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4.1 Introduction
In engineering practice, the machine parts are

subjected to various forces which may be due to either one
or more of the following:

1. Energy transmitted,
2. Weight of machine,
3. Frictional resistances,
4. Inertia of reciprocating parts,
5. Change of temperature, and
6. Lack of balance of moving parts.

The different forces acting on a machine part produces
various types of stresses, which will be discussed in this
chapter.

4.2 Load
It is defined as any external force acting upon a

machine part. The following four types of the load are
important from the subject point of view:
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1. Dead or steady load. A load is said to be a dead or steady load, when it does not change in
magnitude or direction.

2. Live or variable load. A load is said to be a live or variable load, when it changes continually.

3. Suddenly applied or shock loads. A load is said to be a suddenly applied or shock load, when
it is suddenly applied or removed.

4. Impact load. A load is said to be an impact load, when it is applied with some initial velocity.
Note: A machine part resists a dead load more easily than a live load and a live load more easily than a shock
load.

4.3 Stress
When some external system of forces or loads act on a body, the internal forces (equal and

opposite) are set up at various sections of the body, which resist the external forces. This internal
force per unit area at any section of the body is known as unit stress or simply a stress. It is denoted
by a Greek letter sigma (σ). Mathematically,

Stress, σ = P/A

where P = Force or load acting on a body, and

A = Cross-sectional area of the body.

In S.I. units, the stress is usually expressed in Pascal (Pa) such that 1 Pa = 1 N/m2. In actual
practice, we use bigger units of stress i.e. megapascal (MPa) and gigapascal (GPa), such that

1 MPa = 1 × 106 N/m2 = 1 N/mm2

and 1 GPa = 1 × 109 N/m2 = 1 kN/mm2

4.4 Strain
When a system of forces or loads act on a body, it undergoes some deformation. This deformation

per unit length is known as unit strain or simply a strain. It is denoted by a Greek letter epsilon (ε).
Mathematically,

Strain, ε = δl / l or  δl = ε.l

where δl = Change in length of the body, and

l = Original length of the body.

4.5 Tensile Stress and Strain

Fig. 4.1. Tensile stress and strain.

When a body is subjected to two equal and opposite axial pulls P (also called tensile load) as
shown in Fig. 4.1 (a), then the stress induced at any section of the body is known as tensile stress as
shown in Fig. 4.1 (b). A little consideration will show that due to the tensile load, there will be a
decrease in cross-sectional area and an increase in length of the body. The ratio of the increase in
length to the original length is known as tensile strain.
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Let P = Axial tensile force acting on the body,

A = Cross-sectional area of the body,
l = Original length, and

δl = Increase in length.

∴ Tensile stress, σt = P/A

and tensile strain, ε t = δl / l

4.6 Compressive Stress and
Strain

When a body is subjected to two
equal and opposite axial pushes P (also
called compressive load) as shown in
Fig. 4.2 (a), then the stress induced at any
section of the body is known as
compressive stress as shown in Fig. 4.2
(b). A little consideration will show that
due to the compressive load, there will be
an increase in cross-sectional area and a
decrease in length of the body. The ratio
of the decrease in length to the original
length is known as compressive strain.

Fig. 4.2. Compressive stress and strain.

Let P = Axial compressive force acting on the body,

A = Cross-sectional area of the body,

l = Original length, and

δl = Decrease in length.

∴ Compressive stress, σc = P/A

and compressive strain, εc = δl /l

Note : In case of tension or compression, the area involved is at right angles to the external force applied.

4.7 Young's Modulus or Modulus of Elasticity
Hooke's law* states that when a material is loaded within elastic limit, the stress is directly

proportional to strain, i.e.

σ ∝ ε or σ = E.ε

∴ E =
P l

A l

σ ×=
ε × δ

* It is named after Robert Hooke, who first established it by experiments in 1678.

Note : This picture is given as additional information and is
not a direct example of the current chapter.

Shock  absorber of a motorcycle absorbs stresses.
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where E is a constant of proportionality known as Young's modulus or modulus of elasticity. In S.I.
units, it is usually expressed in GPa i.e. GN/m2 or kN/mm2. It may be noted that Hooke's law holds
good for tension as well as compression.

The following table shows the values of modulus of elasticity or Young's modulus (E) for the
materials commonly used in engineering practice.

Table 4.1. Values of E for the commonly used engineering materials.

Material Modulus of elasticity (E) in GPa i.e. GN/m2 or kN/mm2

Steel and Nickel 200 to 220

Wrought iron 190 to 200

Cast iron 100 to 160

Copper 90 to 110

Brass 80 to 90

Aluminium 60 to 80

Timber 10

Example 4.1. A coil chain of a crane required to carry a maximum load of 50 kN, is shown in
Fig. 4.3.

Fig. 4.3

Find the diameter of the link stock, if the permissible tensile stress in the link material is not to
exceed 75 MPa.

Solution. Given :  P  = 50 kN = 50 × 103 N ; σt = 75 MPa = 75 N/mm2

Let d = Diameter of the link stock in mm.

∴ Area, A =  
π
4

× d2 = 0.7854 d 2

We know that the maximum load (P),

50 × 103 = σt. A = 75 × 0.7854 d 2  = 58.9 d2

∴ d 2 = 50 × 103 / 58.9 = 850   or   d = 29.13 say 30 mm Ans.
Example 4.2.  A cast iron link, as shown in Fig. 4.4, is required to transmit a steady tensile load

of 45 kN. Find the tensile stress induced in the link material at sections A-A and B-B.

Fig. 4.4.  All dimensions in mm.
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Solution. Given :   P = 45 kN = 45 × 103 N

Tensile stress induced at section A-A

We know that the cross-sectional area of link at section A-A,

A1 = 45 × 20 = 900 mm2

∴ Tensile stress induced at section A-A,

σt1

3

1

45 10

900

×= =P

A  = 50 N/mm2 = 50 MPa  Ans.

Tensile stress induced at section B-B

We know that the cross-sectional area of link at section B-B,

A2 = 20 (75 – 40) = 700 mm2

∴ Tensile stress induced at section B-B,

σt2

3

2

45 10

700

×= =P

A
 = 64.3 N/mm2 = 64.3 MPa Ans.

Example 4.3.  A hydraulic press exerts a total load of 3.5 MN. This load is carried by two steel
rods, supporting the upper head of the press. If the safe stress is 85 MPa and E = 210 kN/mm2,
find : 1. diameter of the rods, and 2. extension in each rod in a length of 2.5 m.

Solution. Given : P = 3.5 MN = 3.5 × 106 N ; σt = 85 MPa = 85 N/mm2 ; E = 210 kN/mm2

= 210 × 103 N/mm2 ; l = 2.5 m = 2.5 × 103 mm

1.  Diameter of the rods

Let        d = Diameter of the rods in mm.

