
43.1 SYMBOLS AND UNITS
A area of heat transfer
Bi Biot number, hL/k, dimensionless
C circumference, m, constant defined in text
Cp specific heat under constant pressure, J/kg • K
D diameter, m
e emissive power, W/m2
/ drag coefficient, dimensionless
F cross flow correction factor, dimensionless
Ff_j configuration factor from surface i to surface j, dimensionless
Fo Fourier number, atA2/V2, dimensionless
FO-\T radiation function, dimensionless
G irradiation, W/m2; mass velocity, kg/m2 • sec
g local gravitational acceleration, 9.8 m/sec2
gc proportionality constant, 1 kg • m/N • sec2
Gr Grashof number, gL3/3Ar/f2, dimensionless
h convection heat transfer coefficient, equals q/AAT, W/m2 • K
hfg heat of vaporization, J/kg
J radiocity, W/m2
k thermal conductivity, W/m • K
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K wick permeability, m2
L length, m
Ma Mach number, dimensionless
N screen mesh number, m"1
Nu Nusselt number, NuL = hL/k, NuD = hDlk, dimensionless
Nu Nusselt number averaged over length, dimensionless
P pressure, N/m2, perimeter, m
Pe Peclet number, RePr, dimensionless
Pr Prandtl number, Cpjjilk, dimensionless
q rate of heat transfer, W
cf' rate of heat transfer per unit area, W/m2
R distance, m; thermal resistance, K/W
r radial coordinate, m; recovery factor, dimensionless
Ra Rayleigh number, GrPr; RaL = GrLPr, dimensionless
Re Reynolds number, ReL = pVLI /n, Rê , = pVDI /a, dimensionless
S conduction shape factor, m
T temperature, K or °C
t time, sec
Tas adiabatic surface temperature, K
Tsat saturation temperature, K
Tb fluid bulk temperature or base temperature of fins, K
Te excessive temperature, Ts — Tsan K or °C
Tf film temperature, (Tx + Ts)/2, K
T. initial temperature; at t = 0, K
T0 stagnation temperature, K
Ts surface temperature, K
^ free stream fluid temperature, K
U overall heat transfer coefficient, W/m2 • K
V fluid velocity, m/sec; volume, m3
w groove width, m; or wire spacing, m
We Weber number, dimensionless
x one of the axes of Cartesian reference frame, m

Greek Symbols
a thermal diffusivity, kl pCp, m2/sec; absorptivity, dimensionless
(3 coefficient of volume expansion, 1/K
r mass flow rate of condensate per unit width, kg/m • sec
y specific heat ratio, dimensionless
A7 temperature difference, K
8 thickness of cavity space, groove depth, m
e emissivity, dimensionless
e wick porosity, dimensionless
A wavelength, /nm
T]f fin efficiency, dimensionless
jji viscosity, kg/m • sec
v kinematic viscosity, m2/sec
p reflectivity, dimensionless; density, kg/m3
or surface tension, N/m; Stefan-Boltzmann constant, 5.729 X 10~8 W/m2 • K4
T transmissivity, dimensionless, shear stress, N/m2
M* angle of inclination, degrees or radians

Subscripts
a adiabatic section, air
b boiling, black body
c convection, capillary, capillary limitation, condenser
e entrainment, evaporator section
eff effective
/ fin
/ inner
/ liquid
m mean, maximum
n nucleation
o outer
0 stagnation condition
P PiPe
r radiation



s surface, sonic or sphere
w wire spacing, wick
v vapor
A spectral
oo free stream
— axial hydrostatic pressure
+ normal hydrostatic pressure

The science or study of heat transfer is that subset of the larger field of transport phenomena that
focuses on the energy transfer occurring as a result of a temperature gradient. This energy transfer
can manifest itself in several forms, including conduction, which focuses on the transfer of energy
through the direct impact of molecules; convection, which results from the energy transferred through
the motion of a fluid; and radiation, which focuses on the transmission of energy through electro-
magnetic waves. In the following review, as is the case with most texts on heat transfer, phase change
heat transfer, that is, boiling and condensation, will be treated as a subset of convection heat transfer.

43.2 CONDUCTION HEAT TRANSFER

The exchange of energy or heat resulting from the kinetic energy transferred through the direct impact
of molecules is referred to as conduction and takes place from a region of high energy (or temper-
ature) to a region of lower energy (or temperature). The fundamental relationship that governs this
form of heat transfer is Fourier's law of heat conduction, which states that in a one-dimensional
system with no fluid motion, the rate of heat flow in a given direction is proportional to the product
of the temperature gradient in that direction and the area normal to the direction of heat flow. For
conduction heat transfer in the ̂ -direction this expression takes the form

,A dTqx = -kA —
** dx

where qx is the heat transfer in the ̂ -direction, A is the area normal to the heat flow, dT/dx is the
temperature gradient, and k is the thermal conductivity of the substance.

Writing an energy balance for a three-dimensional body, and utilizing Fourier's law of heat con-
duction, yields an expression for the transient diffusion occurring within a body or substance.

d / dT\ d / dT\ d / df\ d dT
—Ik —} + —[k — \ +—\k — } + q = pcv
dx\ dx/ dy\ dy/ dz\ dz/ p dx dt

This expression, usually referred to as the heat diffusion equation or heat equation, provides a basis
for most types of heat conduction analysis. Specialized cases of this equation, such as the case where
the thermal conductivity is a constant

tfT <PT #T q = pCpdT
dx2 + dy2 + dz2 + k ~ k dt

steady-state with heat generation

d (, dT\ d /, dT\ d f, dT\—Ik — + —Ik — + —\k — + q = 0
dx\ dx/ dy\ dy/ dz\ dz/

steady-state, one-dimensional heat transfer with heat transfer to a heat sink (i.e., a fin)

-iprW'-o
dx\dx/ k

or one-dimensional heat transfer with no internal heat generation

Ji(?I\ = №p?L
dx\dx) k dt

can be utilized to solve many steady-state or transient problems. In the following sections, this
equation will be utilized for several specific cases. However, in general, for a three-dimensional body
of constant thermal properties without heat generation under steady-state heat conduction, the tem-
perature field satisfies the expression

v2r= o



43.2.1 Thermal Conductivity

The ability of a substance to transfer heat through conduction can be represented by the constant of
proportionality k, referred to as the thermal conductivity. Figures 43.la, b, and c illustrate the char-
acteristics of the thermal conductivity as a function of temperature for several solids, liquids and
gases, respectively. As shown, the thermal conductivity of solids is higher than liquids, and liquids
higher than gases. Metals typically have higher thermal conductivities than nonmetals, with pure
metals having thermal conductivities that decrease with increasing temperature, while the thermal
conductivities of nonmetallic solids generally increase with increasing temperature and density. The
addition of other metals to create alloys, or the presence of impurities, usually decreases the thermal
conductivity of a pure metal.

In general, the thermal conductivities of liquids decrease with increasing temperature. Alterna-
tively, the thermal conductivities of gases and vapors, while lower, increase with increasing temper-
ature and decrease with increasing molecular weight. The thermal conductivities of a number of
commonly used metals and nonmetals are tabulated in Tables 43.1 and 43.2, respectively. Insulating
materials, which are used to prevent or reduce the transfer of heat between two substances or a
substance and the surroundings are listed in Tables 43.3 and 43.4, along with the thermal properties.
The thermal conductivities for liquids, molten metals, and gases are given in Tables 43.5, 43.6 and
43.7, respectively.

