
41.1 INTRODUCTION
Thermodynamics has historically grown out of man's determination—as Sadi Carnot put it—to cap-
ture "the motive power of fire." Relative to mechanical engineering, thermodynamics describes the
relationship between mechanical work and other forms of energy. There are two facets of contem-
porary thermodynamics that must be stressed in a review such as this. The first is the equivalence of
work and heat as two possible forms of energy exchange. This facet is encapsulated in the first law
of thermodynamics. The second aspect is the irreversibility of all processes (changes) that occur in
nature. As summarized by the second law of thermodynamics, irreversibility or entropy generation
is what prevents us from extracting the most possible work from various sources; it is also what
prevents us from doing the most with the work that is already at our disposal. The objective of this
chapter is to review the first and second laws of thermodynamics and their implications in mechanical
engineering, particularly with respect to such issues as energy conversion and conservation. The
analytical aspects (the formulas) of engineering thermodynamics are reviewed primarily in terms of
the behavior of a pure substance, as would be the case of the working fluid in a heat engine or in a
refrigeration machine. In the next chapter we review in greater detail the newer field of entropy
generation minimization (thermodynamic optimization).

SYMBOLS AND UNITS
c specific heat of incompressible substance, J/(kg • K)
cp specific heat at constant pressure, J/(kg • K)
CT constant temperature coefficient, m3/kg
cv specific heat at constant volume, J/(kg • K)
COP coefficient of performance
E energy, J
/ specific Helmholtz free energy (u - TV), J/kg
F force vector, N
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g gravitational acceleration, m/sec2
g specific Gibbs free energy (h — TV), J/kg
h specific enthalpy (u + Pu), J/kg
K isothermal compressibility, m2/N
m mass of closed system, kg
m mass flow rate, kg/sec
mt mass of component in a mixture, kg
M mass inventory of control volume, kg
M molar mass, g/mol or kg/kmol
n number of moles, mol
N0 Avogadro's constant
P pressure
8Q infinitesimal heat interaction, J
Q heat transfer rate, W
r position vector, m
R ideal gas constant, J/(kg • K)
s specific entropy, J/(kg • K)
S entropy, J/K
Sgen entropy generation, J/K
5gen entropy generation rate, W/K
T absolute temperature, K
u specific internal energy, J/kg
U internal energy, J
v specific volume m3/kg
v specific volume of incompressible substance, m3/kg
V volume, m3
V velocity, m/sec
8W infinitesimal work interaction, J
Wî  rate of lost available work, W
Wsh rate of shaft (shear) work transfer, W
x linear coordinate, m
x quality of liquid and vapor mixture
Z vertical coordinate, m
j8 coefficient of thermal expansion, 1/K
y ratio of specific heats, cp/cv
j] "efficiency" ratio
Tjj first-law efficiency
iTn second-law efficiency
6 relative temperature, °C

SUBSCRIPTS
()in inlet port
()out outlet port
()rev reversible path
()H high-temperature reservoir
()L low-temperature reservoir
()max maximum
()T turbine
()c compressor
()N nozzle
()D diffuser
()j initial state
()2 final state
()0 reference state



()f saturated liquid state (/ = "fluid")
()g saturated vapor state (g = "gas")
()5 saturated solid state (s = "solid")
()* moderately compressed liquid state
()+ slightly superheated vapor state

Definitions

THERMODYNAMIC SYSTEM is the region or the collection of matter in space selected for analysis.
ENVIRONMENT is the thermodynamic system external to the system of interest, that is, external to

the region selected for analysis or for discussion.
BOUNDARY is the real or imaginary surface delineating the system of interest. The boundary separates

the system from its environment. The boundary is an unambiguously defined surface. The bound-
ary has zero thickness.

CLOSED SYSTEM is the thermodynamic system whose boundary is not penetrated (crossed) by the
flow of mass.

OPEN SYSTEM, or flow system, is the thermodynamic system whose boundary is permeable to mass
flow. Open systems have their own nomenclature, so that the thermodynamic system is usually
referred to as the control volume, the boundary of the open system is the control surface, and the
particular regions of the boundary that are crossed by mass flows are the inlet or outlet ports.

STATE is the condition (the being) of a thermodynamic system at a particular point in time, as
described by an ensemble of quantities called thermodynamic properties (e.g., pressure, volume,
temperature, energy, enthalpy, entropy). Thermodynamic properties are only those quantities that
depend solely on the instantaneous state of the system. Thermodynamic properties do not depend
on the "history" of the system between two different states. Quantities that depend on the system
evolution (path) between states are not thermodynamic properties (examples of nonproperties are
the work, heat, and mass transfer interactions; the entropy transfer interactions; the entropy gen-
eration; and the lost available work—see also the definition of process).