∴ Area,        A =
4

π
 × d 2  = 0.7854 d 2

Since the load P is carried by two rods, therefore load carried by each rod,

     P1 = 
63.5 10

2 2

P ×=  = 1.75 × 106 N

We know that load carried by each rod (P1),

                              1.75 × 106 = σt . A = 85 × 0.7854 d 2  = 66.76 d 2

∴      d 2 = 1.75 × 106/66.76 = 26 213   or   d = 162 mm  Ans.

2.  Extension in each rod

Let       δl = Extension in each rod.

We know that Young's modulus (E),

                 210 × 103  =
3 3

1 85 2.5 10 212.5 10t lP l

A l l l l

σ ×× × × ×= = =
× δ δ δ δ

... 1⎛ ⎞= σ⎜ ⎟
⎝ ⎠
Q t

P

A

∴       δl = 212.5 × 103/(210 × 103) = 1.012 mm Ans.
Example 4.4. A rectangular base plate is fixed at each of its four corners by a 20 mm diameter

bolt and nut as shown in Fig. 4.5. The plate rests on washers of 22 mm internal diameter and
50 mm external diameter. Copper washers which are placed between the nut and the plate are of
22 mm internal diameter and 44 mm external diameter.
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If the base plate carries a load of 120 kN (including
self-weight, which is equally distributed on the four corners),
calculate the stress on the lower washers before the nuts are
tightened.

What could be the stress in the upper and lower washers,
when the nuts are tightened so as to produce a tension of
5 kN on each bolt?

Solution. Given : d = 20 mm ; d1 = 22 mm ; d2 = 50
mm ; d3 = 22 mm ; d4 = 44 mm ; P1 = 120 kN ; P2 = 5 kN

Stress on the lower washers before the nuts are
tightened

We know that area of lower washers,

A1 = 2 2 2 2
2 1( ) ( ) (50) (22)

4 4
d d

π π⎡ ⎤ ⎡ ⎤− = −⎣ ⎦⎣ ⎦  = 1583 mm2

and area of upper washers,

A2 = 2 2 2 2
4 3( ) ( ) (44) (22)

4 4
d d

π π⎡ ⎤ ⎡ ⎤− = −⎣ ⎦⎣ ⎦  = 1140 mm2

Since the load of 120 kN on the four washers is equally distributed, therefore load on each
lower washer before the nuts are tightened,

P1 =
120

4
 = 30 kN = 30 000 N

We know that stress on the lower washers before the nuts are tightened,

σc1 =  1

1

30 000

1583
=P

A
 = 18.95 N/mm2 = 18.95 MPa   Ans.

Stress on the upper washers when the nuts are tightened
Tension on each bolt when the nut is tightened,

P2 = 5 kN = 5000 N
∴  Stress on the upper washers when the nut is tightened,

σc2 =  2

2

5000

1140
=P

A
 = 4.38 N/mm2 = 4.38 MPa Ans.

Stress on the lower washers when the nuts are tightened
We know that the stress on the lower washers when the nuts are tightened,

σc3 = 1 2

1

30 000 5000

1583

+ +=P P

A
 = 22.11 N/mm2 = 22.11 MPa Ans.

Example 4.5. The piston rod of a steam engine is 50 mm in diameter and 600 mm long. The
diameter of the piston is 400 mm and the maximum steam pressure is 0.9 N/mm2. Find the compres-
sion of the piston rod if the Young's modulus for the material of the piston rod is 210 kN/mm2.

Solution. Given : d = 50 mm ; l = 600 mm ; D = 400 mm ; p = 0.9 N/mm2 ; E = 210 kN/mm2

= 210 × 103 N/mm2

Let δl = Compression of the piston rod.
We know that cross-sectional area of piston,

=
4

π
 × D2 = 

4

π
 (400)2 = 125 680 mm2

∴ Maximum load acting on the piston due to steam,
P = Cross-sectional area of piston × Steam pressure

= 125 680 × 0.9 = 113 110 N

Fig. 4.5
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We also know that cross-sectional area of piston rod,

A =
4

π
 × d 2  = 

4

π
 (50)2

= 1964 mm2

and Young's modulus (E),

210 × 103 =
×
×δ

P l

A l

113 110 600 34 555

1964

×= =
× δ δl l

∴ δl = 34 555 / (210 × 103)

= 0.165 mm  Ans.

4.8 Shear Stress and Strain
When a body is subjected to two equal and opposite

forces acting tangentially across the resisting section, as a
result of which the body tends to shear off the section, then the stress induced is called shear stress.

Fig. 4.6. Single shearing of a riveted joint.

The corresponding strain is known as shear strain and it is measured by the angular deformation
accompanying the shear stress. The shear stress and shear strain are denoted by the Greek letters tau
(τ) and phi (φ) respectively. Mathematically,

Shear stress, τ =
Tangential force

Resisting area
Consider a body consisting of two plates connected by a rivet as shown in Fig. 4.6 (a). In this

case, the tangential force P tends to shear off the rivet at one cross-section as shown in Fig. 4.6 (b). It
may be noted that when the tangential force is resisted by one cross-section of the rivet (or when
shearing takes place at one cross-section of the rivet), then the rivets are said to be in single shear. In
such a case, the area resisting the shear off the rivet,

         A = 2

4

π × d

and shear stress on the rivet cross-section,

τ = 2
2

4

4

= =
π π×

P P P

A dd

Now let us consider two plates connected by the two cover plates as shown in Fig. 4.7 (a). In
this case, the tangential force P tends to shear off the rivet at two cross-sections as shown in Fig. 4.7
(b). It may be noted that when the tangential force is resisted by two cross-sections of the rivet (or

This picture shows a jet engine being
tested for bearing high stresses.
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when the shearing takes place at two cross-sections of the rivet), then the rivets are said to be in
double shear. In such a case, the area resisting the shear off the rivet,

A = 22
4

d
π× × ... (For double shear)

and shear stress on the rivet cross-section,

τ = 2
2

2

2
4

P P P

A dd
= =

π π× ×

Fig. 4.7. Double shearing of a riveted joint.

Notes : 1. All lap joints and single cover butt joints are in single shear, while the butt joints with double cover
plates are in double shear.

2. In case of shear, the area involved is parallel to the external force applied.
3. When the holes are to be punched or drilled in the metal plates, then the tools used to perform the

operations must overcome the ultimate shearing resistance of the material to be cut. If a hole of diameter ‘d’ is
to be punched in a metal plate of thickness ‘t’, then the area to be sheared,

A = π d × t
and the maximum shear resistance of the tool or the force required to punch a hole,

P = A × τu = π d × t × τu

where τu = Ultimate shear strength of the material of the plate.

