
10.1 Introduction and synopsis

These case studies illustrate how the techniques described in the previous chapter really work. Two
'were sketched out there: the light, stijJ; strong beam, and the light, cheap, stiff beam. Here we
develop four more. The first pair illustrate multiple constraints; here the active constraint method is
used. The second pair illustrate compound objectives; here a value function containing an exchange
constant. £$, is formulated. The examples are deliberately simplified to avoid clouding the illustra-
tion with unnecessary detail. The simplification is not nearly as critical as it may at first appear:
the choice of material is determined primarily by the physical principles of the problem, not by
details of geometry .The principles remain the same when much of the detail is removed so that
the selection is largely independent of these.

Further case studies can be found in the sources listed under Further reading.

con-rods for10.2 Multiple constraints -

high-performance engines

A connecting rod in a high perfonnance engine, compressor or pump is a critical component: if
it fails, catastrophe follows. Yet -to minimize inertial forces and bearing loads -it must weigh
as little as possible, implying the use of light, strong materials, stressed near their limits. When
cost, not perfonnance, is the design goal, con-rods are frequently made of cast iron, because it is
so cheap. But what are the best materials for con-rods when performance is the objective?

The model

Table 10.1 sultlmarizes the design requirements for a connecting rod of minimum weight with
two constraints: that it must carry a peak load F without failing either by fatigue or by buckling
elastically. For simplicity, we assume that the shaft has a rectangular section A = bw (Figure 10.1).

The objective function is an equation for the mass which we approximate as

m = fJALp (10.1)

where L is the length of the con-rod and p the density of the material of which it is made, A the
cross-section of the shaft and .8 a constant multiplier to allow for the mass of the bearing housings.
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Table 10.1 The design requirements: connecting rods 

Function 
Objective Minimize mass 
Constraints 

Connecting rod for reciprocating engine or pump 

(a) Must not fail by high-cycle fatigue, or 
(b) Must not fail by elastic buckling 
(c) Stroke, and thus con-rod length L, specified 

Fig. 10.1 A connecting rod. The rod must not buckle, fail by fatigue or 
by fast fracture (an example of multiple constraints). The objective is to 
minimize mass. 

The fatigue constraint requires that 
F 
A -  
- < 0, (10.2) 

where C T ~  is the endurance limit of the material of which the con-rod is made. (Here, and elsewhere, 
we omit the safety factor which would normally enter an equation of this sort, since it does not 
influence the selection.) Using equation (10.2) to eliminate A in equation (10.1) gives the mass of 
a con-rod which will just meet the fatigue constraint: 

ml = BFL (:) (10.3) 

pi MI = - (10.4) 

The buckling constraint requires that the peak compressive load F does not exceed the Euler 

containing the material index 

buckling load: 
n2EI 

L2 
F 5 -  (1  0.5) 

with I = b’w/12. Writing b = aw, where w is a dimensionless ‘shape-constant’ characterizing the 
proportions of the cross-section, and eliminating A from equation (10.1) gives a second equation 
for the mass 

(10.6) 
12F ‘ I2  

m : = B ( - )  an2 L’&) 
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containing the material index (the quantity we wish to maximize to avoid buckling): 

M* = ~ (10.7) rn 
The con-rod, to be safe, must meet both constraints. For a given stroke, and thus length, L,  the 

active constraint is the one leading to the largest value of the mass, m. Figure 10.2 shows the way 
in which m varies with L (a sketch of equations (10.3) and (10.6)), for a single material: short 
con-rods are liable to fatigue failure, long ones are prone to buckle. 

The selection: analytical method 
Consider first the selection of a material for the con-rod from among those listed in Table 10.2. The 
specifications are 

L =  1 5 0 ~  F = 5 0 k N  ~ r = O . 5  B =  1 

Fig. 10.2 The equations for the mass m of the con-rod are shown schematically as a function of L. 