Fig. 43.1 a Temperature dependence of the thermal conductivity of selected solids.



Fig. 43.1 b Selected nonmetallic liquids under saturated conditions.

Fig. 43.1 c Selected gases at normal pressures.1



Table 43.1 Thermal Properties of Metallic Solids3

Properties at Various Temperatures
(K)

/c(W/m-K);Cp(J/kg-K)

100 600 1200

Properties at 300 K

P (kg/m3) Cp (J/kg • K) k (W/m • K) a x 106 (m2/sec)

Melting
Point
(K)Composition

339; 480
255; 155
28.3; 609

105; 308
76.2; 594
82.6; 157
25.7; 967
361; 292

22.0; 620
113; 152

231; 1033
379; 417
298; 135
54.7; 574
31.4; 142
149; 1170
126; 275
65.6; 592
73.2; 141
61.9; 867
412; 250

19.4; 591
137; 142
103; 436

302; 482
482; 252
327; 109
134; 216
39.7; 118
169; 649
179; 141
164; 232
77.5; 100
884; 259
444; 187
85.2; 188
30.5; 300
208; 87
117; 297

97.1
117
127
23.1
24.1
87.6
53.7
23.0
25.1
89.2
174
40.1
9.32
68.3
41.8

237
401
317
80.2
35.3
156
138
90.7
71.6
148
429
66.6
21.9
174
116

903
385
129
447
129
1024
251
444
133
712
235
227
522
132
389

2702
8933
19300
7870
11340
1740
10240
8900
21450
2330
10500
7310
4500
19300
7140

933
1358
1336
1810
601
923
2894
1728
2045
1685
1235
505
1953
3660
693

Aluminum
Copper
Gold
Iron
Lead
Magnesium
Molybdenum
Nickel
Platinum
Silicon
Silver
Tin
Titanium
Tungsten
Zinc

"Adapted from F. P. Incropera and D. P. Dewitt, Fundamentals of Heat Transfer. © 1981 John Wiley & Sons, Inc. Reprinted by
permission.



Description / Composition

Building boards
Plywood
Acoustic tile
Hardboard, siding

Woods
Hardwoods (oak, maple)
Softwoods (fir, pine)

Masonry materials
Cement mortar
Brick, common

Plastering materials
Cement plaster, sand aggregate
Gypsum plaster, sand aggregate

Blanket and batt
Glass fiber, paper faced
Glass fiber, coated; duct liner

Board and slab
Cellular glass
Wood, shredded /cemented
Cork

Loose fill
Glass fiber, poured or blown
Vermiculite, flakes

Density

(kg/m3)

545
290
640

720
510

1860
1920

1860
1680

16
32

145
350
120

16
80

Thermal
Conductivity k
(W/m-K)

0.12
0.058
0.094

0.16
0.12

0.72
0.72

0.72
0.22

0.046
0.038

0.058
0.087
0.039

0.043
0.068

Specific
Heat Cp
(J/kg-K)

1215
1340
1170

1255
1380

780
835

1085

835

1000
1590
1800

835
835

a X 106
(m2/sec)

0.181
0.149
0.126

0.177
0.171

0.496
0.449

0.121

1.422

0.400
0.156
0.181

3.219
1.018

fl Adapted from F. P. Incropera and D. P. Dewitt, Fundamentals of Heat Transfer. © 1981 John Wiley
& Sons, Inc. Reprinted by permission.

Description / Composition

Bakelite
Brick, refractory
Carborundum
Chrome-brick
Fire clay brick

Clay
Coal, anthracite
Concrete (stone mix)
Cotton
Glass, window
Rock, limestone
Rubber, hard
Soil, dry
Teflon

Temperature
(K)

300

872
473
478
300
300
300
300
300
300
300
300
300
400

Density

(kg/m3)

1300

3010
2645
1460
1350
2300
80

2700
2320
1190
2050
2200

Thermal
Conductivity k
(W/m • K)

0.232

18.5
2.32
1.0
1.3
0.26
1.4
0.059
0.78
2.15
0.160
0.52
0.35
0.45

Specific
Heat Cp
(J/kg-K)

1465

835
960
880
1260
880
1300
840
810

1840

a X 106
(m2/sec)

0.122

0.915
0.394
1.01
0.153
0.692
0.567
0.344
1.14

0.138

Table 43.3 Thermal Properties of Building and Insulating Materials (at 300K)a

Table 43.2 Thermal Properties of Nonmetals



Table 43.4 Thermal Conductivities for Some Industrial Insulating Materials9

Typical Thermal Conductivity,
k (W/m - K), at Various Temperatures (K)

200 300 420 645

Typical
Density
(kg/m3)

Maximum
Service

Temperature (K)Description /Composition

0.048
0.033

0.105
0.038 0.063

0.051 0.087

0.078
0.063 0.089

0.023 0.027
0.026 0.040

0.032

0.088 0.123
0.123

0.039
0.036 0.053

0.068

10
48
48

50-125
120

190
190

56
16
70

430
560

45
105
122

450

1530
480
920

420
920

350
350
340

1255
922

Blankets
Blanket, mineral fiber, glass; fine fiber organic bonded

Blanket, alumina-silica fiber
Felt, semirigid; organic bonded
Felt, laminated; no binder

Blocks, boards, and pipe insulations
Asbestos paper, laminated and corrugated, 4-ply
Calcium silicate
Polystyrene, rigid
Extruded (R-12)
Molded beads

Rubber, rigid foamed
Insulating cement

Mineral fiber (rock, slag, or glass)
With clay binder
With hydraulic setting binder

Loose fill
Cellulose, wood or paper pulp
Perlite, expanded
Vermiculite, expanded

"Adapted from F. P. Incropera and D. P. Dewitt, Fundamentals of Heat Transfer. © 1981 John Wiley & Sons, Inc. Reprinted by permission.



"Adapted from Ref. 2. See Table 43.23 for H2O.

43.2.2 One-Dimensional Steady-State Heat Conduction
The rate of heat transfer for steady-state heat conduction through a homogeneous material can be
expressed as q = A77/?, where A7 is the temperature difference and R is the thermal resistance. This
thermal resistance, is the reciprocal of the thermal conductance (C = \IK) and is related to the
thermal conductivity by the cross-sectional area. Expressions for the thermal resistance, the temper-
ature distribution, and the rate of heat transfer are given in Table 43.8 for a plane wall, a cylinder,
and a sphere. For the plane wall, the heat transfer is assumed to be one-dimensional (i.e., conducted
only in the ̂ -direction) and for the cylinder and sphere, only in the radial direction.