4.9 Shear Modulus or Modulus of Rigidity
It has been found experimentally that within the elastic limit, the shear stress is directly

proportional to shear strain. Mathematically

τ ∝ φ  or    τ = C . φ   or   τ / φ = C

where τ = Shear stress,

φ = Shear strain, and

C = Constant of proportionality, known as shear modulus or modulus
of rigidity. It is also denoted by N or G.

The following table shows the values of modulus of rigidity (C) for the materials in every day
use:

Table 4.2. Values of C for the commonly used materials.

Material Modulus of rigidity (C) in GPa i.e. GN/m2 or kN/mm2

Steel 80 to 100

Wrought iron 80 to 90

Cast iron 40 to 50

Copper 30 to 50

Brass 30 to 50

Timber 10
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Example 4.6. Calculate the force required to punch a circular blank of 60 mm diameter in a

plate of 5 mm thick. The ultimate shear stress of the plate is 350 N/mm2.

Solution. Given: d = 60 mm ; t = 5 mm ; τu = 350 N/mm2

We know that area under shear,

A = π d ×τ =  π × 60 × 5 = 942.6 mm2

and force required to punch a hole,

P = A × τu = 942.6 × 350 = 329 910 N = 329.91 kN  Ans.

Example 4.7. A pull of 80 kN is transmitted from a bar X to the bar Y through a pin as shown
in Fig. 4.8.

If the maximum permissible tensile stress in the bars is 100 N/mm2 and the permissible shear
stress in the pin is 80 N/mm2, find the diameter of bars and of the pin.

Fig. 4.8

Solution. Given : P = 80 kN = 80 × 103 N;
σt = 100 N/mm2 ; τ = 80 N/mm2

Diameter of the bars
Let  Db = Diameter of the bars in mm.

∴ Area,  Ab =
4

π
 (Db)

2 = 0.7854 (Db)2

We know that permissible tensile stress in the bar
(σt),

                 
3

2 2

80 10 101 846
100

0.7854 ( ) ( )

×= = =
b b b

P

A D D

∴        (Db)
2  = 101 846 / 100 = 1018.46

 or                      Db = 32 mm  Ans.
Diameter of the pin

Let            Dp = Diameter of the pin in mm.

Since the tensile load P tends to shear off the pin at two sections i.e. at AB and CD, therefore the
pin is in double shear.

∴     Resisting area,

                  Ap = 2 × 
4

π
  (Dp)

2 = 1.571 (Dp )2

We know that permissible shear stress in the pin (τ),

                 

3 3

2 2

80 10 50.9 10
80

1.571 ( ) ( )

× ×= = =
p p p

P

A D D

∴        (Dp)
2 = 50.9 × 103/80 = 636.5  or  Dp = 25.2 mm Ans.

High force injection moulding machine.
Note : This picture is given as additional information
and is not a direct example of the current chapter.
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4.10  Bearing Stress
A localised compressive stress at the surface of contact between two members of a machine

part, that are relatively at rest is known as bearing stress or crushing stress. The bearing stress is
taken into account in the design of riveted joints, cotter joints, knuckle joints, etc. Let us consider a
riveted joint subjected to a load P as shown in Fig. 4.9. In such a case, the bearing stress or crushing
stress (stress at the surface of contact between the rivet and a plate),

σb (or σc ) =
. .

P

d t n
where d = Diameter of the rivet,

t = Thickness of the plate,

d.t = Projected area of the rivet, and

n = Number of rivets per pitch length in bearing or crushing.

Fig. 4.9. Bearing stress in a riveted joint.           Fig. 4.10. Bearing pressure in a journal
           supported in a bearing.

It may be noted that the local compression which exists at the surface of contact between two
members of a machine part that are in relative motion, is called bearing pressure (not the bearing
stress). This term is commonly used in the design of a journal supported in a bearing, pins for levers,
crank pins, clutch lining, etc. Let us consider a journal rotating in a fixed bearing as shown in Fig.
4.10 (a). The journal exerts a bearing pressure on the curved surfaces of the brasses immediately
below it. The distribution of this bearing pressure will not be uniform, but it will be in accordance
with the shape of the surfaces in contact and deformation characteristics of the two materials. The
distribution of bearing pressure will be similar to that as shown in Fig. 4.10 (b). Since the actual
bearing pressure is difficult to determine, therefore the average bearing pressure is usually calculated
by dividing the load to the projected area of the curved surfaces in contact. Thus, the average bearing
pressure for a journal supported in a bearing is given by

pb =
.

P

l d
where pb = Average bearing pressure,

P = Radial load on the journal,

l = Length of the journal in contact, and

d = Diameter of the journal.
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Example 4.8. Two plates 16 mm thick are

joined by a double riveted lap joint as shown in
Fig. 4.11. The rivets are 25 mm in diameter.

Find the crushing stress induced between
the plates and the rivet, if the maximum tensile
load on the joint is 48 kN.

Solution. Given : t = 16 mm ; d = 25 mm ;
P = 48 kN = 48 × 103 N

Since the joint is double riveted, therefore, strength of two rivets in bearing (or crushing) is
taken. We know that crushing stress induced between the plates and the rivets,

σc =  
348 10

. . 25 16 2

P

d t n

×=
× ×

= 60 N/mm2 Ans.

Example 4.9. A journal 25 mm in diameter supported in sliding bearings has a maximum end
reaction of 2500 N. Assuming an allowable bearing pressure of 5 N/mm2, find the length of the
sliding bearing.

Solution. Given : d = 25 mm ; P = 2500 N ; pb = 5 N/mm2

Let l = Length of the sliding bearing in mm.
We know that the projected area of the bearing,

A = l × d = l × 25 = 25 l mm2

∴  Bearing pressure ( pb),

5 =  
2500 100 100

or
25 5

= = =P
l

A l l
 = 20 mm Ans.

4.11 Stress-strain Diagram
In designing various parts of a machine, it is

necessary to know how the material will function
in service. For this, certain characteristics or
properties of the material should be known. The
mechanical properties mostly used in mechanical
engineering practice are commonly determined
from a standard tensile test. This test consists of
gradually loading a standard specimen of a material
and noting the corresponding values of load and
elongation until the specimen fractures. The load
is applied and measured by a testing machine. The
stress is determined by dividing the load values by
the original cross-sectional area of the specimen.
The elongation is measured by determining the
amounts that two reference points on the specimen
are moved apart by the action of the machine. The
original distance between the two reference points
is known as gauge length. The strain is determined
by dividing the elongation values by the gauge
length.