Table 10.2 Selection of a material for the con-rod 

Material P E 5, ml m2 +I 

kg/m3 GPa MPa kg kg kg 

Nodular cast iron 7150 178 250 0.21 0.13 0.21 
HSLA steel 4140 (0.q. T-315) 7850 210 590 0.1 0.13 0.13 
AI 539.0 casting alloy 2700 70 75 0.27 0.08 0.27 
Duralcan AI-SiC(p) composite 2880 110 230 0.09 0.07 0.09 
Ti-6-4 4400 115 530 0.06 0.1 0.1 
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The table lists the mass ml of a rod which will just meet the fatigue constraint, and the mass m2 
which will just meet that on buckling (equations (10.3) and (10.6)). For three of the materials the 
active constraint is that of fatigue; for two it is that of buckling. The quantity ii in the last column 
of the table is the larger of ml and m2 for each material; it is the lowest mass which meets both 
constraints. The material offering the lightest rod is that with the smallest value of &. Here it is 
the metal-matrix composite Duralcan 6061-20% SiC(p). The titanium alloy is a close second. Both 
weigh about half as much as a cast-iron rod. 

The selection: graphical method 
The mass of the rod which will survive both fatigue and buckling is the larger of the two masses ml 
and m2 (equations (10.3) and (10.6)). Setting them equal gives the equation of the coupling line: 

M 2  = [(E) T 2 ,  F ”*] M ,  (10.8) 

The quantity in square brackets is tbe coupling constant: it contains the quantity F / L 2  - the 
‘structural loading coefficient’ of Chapter 5. 

Materials with the optimum combination of M I  and M2 are identified by creating a chart with 
these indices as axes. Figure 10.3 illustrates this, using a database of light alloys. Coupling lines 
for two values of FIL’ are plotted on it, taking a = 0.5. Two extreme selections are shown, one 
isolating the best subset when the structural loading coefficient F / L 2  is high, the other when it is 
low. For the high value ( F / L 2  = 0.5 MPa), the best materials are high-strength Mg-alloys, followed 
by high-strength Ti-alloys. For the low value (FIL’ = 0.05 MPa), beryllium alloys are the optimum 
choice. Table 10.3 lists the conclusions. 

Postscript 
Con-rods have been made from all the materials in the table: aluminium and magnesium in family 
cars, titanium and (rarely) beryllium in racing engines. Had we included CFRP in the selection, we 
would have found that it. too, performs well by the criteria we have used. This conclusion has been 
reached by others, who have tried to do something about it: at least three designs of CFRP con-rods 
have been prototyped. It is not easy to design a CFRP con-rod. It is essential to use continuous 
fibres, which must be wound in such a way as to create both the shaft and the bearing housings; 
and the shaft must have a high proportion of fibres which lie parallel to the direction in which F 
acts. You might, as a challenge, devise how you would do it. 

