Contents

PREFACE ACKNOWLEDGEMENTS			xi xiii
1	Introduction		1
	1.1	Introduction and synopsis	1
	1.2	Materials in design	3
	1.3	The evolution of engineering materials	4
	1.4	The evolution of materials in vacuum cleaners	6
	1.5 1.6	Further reading	7
•	The design process		8
2	21	8	
	$\frac{2.1}{2.2}$	The design process	8
	2.3	Types of design	10
	2.4	Design tools and materials data	11
	2.5	Function, material, shape and process	13
	2.6	Devices to open corked bottles	14
	2.7	Summary and conclusions	18
	2.8	Further reading	19
3	Engineering materials and their properties		20
	3.1	Introduction and synopsis	20
	3.2	The classes of engineering material	20
	3.3	The definitions of material properties	22
	3.4	Summary and conclusions	31
	3.5	Further reading	51
4	Mat	32	
	4.1	Introduction and synopsis	32
	4.2	Displaying material properties	32
	4.3	The material property charts	30
	4.4	Summary and conclusions	03
	4.5	Further reading	04

vi Contents

5	Mate	rials selection — the basics	65	
	5.1	Introduction and synopsis	65	
	5.2	The selection strategy	65	
	5.3	Deriving property limits and material indices	69	
	5.4	The selection procedure	77	
	5.5	The structural index	82	
	5.6	Summary and conclusions	83	
	5.7	Further reading	83	
6	Mate	85		
	6.1	Introduction and synopsis	85	
	6.2	Materials for oars	85	
	6.3	Mirrors for large telescopes	89	
	6.4	Materials for table legs	93	
	6.5	Cost — structural materials for buildings	97	
	6.6	Materials for flywheels	100	
	6.7	Materials for high-flow fans	105	
	6.8	Golf-ball print heads	108	
	6.9	Materials for springs	111	
	6.10	Elastic hinges	116	
	6.11	Materials for seals	119	
	6.12	Diaphragms for pressure actuators	122	
	6.13	Knife edges and pivots	125	
	6.14	Deflection-limited design with brittle polymers	129	
	6.15	Safe pressure vessels	133	
	6.16	Stiff, high damping materials for shaker tables	137	
	6.17	Insulation for short-term isothermal containers	140	
	6.18	Energy-efficient kiln walls	143	
	6.19	Materials for passive solar heating	14/	
	6.20	Materials to minimize thermal distortion in precision devices	151	
	6.21	Ceramic valves for taps	154	
	6.22	Nylon bearings for ships' rudders	157	
	6.23	Summary and conclusions	100	
	6.24	Further reading	101	
7	Selec	Selection of material and shape		
	7.1	Introduction and synopsis	162	
	7.2	Shape factors	162	
	7.3	The efficiency of standard sections	172	
	7.4	Material limits for shape factors	175	
	7.5	Material indices which include shape	180	
	7.6	The microscopic or micro-structural shape factor	182	
	7.7	Co-selecting material and shape	186	
	7.8	Summary and conclusions	188	
	7.9	Further reading	190	
		Appendix: geometric constraints and associated shape factors	190	

Contents V	/ii
------------	-----

8	Shap	e — case studies	194
	8.1	Introduction and synopsis	194
	8.2	Spars for man-powered planes	194
	8.3	Forks for a racing bicycle	198
	8.4	Floor joists: wood or steel?	200
	8.5	Increasing the stiffness of steel sheet	204
	8.6	Ultra-efficient springs	206
	8.7	Summary and conclusions	209
9	Multi	ple constraints and compound objectives	210
	9.1	Introduction and synopsis	210
	9.2	Selection by successive application of property limits and indices	210
	9.3	The method of weight-factors	212
	9.4	Methods employing fuzzy logic	214
	9.5	Systematic methods for multiple constraints	215
	9.6	Compound objectives, exchange constants and value-functions	218
	9.7	Summary and conclusions	226
	9.8	Further reading	227
10	Case	studies: multiple constraints and compound objectives	228
	10.1	Introduction and synopsis	228
	10.2	Multiple constraints — con-rods for high-performance engines	228
	10.3	Multiple constraints — windings for high field magnets	232
	10.4	Compound objectives — materials for insulation	237
	10.5	Compound objectives — disposable coffee cups	241
	10.6	Summary and conclusions	245
11	Mate	rials processing and design	246
	11.1	Introduction and synopsis	246
	11.2	Processes and their influence on design	246
	11.3	Process attributes	261
	11.4	Systematic process selection	262
	11.5	Screening: process selection diagrams	264
	11.6	Ranking: process cost	274
	11.7	Supporting information	279
	11.8	Summary and conclusions	279
	11.9	Further reading	280
12	Case	studies: process selection	281
	12.1	Introduction and synopsis	281
	12.2	Forming a fan	281
	12.3	Fabricating a pressure vessel	284
	12.4	Forming a silicon nitride micro-beam	289
	12.5	Forming ceramic tap valves	290
	12.6	Economical casting	292
	12.7	Computer-based selection — a manifold jacket	293