The values of the stress and corresponding
strain are used to draw the stress-strain diagram of the material tested. A stress-strain diagram for a
mild steel under tensile test is shown in Fig. 4.12 (a). The various properties of the material are
discussed below :

Fig. 4.11

In addition to bearing the stresses, some
machine parts are made of stainless steel to
make them corrosion resistant.
Note : This picture is given as additional information
and is not a direct example of the current chapter.
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1. Proportional limit. We see from the diagram
that from point O to A is a straight line, which represents
that the stress is proportional to strain. Beyond point A,
the curve slightly deviates from the straight line. It is
thus obvious, that Hooke's law holds good up to point A
and it is known as proportional limit. It is defined as
that stress at which the stress-strain curve begins to de-
viate from the straight line.

2.  Elastic limit. It may be noted that even if the
load is increased beyond point A upto the point B, the
material will regain its shape and size when the load is
removed. This means that the material has elastic
properties up to the point B. This point is known as elastic
limit. It is defined as the stress developed in the material
without any permanent set.

Note: Since the above two limits are very close to each other,
therefore, for all practical purposes these are taken to be equal.

3. Yield point. If the material is stressed beyond
point B, the plastic stage will reach i.e. on the removal
of the load, the material will not be able to recover its
original size and shape. A little consideration will show
that beyond point B, the strain increases at a faster rate with any increase in the stress until the point
C is reached. At this point, the material yields before the load and there is an appreciable strain
without any increase in stress. In case of mild steel, it will be seen that a small load drops to D,
immediately after yielding commences. Hence there are two yield points C and D. The points C and
D are called the upper and lower yield points respectively. The stress corresponding to yield point is
known as yield point stress.

4. Ultimate stress. At D, the specimen regains some strength and higher values of stresses are
required for higher strains, than those between A and D. The stress (or load) goes on increasing till the

A crane used on a ship.
Note : This picture is given as additional information and is not a direct example of the current chapter.

Fig. 4.12. Stress-strain diagram
for a mild steel.
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point E is reached. The gradual increase in the strain (or length) of the specimen is followed with the
uniform reduction of its cross-sectional area. The work done, during stretching the specimen, is
transformed largely into heat and the
specimen becomes hot. At E, the
stress, which attains its maximum
value is known as ultimate stress. It
is defined as the largest stress
obtained by dividing the largest value
of the load reached in a test to the
original cross-sectional area of the
test piece.

5. Breaking stress. After the
specimen has reached the ultimate
stress, a neck is formed, which
decreases the cross-sectional area of
the specimen, as shown in Fig. 4.12
(b). A little consideration will show
that the stress (or load) necessary to
break away the specimen, is less than
the maximum stress. The stress is, therefore, reduced until the specimen breaks away at point F. The
stress corresponding to point F is known as breaking stress.
Note : The breaking stress (i.e.  stress at F which is less than at E) appears to be somewhat misleading. As the
formation of a neck takes place at E which reduces the cross-sectional area, it causes the specimen suddenly
to fail at F. If for each value of the strain between E and F, the tensile load is divided by the reduced cross-
sectional area at the narrowest part of the neck, then the true stress-strain curve will follow the dotted line EG.
However, it is an established practice, to calculate strains on the basis of original cross-sectional area of the
specimen.

6. Percentage reduction in area. It is the difference between the original cross-sectional area
and cross-sectional area at the neck (i.e. where the fracture takes place). This difference is expressed
as percentage of the original cross-sectional area.

Let A = Original cross-sectional area, and

a = Cross-sectional area at the neck.

Then reduction in area = A – a

and percentage reduction in area = 100
A a

A

− ×

7. Percentage elongation. It is the percentage increase in the standard gauge length (i.e. original
length) obtained by measuring the fractured specimen after bringing the broken parts together.

Let l = Gauge length or original length, and

L = Length of specimen after fracture or final length.

∴ Elongation = L – l

and percentage elongation = 100
L l

l

− ×

Note : The percentage elongation gives a measure of ductility of the metal under test. The amount of local
extensions depends upon the material and also on the transverse dimensions of the test piece. Since the specimens
are to be made from bars, strips, sheets, wires, forgings, castings, etc., therefore it is not possible to make all
specimens of one standard size. Since the dimensions of the specimen influence the result, therefore some
standard means of comparison of results are necessary.

A recovery truck with crane.

Note : This picture is given as additional information and is not a
direct example of the current chapter.
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As a result of series of experiments, Barba estabilished a law that in tension, similar test pieces deform

similarly and two test pieces are said to be similar if they have the same value of ,
l

A
 where l is the gauge

length and A is the cross-sectional area. A little consideration will show that the same material will give the same
percentage elongation and percentage reduction in area.

It has been found experimentally by Unwin that the general extension (up to the maximum load) is
proportional to the gauge length of the test piece and that the local extension (from maximum load to the
breaking load) is proportional to the square root of the cross-sectional area. According to Unwin's formula, the
increase in length,

δl = b.l + C A

and   percentage elongation =  100
δ ×l

l

where l = Gauge length,

A = Cross-sectional area, and

b and C = Constants depending upon the quality of the material.

The values of b and C are determined by finding the values of δl for two test pieces of known length (l)
and area (A).

Example 4.10. A mild steel rod of 12 mm diameter was tested for tensile strength with the
gauge length of 60 mm. Following observations were recorded :

Final length = 80 mm; Final diameter = 7 mm; Yield load = 3.4 kN and Ultimate load = 6.1 kN.

Calculate : 1. yield stress, 2. ultimate tensile stress, 3. percentage reduction in area, and
4. percentage elongation.

Solution. Given : D = 12 mm ; l = 60 mm ; L = 80 mm ; d = 7 mm ; Wy = 3.4 kN
= 3400 N; Wu = 6.1 kN = 6100 N

We know that original area of the rod,

A =  
4

π
 × D 2 = 

4

π
 (12)2 = 113 mm2

and final area of the rod,

a =
4

π
 × d 2 = 

4

π
 (7)2 = 38.5 mm2

1. Yield stress

We know that yield stress

=  
3400

113
yW

A
=  = 30.1 N/mm2 = 30.1 MPa Ans.

2. Ultimate tensile stress

We know the ultimate tensile stress

=  
6100

113
uW

A
=  = 54 N/mm2 = 54 MPa  Ans.

3. Percentage reduction in area

We know that percentage reduction in area

=  
113 38.5

113

A a

A

− −=  = 0.66 or 66%  Ans.
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4. Percentage elongation

We know that percentage elongation

=
80 60

80

L l

L

− −=  = 0.25 or 25% Ans.

4.12 Working Stress
When designing machine parts, it is desirable to keep the stress lower than the maximum or

ultimate stress at which failure of the material takes place. This stress is known as the working stress
or design stress. It is also known as safe or allowable stress.
Note : By failure it is not meant actual breaking of the material. Some machine parts are said to fail when they
have plastic deformation set in them, and they no more perform their function satisfactory.