Table 10.3 Materials for high-performance con-rods 

Material Comrnen t 
~~~~~~ ~ ~ 

Magnesium alloys 

Titanium alloys 
Beryllium alloys 

Aluminium alloys 

ZK 60 and related alloys offer good all-round 
performance. 
Ti-6-4 is the best choice for high F / L 2 .  
The ultimate choice when F / L 2  is small. Difficult 
to process. 
Cheaper than titanium or magnesium, but lower 
performance. 
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Fig. 10.3 Over-constrained design leads to two or more performance indices linked by coupling 
equations. The diagonal broken lines show the coupling equations for two values of the coupling 
constant, determined by the ‘structural loading coefficient’ F/L2. The two selection lines must intersect 
on the appropriate coupling line giving the box-shaped search areas. (Figure created using CMS (1995) 
software.) 

Related case studies 
Case Study 10.3: Multiple constraints - windings for high field magnets 

10.3 Multiple constraints - windings for high field 
magnets 
Physicists, for reasons of’ their own, like to see what happens to things in high magnetic fields. 
‘High’ means 50 tesla or more. The only way to get such fields is the old-fashioned one: dump 
a huge current through a wire-wound coil; neither permanent magnets (practical limit: 1.5T), nor 
super-conducting coils (present limit: 25T) can achieve such high fields. The current generates a 
field-pulse which lasts as long as the current flows. The upper limits on the field and its duration 
are set by the material of the coil itself if the field is too high, the coil blows itself apart; if too 
long, it melts. So choosing the right material for the coil is critical. What should it  be? The answer 
depends on the pulse length. 
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Table 10.4 Duration and strengths of pulsed fields 

Classijcatinn Duration Field strength 

Continuous 1 s--00 t 3 0  T 
Long looms-1 s 30-60T 
Standard 10- 100 ms 40-70T 
Short 10- 1000 ps 70-80T 
Ultra-short 0.1 - 10 ps >100T 

Pulsed fields are classified according to their duration and strength as in Table 10.4. 

The model 
The magnet is shown, very schematically, in Figure 10.4. The coils are designed to survive the 
pulse, although not all do. The requirements for survival are summarized in Table 10.5. There is 
one objective - to maximize the field - with two constraints which derive from the requirement 
of survivability for a given pulse length. 

Consider first destruction by magnetic loading. The field, B (units: weber/m2), in a long solenoid 
like that of Figure 10.4 is: 

(10.9) ILoNih. F 
B = -  .f (Q, B)  e 

Fig. 10.4 Windings for high-powered magnets. There are two constraints: the magnet must not overheat; 
and it must not fail under the radial magnetic forces. 
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Table 10.5 The design requirements: high field magnet 

Function Magnet windings 
Objective Maximize magnetic field 
Constraints (a) No mechanical failure 

(b) Temperature rise < 150°C 
(c) Radius R and length l of coil specified 

where po is the permeability of air (437 x lop7 Wb/Am), N is the number of turns, i is the current, 
k! is the length of the coil, h f  is the filling-factor which accounts for the thickness of insulation 
(Af = cross-section of conductor/cross section of coil), and F ( a ,  B )  is a geometric constant (the 
‘shape factor’) which depends on the proportions of the magnet (defined on Figure 10.4), the value 
of which need not concern us. The field creates a force on the current-carrying coil. It acts radially 
outwards, rather like the pressure in a pressure vessel, with a magnitude 

(10.10) 

though it is actually a body force, not a surface force. The pressure generates a stress u in the 
windings and their casing 

PR B2 R u = - =  
d 2P.,F(U, B G  

This must not exceed the yield strength uy of the windings, giving the first limit on B: 

R Bl 5 

The field is maximized by maximizing 

(10.1 1) 

(10.12) 

I M1=*,. I (10.13) 

One could have guessed this: the best material to carry a stress 0 is that with the largest yield 
strength cy. 

Now consider destruction by overheating. High-powered magnets are initially cooled in liquid 
nitrogen to - 196°C in order to reduce the resistance of the windings; if the windings warm above 
room temperature, the resistance, Re, in general, becomes too large. The entire energy of the pulse, 
J i2R, dt = i2R,tp is converted into heat (here Re is the average of the resistance over the heating 
cycle and t p  is the length of the pulse); and since there is insufficient time for the heat to be 
conducted away, this energy causes the temperature of the coil to rise by AT,  where 

(10.14) 

Here pe is the resistivity of the material, C ,  its specific heat (Jkg K) and p its density. The resistance 