EXTENSIVE PROPERTIES are properties whose values depend on the size of the system (e.g., mass,
volume, energy, enthalpy, entropy).

INTENSIVE PROPERTIES are properties whose values do not depend on the system size (e.g., pressure,
temperature). The collection of all intensive properties (or the properties of an infinitesimally
small element of the system, including the per-unit-mass properties, such as specific energy and
specific entropy) constitutes the intensive state.

PHASE is the collection of all system elements that have the same intensive state (e.g., the liquid
droplets dispersed in a liquid-vapor mixture have the same intensive state, that is, the same
pressure, temperature, specific volume, specific entropy, etc.).

PROCESS is the change of state from one initial state to a final state. In addition to the end states,
knowledge of the process implies knowledge of the interactions experienced by the system while
in communication with its environment (e.g., work transfer, heat transfer, mass transfer, and
entropy transfer). To know the process also means to know the path (the history, or the succession
of states) followed by the system from the initial to the final state.

CYCLE is a special process in which the final state coincides with the initial state.

41.2 THE FIRST LAW OF THERMODYNAMICS FOR CLOSED SYSTEMS
The first law of thermodynamics is a statement that brings together three concepts in thermodynamics:
work transfer, heat transfer, and energy change. Of these concepts, only energy change or, simply,
energy, is, in general, a thermodynamic property. Before stating the first law and before writing down
the equation that accounts for this statement, it is necessary to review1 the concepts of work transfer,
heat transfer, and energy change.

Consider the force Fx experienced by a certain system at a point on its boundary. Relative to this
system, the infinitesimal work transfer interaction between system and environment is

8W = -Fxdx

where_the boundary displacement dx is defined as positive in the direction of the force Fx. When the
force F and the displacement of its point of application dr are not collinear, the general definition
of infinitesimal work transfer is

8W = -F - dr

The work transfer interaction is considered positive when the system does work on its environment—
in other words, when F and dr point in opposite directions. This sign convention has its origin in



heat engine engineering, since the purpose of heat engines as thermodynamic systems is to deliver
work while receiving heat.

In order for a system to experience work transfer, two things must occur: (1) a force must be
present on the boundary, and (2) the point of application of this force (hence, the boundary) must
move. The mere presence of forces on the boundary, without the displacement or the deformation of
the boundary, does not mean work transfer. Likewise, the mere presence of boundary displacement
without a force opposing or driving this motion does not mean work transfer. For example, in the
free expansion of a gas into an evacuated space, the gas system does not experience work transfer
because throughout the expansion the pressure at the imaginary system-environment interface is zero.

If a closed system can interact with its environment only via work transfer (i.e., in the absence
of heat transfer 8Q discussed later), then it is observed that the work transfer during a change of
state from state 1 to state 2 is the same for all processes linking states 1 and 2,

if2 \- 8W\ =E2-El
V1 / 8Q=0

In this special case the work transfer interaction (W1_2)5G=0 is a property of the system, since its
value depends solely on the end states. This thermodynamic property is the energy change of the
system, E2 — Ev The statement that preceded the last equation is the first law of thermodynamics
for closed systems that do not experience heat transfer.

Heat transfer is, like work transfer, an energy interaction that can take place between a system
and its environment. The distinction between 8Q and dW is made by the second law of thermody-
namics discussed in the next section: Heat transfer is the energy interaction accompanied by entropy
transfer, whereas work transfer is the energy interaction taking place in the absence of entropy
transfer. The transfer of heat is driven by the temperature difference established between the system
and its environment.2 The system temperature is measured by placing the system in thermal com-
munication with a test system called thermometer. The result of this measurement is the relative
temperature 9 expressed in degrees Celsius, 0(°C), or Fahrenheit, 0(°F); these alternative temperature
readings are related through the conversion formulas

0(°Q - 5/9[0(°F) - 32]
0(°F) = 5/90(°C) + 32
1°F - 5/9°C

The boundary that prevents the transfer of heat, regardless of the magnitude of the
system-environment temperature difference, is termed adiabatic. Conversely, the boundary that is
the locus of heat transfer even in the limit of vanishingly small system-environment temperature
difference is termed diathermal.

It is observed that a closed system undergoing a change of state 1 —> 2 in the absence of work
transfer experiences a heat-transfer interaction whose magnitude depends solely on the end states:

(!28Q) =E2-E1
\Jl /8W=0

In the special case of zero work transfer, the heat-transfer interaction is a thermodynamic property
of the system, which is by definition equal to the energy change experienced by the system in going
from state 1 to state 2. The last equation is the first law of thermodynamics for closed systems
incapable of experiencing work transfer. Note that, unlike work transfer, the heat transfer is considered
positive when it increases the energy of the system.