In addition to the heat transfer in these simple geometric configurations, another common problem
encountered in practice is the heat transfer through a layered or composite wall consisting of N layers
where the thickness of each layer is represented by Axn and the thermal conductivity by kn for n =
1, 2, . . . , N. Assuming that the interfacial resistance is negligible (i.e., there is no thermal resistance
at the contacting surfaces), the overall thermal resistance can be expressed as

£ t̂ n

*-SM

Similarly, for conduction heat transfer in the radial direction through N concentric cylinders with
negligible interfacial resistance, the overall thermal resistance can be expressed as

_ £ ln(rn+1/rn)
R ~ £ ~̂ T

where rl = inner radius
rN+l = outer radius

For N concentric spheres with negligible interfacial resistance, the thermal resistance can be
expressed as

«-!£-£)/"

where r\ = inner radius
r̂ +1 = outer radius

Table 43.5 Thermal Properties of Saturated Liquids3

T P Cp
(K) (kg/m3) (kJ/kg-K)

Ammonia, Nh3
223 703.7 4.463
323 564.3 5.116
Carbon Dioxide, CO2
223 1,156.3 1.84
303 597.8 36.4
Engine OH (Unused)
273 899.1 1.796
430 806.5 2.471
Ethylene Glycol, C2H4(OH)2
273 1,130.8 2.294
373 1,058.5 2.742
Clycerin, C3H5(OH)3
273 1,276.0 2.261
320 1,247.2 2.564
Freon (Refrigerant- 12), CC/2F2
230 1,528.4 0.8816
320 1,228.6 1.0155

v x 106 kx 103
(m2/sec) (W/m • K)

0.435 547
0.330 476

0.119 85.5
0.080 70.3

4,280 147
5.83 132

57.6 242
2.03 263

8,310 282
168 287

0.299 68
0.190 68

a X 107
(m2/sec)

1.742
1.654

0.402
0.028

0.910
0.662

0.933
0.906

0.977
0.897

0.505
0.545

Pr

2.60
1.99

2.96
28.7

47,000
88

617.0
22.4

85,000
1,870

5.9
3.5

/3 X 103
(K-1)

2.45
2.45

14.0
14.0

0.70
0.70

0.65
0.65

0.47
0.50

1.85
3.50



Table 43.6 Thermal Properties of Liquid Metals3

Pr
a X 105
(m2/sec)

k
(W/m-K)

v x 107
(m2/sec)

CP
(kJ/kg-K)(kg/m3)T(K)

Melting Point
(K)Composition

0.0142
0.0083
0.024
0.017
0.0290
0.0103
0.0066
0.0029
0.011
0.0037
0.026
0.0058

0.189

0.138
1.001
1.084
1.223
0.429
0.688
6.99
6.55
6.71
6.12
2.55
3.74
0.586
0.790

16.4
15.6
16.1
15.6
8.180
11.95
45.0
33.1
86.2
59.7
25.6
28.9
9.05
11.86

1.617
0.8343
2.276
1.849
1.240
0.711
4.608
1.905
7.516
2.285
6.522
2.174

1.496

0.1444
0.1645
0.159
0.155
0.140
0.136
0.80
0.75
1.38
1.26
1.130
1.043
0.147
0.147

10,011
9,467
10,540
10,412
13,595
12,809
807.3
674.4
929.1
778.5
887.4
740.1
10,524
10,236

589
1033
644
755
273
600
422
977
366
977
366
977
422
644

544

600

234

337

371

292

398

Bismuth

Lead

Mercury

Potassium

Sodium

NaK (56% 744%)

PbBi (44.5%/55.5%)

"Adapted from Liquid Metals Handbook, The Atomic Energy Commission, Department of the Navy, Washington, DC, 1952.



43.2.3 Two-Dimensional Steady-State Heat Conduction
Two-dimensional heat transfer in an isotropic, homogeneous material with no internal heat generation
requires solution of the heat diffusion equation of the form 32T/dX2 + dT/dy2 = 0, referred to as
the Laplace equation. For certain geometries and a limited number of fairly simple combinations of
boundary conditions, exact solutions can be obtained analytically. However, for anything but simple
geometries or for simple geometries with complicated boundary conditions, development of an ap-
propriate analytical solution can be difficult and other methods are usually employed. Among these
are solution procedures involving the use of graphical or numerical approaches. In the first of these,
the rate of heat transfer between two isotherms Tl and T2 is expressed in terms of the conduction
shape factor, defined by

q = kS(T, - T2)

Table 43.9 illustrates the shape factor for a number of common geometric configurations. By com-
bining these shape factors, the heat transfer characteristics for a wide variety of geometric configu-
rations can be obtained.

Prior to the development of high-speed digital computers, shape factor and analytical methods
were the most prevalent methods utilized for evaluating steady-state and transient conduction prob-
lems. However, more recently, solution procedures for problems involving complicated geometries

Table 43.7 Thermal Properties of Gases at Atmospheric Pressure3

r(K) (kg/m3)

Air
100 3.6010
300 1.1774
2500 0.1394
Ammonia, Nh3
220 0.3828
473 0.4405
Carbon Dioxide
220 2.4733
600 0.8938
Carbon Monoxide
220 1.5536
600 0.5685
Helium
33 1.4657
900 0.05286
Hydrogen
30 0.8472
300 0.0819
1000 0.0819
Nitrogen
100 3.4808
300 1.1421
1200 0.2851
Oxygen
100 3.9918
300 1.3007
600 0.6504
Steam (H2O Vapor)
380 0.5863
850 0.2579

"Adapted from Ref. 2.

(kJ/kg-K)

1.0266
1.0057
1.688

2.198
2.395

0.783
1.076

1.0429
1.0877

5.200
5.200

10.840
14.314
14.314

1.0722
1.0408
1.2037

0.9479
0.9203
1.0044

2.060
2.186

V X 106
(m2/sec)

1.923
16.84
543.0

19.0
37.4

4.490
30.02

8.903
52.06

3.42
781.3

1.895
109.5
109.5

1.971
15.63

156.1

1.946
15.86
52.15

21.6
115.2

k
(W/m-K)

0.009246
0.02624
0.175

0.0171
0.0467

0.01081
0.04311

0.01906
0.04446

0.0353
0.298

0.0228
0.182
0.182

0.009450
0.0262
0.07184

0.00903
0.02676
0.04832

0.0246
0.0637

«X 104
(m2/sec)

0.0250
0.2216
7.437

0.2054
0.4421

0.0592
0.4483

0.1176
0.7190

0.04625
10.834

0.02493
1.554
1.554

0.02531
0.204
2.0932

0.02388
0.2235
0.7399

0.2036
1.130

Pr

0.768
0.708
0.730

0.93
0.84

0.818
0.668

0.758
0.724

0.74
0.72

0.759
0.706
0.706

0.786
0.713
0.748

0.815
0.709
0.704

1.060
1.019



Table 43.8 One-Dimensional Heat Conduction

Heat-Transfer Rate and
Overall Heat-Transfer Coefficient with

Convection at the Boundaries
Heat-Transfer Rate and
Temperature DistributionGeometry

q = UA(T̂  - 7̂ )

"=i '1 *2 ~*2 11
h, k h2

T1-T2
q (x2 - Xl)/kA

T2 - 7\
T = T, + (x - Xl)

xx- xl

R = (xx- Xl)/kA

Plane wall

q = 2wr1Ll/1(roo>1 - 7̂ 2)

- 27rrlLU2(T̂ l - 7̂ )

V - 1
1 1 | r, In (r2/ri) | r, \

h^ k r2 h2

v - l
2 /r2\ 1 r2ln(r2/ri) 1
U h} + k + h2

Tl-T2
q [In (r2/rl)]/27rkL

r_ T2-T, ̂ r
In (ra/rj ^

„ InĈ /r,)
^~ 2̂ L

Hollow cylinder

q = 4irr\Ul(TV)tl - T̂ 2)