of the coil, Re, is related to the resistivity of the material of the windings by 
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where d is the diameter of the conducting wire. If the upper limit for the temperature is 200K, 
AT,,, 5 100K, giving the second limit on B: 

112 
B2 i (iLid2CpPkf ATmax ) F(a,B> (10.15) 

t p  P e  

The field is maximized by maximizing pq M2 = ~ (10.16) 

The two equations for B are sketched, as a function of pulse-time, t , ,  in Figure 10.5. For short 
pulses, the strength constraint is active; for long ones, the heating constraint is dominant. 

The selection: analytical method 
Table 10.6 lists material properties for three alternative windings. The sixth column gives the 
strength-limited field strength, B1; the seventh column, the heat-limited field B2 evaluated for 
the following values of the design requirements: 

t ,  = 1Oms k f  = 0.5 AT,,, = lOOK 

F ( a ,  p )  = 1 R = 0.05m d = O.1m 

Strength is the active constraint for the copper-based alloys; heating for the steels. The last column 
lists the limiting field B for the active constraint. The Cu-Nb composites offer the largest 8. 

Fig. 10.5 The two equations for B are sketched, indicating the active constraint. 
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Table 10.6 Selection of a material for a high field magnet, pulse length 10 ms 

Material P BY CP P e  B1 B2 B 

High-conductivity copper 8.94 250 38.5 1.7 35 113 35 

Mg/m3 MPa J /kgK lO@Qm Wb/m2 Wb/m2 Wb/m2 

Cu-1.5% Nb composite 8.90 780 368 2.4 62 92 62 
HSLA steel 7.85 1600 450 2.5 89 30 30 

The selection: graphical method 
The cross-over lies along the line where equations (10.12) and (1 0.15) are equal, giving the coupling 
the line 

(10.17) 
PoRdh f F(a, B>ATmax <I 

The quantity in square brackets is the coupling constant; it depends on the pulse length, t,. 

Fig. 10.6 Materials for windings for high-powered magnets, showing the selection for long pulse 
applications, and for short pulse ultra-high field applications. (Figure created using CMS (1 995) software.) 
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Table 10.7 Materials for high field magnet windings 

Material Comment 

Continuous and long pulse 
High conductivity coppers 
Pure silver 

Best choice for low field, long pulse 
magnets (heat-limited). 

Short pulse 
Copper-AL20s composites (Glidcop) 
H-C copper cadmium alloys 
H-C copper zirconium alloys 
H-C copper chromium alloys 
Drawn copper-niobium composites 

Ultra short pulse, ultra high field 
Copper- beryllium-cobalt alloys 
High-strength, low-alloy steels magnets (strength-limited). 

Best choice for high field, short pulse 
magnets (heat and strength limited). 

Best choice for high field, short pulse 

The selection is illustrated in Figure 10.6. Here we have used a database of conductors: it is 
an example of sector-specific database (one containing materials and data relevant to a specific 
industrial sector, rather than one that is material class-specific). The axes are the two indices M1 
and M2.  Three selections are shown, one for very short-pulse magnets, the other for long pulses. 
Each selection box is a contour of constant field, B; its corner lies on the coupling line for the 
appropriate pulse duration. The best choice, for a given pulse length, is that contained in the box 
which lies farthest up its coupling line. The results are summarized in Table 10.7. 

Postscript 
The case study, as developed here, is an oversimplification. Magnet design, today, is very sophisti- 
cated, involving nested sets of electro and super-conducting magnets (up to 9 deep), with geometry 
the most important variable. But the selection scheme for coil materials has validity: when pulses 
are long, resistivity is the primary consideration; when they are very short, it is strength, and the 
best choice for each is that developed here. Similar considerations enter the selection of materials 
for very high-speed motors, for bus-bars and for relays. 

Further reading 
Herlach, F. (1988) The technology of pulsed high-field magnets, ZEEE Transactions on Magnetics, 24, 1049. 
Wood, J.T., Embury, J.D. and Ashby, M.F. (1995) An approach to material selection for high field magnet 

design, submitted to Acta Metal. et Mater. 43, 212. 

Related case studies 
Case Study 10.2: Multiple constraints - con-rods 

10.4 Compound objectives - materials for insulation 
The objective in insulating a refrigerator (of which that sketched in Figure 10.7 is one class - there 
are many others) is to minimize the energy lost from it, and thus the running cost. But the insulation 
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Fig. 10.7 Insulation for refrigerators. The objectives are to minimize heat loss from the interior and to 
