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Introduction and synopsis

Modelling is a key part of design. In the early stage, approximate modelling establishes whether
the concept will work at all, and identifies the combination of material properties which maximize
performance. At the embodiment stage, more accurate modelling brackets values for the forces, the
displacements, the velocities, the heat fluxes and the dimensions of the components. And in the final
stage, modelling gives precise values for stresses, strains and failure probability in key components;
power, speed, efficiency and so forth.

Many components with simple geometries and loads have been modelled already. Many more
complex components can be modelled approximately by idealizing them as one of these. There is no
need to reinvent the beam or the column or the pressure vessel; their behaviour under all common
types of loading has already been analysed. The important thing is to know that the results exist
and where to find them.

This appendix summarizes the results of modelling a number of standard problems. Their useful-
ness cannot be overstated. Many problems of conceptual design can be treated, with adequate
precision, by patching together the solutions given here; and even the detailed analysis of non-
critical components can often be tackled in the same way. Even when this approximate approach
is not sufficiently accurate, the insight it gives is valuable.

The appendix contains 15 double page sections which list, with a short commentary, results for
constitutive equations; for the loading of beams, columns and torsion bars; for contact stresses,
cracks and other stress concentrations; for pressure vessels, vibrating beams and plates; and for the
flow of heat and matter. They are drawn from numerous sources, listed under Further reading in
Section A.16.
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A.l Constitutive equations for mechanical response 
The behaviour of a component when it is loaded depends on the mechanism by which it deforms. 
A beam loaded in bending may deflect elastically; it may yield plastically; it may deform by creep; 
and it may fracture in a brittle or in a ductile way. The equation which describes the material 
response is known as a constitutive equation. Each mechanism is characterized by a different 
constitutive equation. The constitutive equation contains one or more than one material property : 
Young’s modulus, E ,  and Poisson’s ratio, II, are the material properties which enter the constitutive 
equation for linear-elastic deformation; the yield strength, uy, is the material property which enters 
the constitutive equation for plastic flow; creep constants, E O ,  a0 and n enter the equation for 
creep; the fracture toughness, IC[,-, enters that for brittle fracture. 

The common constitutive equations for mechanical deformation are listed on the facing page. 
In each case the equation for uniaxial loading by a tensile stress CJ is given first; below it is the 
equation for multiaxial loading by principal stresses 01, 0 2  and a3, always chosen so that CJI is 
the most tensile and 0 3  the most compressive (or least tensile) stress. They are the basic equations 
which determine mechanical response. 
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A.2 Moments of sections 
A beam of uniform section, loaded in simple tension by a force F ,  carries a stress u = F / A  where 
A is the area of the section. Its response is calculated from the appropriate constitutive equation. 
Here the important characteristic of the section is its area, A .  For other modes of loading, higher 
moments of the area are involved. Those for various common sections are given on the facing page. 
They are defined as follows. 

The second moment I measures the resistance of the section to bending about a horizontal axis 
(shown as a broken line). It is 

I = 1 Y2b(Y)dY 
section 

where y is measured vertically and b(y) is the width of the section at y. The moment K measures 
the resistance of the section to twisting. It is equal to the polar moment J for circular sections, 
where 

J = 1 2nr3dr  

where r is measured radially from the centre of the circular section. For non-circular sections K is 
less than J .  

The section modulus Z = Z/ym (where ym is the normal distance from the neutral axis of 
bending to the outer surface of the beam) measures the surface stress generated by a given bending 

section 

moment, M :  

Finally, the moment H ,  defined by 

H = 1 Yb(Y)dY 
section 

measures the resistance of the beam to fully-plastic bending. The fully plastic moment for a beam 
in bending is 

M ,  = H a ,  

Thin or slender shapes may buckle before they yield or fracture. It is this which sets a practical 
limit to the thinness of tube walls and webs. 
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A.3 Elastic bending of beams 
When a beam is loaded by a force F or moments M ,  the initially straight axis is deformed into a 
curve. If the beam is uniform in section and properties, long in relation to its depth and nowhere 
stressed beyond the elastic limit, the deflection 6, and the angle of rotation, 8, can be calculated 
using elastic beam theory (see Further reading in Section A. 16). The basic differential equation 
describing the curvature of the beam at a point x along its length is 

where y is the lateral deflection, and M is the bending moment at the point x on the beam. E 
is Young’s modulus and I is the second moment of area (Section A.2). When M is constant this 
becomes 

M - - E  _ _ _  
I - (k d,) 

where Ro is the radius of curvature before applying the moment and R the radius after it is applied. 
Deflections 6 and rotations 8 are found by integrating these equations along the beam. Equations 
for the deflection, 6, and end slope, 8, of beams, for various common modes of loading are shown 
on the facing page. 