Most thermodynamic systems do not manifest the purely mechanical (8Q = 0) or purely thermal
(8W = 0) behavior discussed to this point. Most systems manifest a coupled mechanical and thermal
behavior. The preceding first-law statements can be used to show that the first law of thermodynamics
for a process executed by a closed system experiencing both work transfer and heat transfer is

J* 8Q - £ 8W = E2- El

heat work energy
transfer transfer change

energy interactions (property)
(nonproperties)



The first law means that the net heat transfer into the system equals the work done by the system
on the environment, plus the increase in the energy of the system. The first law of thermodynamics
for a cycle or for an integral number of cycles executed by a closed system is

<j> 5Q = <j> 8W = 0

Note that the net change in the thermodynamic property energy is zero during a cycle or an integral
number of cycles.

The energy change term E2 — El appearing on the right-hand side of the first law can be replaced
by a more general notation that distinguishes between macroscopically identifiable forms of energy
storage (kinetic, gravitational) and energy stored internally,

E2 - E, = U2 - U, + ̂ - ̂  + mgZ2 - mgZ,

energy internal kinetic gravitational
change energy energy energy

change change change

If the closed system expands or contracts quasi-statically (i.e., slowly enough, in mechanical equi-
librium internally and with the environment) so that at every point in time the pressure P is uniform
throughout the system, then the work transfer term can be calculated as being equal to the work done
by all the boundary pressure forces as they move with their respective points of application,

f 8W= I PdVJi Ji

The work-transfer integral can be evaluated provided the path of the quasi-static process, P(V), is
known; this is another illustration that the work transfer is path-dependent (i.e., not a thermodynamic
property).

41.3 THE SECOND LAW OF THERMODYNAMICS FOR CLOSED SYSTEMS
A temperature reservoir is a thermodynamic system that experiences only heat-transfer interactions
and whose temperature remains constant during such interactions. Consider first a closed system
executing a cycle or an integral number of cycles while in thermal communication with no more than
one temperature reservoir. To state the second law for this case is to observe that the net work
transfer during each cycle cannot be positive,

<P 8W < 0

In other words, a closed system cannot deliver work during one cycle, while in communication with
one temperature reservoir or with no temperature reservoir at all. Examples of such cyclic operation
are the vibration of a spring-mass system, or the bouncing of a ball on the pavement: in order for
these systems to return to their respective initial heights, that is, in order for them to execute cycles,
the environment (e.g., humans) must perform work on them. The limiting case of frictionless cyclic
operation is termed reversible, because in this limit the system returns to its initial state without
intervention (work transfer) from the environment. Therefore, the distinction between reversible and
irreversible cycles executed by closed systems in communication with no more than one temperature
reservoir is

<j> SW = 0 (reversible)

<j> 8W < 0 (irreversible)

To summarize, the first and second laws for closed systems operating cyclically in contact with no
more than one temperature reservoir are (Fig. 41.1)

j> 8W = j> 8Q < 0



One heat reservoir Two heat reservoirs

Fig. 41.1 The first and second laws of thermodynamics for a closed system operating cycli-
cally while in communication with one or two heat reservoirs.

This statement of the second law can be used to show that in the case of a closed system executing
one or an integral number of cycles while in communication with two temperature reservoirs, the
following inequality holds (Fig. 41.1)

a + a^o
LH 1L

where H and L denote the high-temperature and the low-temperature reservoirs, respectively. Symbols
QH and QL stand for the value of the cyclic integral <J> 8Q, where 8Q is in one case exchanged only
with the H reservoir, and in the other with the L reservoir. In the reversible limit, the second law
reduces to THITL = —QH/QL, which serves as definition for the absolute thermodynamic temperature
scale denoted by symbol T. Absolute temperatures are expressed either in degrees Kelvin, T(K), or
in degrees Rankine, r(R); the relationships between absolute and relative temperatures are

T(K) - CQ + 273.15 K 7(R) = 0(°F) + 459.67 R

1 K = 1°C 1 R = 1°F

A heat engine is a special case of a closed system operating cyclically while in thermal com-
munication with two temperature reservoirs, a system that during each cycle intakes heat and delivers
work:

<j> 8W = j> 8Q = QH + QL > 0

The goodness of the heat engine can be described in terms of the heat engine efficiency or the first-
law efficiency

j> 8W

^ = ~0~-l~TLUH IH

Alternatively, the second-law efficiency of the heat engine is defined as1>3>4



j> 8W

îi = ~7~r \ = i _ 7 / 7
(<f sw\ l TL/TH
\ / maximum (reversible case)