minimize the cost of the insulation itself. 

itself has a capital cost associated with it. The most economical choice of material for insulation 
is that which minimizes the total. There is at least one constraint: an upper limit on the thickness 
x,,, of the insulation (Table 10.8). 

The model 
The first objective is to minimize the cost of the insulation. This cost, per unit area of wall, is 

C = XmaxPCm (10.18) 

Here C, is the costkg of the insulation and p is its density. 

(W/m2), assuming steady-state heat flow, is 
The second objective is to minimize the energy loss. The heat flux per unit area of wall, Q 

dT h A T  
Q = -A - = __ 

d~ xmax 

where h (W/m K) is its thermal conductivity and AT is the temperature difference between the inside 
and the outside of the insulation layer. If the refrigerator runs continuously, the energy consumed 

Table 10.8 Design requirement for refrigerator insulation - 
Function Thermal insulation 
Objectives 

Constraint Thickness 5 x,, 

(a) Minimize insulation cost and 
(b) Minimize energy loss, appropriately coupled 
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in time t ( s )  is 
H = Qt (J/m') 

We identify t with the design life of the refrigerator. 
To minimize both objectives in a properly couple way we create a value-function, V ,  

v =  - C + E $ H  

(10.19) 

with C given by equation (10.18) and H by (10.19). It contains the exchange constant, E$, relating 
energy to cost. It can vary widely (Table 9.5). If grid-electricity is available. E$ is low. But in 
remote areas (requiring power-pack generation), in aircraft (supplementary turbine generator) or 
in space (solar panels), it can be far higher. (The exchange constant relating value to cost is -1, 
giving the negative sign.) Inserting equations (10.18) and (10.19) gives 

v = - X m a x [ P ~ m l  + E $  (") [A]  (10.20) 
Xmax  

Here the material properties are enclosed in square brackets; everything outside these brackets is 
fixed by the design. 

The selection: analytical method 
Take the example 

X,,, = 20mm AT = 20C t = 1 year = 31.5 x lo6 s 

E$ = -0.02 $/MJ (grid electricity) 

giving, for four candidate foams listed in Table 10.9, the values of V shown in the last column. 

value of V .  It is the best choice. 
The polystyrene foam is the cheapest to buy, but the phenolic has the largest (least negative) 

The selection: graphical method 
Define the indices 

M I  = pCm and A42 = h 

We rewrite equation (10.18) in the form: 

(10.21) 

Table 10.9 Value function, V ,  for thermal insulation 

Material P h C, fl> C V 
kg/m' W/mK $/kg MPa $/m' E$ = -0.02 $/MJ 

Polystyrene foam 30 0.034 2.0 0.2 1.2 -22.6 
Phenolic foam 35 0.025 4.0 0.2 2.8 -18.6 
Polymethacrylimide foam 50 0.030 27 0.8 27 -45.9 
Polyethersulphone foam 90 0.038 18 0.8 32 -56.0 
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Fig. 10.8 Selection of insulating materials for refrigerators with different design lives. (Figure created 
using CMS (1 997) software.) 

Everything in the equation is specified except the material groups M1 and M2.  We seek materials 
which maximize v. Figure 10.8 shows M I  plotted against M 2 .  Contours of constant e appear as 
curved lines; the value of 3 increases towards the bottom right. Two sets of contours are shown, 
one for long-term insulation with a design life, t ,  of 10 years, the other for short-term refrigeration, 
with a value of t of I month. To plot these, we need a value for the term in square brackets. It has 
been evaluated using AT = 20”C, xmaX = 20mm, and E$ = -0.02 $/MJ, as before. For the shorter 
design life, the cost of the insulation dominates the value function; then the best choices are simply 
the cheapest ones: the low density expanded polystyrene EPS (0.03) for instance*. But for the longer 
design life, the second term on the right of equation (10.21) becomes dominant, and the choice of 
material changes; the contours shown for t = 10 years suggest that low-density phenolics might 
be a good selection, because their conductivity is lower than that of the polystyrenes. Table 10.10 
summarizes the selection. 

Postscript 
In many insulation applications the foam is bonded to the inner and outer walls of the refrigerator 
to give stiffness: it performs a mechanical as well as a thermal function. Then the strength, oy, may 
also be relevant. The table includes two high-strength foams. 

* On Figure 10.6 the letters identify the material; the number in brackets gives the density in Mg/m3. Thus PS(0.03) means 
‘a polystyrene foam with a density of 0.03Mg/m3’. 
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Table 10.10 Materials for refrigerator insulation 

Material Comment 

Short design life ( t l  = 1 month) 
Polystyrene (PS) foams, e.g. PS(0.02) or PS(O.025) 