= 4<jrr22U2(T̂  - T̂

"' 'tr,(i.i)At(aY'
hi V: rj/ \rj h2

1/2 M2l + r2fl_lWfe + l
(rj /,, + r2U rJ/^A,

T2-T2

" (L--}/™Vi rjf

r=/ ̂ Ĵ '-̂ fc-r-rj]
\ 2̂/

=̂(l-l)/4̂
V^i rj/

Hollow sphere



Table 43.9 Conduction Shape Factors

Shape FactorRestrictionsSystem Schematic

277-D
1 - D/4z

27TL
cosh-1(2z/D)
27TL

ln(4z/£>)

2-TrL
(D\ + D\ - 4e2\

C°Sh"( 2DlD2 )

z > D/2

L» D
L»D 1
z > 3D/2J

L » Dj, D2

Isothermal sphere buried in a
semi-infinite medium having
isothermal surface

Horizontal isothermal cylinder
of length L buried in a
semi-infinite medium having
isothermal surface

The cylinder of length L with
eccentric bore



Table 43.9 (Continued)

Shape FactorRestrictionsSchematicSystem

277L
/4W2 -D\- D\\

C°Sh"'( 2D,i I

2rrL
ln(1.08 w/D)

0.54D

0.15L

L » DJ, D2

L » W

w > D

D >L/5

L « length and width
of wall

Conduction between two
cylinders of length L in
infinite medium

Circular cylinder of length L
in a square solid

Conduction through the edge
of adjoining walls

Conduction through corner of
three walls with inside and
outside temperature,
respectively, at Tl and T2



or boundary conditions have utilized the finite difference method (FDM). In this method, the solid
object is divided into a number of distinct or discrete regions, referred to as nodes, each with a
specified boundary condition. An energy balance is then written for each nodal region and these
equations are solved simultaneously. For interior nodes in a two-dimensional system with no internal
heat generation, the energy equation takes the form of the Laplace equation, discussed earlier. How-
ever, because the system is characterized in terms of a nodal network, a finite difference approxi-
mation must be used. This approximation is derived by substituting the following equation for the
-̂direction rate of change expression

c?T _ Tm+ltn + Tm_^n - 2Tm,n
dx2 mn (Ajc)2

and for the y-direction rate of change expression

T̂ Tm,n+l + 7̂ ,! + Tm,n

*? m,n (̂)2

Assuming AJC = Ay and substituting into the Laplace equation results in the following expression:

Tm,n+l + T-m,n-\ + ̂ m+\,n + -*m-l,n ~~ ̂ m,n = 0

which reduces the exact difference equation to an approximate algebraic expression.
Combining this temperature difference with Fourier's law yields an expression for each internal

node:

qhx • Ay • 1
Tm,n+l + Tm>n+1 + Tm^n + Tm_^n + ^ 47̂  = 0

Similar equations for other geometries (i.e., corners) and boundary conditions (i.e., convection) and
combinations of the two are listed in Table 43.10. These equations must then be solved using some
form of matrix inversion technique, Gauss-Seidel iteration method, or other method for solving large
numbers of simultaneous equations.

43.2.4 Heat Conduction with Convection Heat Transfer on the Boundaries

In physical situations where a solid is immersed in a fluid, or a portion of the surface is exposed to
a liquid or gas, heat transfer will occur by convection (or when there is a large temperature difference,
through some combination of convection and/or radiation). In these situations, the heat transfer is
governed by Newton's law of cooling, which is expressed as

q = MAT

where h is the convection heat transfer coefficient (Section 43.2), A7 is the temperature difference
between the solid surface and the fluid, and A is the surface area in contact with the fluid. The
resistance occurring at the surface abounding the solid and fluid is referred to as the thermal resistance
and is given by 1 /hA, i.e., the convection resistance. Combining this resistance term with the appro-
priate conduction resistance yields an overall heat transfer coefficient U. Usage of this term allows
the overall heat transfer to be defined as q = UAhT.

Table 43.8 shows the overall heat transfer coefficients for some simple geometries. Note that U
may be based either on the inner surface (UJ or on the outer surface (U2) for the cylinders and
spheres.

Critical Radius of Insulation for Cylinders
A large number of practical applications involve the use of insulation materials to reduce the transfer
of heat to or from cylindrical surfaces. This is particularly true of steam or hot water pipes, where
concentric cylinders of insulation are typically added to the outside of the pipes to reduce the heat
loss. Beyond a certain thickness, however, the continued addition of insulation may not result in
continued reductions in the heat loss. To optimize the thickness of insulation required for these types
of applications, a value typically referred to as the critical radius, defined as rcr = k/h, is used. If
the outer radius of the object to be insulated is less than rcr, then the addition of insulation will
increase the heat loss, while for cases where the outer radii is greater than rcr, any additional increases
in insulation thickness will result in a decrease in heat loss.



Tm,n+l + 7̂ -! + Tm_^
-4Tm,n = 0

Case 1. Interior node.

(̂Tm-i,n + Tm,n+l) + (Tm+ltn + 7̂ )

+ 2^r.-2(3 + *£W. = o
k \ k ) m-n

Case 2. Node at an internal corner with convection.

2hAx
(2rM_1,B + rm^+1 + r̂ .o + — rTO

-.(̂ 2)̂ .0

Case 3. Node at a plane surface with convection.

hAx
(Tm,n-v Pi Tm.ltn) + 2 — Tx

-2(f+,)r...

Case 4. Node at an external corner with
convection.

2 T i 2 T
a + 1 m+1-" b + 1 "••"-'

_)_ J1 _j_ J1
o(fl + 1) 1 b(b + 1) 2

-̂ )'-«

Case 5. Node near a curved surface maintained at a
nonuniform temperature.

Table 43.10 Summary of Nodal Finite-Difference Equations

Configuration Finite-Difference Equation for Ax = Ay



Extended Surfaces
In examining Newton's law of cooling, it is clear that the rate of heat transfer between a solid and
the surrounding ambient fluid may be increased by increasing the surface area of the solid that is
exposed to the fluid. This is typically done through the addition of extended surfaces or fins to the
primary surface. Numerous examples exist, including the cooling fins on air-cooled engines, such as
motorcycles or lawn mowers, or the fins attached to automobile radiators.

Figure 43.2 illustrates a common uniform cross-section extended surface, fin, with a constant base
temperature Tb, a constant cross-sectional area A, a circumference of C = 2W + 2f, and a length L
that is much larger than the thickness t. For these conditions, the temperature distribution in the fin
must satisfy the following expression:

d^_h_C
dx2 kA ( °°;

The solution of this equation depends upon the boundary conditions existing at the tip, that is, at
x = L. Table 43.11 shows the temperature distribution and heat transfer rate for fins of uniform cross
section subjected to a number of different tip conditions, assuming a constant value for the heat
transfer coefficient h.