A refrigerating machine or a heat pump operates cyclically between two temperature reservoirs
in such a way that during each cycle it intakes work and delivers net heat to the environment,

<j> 8W = § SQ = QH + QL < 0

The goodness of such machines can be expressed in terms of a coefficient of performance (COP)

POP = ®L < 1v-vyir refrigerator f — T /T _ 1
-<j> 8W LH'IL l

(~if\r> — *£H <
^̂ Mieat pump f ~ 1 _ T /T

-j> dw l IL/IH

Generalizing the second law for closed systems operating cyclically, one can show that if during
each cycle the system experiences any number of heat transfer interactions <2; with any number of
temperature reservoirs whose respective absolute temperatures are Tt, then

?f£0

Note that Tt is the absolute temperature of the boundary region crossed by <2;. Another way to write
the second law in this case is

*?•«

where, again, T is the temperature of the boundary pierced by 8Q. Of special interest is the reversible
cycle limit, in which the second law states (f 8Q/T)rev = 0. According to the definition of thermo-
dynamic property, the second law implies that during a reversible process the quantity 8Q/T is the
infinitesimal change in a property of the system: by definition, that property is the entropy change

H?L°"--HffL

Combining this definition with the second-law statement for a cycle, <f 8Q/T < 0, yields the second
law of thermodynamics for any process executed by a closed system,

^ - rf ,»

entropy entropy
change transfer
(property) (nonproperty)

The left-hand side in this inequality is by definition as the entropy generation associated with the
process,

s -s _5 _ f2^^gen - 2̂ ^1 Ji j,

The entropy generation is a measure of the inequality sign in the second law and hence a measure
of the irreversibility of the process. As shown in the next section and chapter 42, the entropy gen-
eration is proportional to the useful work destroyed during the process.13'4 Note again that any heat-
transfer interaction (8Q) is accompanied by entropy transfer (8Q/T\ whereas the work transfer 8W
is not.



41.4 THE LAWS OF THERMODYNAMICS FOR OPEN SYSTEMS
If m represents the mass flow rate of working fluid through a port in the control surface, then the
principle of mass conservation in the control volume reads

5>-2m = ^
in out dt

mass transfer mass change

Subscripts in and out refer to summation over all the inlet and outlet ports, respectively, while M
stands for the instantaneous mass inventory of the control volume.

The first law of thermodynamics is more general than the statement encountered earlier for closed
systems, because this time we must account for the flow of energy associated with the m streams.

2 i* (h + y + gZ\ - 2 m (h + ̂ + gZ\ + E 2,. - W = S-j
in \ ^ / out \ £ / i Of

energy transfer energy
change

On the left-hand side we have the energy transfer interactions: heat, work, and the energy transfer
associated with mass flow across the control surface. The specific enthalpy h, fluid velocity V, and
height Z are evaluated right at the boundary. On the right-hand side, E is the instantaneous system
energy integrated over the control volume.

The second law of thermodynamics for an open system assumes the form

x̂  ^ ^ Qi dS^ms - 2 ms + E 7: 2= —
in out i i{ vt

entropy transfer entropy change

The specific entropy s is representative of the thermodynamic state of each stream right at the system
boundary. The entropy generation rate defined as

5gen = f + E ** -1 ™ - E |Of out in / -/j

is a measure of the irreversibility of open system operation. The engineering importance of Sgen stems
from its proportionality to the rate of one-way destruction of available work. If the following para-
meters are fixed—all the mass flows (m), the peripheral conditions (h, s, V, Z), and the heat-transfer
interactions (Qi9 Tt) except (g0, T0)— then one can use the first law and the second law to show that
the work transfer rate cannot exceed a theoretical maximum:

W < £ m (h + ~ + gZ - 7>) - 2 m (h + ~ + gZ - 7> ) - ̂ (E - 7»
in \ ^ / out \ ^ / O f

The right-hand side in this inequality is the maximum work transfer rate Wsh)IIiax, which exists only
in the ideal limit of reversible operation. The rate of lost work, or exergy (availability) destruction,
is defined as

wlost = wmax - w

Again, using both laws, one can show that lost work is directly proportional to entropy generation,

wlost = r0£gen

This result is known as the Gouy-Stodola theorem.1'3 Conservation of useful (available) work in
thermodynamic systems can only be achieved based on the systematic minimization of entropy gen-
eration in all the components of the system. Engineering applications of entropy generation mini-
mization as a thermodynamic optimization philosophy may be found in Refs. 1,3, and 4, and in the
next chapter.