4.13 Factor of Safety
It is defined, in general, as the ratio of the maximum stress to the working stress. Mathematically,

Factor of safety =
Maximum stress

Working or design stress
In case of ductile materials e.g. mild steel, where the yield point is clearly defined, the factor of

safety is based upon the yield point stress. In such cases,

Factor of safety =
Yield point stress

Working or design stress
In case of brittle materials e.g. cast iron, the yield point is not well defined as for ductile mate-

rials. Therefore, the factor of safety for brittle materials is based on ultimate stress.

∴ Factor of safety =
Ultimate stress

Working or design stress
This relation may also be used for ductile materials.

Note: The above relations for factor of safety are for static loading.

4.14 Selection of Factor of Safety
The selection of a proper factor of safety to be used in designing any machine component

depends upon a number of considerations, such as the material, mode of manufacture, type of stress,
general service conditions and shape of the parts. Before selecting a proper factor of safety, a design
engineer should consider the following points :

1. The reliability of the properties of the material and change of these properties during
service ;

2. The reliability of test results and accuracy of application of these results to actual machine
parts ;

3. The reliability of applied load ;
4. The certainty as to exact mode of failure ;
5. The extent of simplifying assumptions ;
6. The extent of localised stresses ;
7. The extent of initial stresses set up during manufacture ;
8. The extent of loss of life if failure occurs ; and
9. The extent of loss of property if failure occurs.

Each of the above factors must be carefully considered and evaluated. The high factor of safety
results in unnecessary risk of failure. The values of factor of safety based on ultimate strength for
different materials and type of load are given in the following table:
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Table 4.3. Values of factor of safety.

Material Steady load Live load Shock load

Cast iron 5 to 6 8 to 12 16 to 20

Wrought iron 4 7 10 to 15

Steel 4 8 12 to 16

Soft materials and 6 9 15

alloys

Leather 9 12 15

Timber 7 10 to 15 20

4.15 Stresses in Composite Bars
A composite bar may be defined as a bar made up of two or more different materials, joined

together, in such a manner that the system extends or contracts as one unit, equally, when subjected to
tension or compression. In case of composite bars, the following points should be kept in view:

1. The extension or contraction of the bar being equal, the strain i.e. deformation per unit
length is also equal.

2. The total external load on the bar is equal to the sum of the loads carried by different
materials.

Consider a composite bar made up of two different materials as shown in Fig. 4.13.

Let P1 = Load carried by bar 1,

A1 = Cross-sectional area of bar 1,

σ1 = Stress produced in bar 1,

E1 = Young's modulus of bar 1,

P2, A2, σ2, E2 = Corresponding values of bar 2,

P = Total load on the composite bar,

l = Length of the composite bar, and

δl = Elongation of the composite bar.

We know that P = P1 + P2 ...(i)

Stress in bar 1, σ1 = 1

1

P

A

and strain in bar 1,  ε =  1 1

1 1 1.

σ = P

E A E

∴ Elongation of bar 1,

δl1 = 1

1 1

.

.

P l

A E
Similarly, elongation of bar 2,

δl2 = 2

2 2

.

.

P l

A E

Since δl1 = δl2
A Material handling system

Note : This picture is given as additional information
and is not a direct example of the current chapter.

Fig. 4.13. Stresses in
composite bars.
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Therefore,      
1 2 1 1

1 2
1 1 2 2 2 2

. . .
or

. . .
= = ×P l P l A E

P P
A E A E A E

...(ii)

But P = P1 + P2 = P2  
1 1 1 1

2 2
2 2 2 2

. .
1

. .
⎛ ⎞× + = +⎜ ⎟
⎝ ⎠

A E A E
P P

A E A E

= P2 
1 1 2 2

2 2

. .

.

+⎛ ⎞
⎜ ⎟
⎝ ⎠

A E A E

A E

or P2 = P 2 2

1 1 2 2

.

. .
×

+
A E

A E A E
...(iii)

Similarly P1 = P × 
1 1

1 1 2 2

.

. .+
A E

A E A E
...[From equation (ii)] ...(iv)

We know that

1 2

1 1 2 2

. .

. .
=P l P l

A E A E

∴
1 2

1 2

σ σ=
E E

or σ1 = 1
2

2

× σE

E
...(v)

Similarly, σ2 =  2
1

1

× σE

E
...(vi)

From the above equations, we can find out the stresses produced in the different bars. We also
know that

P = P1 + P2 = σ1.A1 + σ2.A2

From this equation, we can also find out the stresses produced in different bars.

Note : The ratio E1 / E2 is known as modular ratio of the two materials.

Example 4.11. A bar 3 m long is made of two bars, one of copper having E = 105 GN/m2 and
the other of steel having E = 210 GN/m2. Each bar is 25 mm broad and 12.5 mm thick. This compound
bar is stretched by a load of 50 kN. Find the increase in length of the compound bar and the stress
produced in the steel and copper. The length of copper as well as of steel bar is 3 m each.

Solution. Given : lc = ls = 3 m = 3 × 103 mm ; Ec = 105 GN/m2 = 105 kN/mm2 ; Es = 210 GN/m2

= 210 kN/mm2 ; b = 25 mm ; t = 12.5 mm ; P = 50 kN

Increase in length of the compound bar

Let δl = Increase in length of the
compound bar.

The compound bar is shown in Fig. 4.14. We know that
cross-sectional area of each bar,

Ac = As = b × t = 25 × 12.5 = 312.5 mm2

Fig. 4.14
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∴ Load shared by the copper bar,

Pc = P × 
.

. .
c c c

c c s s c s

A E E
P

A E A E E E
= ×

+ +
... ( )=Q c sA A

=
105

50 16.67 kN
105 210

× =
+

and load shared by the steel bar,

Ps = P – Pc = 50 – 16.67 = 33.33 kN

Since the elongation of both the bars is equal, therefore

δl =
3. . 16.67 3 10

1.52 mm
. . 312.5 105

c c s s

c c s s

P l P l

A E A E

× ×= = =
×

Ans.

Stress produced in the steel and copper bar

We know that stress produced in the steel bar,

σs =
210

2
105

s
c c c

c

E

E
×σ = × σ = σ

and total load, P = Ps + Pc = σs.As + σc.Ac

∴ 50 = 2 σc × 312.5 + σc × 312.5 = 937.5 σc

or σc = 50 / 937.5 = 0.053 kN/mm2 = 53 N/mm2 = 53 MPa Ans.
and  σs = 2 σc = 2 × 53 = 106 N/mm2 = 106 MPa Ans.

Example 4.12. A central steel rod 18 mm diameter passes through a copper tube 24 mm inside
and 40 mm outside diameter, as shown in Fig. 4.15. It is provided with nuts and washers at each end.
The nuts are tightened until a stress of 10 MPa is set up in the steel.

Fig. 4.15

The whole assembly is then placed in a lathe and turned along half the length of the tube
removing the copper to a depth of 1.5 mm. Calculate the stress now existing in the steel. Take
Es = 2Ec.