Two terms are used to evaluate fins and their usefulness. Fin effectiveness is defined as the ratio
of heat transfer rate with the fin to the heat transfer rate that would exist if the fin were not used.
For most practical applications, the use of a fin is justified only when the fin effectiveness is signif-
icantly greater than 2. Fin efficiency r)f represents the ratio of the actual heat transfer rate from a fin
to the heat transfer rate that would occur if the entire fin surface could be maintained at a uniform
temperature equal to the temperature of the base of the fin. For this case, Newton's law of cooling
can be written as

q = rjfhAf(Tb - TJ

where Af is the total surface area of the fin and Tb is the temperature of the fin at the base. The
application of fins for heat removal can be applied to either forced or natural convection of gases,
and while some advantages can be gained in terms of increasing the liquid-solid or solid-vapor
surface area, fins as such are not normally utilized for situations involving phase change heat transfer,
such as boiling or condensation.

43.2.5 Transient Heat Conduction
If a solid body, all at some uniform temperature Txi, is immersed in a fluid of different temperature
7̂ , the surface of the solid body may be subject to heat losses (or gains) through convection from

Fig. 43.2 Heat transfer by extended surfaces.



Table 43.11 Temperature Distribution and Heat Transfer Rate at the Fin Base (m = VhcTkA)

Heat Transfer Rate
q/mKA (Tb-TJ

T-TX
Tb-T^Condition at x = L

sinh mL -\ cosh mL
mk

cosh mL -\ sinh mL
mk

tanh mL

cosh mL - (TL - TJ/(Tb - Tx)
sinh ml

1

cosh m(L - x) + — - sinh m(L - x)
mk

cosh mL H sinh mL
mk

cosh m(L — x)
cosh mL

(TL - TM)/(Tb - T«) sinh mx + sinh m(L - x)
sinh ml

g-nuc

WU - rj = -* (f)̂

(convection)

(f) =«\^A=L
(insulated)
r̂  = ?i
(prescribed temperature)

r̂ i. = r.
(infinitely long fin, L — * »)



the surface. In this situation, the heat lost (or gained) at the surface results from the conduction of
heat from inside the body. To determine the significance of these two heat transfer modes, a dimen-
sionless parameter referred to as the Blot number is used. This dimensionless number, defined as
Bi = hL/k where L = VIA or the ratio of the volume of the solid to the surface area of the solid,
really represents a comparative relationship of the importance of convection from the outer surface
to the conduction occurring inside. When this value is less than 0.1, the temperature of the solid may
be assumed uniform and dependent on time alone. When this value is greater than 0.1, there is some
spatial temperature variation that will affect the solution procedure.

For the first case, that is, Bi < 0.1, an approximation referred to as the lumped heat-capacity
method may be used. In this method, the temperature of the solid is given by the expression

r-r. /-A
T _ T = ex? I — 1 = exp (-BiFo)

where rt is the time constant and is equal to pCpV/hA. Increasing the value of the time constant, T,,
will result in a decrease in the thermal response of the solid to the environment and hence will
increase the time required to reach thermal equilibrium (i.e., T = 7̂). In this expression, Fo represents
the dimensionless time and is called the Fourier number, the value of which is equal to atA2/V2.
The Fourier number, along with the Biot number, can be used to characterize transient heat conduction
problems. The total heat flow through the surface of the solid over the time interval from t = 0 to
time t can be expressed as

Q = PVCp(Tt - 7bo)[l - exp(-r/rj

Transient Heat Transfer for Infinite Plate, Infinite Cylinder, and Sphere Subjected to
Surface Convection
Generalized analytical solutions to transient heat transfer problems involving infinite plates, cylinders,
and finite diameter spheres subjected to surface convection have been developed. These solutions can
be presented in graphical form through the use of the Heisler charts,3 illustrated in Figs. 43.3-43.11
for plane walls, cylinders, and spheres, respectively. In this procedure, the solid is assumed to be at
a uniform temperature Tt at time t = 0 and then is suddenly subjected or immersed in a fluid at a
uniform temperature Tx. The convection heat-transfer coefficient h is assumed to be constant, as is
the temperature of the fluid. Combining Figs. 43.3 and 43.4 for plane walls; Figs. 43.6 and 43.7 for
cylinders; Figs. 43.9 and 43.10 for spheres, allows the resulting time-dependent temperature of any
point within the solid to be found. The total amount of energy Q transferred to or from the solid
surface from time t = 0 to time t can be found from Figs. 43.5, 43.8, and 43.11.

43.3 CONVECTION HEAT TRANSFER
As discussed earlier, convection heat transfer is the mode of energy transport in which the energy is
transferred by means of fluid motion. This transfer can be the result of the random molecular motion
or bulk motion of the fluid. If the fluid motion is caused by external forces, the energy transfer is
called forced convection. If the fluid motion arises from a buoyancy effect caused by density differ-
ences, the energy transfer is called free convection or natural convection. For either case, the heat-
transfer rate, q, can be expressed in terms of the surface area, A, and the temperature difference, AT1,
by Newton's law of cooling:

q = MAr

In this expression, h is referred to as the convection heat-transfer coefficient or film coefficient, which
is a function of the velocity and physical properties of the fluid and the shape and nature of the
surface. The nondimensional heat-transfer coefficient Nu = hL/k is called the Nusselt number, where
L is a characteristic length and k is the thermal conductivity of the fluid.

43.3.1 Forced Convection—Internal Flow
For internal flow in a tube or pipe, the convection heat-transfer coefficient is typically defined as a
function of the temperature difference existing between the temperature at the surface of the tube
and the bulk or mixing-cup temperature Tb, that is, AT = Ts — Tb, which can be defined as

= fCpTdm
" fCpdm

where m is the axial flow rate. Using this value, the heat transfer between the tube and the fluid can
be written as q = hA(Ts - Tb).

In the entrance region of a tube or pipe, the flow is quite different from that occurring downstream
from the entrance. The rate of heat transfer differs significantly depending on whether the flow is



Fig. 43.3 Midplane temperature as a function of time for a plane wall of thickness 2L. (Adapted from Heisler.3)



Fig. 43.4 Temperature distribution in a plane wall of thickness 2/_. (Adapted from Heisler.3)

Fig. 43.5 Internal energy change as a function of time for a plane wall of thickness 2L.4 (Used
with the permission of McGraw-Hill Book Company.)



Fig. 43.6 Centerline temperature as a function of time for an infinite cylinder of radius r0. (Adapted from Heisler.3)



Fig. 43.7 Temperature distribution in an infinite cylinder of radius r0. (Adapted from Heisler.3)

laminar or turbulent. From fluid mechanics, the flow is considered to be turbulent when ReD = Vm
D/v > 2300 for a smooth tube. This transition from laminar to turbulent, however, also depends on
the roughness of tube wall and other factors. The generally accepted range for transition is 2000 <
Re,, < 4000.

Laminar Fully Developed Flow
For situations where both the thermal and velocity profiles are fully developed, the Nusselt number
is constant and depends only on the thermal boundary conditions. For circular tubes with Pr > 0.6
and x/DR&D Pr > 0.05, the Nusselt numbers have been shown to be NuD = 3.66 and 4.36 for
constant temperature and constant heat flux conditions, respectively. Here, the fluid properties are
based on the mean bulk temperature.

Fig. 43.8 Internal energy change as a function of time for an infinite cylinder of radius r0.4
(Used with the permission of McGraw-Hill Book Company.)