41.5 RELATIONS AMONG THERMODYNAMIC PROPERTIES
The analytical forms of the first and second laws of thermodynamics contain properties such as
internal energy, enthalpy, and entropy, which cannot be measured directly. The values of these prop-
erties are derived from measurements that can be carried out in the laboratory (e.g., pressure, volume,
temperature, specific heat); the formulas connecting the derived properties to the measurable prop-
erties are reviewed in this section. Consider an infinitesimal change of state experienced by a closed
system. If kinetic and gravitational energy changes can be neglected, the first law reads

S<2any path ~ ̂any path = dU

which emphasizes that dU is path-independent. In particular, for a reversible path (rev), the same dU
is given by

8Qrev - 8Wrev = dU

Note that from the second law for closed systems we have 8Qrev = T dS. Reversibility (or zero
entropy generation) also requires internal mechanical equilibrium at each stage during the process;
hence, 8Wrev = PdV, as for a quasi-static change in volume. The infinitesimal change in U is therefore

TdS - PdV= dU

Note that this formula holds for an infinitesimal change of state along any path (because dU is path-
independent); however, T dS matches 8Q and P dV matches 8W only if the path is reversible. In
general, 8Q < T dS and 8W < P dV, as shown in Fig. 41.2. The formula derived above for dU can
be written for a unit mass: Ids - P dv = du. Additional identities implied by this relation are

'-(£). -'•(£).
82u _ idT\ _ _(dP\
dS dv \dv) s \ds)v

where the subscript indicates which variable is held constant during partial differentiation. Similar
relations and partial derivative identities exist in conjunction with other derived functions such as
enthalpy, Gibbs free energy, and Helmholtz free energy:

• Enthalpy (defined as h = u + Pv}

dh = Tds + v dP

Fig. 41.2 The applicability of the relation dU = T dS - P dV to any infinitesimal process. (In
this drawing, all the quantities are assumed positive.)



T - (dh\ „ - (dh\
T-(TS)P v-(^)s
S2h = idT\ = idv\
dsdP ~ \dp)s ~ \ds)p

• Gibbs free energy (defined as g = h - TV)

dg = - s dT + v dP

-(51 -(51
d2g _/8£\ = (dv\
dTdP \dp)T \dTjp

• Helmholtz free energy (defined as / = u — Ts)

df = - s dT - P dv

-ea -Ha

J!L= _^ = -(<*}
dTdv \dv)T \dTjv

In addition to the (P, v, T) surface, which can be determined based on measurements, (Fig. 41.3),
the following partial derivatives are furnished by special experiments:1

• The specific heat at constant volume, cv = (Bu/dT)v, follows directly from the constant volume
(dW = 0) heating of a unit mass of pure substance.

• The specific heat at constant pressure, cp = (6h/dT)P, is determined during the constant-
pressure heating of a unit mass of pure substance.

• The Joule-Thomson coefficient, JJL = (dT/dP)h, is measured during a throttling process, that
is, during the flow of a stream through an adiabatic duct with friction (see the first law for
an open system in the steady state).

• The coefficient of thermal expansion, (3 = (l/v)(dv/dT)P.
• The isothermal compressibility, K = (-l/v)(dv/dP)T.
• The constant temperature coefficient, CT = (dh/8P)T.

Two noteworthy relationships between some of the partial-derivative measurements are

_ Tv(32
cP cv- K

1 \T(dv\ 1
^ = ~~ T ̂  ~ vcp |_ \dTjp J

The general equations relating the derived properties (u, h, s) to measurable quantities are

du = cvdT+ | r (̂) - P\ dv
L \d*/v J

dh = cpdT+[-T(^p + V]dP

A-^+fe)* or * = SHr-(£) dP
T \dT/v T \dT/p

These relations also suggest the following identities:

(du\ _ (ds\ _ (dh\ _ T(ds\
UA Uv Cy u/p = rW, = c'



Ideal gas

Fig. 41.3 The (P, v, T) surface for a pure substance that contracts upon freezing, showing
regions of ideal gas and incompressible fluid behavior. (In this figure, S = solid, V = vapor, L =

liquid, TP = triple point.)