Solution. Given : ds = 18 mm ; dc1 = 24 mm ; dc2 = 40 mm ; σs = 10 MPa = 10 N/mm2

We know that cross-sectional area of steel rod,

As = 2 2 2( ) (18) 254.5 mm
4 4sd
π π= =

and cross-sectional area of copper tube,

Ac = 2 2 2 2 2
2 1( ) ( ) (40) (24) 804.4 mm

4 4c cd d
π π⎡ ⎤ ⎡ ⎤− = − =⎣ ⎦⎣ ⎦

We know that when the nuts are tightened on the tube, the steel rod will be under tension and the
copper tube in compression.

Let σc = Stress in the copper tube.
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Since the tensile load on the steel rod is equal to the compressive load on the copper tube,

therefore

σs × As = σc × Ac

10 × 254.5 = σc × 804.4

∴ σc =  
210 254.5

3.16 N/mm
804.4

× =

When the copper tube is reduced in the area for half of its length, then outside diameter of
copper tube,

= 40 – 2 × 1.5 = 37 mm

∴ Cross-sectional area of the half length of copper tube,

Ac1 = 2 2 2(37 24 ) 623 mm
4

π − =

The cross-sectional area of the other half remains same. If Ac2 be the area of the remainder, then

Ac2 = Ac = 804.4 mm2

Let σc1 = Compressive stress in the reduced section,

σc2 = Compressive stress in the remainder, and

σs1 = Stress in the rod after turning.

Since the load on the copper tube is equal to the load on the steel rod, therefore

A
c1

 × σ
c1

= A
c2

 × σ
c2

 = A
s 
× σ

s1

∴ σc1 =  1 1 1
1

254.5
0.41

623
s

s s s
c

A

A
× σ = × σ = σ ...(i)

and σc2 =  1 1 1
2

254.5
0.32

804.4
s

s s s
c

A

A
× σ = × σ = σ ...(ii)

Let δl = Change in length of the steel rod before and after turning,

l = Length of the steel rod and copper tube between nuts,

δl1 = Change in length of the reduced section (i.e. l/2) before and after
turning, and

δl2 = Change in length of the remainder section (i.e. l/2) before and after
turning.

Since δl = δl1 + δl2

∴
1 21

2 2

σ − σσ − σ σ − σ
× = × + ×c cs s c c

s c c

l l
l

E E E

or 1 1 110 0.41 3.16 0.32 3.16

2 2 2
s s s

c c cE E E

− σ σ − σ −
= + ...(Cancelling l throughout)

∴ σs1 = 9.43 N/mm2 = 9.43 MPa Ans.

4.16 Stresses due to Change in Temperature—Thermal Stresses
Whenever there is some increase or decrease in the temperature of a body, it causes the body to

expand or contract. A little consideration will show that if the body is allowed to expand or contract
freely, with the rise or fall of the temperature, no stresses are induced in the body. But, if the deformation
of the body is prevented, some stresses are induced in the body. Such stresses are known as thermal
stresses.
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Let l = Original length of the body,
t = Rise or fall of temperature, and

α = Coefficient of thermal expansion,
∴ Increase or decrease in length,

δl = l. α.t
If the ends of the body are fixed to rigid supports, so that its expansion is prevented, then

compressive strain induced in the body,

εc =  
. .

.
l l t

t
l l

δ α= = α

∴ Thermal stress, σth = εc.E = α.t.E

Notes : 1. When a body is composed of two or different materials having different coefficient of thermal
expansions, then due to the rise in temperature, the material with higher coefficient of thermal expansion will be
subjected to compressive stress whereas the material with low coefficient of expansion will be subjected to
tensile stress.

2. When a thin tyre is shrunk on to a wheel of diameter D, its internal diameter d is a little less than the
wheel diameter. When the tyre is heated, its circumferance π d will increase to π D. In this condition, it is
slipped on to the wheel. When it cools, it wants to return to its original circumference π d, but the wheel if it is
assumed to be rigid, prevents it from doing so.

∴ Strain, ε =
D d D d

d d

π − π −=
π

This strain is known as circumferential or hoop strain.

∴ Circumferential or hoop stress,

σ = E.ε = 
( )E D d

d

−

Example 4.13. A thin steel tyre is shrunk on to a locomotive wheel of 1.2 m diameter. Find the
internal diameter of the tyre if after shrinking on, the hoop stress in the tyre is 100 MPa. Assume
E = 200 kN/mm2. Find also the least temperature to which the tyre must be heated above that of the
wheel before it could be slipped on. The coefficient of linear expansion for the tyre is 6.5 × 10–6 per °C.

Solution. Given : D = 1.2 m = 1200 mm ; σ = 100 MPa = 100 N/mm2 ; E = 200 kN/mm2

= 200 × 103 N/mm2 ; α = 6.5 × 10–6 per °C

Steel tyres of a locomotive.
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Internal diameter of the tyre

Let d = Internal diameter of the tyre.

We know that hoop stress (σ),

100 =
3( ) 200 10 ( )E D d D d

d d

− × −=

∴
3 3

100 1

200 10 2 10

D d

d

− = =
× ×

...(i)

3

1
1 1.0005

2 10
= + =

×
D

d

∴ d =
1200

1199.4 mm 1.1994 m
1.0005 1.0005

= = =D
Ans.

Least temperature to which the tyre must be heated
Let t = Least temperature to which the tyre must be heated.

We know that

π D = π d + π d . α.t = π d (1 + α.t)

α.t = 3

1
1

2 10

D D d

d d

π −− = =
π ×

...[From equation (i)]

∴ t = 3 6 3

1 1
77 C

2 10 6.5 10 2 10−= = °
α × × × × ×

  Ans.

Example 4.14. A composite bar made of aluminium and steel is held between the supports as
shown in Fig. 4.16. The bars are stress free at a temperature of 37°C. What will be the stress in the
two bars when the temperature is 20°C, if (a) the supports are unyielding; and (b) the supports yield
and come nearer to each other by 0.10 mm?

It can be assumed that the change of temperature is uniform all along the length of the bar.
Take Es = 210 GPa ; Ea = 74 GPa ; αs = 11.7 × 10–6 / °C ; and αa = 23.4 × 10–6 / °C.