Fig. 43.9 Center temperature as a function of time in a sphere of radius r0. (Adapted from Heisler.3)



Fig. 43.10 Temperature distribution in a sphere of radius r0. (Adapted from Heisler.3)

For noncircular tubes, the hydraulic diameter, Dh = 4 X the flow cross-sectional area/wetted
perimeter, is used to define the Nusselt number NuD and the Reynolds number Rê ,. Table 43.12
shows the Nusselt numbers based on hydraulic diameter for various cross-sectional shapes.

Laminar Flow for Short Tubes
At the entrance of a tube, the Nusselt number is infinite, and decreases asymptotically to the value
for fully developed flow as the flow progresses down the tube. The Sieder-Tate equation5 gives good
correlation for the combined entry length, that is, that region where the thermal and velocity profiles
are both developing or for short tubes:

Fig. 43.11 Internal energy change as a function of time for a sphere of radius r0.4 (Used with
the permission of McGraw-Hill Book Company.)



aNuH1 = average Nusselt number for uniform heat flux in
flow direction and uniform wall temperature at pa-
ticular flow cross section.

NuH2 = average Nusselt number for uniform heat flux both
in flow direction and around periphery.

NuHrr = average Nusselt number for uniform wall
temperature.

*toD='hD /DY/3/M°14
—^- = 1.86(ReDPr)1/3 - -

k W \̂ J

for Ts = constant, 0.48 < Pr < 16,700, 0.0044 < /I//A, < 9.75, and (ReD Pr D/L)1/3 (/x/̂ )014 > 2.
In this expression, all of the fluid properties are evaluated at the mean bulk temperature except

for IJLS which is evaluated at the wall surface temperature. The average convection heat-transfer co-
efficient h is based on the arithmetic average of the inlet and outlet temperature differences.

Turbulent Flow in Circular Tubes
In turbulent flow, the velocity and thermal entry lengths are much shorter than for a laminar flow.
As a result, with the exception of short tubes, the fully developed flow values of the Nusselt number
are frequently used directly in the calculation of the heat transfer. In general, the Nusselt number
obtained for the constant heat flux case is greater than the Nusselt number obtained for the constant
temperature case. The one exception to this is the case of liquid metals, where the difference is
smaller than for laminar flow and becomes negligible for Pr > 1.0. The Dittus-Boelter equation6 is
typically used if the difference between the pipe surface temperature and the bulk fluid temperature
is less than 6°C (10°F) for liquids or 56°C (100°F) for gases:

NuD - 0.023 Re%8 Pr"

for 0.7 < Pr < 160, ReD > 10,000 and LID > 60, where

n = 0.4 for heating, Ts > Th

= 0.3 for cooling, Ts < Tb

For temperature differences greater than those specified above, use5

Table 43.12 Nusselt Numbers for Fully Developed
Laminar Flow for Tubes of Various Cross Sections9

NuH1

3.608

4.123

5.099

6.490

8.235

5.385

4.364

NuH2

3.091

3.017

4.35

2.904

8.235

4.364

Nur

2.976

3.391

3.66

5.597

7.541

4.861

3.657

Geometry
(L/DH > 100)



/M\°-14
NuD = 0.027Re£8Pr1/3 ( — 1

for 0.7 < Pr < 16,700, ReD > 10,000 and LID > 60.
In this expression, the properties are all evaluated at the mean bulk fluid temperature, with the

exception of ;n5, which is again evaluated at the tube surface temperature.
For concentric tube annuli, the hydraulic diameter Dh = D0 — Dt (outer diameter-inner diameter)

must be used for Nu^ and Rê ,, and the coefficient h at either surface of the annulus must be evaluated
from the Dittus-Boelter equation. Here, it should be noted that the foregoing equations apply for
smooth surfaces and that the heat-transfer rate will be larger for rough surfaces and are not applicable
to liquid metals.

Fully Developed Turbulent Flow of Liquid Metals in Circular Tubes
Because the Prandtl number for liquid metals is on the order of 0.01, the Nusselt number is primarily
dependent upon a dimensionless parameter number referred to as the Peclet number, which in general
is defined as Pe = RePr:

NuD - 5.0 + 0.025Pe™

which is valid for situations where Ts - a constant and PeD > 100 and LID > 60.
For <f = constant and 3.6 X 103 < Rê  < 9.05 X 105, 102 < Pê  < 104, and LID > 60, the

Nusselt number can be expressed as

NuD = 4.8 + 0.0185Pe£827

43.3.2 Forced Convection—External Flow
In forced convection heat transfer, the heat transfer coefficient h is based on the temperature difference
between the wall surface temperature and the fluid temperature in the free stream outside the thermal
boundary layer. The total heat-transfer rate from the wall to the fluid is given by q = hA (Ts - 7̂).
The Reynolds numbers are based on the free stream velocity. The fluid properties are evaluated either
at the free stream temperature 7̂  or at the film temperature Tf = (7̂  + 7̂ )72.

Laminar Flow on a Flat Plate
When the flow velocity along a constant temperature semi-infinite plate is uniform, the boundary
layer originates from the leading edge and is laminar and the flow remains laminar until the local
Reynolds number, RQX = U^x/v, reaches the critical Reynolds number Rec. When the surface is
smooth, the Reynolds number is generally assumed to be Rec = 5 X 105; however, the value will
depend on several parameters, including the surface roughness.

For a given distance x from the leading edge, the local Nusselt number and the average Nusselt
number between x = 0 and x = L are given below (Rê  and ReL < 5 X 105):

Nu, = hx/k = 0.332Re?5 Pr173 \
NuL = hL/k = 0.664Re°5 Pr1/3J IOr ̂  ~ U'b

^=if^R%T i for Pr. 0.6NuL = 1.13(Rez Pr)05 J

Here, all of the fluid properties are evaluated at the mean or average film temperature.

Turbulent Flow on a Flat Plate
When the flow over a flat plate is turbulent from the leading edge, expressions for the local Nusselt
number can be written as

Nux - 0.0292ReJ-8 Pr1/3

Nuj, = 0.036Re°8 Pr1/3

where the fluid properties are all based on the mean film temperature and 5 x 105 < Rex and ReL
< 108 and 0.6 < Pr < 60.

The Average Nusselt Number Between x = 0 and x = L with Transition
For situations where transition occurs immediately once the critical Reynolds number Rec has been
reached,7

NuL - 0.036Pr1/3[Re£8 - Re°8 + 18.44Re°5]



provided that 5 X 105 < ReL < 108 and 0.6 < Pr < 60. Specialized cases exist for this situation,
such as

NuL - 0.036Pr1/3(Re°8 - 18,700)

for Rec = 4 X 105 or

NuL - 0.036Pr1/3(Re°8 - 23,000)

for Rec = 5 X 105. Again, all fluid properties are evaluated at the mean film temperature.