Polypropylene (PP) foams, e.&. PP(0.02) or PP(0.03) 

Long design l$e (tc = 10year.Y) 
Phenolic (PHEN) foams, e.g. PHEN(0.035) 

Polyurethane (PU) foams, e.g. PU(0.028) 

Polystyrene (PS) foams, e.g. PS(0.02) or PS(0.025) 

Cost of insulation dominates the 
value function; polystyrene and 
polypropylene foams are the 
best choice because they are the 
cheapest. 

Heat conduction is important in 
the value function. The more 
expensive phenolics minimize 
the value function and are the 
best choice. 

Of the two, the polymethacrylimide foam gives the largest (least negative) value of V 

Related case studies 
Case Study 10.5: Compound objectives - disposable coffee cups 

10.5 Compound objectives - disposable coffee cups 

It is increasingly recognized that the use of materials in engineering carries environmental penalties: 
pollution of water and air, solid waste, consumption of non-renewable resources and more (collec- 
tively called eco-damage). One response is to adopt, as a design objective, the minimization of this 
damage. 

Consider, as an example, the replacement of an existing disposable cup (Figure 10.9) by one 
which is more environmentally benign. The environmental impact it causes is difficult to quantify. 
One component of impact relates to the energy content of the material: many aspects of impact (COz 
emissions, air-borne particulates) are proportional to this. And energy content can be quantified, at 
least approximately. We shall use it as a measure of environmental impact, to illustrate how it can 
be balanced against cost. 

Disposable cups are not, at present, recycled, so the energy and material they contain are irretriev- 
ably lost when they are discarded. To minimiLe the eco-impact (measured now by energy content), 
we seek the design which incorporates the least energy to start with. But disposable cups must 
also be cheap. So we find two conflicting objectives: the environmental goal of minimizing energy 
content, and the economic one of minimizing cost. There are constraints which must be met: the 
cup must be sufficiently stiff that i t  can be picked up without ovalizing severely, and it would be 
desirable, too, that it also insulates (Table 10.1 I ) .  

We first write a value function for the cup: 

V = - C + E  $ qm (10.22) 

Here C is the cost of the cup, m is its mass and q the energy content per unit mass of the material 
of which it is made. The quantity E$ is the exchange constant: the value associated with one unit 
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Fig. 10.9 A disposable hot-drink cup. It must be cheap, stiff and of minimum energy-content. 

Table 10.1 1 Design requirements for disposable cup 

Function Disposable hot-drink cup 
Objectives (a) Minimize energy-content and 

(b) Minimize cost, appropriately coupled 
Constraints (a) Stiff enough to be picked up 

(b) Thermally insulating 

of environmental damage. Values E$ are, at present, unknown, but by taking extremes its influence 
can be explored. 

The first term in this equation describes the material cost of the cup. It is the volume of material 
it contains (thought of as a cylinder of radius R, height h and wall thickness t ,  closed at one end) 
times the cost C,p per unit volume (C,n is the material cost per unit weight and p the density): 

C = C,m M (2nRh + nR2)tC,p 
(10.23) 

= (2a + l)nR2tC,p 

where CY = h /R  the ratio of height-to-radius. The constraint on stiffness requires that ovalization 
must not become unacceptable when the cup is loaded across a diagonal, as in the figure. This 
imposes a limit on its stiffness, S: 

F ClEI aC,Et3 s=-=--  - - ’ s c  (10.24) 

Here I is the second moment of area of the wall of the cup (proportional to ht3/12 for a wall of 
uniform thickness, r ) ,  E is its Young’s modulus, C1 is a constant and S ,  is the critical stiffness 
required for safe handling. Solving for t gives 

6 R3 1 2R2 

1 /3 

t:(!%) (10.25) 
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which, when inserted in equation (10.23), gives the cost of the cup: 

C = C,m = (2a + l)nR2C,,p ( ;c";;(;.) "3 

or 

(10.26) 

(1  0.27) 

in which the constant C2 contains the design parameters. By a similar chain of argument, replacing 
C,p by q p  (where q is the energy per unit mass of the material), the energy content of the cup is 

qm = c2 (S) (10.28) 

If we now associate a cost E$ with environmental impact as measured by energy content (an energy 
tax, for example, or a pollution tax), environmental impact can be converted to cost, giving: 

v = C2[M, + E$M2] (10.29) 

with M I  = C,p/E'/' and M z  = q p / E 1 l 3 .  

The selection: analytical method 
Table 10.12 lists three candidates for the cup: foamed polystyrene (PS), polycarbonate (PC) and 
high density polyethylene (HDPE), with the relevant properties. The remaining columns list the 
