steady state monotonically (i.e., without



Fig. 27.13 Representative block diagram transformations: (a) series or cascaded elements,
(b) feedback loop, (c) relocated summer, (of) relocated takeoff point.4

oscillations) and that the speed of response is completely characterized by the time constant r. The
transfer function of the system is

u,s) = 2M = l/T
() U(s) s+l/r

and therefore r = —p~l, where/? is the system pole. As the absolute value of p increases, r decreases
and the response becomes faster.

The response of the standard first-order system to a step input of magnitude u for arbitrary initial
condition y(0) = y0 is

y(t) = yss- [yss-yo\e-t/r

where yss = u is the steady-state response. Table 27.6 and Fig. 27.16 record the values of y(t) and
y(t) for t — kr, k — 0, 1,. .., 6. Note that over any time interval of duration T, the response increases
approximately 63% of the difference between the steady-state value and the value at the beginning
of the time interval, that is,



Fig. 27.14 Family of singularity functions commonly used as test inputs.

y(t + T) - XO « 0.63212[);ss - y(t}]

Note also that the slope of the response at the beginning of any time interval of duration r intersects
the steady-state value yss at the end of the interval, that is,

dy Jss ~ XO
-r (0 =dt r

Finally, note that after an interval of four time constants, the response is within 98% of the steady-
state value, that is,

y(4r) « 0.98168(vss - v0)

For this reason, Ts = 4r is called the (2%) setting time.
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Fig. 27.15 Response of a first-order system to (a) unit impulse, (b) unit step, and
(c) unit ramp inputs.



Table 27.6 Tabulated
Values of the Response of
a First-Order System to a
Unit Step Input

t y(t) №

o o T~I
T 0.632 0.368-r-1
2r 0.865 0.135-r-1
3r 0.950 0.050T-1
4r 0.982 O-OlSr'1
5r 0.993 O.OOVr-1
6r 0.998 0.002T-1

Second-Order Transient Response

The standard form of the I/O equation for a second-order system is

d2y dy
-̂  + 2£a>n -£ + 0̂(0 = ̂(0

with transfer function

H(J) = 2M = ^
"W !/(*) 52 + 2̂ n, + ̂

The system poles are obtained by applying the quadratic formula to the characteristic equation as

Fig. 27.16 Response of a first-order system to a unit step input, showing the
relationship to the time constant.



Pl.2 = "fan ± >nVl - £2

where the following parameters are defined: £ is the damping ratio, a)n is the natural frequency, and
d̂ = ̂ n̂ /1 ~ £2 is the damped natural frequency.
The nature of the response of the standard second-order system to a step input depends on the

value of the damping ratio, as depicted in Fig. 27.17. For a stable system, four classes of response
are defined.

1. Overdamped Response (£ > 1). The system poles are real and distinct. The response of the
second-order system can be decomposed into the response of two cascaded first-order sys-
tems, as shown in Fig. 27.18.

2. Critically Damped Response (( = 1). The system poles are real and repeated. This is the
limiting case of overdamped response, where the response is as fast as possible without
overshoot.

3. Underdamped Response (1 > f > 0). The system poles are complex conjugates. The response
oscillates at the damped frequency o>d. The magnitude of the oscillations and the speed with
which the oscillations decay depend on the damping ratio f.

4. Harmonic Oscillation (g = 0). The system poles are pure imaginary numbers. The response
oscillates at the natural frequency wn and the oscillations are undamped (i.e., the oscillations
are sustained and do not decay).

The Complex s-Plane
The location of the system poles (roots of the characteristic equation) in the complex s-plane reveals
the nature of the system response to test inputs. Figure 27.19 shows the relationship between the
location of the poles in the complex plane and the parameters of the standard second-order system.
Figure 27.20 shows the unit impulse response of a second-order system corresponding to various
pole locations in the complex plane.

Fig. 27.17 Response of a second-order system to a unit step input for selected values
of the damping ratio.



Fig. 27.18 Overdamped response of a second-order system decomposed into the responses
of two first-order systems.