Circular Cylinders in Cross Flow
For circular cylinders in cross flow, the Nusselt number is based upon the diameter and can be
expressed as

NuD - (0.4Re£5 + 0.06Re2/3)Pr°-4(/Li00/jLt5)0-25

for 0.67 < Pr < 300, 10 < ReD < 105, and 0.25 < 5.2. Here, the fluid properties are evaluated at
the free stream temperature, except fjus9 which is evaluated at the surface temperature.8

Cylinders of Noncircular Cross Section in Cross Flow of Gases
For noncircular cylinders in cross flow, the Nusselt number is again based upon the diameter, but is
expressed as

Nu^ - C(ReDr Pr1/3

where C and m are listed in Table 43.13, and the fluid properties are evaluated at the mean film
temperature.9

Flow Past a Sphere
For flow over a sphere, the Nusselt number is based upon the sphere diameter and can be expressed
as

NuD = 2 + (0.4Re£5 + 0.006Rel/3)Pr0 V̂ )025

for the case of 3.5 < ReD < 8 X 104, 0.7 < Pr < 380, and 1.0 < f-ijIJLS < 3.2. The fluid properties
are calculated at the free stream temperature, except 5̂, which is evaluated at the surface
temperature.8

Table 43.13 Constants and m for Noncircular Cylinders in
Cross Flow

Geometry ReD C m

Square
5 X 103-105 0.246 0.588

y +. <£> J D 5 x 103-105 °-102 °-675

V*D|

Hexagon
_ 5 X 103-1.95 X 104 0.160 0.638

V>- ID 1.95 x luMO5 0.0385 0.782

v, I

Vertical Plate
_ _ 5 X 103-105 0.153 0.638

V->f| $Z> 4 x 10M.5 X 104 0.228 0.721



Fig. 43.12 Tube arrangement.

Flow across Banks of Tubes
For banks of tubes, the tube arrangement may be either staggered or aligned (Fig. 43.12), and the
heat transfer coefficient for the first row is approximately equal to that for a single tube. In turbulent
flow, the heat transfer coefficient for tubes in the first row is smaller than that of the subsequent
rows. However, beyond the fourth or fifth row, the heat transfer coefficient becomes approximately
constant. For tube banks with more than twenty rows, 0.7 < Pr < 500, and 1000 < ReDmax < 2 X
106, the average Nusselt number for the entire tube bundle can be expressed as10

NuD - C(ReAmax)w Pj°36(PTjPrs)0-25

where all fluid properties are evaluated at Tx except Pr̂ , which is evaluated at the surface temperature.
The constants C and m used in this expression are listed in Table 43.14, and the Reynolds number
is based on the maximum fluid velocity occurring at the minimum free flow area available for the
fluid. Using the nomenclature shown in Fig. 43.12, the maximum fluid velocity can be determined
by

STy = £— v
ST - D

for the aligned or staggered configuration provided

VS| + (ST/2)2 > (ST + D)I2

or as

ST
vmax = — v

Ŝi + c$v/2)2

for staggered if

Table 43.14 Constants C and m of Heat-Transfer Coefficient
for the Banks in Cross Flow

Configuration

Aligned
Staggered
(ST/SL < 2)

Staggered
(SGISL > 2)

Aligned
Staggered

ReD,max
103-2 x 105
103-2 X 105

103-2 x 105

2 x 105-2 x 106
2 X 105-2 X 106

C

0.27
0.35(Sr/SL)1/5

0.40

0.21
0.022

m

0.63
0.60

0.60

0.84
0.84



VS2 + (V2)2 < (ST + D)/2

Liquid Metals in Cross Flow over Banks of Tubes
The average Nusselt number for tubes in the inner rows can be expressed as

NSD = 4.03 + 0.228(ReAmax Pr)0-67

which is valid for 2 X 104 < ReAmax < 8 X 104 and Pr < 0.03 and the fluid properties are evaluated
at the mean film temperature.11

High-Speed Flow over a Flat Plate
When the free stream velocity is very high, the effects of viscous dissipation and fluid compressibility
must be considered in the determination of the convection heat transfer. For these types of situations,
the convection heat transfer can be described as q = hA (Ts - 7̂), where T̂  is the adiabatic surface
temperature or recovery temperature, and is related to the recovery factor by r = (Tas - T̂ I(TQ -
7J. The value of the stagnation temperature TQ is related to the free stream static temperature Tx by
the expression

TQ y- 1
t=l+—Ml

where y is the specific heat ratio of the fluid and Mx is the ratio of the free stream velocity and the
acoustic velocity. For the case where 0.6 < Pr < 15,

r = Pr1/2 for laminar flow (Re,, < 5 X 105)

r = Pr1/3 for turbulent flow (Re,, > 5 X 105)

Here, all of the fluid properties are evaluated at the reference temperature Tref = T̂  + Q.5(TS — T̂ )
+ 0.22(ra5 - TOO). Expressions for the local heat-transfer coefficients at a given distance x from the
leading edge are given as:2

No, = 0.332ReJ5 Pr1/3 for Re,, < 5 X 105

Nu, = 0.0292ReJ8 Pr1/3 for 5 X 105 < Re, < 107

Nu, - 0.185Re,(log10Re,r2-584 for 107 < Re, < 109

In the case of gaseous fluids flowing at very high free stream velocities, dissociation of the gas may
occur and will cause large variations in the properties within the boundary layer. For these cases, the
heat-transfer coefficient must be defined in terms of the enthalpy difference, namely, q — hA (is -
î ), and the recovery factor will be given by r = (is — ias)/(i0 — /„), where î  represents the enthalpy
at the adiabatic wall conditions. Similar expressions to those shown above for Nu, can be used by
substituting the properties evaluated at a reference enthalpy defined as iref = î  + 0.5(1, - *'«,) +
0.22(i>, - ij.

High-Speed Gas Flow Past Cones
For the case of high-speed gaseous flows over conical-shaped objects, the following expressions can
be used:

Nu, - 0.575ReJ5 Pr1/3 for Re, < 105

Nu, = 0.0292Re°8 Pr173 for Re, > 105

where the fluid properties are evaluated at Tref, as in the plate.12

Stagnation Point Heating for Gases
When the conditions are such that the flow can be assumed to behave ̂ incompressible, the Reynolds
number is based on the free stream velocity and h is defined as q = hA(Ts — T̂ ).13 Estimations of
the Nusselt number can be made using the following relationship:

NuD - CRe£5 Pr0-4

where C = 1.14 for cylinders and 1.32 for spheres, and the fluid properties are evaluated at the mean
film temperature. When the flow becomes supersonic, a bow shock wave will occur just off the front



of the body. In this situation, the fluid properties must be evaluated at the stagnation state occurring
behind the bow shock and the Nusselt number can be written as

NSD = CRe£5 Pr°-5(Poo/p0)0-25

where C = 0.95 for cylinders and 1.28 for spheres, px is the free stream gas density, and p0 is the
stagnation density of the stream behind the bow shock. The heat-transfer rate for this case is given
by q = hA(Ts - T0).

43.3.3 Free Convection
In free convection, the fluid motion is caused by the buoyant force resulting from the density differ-
ence near the body surface, which is at a temperature different from that of the free fluid far removed
from the surface, where the velocity is zero. In all free convection correlations, except for the enclosed
cavities, the fluid properties are usually evaluated at the mean film temperature Tf = (Tl + 7̂ )72.
The thermal expansion coefficient j8, however, is evaluated at the free fluid temperature Tx. The
convection heat transfer coefficient h is based on the temperature difference between the surface and
the free fluid.