The stiffness of the beam is defined by 

F ClEI s = - = -  
6 -e3 

It depends on Young’s modulus, E ,  for the material of the beam, on its length, e ,  and on the second 
moment of its section, I .  The end-slope of the beam, 8, is given by 

Values of C1 and C2 are listed opposite. 
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A.4 Failure of beams and panels 
The longitudinal (or ‘fibre’) stress cr at a point y from the neutral axis of a uniform beam loaded 
elastically in bending by a moment M is 

O M  - - - - E  _ _ _  
Y I  - - (; io) 

where I is the second moment of area (Section A.2), E is Young’s modulus, Ro is the radius of 
curvature before applying the moment and R is the radius after it is applied. The tensile stress in 
the outer fibre of such a beam is 

Mym - M 
I Z 

o=- - - 

where ym is the perpendicular distance from the neutral axis to the outer surface of the beam. If 
this stress reaches the yield strength cry of the material of the beam, small zones of plasticity appear 
at the surface (top diagram, facing page). The beam is no longer elastic, and, in this sense, has 
failed. If, instead, the maximum fibre stress reaches the brittle fracture strength, crf (the ‘modulus of 
rupture’, often shortened to MOR) of the material of the beam, a crack nucleates at the surface and 
propagates inwards (second diagram); in this case, the beam has certainly failed. A third criterion for 
failure is often important: that the plastic zones penetrate through the section of the beam, linking 
to form a plastic hinge (third diagram). 

The failure moments and failure loads, for each of these three types of failure, and for each of 
several geometries of loading, are given on the diagram. The formulae labelled ‘Onset’ refer to 
the first two failure modes; those labelled ‘Full plasticity’ refer to the third. Two new functions 
of section shape are involved. Onset of failure involves the quantity Z ;  full plasticity involves the 
quantity H .  Both are listed in the table of Section A.2, and defined in the text which accompanies it. 
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A.5 Buckling of columns and plates 
If sufficiently slender, an elastic column, loaded in compression, fails by elastic buckling at a critical 
load, F,,,. This load is determined by the end constraints, of which four extreme cases are illustrated 
on the facing page: an end may be constrained in a position and direction; it may be free to rotate 
but not translate (or ‘sway’); it may sway without rotation; and it may both sway and rotate. Pairs 
of these constraints applied to the ends of column lead to the five cases shown opposite. Each is 
characterized by a value of the constant n which is equal to the number of half-wavelengths of the 
buckled shape. 

The addition of the bending moment M reduces the buckling load by the amount shown in the 
second box. A negative value of Fcrit means that a tensile force is necessary to prevent buckling. 

An elastic foundation is one that exerts a lateral restoring pressure, p ,  proportional to the deflection 
( p  = k y  where k is the foundation stiffness per unit depth and y the local lateral deflection). Its 
effect is to increase Fcrit, by the amount shown in the third box. 

A thin-walled elastic tube will buckle inwards under an external pressure p’, given in the last 
box. Here I refers to the second moment of area of a section of the tube wall cut parallel to the 
tube axis. 
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A.6 Torsion of shafts 
A torque, T ,  applied to the ends of an isotropic bar of uniform section, and acting in the plane 
normal to the axis of the bar, produces an angle of twist 8. The twist is related to the torque by 
the first equation on the facing page, in which G is the shear modulus. For round bars and tubes of 
circular section, the factor K is equal to J ,  the polar moment of inertia of the section, defined in 
Section A.2. For any other section shape K is less than J .  Values of K are given in Section A.2. 