Fig. 4.16

Solution. Given : t1 = 37°C ; t2 = 20°C ; Es = 210 GPa = 210 × 109 N/m2 ; Ea = 74 GPa
= 74 × 109 N/m2 ; αs = 11.7 × 10–6 / °C ; αa = 23.4 × 10–6 / °C , ds = 50 mm = 0.05 m ; da = 25 mm
= 0.025 m ; ls = 600 mm = 0.6 m ; la = 300 mm = 0.3 m

Let us assume that the right support at B is removed and the bar is allowed to contract freely due
to the fall in temperature. We know that the fall in temperature,

t = t1 –  t2 = 37 – 20 = 17°C

∴ Contraction in steel bar

= αs . ls . t = 11.7 × 10–6 × 600 × 17 = 0.12 mm

and contraction in aluminium bar

= αa . la . t = 23.4 × 10–6 × 300 × 17 = 0.12 mm

Total contraction = 0.12 + 0.12 = 0.24 mm = 0.24 × 10–3 m

It may be noted that even after this contraction (i.e. 0.24 mm) in length, the bar is still stress free
as the right hand end was assumed free.
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Let an axial force P is applied to the right end till this end is brought in contact with the right
hand support at B, as shown in Fig. 4.17.

Fig. 4.17

We know that cross-sectional area of the steel bar,

As =  2 2 3 2( ) (0.05) 1.964 10 m
4 4sd −π π= = ×

and cross-sectional area of the aluminium bar,

Aa =  2 2 3 2( ) (0.025) 0.491 10 m
4 4ad −π π= = ×

We know that elongation of the steel bar,

δls =  3 9 6

0.6 0.6
m

1.964 10 210 10 412.44 10
s

s s

P l P P

A E −
× ×= =
× × × × ×

= 1.455 × 10–9 P m

and elongation of the aluminium bar,

δla = 3 9 6

0.3 0.3
m

0.491 10 74 10 36.334 10−
× ×= =
× × × × ×

a

a a

P l P P

A E

= 8.257 × 10–9 P m

∴ Total elongation, δl = δls + δla
= 1.455 × 10–9 P + 8.257 × 10–9P = 9.712 × 10–9 P m

Let σs = Stress in the steel bar, and

σa = Stress in the aluminium bar.

(a) When the supports are unyielding

When the supports are unyielding, the total contraction is equated to the total elongation,i.e.

0.24 × 10–3 = 9.712 × 10–9P     or  P = 24 712 N

∴ Stress in the steel bar,

σs = P/As = 24 712 / (1.964 × 10–3) = 12 582 × 103 N/m2

= 12.582 MPa Ans.

and stress in the aluminium bar,

σa = P/Aa = 24 712 / (0.491 × 10–3) = 50 328 × 103 N/m2

= 50.328 MPa Ans.

(b) When the supports yield by 0.1 mm

When the supports yield and come nearer to each other by 0.10 mm, the net contraction in
length

= 0.24 – 0.1 = 0.14 mm = 0.14 × 10–3 m
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Equating this net contraction to the total elongation, we have

0.14 × 10–3 = 9.712 × 10–9 P    or   P = 14 415 N

∴ Stress in the steel bar,

σs = P/As = 14 415 / (1.964 × 10–3) = 7340 × 103 N/m2

= 7.34 MPa  Ans.

and stress in the aluminium bar,

σa = P/Aa = 14 415 / (0.491 × 10–3 ) = 29 360 × 103 N/m2

= 29.36 MPa  Ans.

Example 4.15. A copper bar 50 mm in diameter is placed within a steel tube 75 mm external
diameter and 50 mm internal diameter of exactly the same length. The two pieces are rigidly fixed
together by two pins 18 mm in diameter, one at each end passing through the bar and tube. Calculate
the stress induced in the copper bar, steel tube and pins if the temperature of the combination is
raised by 50°C. Take Es = 210 GN/m2 ; Ec = 105 GN/m2 ; αs = 11.5 × 10–6/°C and αc = 17 × 10–6/°C.

Solution. Given: dc = 50 mm ; dse = 75 mm ; dsi = 50 mm ; dp = 18 mm = 0.018 m ;
t = 50°C; Es = 210 GN/m2 = 210 × 109 N/m2 ; Ec = 105 GN/m2 = 105 × 109 N/m2 ;
αs = 11.5 × 10–6/°C ; αc = 17 × 10–6/°C

The copper bar in a steel tube is shown in Fig. 4.18.

Fig. 4.18

We know that cross-sectional area of the copper bar,

Ac =  2 2 2 6 2( ) (50) 1964 mm 1964 10 m
4 4cd −π π= = = ×

and cross-sectional area of the steel tube,

As = 2 2 2 2 2( ) ( ) (75) (50) 2455 mm
4 4

π π⎡ ⎤ ⎡ ⎤− = − =⎣ ⎦⎣ ⎦se sid d

= 2455 × 10–6 m2

Let l = Length of the copper bar and steel tube.

We know that free expansion of copper bar

= αc . l . t = 17 × 10–6 × l × 50 = 850 × 10–6 l

and free expansion of steel tube

= αs . l . t = 11.5 × 10–6 × l × 50 = 575 × 10–6 l

∴  Difference in free expansion

= 850 × 10–6 l – 575 × 10–6 l = 275 × 10–6 l ...(i)
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Since the free expansion of the
copper bar is more than the free expansion
of the steel tube, therefore the copper bar
is subjected to a *compressive stress,
while the steel tube is subjected to a
tensile stress.

Let a compressive force P newton
on the copper bar opposes the extra
expansion of the copper bar and an equal
tensile force P on the steel tube pulls the
steel tube so that the net effect of
reduction in length of copper bar and the
increase in length of steel tube equalises
the difference in free expansion of the
two.

∴  Reduction in length of copper
bar due to force P

 = 
.

.c c

P l

A E

6 9

.

1964 10 105 10−=
× × ×

P l
= 6

.
m

206.22 10×
P l

and increase in length of steel bar due to force P

= –6 9

. .

. 2455 10 210 10s s

P l P l

A E
=

× × ×
= 6

.
m

515.55 10

P l

×

∴Net effect in length = 6 6

. .

206.22 10 515.55 10

P l P l+
× ×

= 4.85 × 10–9 P.l + 1.94 × 10–9 P.l = 6.79 × 10–9 P.l

Equating this net effect in length to the difference in free expansion, we have

6.79 × 10–9 P.l = 275 × 10–6 l   or   P = 40 500 N

Stress induced in the copper bar, steel tube and pins

We know that stress induced in the copper bar,

σc = P / Ac = 40 500 / (1964 × 10–6) = 20.62 × 106 N/m2 = 20.62 MPa Ans.

Stress induced in the steel tube,

σs = P / As = 40 500 / (2455 × 10–6) = 16.5 × 106 N / m2 = 16.5 MPa Ans.

Note : This picture is given as additional information and is
not a direct example of the current chapter.

* In other words, we can also say that since the coefficient of thermal expansion for copper (αc) is more than
the coefficient of thermal expansion for steel (αs), therefore the copper bar will be subjected to compressive
stress and the steel tube will be subjected to tensile stress.