wall thickness, the cost and the value, taking 

R = 4 0 m m  w = 4  C 1 = 2 4  S ,=3kN/m 

With no penalty on energy (Es  = 0), polystyrene has the greatest value. A pollution tax of 0.01 $ N J  
leads to the ranking in the second last column; one of 0.05 $/MJ gives the values in the last one. 
With the higher tax, PC becomes more attractive. 

We have used numerical values for R, a, C1 and S, here, but it was not necessary. It is frequently 
so that the optimum selection is independent of some or all of the other variables of the design, and 
this is an example of just that. The variables R, a, C1 and S, are all contained in the quantity C2 
of equation (10.29), the value of which does not alter the ranking of the candidates in Table 10.12: 
ranking by V or by V/C?.  

Table 10.12 Value functions, V ,  for two values of exchange constant, E$ 
~ ~~ ~~ ~~ 

Material P E c: 4 t C v, E$ = V ,  E$ = 
Mg/m' GPa $/kK MJAg mm $ -0.01 $/MJ -0.05 $/MJ 

Expanded PS 0.05 0.03 1.4 180 2.7 0.009 -0.02 -0.07 
Expanded PC 0.065 0.95 5.0 170 1 0.016 -0.02 -0.04 
Expanded HDPE 0.08 0.006 1.6 150 4.6 0.3 -0.06 -0.17 

*Cost of matenal in shape of cup, when mass produced, 1s almost the same a5 that of the material itself. 
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The selection: graphical method 
Figure 10.10 shows M I  plotted against M z ,  allowing the selection of materials to minimize, in a 
balanced way, both cost and energy content. We will assume that the cups are at present pressed 
from solid polystyrene (PS) sheet with a density of 1060 kg/m3; it is indicated as a black ellipse 
on the figure. The contours show the selection ‘boundary’ for various values of E’. The materials 
which lie below the appropriate contour are a better choice than the current material: they give a 
lower value of V than it does. For small values of E$,  the contours are almost vertical; for large E$ 
they are almost horizontal. 

Materials in the lower-left quadrant are both cheaper and less energy intensive than the current 
material: they are a better choice than the existing solid PS, regardless of the value of E$.  Among 
these are a range of polyethylene foams, LDPE, with densities in the range 0.018 to 0.029Mg/m3 
(LDPE (0.01 8), for instance) and the expanded polystyrenes with densities between 0.02 and 
0.05 Mg/m3 (EPS (0.02) or EPS (0.05)). But if the energy tax were high enough - if E$ were as high 
as 0.01 $/MJ, for example - then a range of PVC foams become potential candidates; and if it rose 
to 0.1 $/MJ, cups made of cork (!) would become economic. Table 10.13 summarizes the selection. 

Further reading 
Boustead, I. and Hancock, G.F. (1979) Handbook of Industrial Energy Analysis, Wiley, New York. 

Fig. 10.10 Comparison of polystyrene with competing materials for disposable cups. (Figure created 
using CMS (1 995) software.) 
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Table 10.13 Materials for low energy, cheap coffee cups 

Muterial Cornmeni 

Short design life 
Expanded polystyrene (EPS) foams 
[e.g. EPS(0.02) to EPS(0.05)] 
Polypropylene (PP) foams 
[e.g. PP(0.02) to PP(O.06)] 
Polyethylene (LDPE) foams 
[e.g. LDPE(O.018) to LDPE(0.029)] 

The best choice: lower cost and energy content 
than solid PS; good thermal properties. 
A viable alternative to expanded PS. 

Considerably more expensive and more energy 
intensive than expanded PS. 

Related case studies 
Case Study 10.4: Compound objectives - materials for insulation 

10.6 Summary and conclusions 
Most designs are over-constrained: they must simultaneously meet several conflicting require- 
ments. But although they conflict, an optimum selection is still possible. The ‘active constraint’ 
method, developed in Chapter 9, allows the selection of materials which optimally meet two or 
more constraints. It is illustrated here by two case studies, one of them mechanical, one electro- 
mechanical. 

Greater problems arise when the design must meet two or more conflicting objectives (such as 
minimizing mass, cost and environmental impact). Here we need a way can be found to express 
all the objectives in the same units, a ‘common currency’, so to speak. The conversion factor is 
called the exchange constant, E‘. Establishing the value of the exchange constant is an important 
step in solving the problem. With it, a value function V is constructed which combines the objectives. 
Materials which minimize V meet all the objectives in a properly balanced way. The most obvious 
common currency is cost itself, requiring an ‘exchange rate’ to be established between cost and 
the other objectives. This can be done for energy and for mass, and - at least in principle - for 
environmental impact. The method is illustrated by two further case studies. 