Transient Response of Higher-Order Systems
The response of third- and higher-order systems to test inputs is simply the sum of terms representing
component first- and second-order responses. This is because the system poles must either be real,
resulting in first-order terms, or complex, resulting in second-order underdamped terms. Furthermore,
because the transients associated with those system poles having the largest real part decay the most
slowly, these transients tend to dominate the output. The response of higher-order systems therefore
tends to have the same form as the response to the dominant poles, with the response to the sub-
dominant poles superimposed over it. Note that the larger the relative difference between the real
parts of the dominant and subdominant poles, the more the output tends to resemble the dominant
mode of response.

For example, consider a fixed linear third-order system. The system has three poles. The poles
may either all be real, or one may be real while the other pair is complex conjugates. This leads to
the three forms of step-response shown in Fig. 27.21, depending on the relative locations of the poles
in the complex plane.

Transient Performance Measures
The transient response of a system is commonly described in terms of the measures defined in Table
27.7 and shown in Fig. 27.22. While these measures apply to any output, for a second-order system
these can be calculated exactly in terms of the damping ratio and natural frequency, as shown in
column three of the table. A common practice in control system design is to determine an initial
design with dominant second-order poles that satisfy the performance specifications. Such a design
can easily be calculated and then modified as necessary to achieve the desired performance.

Fig. 27.19 Location of the upper complex pole in the s-plane in terms of the parameters of the
standard second-order system.



Fig. 27.20 Unit impulse response for selected upper complex pole locations in the s-plane.

Fig. 27.21 Step response of a third-order system for alternative upper-complex pole
locations in the s-plane.



The Effect of Zeros on the Transient Response
Zeros arise in a system transfer function through the inclusion of one or more derivatives of u(t)
among the inputs to the system. By sensing the rate(s) of change of u(i), the system in effect
anticipates the future values of u(f). This tends to increase the speed of response of the system
relative to the input u(t).

The effect of a zero is greatest on the modes of response associated with neighboring poles. For
example, consider the second-order system represented by the transfer function

H(s) = K- ̂
(s - p̂ (s - p2)

If z = Pi, then the system responds as a first-order system with T = —p2l; whereas if z = P2> then
the system responds as a first-order system with T = —p±l. Such pole-zero cancellation can only be
achieved mathematically, but it can be approximated in physical systems. Note that by diminishing
the residue associated with the response mode having the larger time constant, the system responds
more quickly to changes in the input, confirming our earlier observation.

27.5.3 Response to Periodic Inputs Using Transform Methods
The response of a dynamic system to periodic inputs can be a critical concern to the control engineer.
An input u(t) is periodic if u(t + T) — u(f) for all time t, where T is a constant called the period.
Periodic inputs are important because these are ubiquitous: rotating unbalanced machinery, recipro-
cating pumps and engines, ac electrical power, and a legion of noise and disturbance inputs can be
approximated by periodic inputs. Sinusoids are the most important category of periodic inputs, be-
cause these are frequently occurring, easily analyzed, and form the basis for analysis of general
periodic inputs.

Table 27.7 Transient Performance Measures Based Upon Step Response

Performance Measure

Delay time, td

10-90% rise time, tr

0-100% rise time, tr

Peak time, tp

Maximum overshoot, Mp

Percent overshoot, PO

Setting time, rs

Definition

Time required for the response
to reach half the final value
for the first time

Time required for the response
to rise from 10 to 90% of
the final response (used for
overdamped responses)

Time required for the response
to rise from 0 to 100% of
the final response (used for
underdamped responses)

Time required for the response
to reach the first peak of the
overshoot

The difference in the response
between the first peak of
the overshoot and the final
response

The ratio of maximum
overshoot to the final
response expressed as a
percentage

The time required for the
response to reach and stay
within a specified band
centered on the final
response (usually a 2% or
5% of final response band)

Formula for a
Second-Order System

77- /3

/r= <*
where ft = cos l£

7T

^̂
Mp = ê 1̂ ?̂

PO = 100e-̂ /vr̂

rs = — (2% band)
£Wn

L = (5% band)
<X



Fig. 27.22 Transient performance measures based on step response.

Frequency Response

The frequency response of a system is the steady-state response of the system to a sinusoidal input.
For a linear system, the frequency response has the unique property that the response is a sinusoid
of the same frequency as the input sinusoid, differing only in amplitude and phase. In addition, it is
easy to show that the amplitude and phase of the response are functions of the input frequency,
which are readily obtained from the system transfer function.