41.6 IDEAL GASES
The relationships between thermodynamic properties and the analysis associated with applying the
laws of thermodynamics are simplified considerably in cases where the pure substance exhibits ideal
gas behavior. As shown in Fig. 41.3, this behavior sets in at sufficiently high temperatures and low
pressures; in this limit, the (P, v, T) surface is fitted closely by the simple expression

Pv
— = R (constant)

where R is the ideal gas constant of the substance of interest (Table 41.1). The formulas for internal
energy, enthalpy, and entropy, which concluded the preceding section, assume the following form in
the ideal-gas limit:

Incompressible substance Pure substance



du = cv dT- cv = cv(T)
dh = cp dT; cp = cP(T) = cv + R

ds = ̂ dT+-dv or ds = ̂ dT--dP or ds = ̂  dP + ̂  du
T V T P P v

If the coefficients cv and cp are constant in the temperature domain of interest, then the changes in
specific internal energy, enthalpy, and entropy relative to a reference state ()0 are given by the
formulas

u - u0 = cv(T - T0)

h- h0 = cP(T- T0) (where h0 = u0 + RT0)

T v
s — SQ = cv In — + R In —

TQ 0̂
T P

s — s0 = cp In —— R In —
TO PQ

s — SQ = cv In h cp In —
PQ vo

The ideal-gas model rests on two empirical constants, cv and cp, or cv and R, or cp and R. The ideal-
gas limit is also characterized by

M = 0, j3 = i, * = i cT=0

The extent to which a thermodynamic system destroys available work is intimately tied to the
system's entropy generation, that is, to the system's departure from the theoretical limit of reversible
operation. Idealized processes that can be modeled as reversible occupy a central role in engineering
thermodynamics, because they can serve as standard in assessing the goodness of real processes. Two
benchmark reversible processes executed by closed ideal-gas systems are particularly simple and
useful. A quasi-static adiabatic process 1 —* 2 executed by a closed ideal-gas system has the follow-
ing characteristics:

Ideal Gas

Air
Argon, Ar
Butane, C4 H10
Carbon dioxide, CO2
Carbon monoxide, CO
Ethane, C2H6
Ethylene, C2H4
Helium, He2
Hydrogen, H
Methane, CH4
Neon, Ne
Nitrogen, N2
Octane, C8H18
Oxygen, O2
Propane, C3H8
Steam, H2O

R

( J )\kg • K/

286.8
208.1
143.2
188.8
296.8
276.3
296.4
2076.7
4123.6
518.3
412.0
296.8
72.85
259.6
188.4
461.4

(")\kg • K/

715.9
316.5
1595.2
661.5
745.3
1511.4
1423.5
3152.7
10216.0
1687.3
618.4
741.1
1641.2
657.3
1515.6
1402.6

Table 41.1 Values of Ideal-Gas Constant and Specific Heat at Constant Volume for Gases
Encountered in Mechanical Engineering1



• Energy interactions

f*-°
r p v r/v\y~l i
.•»-£M($) -•]

where y — cplcv
• Path

pyy = piyy = p2yy (constant)

• Entropy change

S, - S, = 0

hence the name isoentropic or isentropic for this process
• Entropy generation

*W2 = S2- S,- 1̂  = 0 (reversible)

A quasi-static isothermal process I —> 2 executed by a closed ideal-gas system in communication
with a single temperature reservoir T is characterized by

• Energy interactions

f 8Q = I 8W = m RT In ̂
Ji Ji Vl

• Path

T=Tl = T2 (constant) or PV = P̂  = P2V2 (constant)

• Entropy change

$2 - Sl = m R In —

• Entropy generation

f2 8Q
Sgen̂ 2 = S2- Sl- j. -y = 0 (reversible)

Mixtures of ideal gases also behave as ideal gases in the high-temperature, low-pressure limit. If
a certain mixture of mass m contains ideal gases mixed in mass proportions mz, and if the ideal-gas
constants of each component are (cv., cp., /?,-), then the equivalent ideal gas constants of the mixture
are

1 VCv = ~ Z mi CVim i

1 VCp = -2; "li CPi

R = - ̂  mi Rt
m i

where m — t̂ m^
One mole is the amount of substance of a system that contains as many elementary entities (e.g.,

molecules) as there are in 12 g of carbon 12; the number of such entities is Avogadro's constant,
A/o = 6.022 X 1023. The mole is not a mass unit, since the mass of 1 mole is not the same for all



substances. The molar mass M of a given molecular species is the mass of 1 mole of that species,
so that the total mass m is equal to M times the number of moles n,

m = nM

Thus, the ideal-gas equation of state can be written as

PV = nMRT

where the product MR is the universal gas constant

R = MR = 8.314—-—
mol • K

The equivalent molar mass of a mixture of ideal gases with individual molar masses Mi is

M = - 2 w, Mt
n

where n = Sw,-. The molar mass of air, as a mixture of nitrogen, oxygen, and traces of other gases,
is 28.966 g/mol (or 28.966 kg/kmol). A more useful model of the air gas mixture relies on only
nitrogen and oxygen as constituents, in the proportion 3.76 moles of nitrogen to every mole of
oxygen; this simple model is used frequently in the field of combustion.