VIII	Conte		
	12.8	Computer-based selection — a spark plug insulator	298
	12.0	Summary and conclusions	301
	12.10	Further reading	301
13	Data	sources	303
	13.1	Introduction and synopsis	303
	13.2	Data needs for design	303
	13.3	Screening: data structure and sources	303
	13.4	Further information: data structure and sources	307
	13.5	Ways of checking and estimating data	309
	13.6	Summary and conclusions	312
	13.7	Further reading	313
		Appendix: data sources for material and process attributes	515
14	Case	studies: use of data sources	334
<u> </u>	14.1	Introduction and synopsis	334
	14.2	Data for a ferrous alloy — type 302 stainless steel	334
	14.3	Data for a non-ferrous alloy — Al-Si die-casting alloys	335
	14.4	Data for a polymer — polyethylene	338
	14.5	Data for a ceramic — zirconia	340
	14.6	Data for a glass-filled polymer — nylon 30% glass	342
	14.7	Data for a metal-matrix composite (MMC) — Ai/SiC _p	344
	14.8	Data for a polymer-matrix composite — CFRP	345
	14.9	Data for a natural material — balsa wood	347
	14.10	Summary and conclusions	349
	14.11	Further reading	350
15	Mate	rials aesthetics and industrial design	351
15	15 1	Introduction and synopsis	351
	15.1	Aesthetics and industrial design	351
	15.2	Why tolerate ugliness? The bar code	354
	15.5	The evolution of the telephone	355
	15.1	The design of hair drivers	357
	15.6	The design of forks	359
	15.7	Summary and conclusions	361
	15.8	Further reading	361
			262
16	Forc	303	
	16.1	Introduction and synopsis	303
	16.2	The market pull: economy versus performance	303
	16.3	The science-push: curiosity-driven research	300 267
	16.4	Materials and the environment: green design	307 272
	16.5	The pressure to recycle and reuse	575

16.5The pressure to recycle and reuse57516.6Summary and conclusions37316.7Further reading374

Contents ix

Appendi	x A: Useful	l solutions to standard problems	375
A.1	Constitutiv	e equations for mechanical response	376
A.2	Moments of	of sections	378
A.3	Elastic ben	iding of beams	380
A.4	Failure of	beams and panels	382
A.5	Buckling c	of columns and plates	384
A.6	Torsion of	shafts	386
A.7	Static and	spinning discs	388
A.8	Contact str	resses	390
A.9	Estimates a	for stress concentrations	392
A.10	Sharp crac	ks	394
A.11	A.11 Pressure vesselsA.12 Vibrating beams, tubes and discsA.13 Creep and creep fracture		
A.12			
A.13			
A.14	A.14 Flow of heat and matter		
A.15	Solutions f	for diffusion equations	404
A.16	Further rea	ading	406
Appendi	x B: Mater	ial indices	407
A ppfnni	x C: Mater	ial and process selection charts	413
C 1	Introductic		413
C.2	The materi	ials selection charts	418
0.2	Chart 1:	Young's modulus. E against density, ρ	418
	Chart 2:	Strength, σ_{f} , against density, ρ	420
	Chart 3:	Fracture toughness, K_{Ic} , against density, ρ	422
	Chart 4:	Young's modulus, E, against strength, σ_f	424
	Chart 5:	Specific modulus, E/ρ , against specific strength, σ_f/ρ	426
	Chart 6:	Fracture toughness, K_{Ic} , against Young's modulus, E	428
	Chart 7:	Fracture toughness, K_{lc} , against strength, σ_f	430
	Chart 8:	Loss coefficient, η , against Young's modulus, E	432
	Chart 9:	Thermal conductivity, λ , against thermal diffusivity, a	434
	Chart 10:	T-Expansion coefficient, α , against T-conductivity, λ	436
	Chart 11:	Linear thermal expansion, α , against Young's modulus, E	438
	Chart 12:	Normalized strength, σ_t/E , against linear expansion coeff., α	440
	Chart 13:	Strength-at-temperature, $\sigma(T)$, against temperature, T	442
	Chart 14:	Young's modulus, E, against relative cost, $C_R \rho$	444
	Chart 15:	Strength, σ_f , against relative cost, $C_R \rho$	446
	Chart 16:	Dry wear rate against maximum bearing pressure, P_{max}	448
	Chart 17:	Young's modulus, E, against energy content, $q\rho$	450
	Chart 18:	Strength, σ_f , against energy content, $q\rho$	452
C.3	The proces	ss-selection charts	454
	Chart P1:	The material-process matrix	454
	Chart P2:	Hardness, H , against melting temperature, T_m	456
	Chart P3:	Volume, V, against slenderness, S	458
	Chart P4:	The shape classification scheme	460

	Chart P5:The shape-process matrixChart P6:Complexity against volume, V Chart P7:Tolerance range, T , against RMS surface roughness, R	462 464 466
APPENDIX	X D: Problems	
D1	Introduction to the problems	469
D2	Use of materials selection charts	469
D3	Deriving and using material indices	472
D4	Selection with multiple constraints	480
D5	Selecting material and shape	
D6	Selecting processes	488
D7	Use of data sources	490
D8	Material optimization and scale	491

495

INDEX