If the bar ceases to deform elastically, it is said to have failed. This will happen if the maximum 
surface stress exceeds either the yield strength ay of the material or the stress at which it fractures. 
For circular sections, the shear stress at any point a distance r from the axis of rotation is 

The maximum shear stress, tmax, and the maximum tensile stress, amax, are at the surface and have 
the values 

If tmax exceeds 0,/2 (using a Tresca yield criterion), or if a,, exceeds the MOR, the bar fails, 
as shown on the figure. The maximum surface stress for the solid ellipsoidal, square, rectangular 
and triangular sections is at the points on the surface closest to the centroid of the section (the 
mid-points of the longer sides). It can be estimated approximately by inscribing the largest circle 
which can be contained within the section and calculating the surface stress for a circular bar of that 
diameter. More complex section-shapes require special consideration, and, if thin, may additionally 
fail by buckling. 

Helical springs are a special case of torsional deformation. The extension of a helical spring of 
n turns of radius R,  under a force F ,  and the failure force Fcrit, are given on the facing page. 
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A.7 Static and spinning discs 
A thin disc deflects when a pressure difference A p  is applied across its two surfaces. The deflection 
causes stresses to appear in the disc. The first box on the facing page gives deflection and maximum 
stress (important in predicting failure) when the edges of the disc are simply supported. The second 
gives the same quantities when the edges are clamped. The results for a thin horizontal disc deflecting 
under its own weight are found by replacing D p  by the mass-per-unit-area, pgt ,  of the disc (here p 
is the density of the material of the disc and g is the acceleration due to gravity). Thick discs are 
more complicated; for those, see Further reading. 

Spinning discs, rings and cylinders store kinetic energy. Centrifugal forces generate stresses in 
the disc. The two boxes list the kinetic energy and the maximum stress a,, in discs and rings 
rotating at an angular velocity w (radianshec). The maximum rotation rate and energy are limited 
by the burst-strength of the disc. They are found by equating the maximum stress in the disc to the 
strength of the material. 
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A.8 Contact stresses 
When surfaces are placed in contact they touch at one or a few discrete points. If the surfaces are 
loaded, the contacts flatten elastically and the contact areas grow until failure of some sort occurs: 
failure by crushing (caused by the compressive stress, a,), tensile fracture (caused by the tensile 
stress, at) or yielding (caused by the shear stress as). The boxes on the facing page summarize the 
important results for the radius, a, of the contact zone, the centre-to-centre displacement u and 
the peak values of a,, a, and a,y. 

The first box shows results for a sphere on a flat, when both have the same moduli and Poisson’s 
ratio has the value 1/3. Results for the more general problem (the ‘Hertzian Indentation’ problem) 
are shown in the second box: two elastic spheres (radii R1 and Rz, moduli and Poisson’s ratios E l ,  

V I  and E2, u2) are pressed together by a force F .  
If the shear stress a, exceeds the shear yield strength a,/2, a plastic zone appears beneath the 

centre of the contact at a depth of about a/2 and spreads to form the fully-plastic field shown in 
the two lower figures. When this state is reached, the contact pressure is approximately 3 times the 
yield stress, as shown in the bottom box. 



Contact stresses 
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A.9 Estimates for stress concentrations 
Stresses and strains are concentrated at holes, slots or changes of section in elastic bodies. Plastic 
flow, fracture and fatigue cracking start at these places. The local stresses at the stress concentrations 
can be computed numerically, but this is often unnecessary. Instead, they can be estimated using 
the equation shown on the facing page. 

The stress concentration caused by a change in section dies away at distances of the order of 
the characteristic dimension of the section-change (defined more fully below), an example of St 
Venant’s principle at work. This means that the maximum local stresses in a structure can be found 
by determining the nominal stress distribution, neglecting local discontinuities (such as holes or 
grooves), and then multiplying the nominal stress by a stress concentration factor. Elastic stress 
concentration factors are given approximately by the equation. In it, a,,, is defined as the load 
divided by the minimum cross-section of the part, r is the minimum radius of curvature of the 
stress-concentrating groove or hole, and c is the characteristic dimension: either the half-thickness 
of the remaining ligament, the half-length of a contained crack, the length of an edge-crack or the 
height of a shoulder, whichever is least. The drawings show examples of each such situation. The 
factor 01 is roughly 2 for tension, but is nearer 1/2 for torsion and bending. Though inexact, the 
equation is an adequate working approximation for many design problems. 