41.7 INCOMPRESSIBLE SUBSTANCES
At the opposite end of the spectrum, that is, at sufficiently high pressures and low temperatures in
Fig. 41.3, solids and liquids behave so that their density or specific volume is practically constant.
In this limit the (P, u, T) surface is adequately represented by the equation

v = v (constant)

The formulas for calculating changes in internal energy, enthalpy, and entropy become (see the end
of the section on relations among thermodynamic properties)

du = c dT
dh = c dT + v dP

ds = j,dT

where c is the sole specific heat of the incompressible substance,

C = Cv = CP

The specific heat c is a function of temperature only. In a sufficiently narrow temperature range where
c can be regarded as constant, the finite changes in internal energy, enthalpy, and entropy relative to
a reference state denoted by ()0 are

u - M0 = c (T - TQ)

h-h0 = c(T-T^) + v(P - P0) (where h0 = w0+ P0v)

i Ts - s0 = c In —
^o

The incompressible substance model rests on two empirical constants, c and v.

41.8 TWO-PHASE STATES
As shown in Fig. 41.3, the domains in which the pure substance behaves either as an ideal gas or
as an incompressible substance are bounded by regions where the substance exists as a mixture of
two phases, liquid and vapor, solid and liquid, or solid and vapor. The two-phase regions themselves
intersect along the triple point line labeled TP-TP on the middle sketch of Fig. 41.3. In engineering
cycle calculations, more useful are the projections of the (P, u, T) surface on the P-y plane or,
through the relations reviewed earlier, on the T-s plane. The terminology associated with two-phase
equilibrium states is easier to understand by focusing on the P-v diagram of Fig. 41 Aa and by



Fig. 41.4 The locus of two-phase (liquid and vapor) states, projected on (a) the P-v plane, and
(b) the T-s plane.



imagining the isothermal compression of a unit mass of substance (a closed system). As the specific
volume v decreases, the substance ceases to be a pure vapor at state g, where the first droplets of
liquid are formed. State g is a saturated vapor state. It is observed that isothermal compression
beyond g proceeds at constant pressure up to state /, where the last bubble (immersed in liquid) is
suppressed. State / is a saturated liquid state. Isothermal compression beyond / is accompanied by
a steep rise in pressure, depending on the compressibility of the liquid phase. The critical state is
the intersection of the locus of saturated vapor states with the locus of saturated liquid states (Fig.
41.4a). The temperature and pressure corresponding to the critical state are the critical temperature
and critical pressure. Table 41.2 contains a compilation of critical-state properties of some of the
more common substances.

Figure 41.4b shows the projection of the liquid and vapor domain on the T-s plane. On the same
drawing is shown the relative positioning (the relative slopes) of the traces of various constant-
property cuts through the three-dimensional surface on which all the equilibrium states are positioned.
In the two-phase region, the temperature is a unique function of pressure. This one-to-one relationship
is indicated also by the Clapeyron relation

idP\ = hg -hf = sg- sf

W/sat T(V8 ~ ̂/) V8 ~ Vf

where the subscript sat is a reminder that the relation holds for saturated states (such as g and /)
and for mixtures of two saturated phases. Subscripts g and / indicate properties corresponding to the
saturated vapor and liquid states found at temperature Tsat (and pressure Psat). Built into the last
equation is the identity

hg - hf = T(sg - sf)

Table 41.2 Critical-State Properties1

Fluid

Air
Alcohol (methyl)
Alcohol (ethyl)
Ammonia
Argon
Butane
Carbon dioxide
Carbon monoxide
Carbon tetrachloride
Chlorine
Ethane
Ethylene
Helium
Hexane
Hydrogen
Methane
Methyl chloride
Neon
Nitric oxide
Nitrogen
Octane
Oxygen
Propane
Sulfur dioxide
Water

Critical
Temperature

[K fC)]

133.2 (-140)
513.2 (240)
516.5 (243.3)
405.4 (132.2)
150.9 (-122.2)
425.9 (152.8)
304.3 (31.1)
134.3 (-138.9)
555.9 (282.8)
417 (143.9)
305.4 (32.2)
282.6 (9.4)
5.2 (-268)

508.2 (235)
33.2 (-240)
190.9 (-82.2)
416.5 (143.3)
44.2 (-288.9)
179.2 (-93.9)
125.9 (-147.2)
569.3 (296.1)
154.3 (-118.9)
368.7 (95.6)
430.4 (157.2)
647 (373.9)

Critical
Pressure
[MPa (atm)]