Consider a system defined by the transfer function H(s). For an input

u(t) = A sin a)t

the corresponding steady-state output is

y№(t) = AM(a)) sin[orf + <£(w)]

where M(o)) = H(jco)\ is called the magnitude ratio
$(<*)) = ZH(jco) is called the phase angle
H(j(o) = #(j)|s=> is called the frequency transfer function

The frequency transfer function is obtained by substituting ju for s in the transfer function H(s). If
the complex quantity H(JCJ) is written in terms of its real and imaginary parts as H(jco) = Re(w) +
jlm(cj), then

M(o>) = [Re(w)2 4- Im(w)2]1/2
<t>(co) = tan-̂ InX̂ /ReCa/)]

and in polar form

H(jai) = M(a>)ejM



Frequency Response Plots
The frequency response of a fixed linear system is typically represented graphically, using one of
three types of frequency response plots. A polar plot is simply a plot of the vector H(jcS) in the
complex plane, where Re(o>) is the abscissa and Im(cu) is the ordinate. A logarithmic plot or Bode
diagram consists of two displays: (1) the magnitude ratio in decibels Mdb(o>) [where Mdb(w) = 20 log
M(o))] versus log w, and (2) the phase angle in degrees <£(a/) versus log a). Bode diagrams for
normalized first- and second-order systems are given in Fig. 27.23. Bode diagrams for higher-order
systems are obtained by adding these first- and second-order terms, appropriately scaled. A Nichols
diagram can be obtained by cross plotting the Bode magnitude and phase diagrams, eliminating
log a). Polar plots and Bode and Nichols diagrams for common transfer functions are given in
Table 27.8.

Frequency Response Performance Measures
Frequency response plots show that dynamic systems tend to behave like filters, "passing" or even
amplifying certain ranges of input frequencies, while blocking or attenuating other frequency ranges.
The range of frequencies for which the amplitude ratio is no less than 3 db of its maximum value
is called the bandwidth of the system. The bandwidth is defined by upper and lower cutoff frequencies
o)c, or by o> = 0 and an upper cutoff frequency if M(0) is the maximum amplitude ratio. Although
the choice of "down 3 db" used to define the cutoff frequencies is somewhat arbitrary, the bandwidth
is usually taken to be a measure of the range of frequencies for which a significant portion of the
input is felt in the system output. The bandwidth is also taken to be a measure of the system speed
of response, since attenuation of inputs in the higher-frequency ranges generally results from the
inability of the system to "follow" rapid changes in amplitude. Thus, a narrow bandwidth generally
indicates a sluggish system response.

Response to General Periodic Inputs
The Fourier series provides a means for representing a general periodic input as the sum of a constant
and terms containing sine and cosine. For this reason the Fourier series, together with the super-
position principle for linear systems, extends the results of frequency response analysis to the general
case of arbitrary periodic inputs. The Fourier series representation of a periodic function f(t) with
period 2T on the interval t* + 2T > t > t* is

jv N a° ^ i n/Trt i • n7rt\/(O = -T + Zr I an cos — + bn sin — I
2, n=l \ i i I

where

1 r+2̂  nirt j
an = ~ Ĵ  /(O cos — dt

bn = J'L f(f} sin T^dt

If f(t) is defined outside the specified interval by a periodic extension of period 27, and if f(t) and
its first derivative are piecewise continuous, then the series converges to /(O if f is a point of con-
tinuity, or to l/2 [f(t+) + /(*-)] if t is a point of discontinuity. Note that while the Fourier series in
general is infinite, the notion of bandwidth can be used to reduce the number of terms required for
a reasonable approximation.

27.6 STATE-VARIABLE METHODS
State-variable methods use the vector state and output equations introduced in Section 27.4 for
analysis of dynamic systems directly in the time domain. These methods have several advantages
over transform methods. First, state-variable methods are particularly advantageous for the study of
multivariable (multiple input/multiple output) systems. Second, state-variable methods are more nat-
urally extended for the study of linear time-varying and nonlinear systems. Finally, state-variable
methods are readily adapted to computer simulation studies.

27.6.1 Solution of the State Equation
Consider the vector equation of state for a fixed linear system:

x(t) = Ax(i) + Bu(t)

The solution to this system is
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