The maximum stress is limited by plastic flow or fracture. When plastic flow starts, the strain 
concentration grows rapidly while the stress concentration remains constant. The strain concentration 
becomes the more important quantity, and may not die out rapidly with distance (St Venant’s 
principle no longer applies). 
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Estimates for stress concentrations wi - 1 + a  (5) 
F = force (N) 

Amin = minimum section (m2) 

anom = F / A m i n  ( ~ / m ~ )  

p = radius of curvature (m) 

c = characteristic length (m) 

a x 0.5 (tension) 

a % 2.0 (torsion) 



394 Materials Selection in Mechanical Design 

A.10 Sharp cracks 
Sharp cracks (that is, stress concentrations with a tip radius of curvature of atomic dimensions) 
concentrate stress in an elastic body more acutely than rounded stress concentrations do. To a first 
approximation, the local stress falls off as l/r’’’ with radial distance r from the crack tip. A tensile 
stress (T, applied normal to the plane of a crack of length 2u contained in an infinite plate (as in 
the top figure on the facing page) gives rise to a local stress field which is tensile in the plane 
containing the crack and given by 

where r is measured from the crack tip in the plane 6’ = 0, and C is a constant. The mode 1 stress 
intensity factor K I ,  is defined as 

K I  = C(T& 

Values of the constant C for various modes of loading are given on the figure. (The stress (T for 
point loads and moments is given by the equations at the bottom.) The crack propagates when 
KI > Klc ,  the fracture toughness. 

When the crack length is very small compared with all specimen dimensions and compared with 
the distance over which the applied stress varies, C is equal to 1 for a contained crack and 1.1 for 
an edge crack. As the crack extends in a uniformly loaded component, it interacts with the free 
surfaces, giving the correction factors shown opposite. If, in addition, the stress field is non-uniform 
(as it is in an elastically bent beam), C differs from 1; two examples are given on the figure. The 
factors, C, given here, are approximate only, good when the crack is short but not when the crack 
tips are very close to the boundaries of the sample. They are adequate for most design calculations. 
More accurate approximations, and other less common loading geometries can be found in the 
references listed in Further reading. 
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A . l l  Pressure vessels 
Thin-walled pressure vessels are treated as membranes. The approximation is reasonable when 
t < b/4. The stresses in the wall are given on the facing page; they do not vary significantly with 
radial distance, r .  Those in the plane tangent to the skin, 00 and a, for the cylinder and 0 0  and 04 
for the sphere, are just equal to the internal pressure amplified by the ratio b/t  or b/2t, depending 
on geometry. The radial stress a, is equal to the mean of the internal and external stress, p / 2  in 
this case. The equations describe the stresses when an external pressure pe  is superimposed if p is 
replaced by ( p  - p,). 

In thick-walled vessels, the stresses vary with radial distance r from the inner to the outer 
surfaces, and are greatest at the inner surface. The equations can be adapted for the case of both 
internal and external pressures by noting that when the internal and external pressures are equal, 
the state of stress in the wall is 

= O, = - p  (cylinder) 

or 00 = a+ = a, = - p  (sphere) 

allowing the term involving the external pressure to be evaluated. It is not valid to just replace p 

Pressure vessels fail by yielding when the Von Mises equivalent stress first exceed the yield 
strength, uY. They fail by fracture if the largest tensile stress exceeds the fracture stress Of, where 

CKIC 
Of = ~ 6 

and Klc  is the fracture toughness, a the half-crack length and C a constant given in Section A.lO. 

by ( P  - P e l .  
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A.12 Vibrating beams, tubes and discs 
Any undamped system vibrating at one of its natural frequencies can be reduced to the simple 
problem of a mass m attached to a spring of stiffness K .  The lowest natural frequency of such a 
svstem is 

Specific cases require specific values for m and K .  They can often be estimated with sufficient 
accuracy to be useful in approximate modelling. Higher natural frequencies are simple multiples of 
the lowest. 

The first box on the facing page gives the lowest natural frequencies of the flexural modes of 
uniform beams with various end-constraints. As an example, the first can be estimated by assuming 
that the effective mass of the beam is one quarter of its real mass, so that 

where mo is the mass per unit length of the beam and that K is the bending stiffness (given by F / 6  
from Section A.3); the estimate differs from the exact value by 2%. Vibrations of a tube have a 
similar form, using I and mo for the tube. Circumferential vibrations can be found approximately 
by ‘unwrapping’ the tube and treating it as a vibrating plate, simply supported at two of its four 
edges. 