3.77 (37.2)
7.98 (78.7)
6.39 (63.1)
11.3 (111.6)
4.86 (48)
3.65 (36)
7.4 (73)
3.54 (35)
4.56 (45)
7.72 (76.14)
4.94 (48.8)
5.85 (57.7)
0.228 (2.25)
2.99 (29.5)
1.30 (12.79)
4.64 (45.8)
6.67 (65.8)
2.7 (26.6)
6.58 (65)
3.39 (33.5)
2.5 (24.63)
5.03 (49.7)
4.36 (43)
7.87 (77.7)

22.1 (218.2)

Critical
Specific
Volume
(cm3/g)

2.9
3.7
3.6
4.25
1.88
4.4
2.2
3.2
1.81
1.75
4.75
4.6
14.4
4.25
32.3
6.2
2.7
2.1
1.94
3.25
4.25
2.3
4.4
1.94
3.1



which is equivalent to the statement that the Gibbs free energy is the same for the saturated states
and their mixtures found at the same temperature, gg = gf.

The properties of a two-phase mixture depend on the proportion in which saturated vapor, mg,
and saturated liquid, mp enter the mixture. The composition of the mixture is described by the
property quality

x= ms
mf + mg

whose value varies between 0 at state / and 1 at state g. Other properties of the mixture can be
calculated in terms of the properties of the saturated states found at the same temperature.

u = uf + xufg s = sf + xsfg

h = hf + xhfg v - vf + xv fg

with the notation ()fg = ()g - ()f.
Similar relations can be used to calculate the properties of two-phase states other than liquid and

vapor, namely, solid and vapor or solid and liquid. For example, the enthalpy of a solid and liquid
mixture is given by h = hs + xhsf, where subscript s stands for the saturated solid state found at
the same temperature as for the two-phase state, and where hsf is the latent heat of melting or
solidification.

In general, the states situated immediately outside the two-phase dome sketched in Figs. 41.3 and
41.4 do not follow very well the limiting models discussed already (ideal gas, incompressible sub-
stance). Since the properties of closely neighboring states are usually not available in tabular form,
the following approximate calculation proves useful. For a moderately compressed liquid state, which
is indicated by the subscript ()*, that is, for a state situated close to the left of the dome in Fig. 41.4,
the properties may be calculated as slight deviations from those of the saturated liquid state found
at the same temperature as the compressed liquid state of interest,

h. a (hfc + (vf)AP* ~ (PfM
S = (Sf)j*

For a slightly superheated vapor state, that is, a state situated close to the right of the dome in
Fig. 41.4, the properties may be estimated in terms of those of the saturated vapor state found at the
same temperature,

h+ = (hs)T+

(̂̂  + fc) ln^\ 1g / T+ r+

In these expressions, subscript ()+ indicates the properties of the slightly superheated vapor state.

41.9 ANALYSIS OF ENGINEERING SYSTEM COMPONENTS
This section contains a summary of the equations obtained by applying the first and second laws of
thermodynamics to the components encountered in most engineering systems, such as power cycles
and refrigeration cycles. It is assumed that each component operates in steady flow.

• Valve (throttle) or adiabatic duct with friction (Fig. 41.50):

First law ^ = h2

Second law 5gen = m(s2 - sj > 0

• Expander or turbine with negligible heat transfer to the ambient (Fig. 41.5b):

First law WT = m^ - h2)

Second law 5gen = m(s2 — ŝ  ̂  0

Efficiency rjT = ̂ ~̂  < 1
h\ ~ «2,rev



Fig. 41.5 Engineering system components, and their inlet and outlet states on the T-s plane,
(PH = high pressure; PL = low pressure.)



Fig. 41.5 (Continued)

• Compressor or pump with negligible heat transfer to the ambient (Fig. 41.5c):

First law Wc = m(h2 - hj

Second law Sgen = m(s2 - s}) > 0

Efficiency TJC = fev ! < 1
«2 ~ «i



• Nozzle with negligible heat transfer to the ambient (Fig. 41.5d):

First law - (V\ - V?) = ̂  - h2

Second law 5gen = m(s2 — ŝ ) ̂  0
V2 — V2

Efficiency TJN = 2 _ * < 1
V 2,rev V 1

• Diffuser with negligible heat transfer to the ambient (Fig. 41.5e):

First law h2 - h, = ̂  (V\ - Vf)

Second law 5gen = m(s2 - ŝ  > 0

Efficiency TJD = 2.rev ~ l ̂  1
n2 nl

• Heat exchangers with negligible heat transfer to the ambient (Figs. 41.5/and 41.5g)

First law mhot(hi ~ h2) = mcold(h4 - h3)

Second law 5gen = mhot(s2 - sj + mcold(s4 - s3) > 0

Figures 41.5/and 41.5g, show that a pressure drop always occurs in the direction of flow, in any
heat exchanger flow passage.
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