Free Convection from Flat Plates and Cylinders
For free convection from flat plates and cylinders, the average Nusselt number NuL can be expressed
as4

NuL - C(GrL Pr)"1

where the constants C and m are given as shown in Table 43.15. The Grashof Prandial number
product, (GrLPr) is called the Rayleigh number (RaL) and for certain ranges of this value, Figs. 43.13
and 43.14 are used instead of the above equation. Reasonable approximations for other types of three-
dimensional shapes, such as short cylinders and blocks, can be made for 104 < RaL < 109, by using
this expression and C — 0.6 , m = l/4, provided that the characteristic length, L, is determined from
IIL = l/Lhor + l/Lver, where Lver is the height and Lhor is the horizontal dimension of the object in
question.

For unsymmetrical horizontal square, rectangular, or circular surfaces, the characteristic length L
can be calculated from the expression L = A/P, where A is the area and P is the wetted perimeter
of the surface.

Free Convection from Spheres
For free convection from spheres, the following correlation has been developed:

NuD - 2 + 0.43(GrD Pr)025 for 1 < GrD < 105

Although this expression was designed primarily for gases, Pr « 1, it may be used to approximate
the values for liquids as well.15

Free Convection in Enclosed Spaces
Heat transfer in an enclosure occurs in a number of different situations and with a variety of config-
urations. When a temperature difference is imposed on two opposing walls that enclose a space filled
with a fluid, convective heat transfer will occur. For small values of the Rayleigh number, the heat
transfer may be dominated by conduction, but as the Rayleigh number increases, the contribution
made by free convection will increase. Following are a number of correlations, each designed for a
specific geometry. For all of these, the fluid properties are evaluated at the average temperature of
the two walls.

Cavities between Two Horizontal Walls at Temperatures 7̂  and T2 Separated by Distance
S(T, for Lower Wall, 7, > TJ

_ <f = h(Tv - T2)
Nu8 = 0.069Ra1/3 Pr0074 for 3 X 105 < Rag < 7 X 109

- 1.0 forRas < 1700

where Rag = gft(Tl — 7T2)63/ai> and 5 is the thickness of the space.16



Table 43.15 Constants for Free Convection from Flat Plates and Cylinders

LmCGrKPrGeometry

Height of plates and
cylinders; restricted to
D/L > 35/Gri/4 for
cylinders

Diameter D

Length of a side for square
plates, the average
length of the two sides
for rectangular plates

0.9D for circular disks

Use Fig. 43.12
l/4
l/3

0
Use Fig. 43.13
l/4
l/3
V*
l/3

l/5

Use Fig. 43.12
0.59
0.10

0.4
Use Fig. 43.13
0.53
0.13
0.54
0.15

0.58

lO-MO4
104-109
10M013

o-io-5
10~5-104
104-109
10M013
2 X 104-8 x 106
8 x 106-10n

105-10U

Vertical flat plates and
cylinders

Horizontal cylinders

Upper surface of heated
plates or lower surface
of cooled plates

Lower surface of heated
plates or upper surface
of cooled plates



Fig. 43.13 Free convection heat-transfer correlation for heated vertical plates and cylinders.
Adapted from Ref. 14. (Used with permission of McGraw-Hill Book Company.)

Cavities between Two Vertical Walls of Height H at Temperatures by Distance 7̂  and T2
Separated by Distance 517>18

<f = sohW, - T2)
/ p \ 0.28 / «\ 0.25

°̂-22(o2TlH (I)

for 2 <H/8 < 10, Pr < 105 Ras < 1010;

— / Pr \a29
Nû ai8(5IT̂ H

for KH/8< 2, 103 < Pr < 105, and 103 < RasPr/(0.2 + Pr);

Fig. 43.14 Free convection heat-transfer correlation from heated horizontal cylinders. (Adapted
from Ref. 14. Used with permission of McGraw-Hill Book Company.)



Nu6 = 0.42Ra<P Pr°-012(S/#)0-3

for 10 < H/d < 40, 1 < Pr < 2 X 104, and 104 < Ras < 107.

43.3.4 The Log Mean Temperature Difference
The simplest and most common type of heat exchanger is the double-pipe heat exchanger, illustrated
in Fig. 43.15. For this type of heat exchanger, the heat transfer between the two fluids can be found
by assuming a constant overall heat transfer coefficient found from Table 43.8 and a constant fluid
specific heat. For this type, the heat transfer is given by

q =UA &Tm

where

A72 - A7\= 2 i_
m ln(Ar2/A7\)

In this expression, the temperature difference, A7m, is referred to as the log-mean temperature dif-
ference (LMTD); AT^ represents the temperature difference between the two fluids at one end and
A72 at the other end. For the case where the ratio A^/AT^ is less than two, the arithmetic mean
temperature difference (AT2 + A7\)/2 may be used to calculate the heat-transfer rate without intro-
ducing any significant error. As shown in Fig. 43.15,

A7\ = ThJ - rc, AT2 - Thf0 - Tc,0 for parallel flow

AT; = Thti - Tĉ 0 A72 = Tĥ 0 - Tci for counterflow

Cross-Flow Coefficient

In other types of heat exchangers, where the values of the overall heat transfer coefficient, [/, may
vary over the area of the surface, the LMTD may not be representative of the actual average tem-
perature difference. In these cases, it is necessary to utilize a correction factor such that the heat
transfer, q, can be determined by

q = UAF AT;

Here the value of Arm is computed assuming counterflow conditions, A7\ = Thti — TCti and A72 =
Th,0 ~ TCt0. Figures 43.16 and 43.17 illustrate some examples of the correction factor, F, for various
multiple-pass heat exchangers.

43.4 RADIATION HEAT TRANSFER
Heat transfer can occur in the absence of a participating medium through the transmission of energy
by electromagnetic waves, characterized by a wavelength, A, and frequency, v, which are related by
c = Xv. The parameter c represents the velocity of light, which in a vacuum is c0 = 2.9979 X 108
m/sec. Energy transmitted in this fashion is referred to as radiant energy and the heat transfer process
that occurs is called radiation heat transfer or simply radiation. In this mode of heat transfer, the
energy is transferred through electromagnetic waves or through photons, with the energy of a photon
being given by hv, where h represents Planck's constant.

In nature, every substance has a characteristic wave velocity that is smaller than that occurring
in a vacuum. These velocities can be related to c0 by c = c0/n, where n indicates the refractive index.
The value of the refractive index n for air is approximately equal to 1. The wavelength of the energy
given or for the radiation that comes from a surface depends on the nature of the source and various
wavelengths sensed in different ways. For example, as shown in Fig. 43.18 the electromagnetic
spectrum consists of a number of different types of radiation. Radiation in the visible spectrum occurs
in the range A = 0.4-0.74 /mi, while radiation in the wavelength range 0.1-100 /mi is classified as
thermal radiation and is sensed as heat. For radiant energy in this range, the amount of energy given
off is governed by the temperature of the emitting body.

43.4.1 Black-Body Radiation
All objects in space are continuously being bombarded by radiant energy of one form or another and
all of this energy is either absorbed, reflected, or transmitted. An ideal body that absorbs all the
radiant energy falling upon it, regardless of the wavelength and direction, is referred to as a black
body. Such a body emits the maximum energy for a prescribed temperature and wavelength. Radiation
from a black body is independent of direction and is referred to as a diffuse emitter.
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