The second box gives the lowest natural frequencies for flat circular discs with simply-supported 
and clamped edges. Discs with doubly-curved faces are stiffer and have higher natural frequencies. 
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A.13 Creep and creep fracture 
At temperatures above 1/3 T,n (where T ,  is the absolute melting point), materials creep when 
loaded. It is convenient to characterize the creep of a material by its behaviour under a tensile stress 
c, at a temperature T,.  Under these conditions the steady-state tensile strain rate i. is often found 
to vary as a power of the stress and exponentially with temperature: 

iss = A  (;)"exp-, Q 

where Q is an activation energy, A is a kinetic constant and R is the gas constant. At constant 
temperature this becomes 

where &(s-'), q,(N/m2) and n are creep constants. 
The behaviour of creeping components is summarized on the facing page which give the deflection 

rate of a beam, the displacement rate of an indenter and the change in relative density of cylindrical 
and spherical pressure vessels in terms of the tensile creep constants. 

Prolonged creep causes the accumulation of creep damage which ultimately leads, after a time 
t , f ,  to fracture. To a useful approximation 

t f & S S  = c 
where C is a constant characteristic of the material. Creep-ductile material have values of C between 
0.1 and 0.5; creep-brittle materials have values of C as low as 0.01. 



Useful solutions to standard problems 401 

Creep and creep fracture 



402 Materials Selection in Mechanical Design 

A.14 Flow of heat and matter 
Heat flow can be limited by conduction, convection or radiation. The constitutive equations for 
each are listed on the facing page. The first equation is Fourier’s first law, describing steady-state 
heat flow; it contains the thermal conductivity, h. The second is Fourier’s second law, which treats 
transient heat-flow problems; it contains the thermal diffusivity, a, defined by 

where r is the density and C the specific heat at constant pressure. Solutions to these two differential 
equations are given in Section A.15. 

The third equation describes convective heat transfer. It, rather than conduction, limits heat flow 
when the Biot number 

hs 
& = - < I  

h 

where h is the heat-transfer coefficient and s is a characteristic dimension of the sample. When, 
instead, B, > 1, heat flow is limited by conduction. The final equation is the Stefan-Boltzmann law 
for radiative heat transfer. The emissivity, E ,  is unity for black bodies; less for all other surfaces. 

Diffusion of matter follows a pair of differential equations with the same form as Fourier’s two 
laws, and with similar solutions. They are commonly written 

dC 
J = -DVC = -D - 

dx 
(steady state) 

and 
a2 c ac 

at ax2 
= DVC2 = D - (time-dependent flow) - 

where J is the flux, C is the concentration, x is the distance and t is time. Solutions are given in 
the next section. 
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A.15 Solutions for diffusion equations 
Solutions exist for the diffusion equations for a number of standard geometries. They are worth 
knowing because many real problem? can be approximated by one of these. 

At steady-state the temperature or concentration profile does not change with time. This is 
expressed by equations in the box within the first box at the top of the facing page. Solutions 
for these are given below for uniaxial flow, radial flow in a cylinder and radial flow in a sphere. 
The solutions are fitted to individual cases by matching the constants A and B to the boundary 
conditions. Solutions for matter flow are found by replacing temperature, T ,  by concentration, C ,  
and conductivity, h, by diffusion coefficient, D. 

The box within the second large box summarizes the governing equations for time-dependent flow, 
assuming that the diffusivity (a  or D )  is not a function of position. Solutions for the temperature or 
concentration profiles, T ( x ,  t )  or C(x ,  t ) ,  are given below. The first equation gives the ‘thin-film’ 
solution: a thin slab at temperature T I ,  or concentration C1 is sandwiched between two semi-infinite 
blocks at To or CO,  at t = 0, and flow allowed. The second result is for two semi-infinite blocks, 
initially at TI and To, (or C ,  or CO) brought together at t = 0. The last is for a T or C profile 
which is sinusoidal, of amplitude A at t = 0. 

Note that all transient problems end up with a characteristic time constant t* with 

* x2 X2 
t = -  or - 

Ba BD 

where x is a dimension of the specimen; or a characteristic length x* with 

x* = JBat or JBDt 
where t is the timescale of observation, with 1 < ,B < 4, depending on geometry. 
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