Main wheels on the undercarraige of an airliner.  Air plane
landing gears and wheels need to bear high stresses and
shocks.
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and shear stress induced in the pins,

τp =  6 2

2

40500
79.57 10 N/m

2 2 (0.018)
4

p

P

A
= = ×

π×
 = 79.57 MPa  Ans.

...(Q  The pin is in double shear )

4.17 Linear and Lateral Strain
Consider a circular bar of diameter d and length l, subjected to a tensile force P as shown in

Fig. 4.19 (a).

Fig. 4.19. Linear and lateral strain.

A little consideration will show that due to tensile force, the length of the bar increases by an
amount δl and the diameter decreases by an amount δd, as shown in Fig. 4.19 (b). Similarly, if the bar
is subjected to a compressive force, the length of bar will decrease which will be followed by increase
in diameter.

It is thus obvious, that every direct stress is accompanied by a strain in its own direction which
is known as linear strain and an opposite kind of strain in every direction, at right angles to it, is
known as lateral strain.

4.18 Poisson's Ratio
It has been found experimentally that when a body is stressed within elastic limit, the lateral

strain bears a constant ratio to the linear strain, Mathematically,

Lateral strain

Linear strain
= Constant

This constant is known as Poisson's ratio and is denoted by 1/m or μ.

Following are the values of Poisson's ratio for some of the materials commonly used in engineering
practice.

Table 4.4. Values of Poisson’s ratio for commonly used materials.

S.No. Material Poisson’s ratio (1/m or μ)

1 Steel 0.25 to 0.33

2 Cast iron 0.23 to 0.27

3 Copper 0.31 to 0.34

4 Brass 0.32 to 0.42

5 Aluminium 0.32 to 0.36

6 Concrete 0.08 to 0.18

7 Rubber 0.45 to 0.50
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4.19 Volumetric Strain
When a body is subjected to a system of forces, it undergoes some changes in its dimensions. In

other words, the volume of the body is changed. The ratio of the change in volume to the original
volume is known as volumetric strain. Mathematically, volumetric strain,

εv = δV / V

where δV = Change in volume, and V = Original volume.

Notes : 1. Volumetric strain of a rectangular body subjected to an axial force is given as

εv =
2

1 ;
δ ⎛ ⎞= ε −⎜ ⎟

⎝ ⎠
V

V m
 where ε = Linear strain.

2. Volumetric strain of a rectangular body subjected to three mutually perpendicular forces is given by

εv = εx + εy + εz

where εx, εy and εz are the strains in the directions x-axis, y-axis and z-axis respectively.

4.20 Bulk Modulus
When a body is subjected to three mutually perpendicular stresses, of equal intensity, then the

ratio of the direct stress to the corresponding volumetric strain is known as bulk modulus. It is
usually denoted by K. Mathematically, bulk modulus,

K =
Direct stress

Volumetric strain /

σ=
δV V

4.21 Relation Between Bulk Modulus and Young’s Modulus
The bulk modulus (K) and Young's modulus (E) are related by the following relation,

K =  
.

3 ( 2) 3 (1 2 )

m E E

m
=

− − μ

4.22 Relation Between Young’s Modulus and Modulus of Rigidity
The Young's modulus (E) and modulus of rigidity (G) are related by the following relation,

G =  
.

2 ( 1) 2 (1 )

m E E

m
=

+ + μ

Example 4.16. A mild steel rod supports a tensile load of 50 kN. If the stress in the rod is
limited to 100 MPa, find the size of the rod when the cross-section is 1. circular, 2. square, and
3. rectangular with width = 3 × thickness.

Solution. Given : P = 50 kN = 50 × 103 N ; σt = 100 MPa = 100 N/mm2

1.  Size of the rod when it is circular
Let           d = Diameter of the rod in mm.

∴ Area,            A = 2 20.7854
4

d d
π × =

We know that tensile load (P),

    50 × 103 = σt × A = 100 × 0.7854 d 2 = 78.54 d 2

∴           d 2 = 50 × 103 / 78.54 = 636.6  or  d = 25.23 mm Ans.
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2. Size of the rod when it is square

Let x = Each side of the square rod in mm.
∴ Area, A = x × x = x2

We know that tensile load (P),
50 × 103 = σt × A = 100 × x2

∴ x2 = 50 × 103/100 = 500   or   x = 22.4 mm Ans.

3. Size of the rod when it is rectangular
Let t = Thickness of the rod in mm, and

b = Width of the rod in mm = 3 t ...(Given)

∴  Area, A = b × t = 3t × t = 3 t 2

We know that tensile load (P),
50 × 103 = σt × A = 100 × 3 t 2 = 300 t 2

∴ t 2 = 50 × 103 / 300 = 166.7  or  t = 12.9 mm Ans.
and b = 3t = 3 × 12.9 = 38.7 mm  Ans.

Example 4.17. A steel bar 2.4 m long and 30 mm square is elongated by a load of 500 kN. If
poisson's ratio is 0.25, find the increase in volume. Take E = 0.2 × 106 N/mm2.

Solution. Given : l = 2.4 m = 2400 mm ; A = 30 × 30 = 900 mm2 ; P = 500 kN = 500 × 103 N ;
1/m = 0.25 ; E = 0.2 × 106 N/mm2

Let δV = Increase in volume.
We know that volume of the rod,

V =  Area × length = 900 × 2400 = 2160 × 103 mm3

and      Young's modulus, E =
Stress /

Strain

P A=
ε

∴ ε =
3

3
6

500 10
2.8 10

. 900 0.2 10

P

A E
−×= = ×

× ×
We know that volumetric strain,

3 32
1 2.8 10 (1 2 0.25) 1.4 10

V

V m
−δ ⎛ ⎞= ε − = × − × = ×⎜ ⎟

⎝ ⎠
∴ δV = V × 1.4 × 10–3 = 2160 × 103 × 1.4 × 10–3 = 3024 mm3 Ans.

4.23 Impact Stress
Sometimes, machine members are subjected to the load

with impact. The stress produced in the member due to the falling
load is known as impact stress.

Consider a bar carrying a load W at a height h and falling
on the collar provided at the lower end, as shown in Fig. 4.20.

Let  A = Cross-sectional area of the bar,

E = Young's modulus of the material of the bar,

 l = Length of the bar,

δl = Deformation of the bar,

P = Force at which the deflection δl is produced,
 σi = Stress induced in the bar due to the application

of impact load, and

 h = Height through which the load falls. Fig. 4.20. Impact stress.
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We know that energy gained by the system in the form of strain energy

=
1

2
P l× × δ

and potential energy lost by the weight
= W (h + δl)

Since the energy gained by the system is equal to the potential energy lost by the weight, therefore

1
( )

2
P l W h l× × δ = + δ

1

2
i i

i
l l

A W h
E E

σ × σ ×⎛ ⎞σ × × = +⎜ ⎟
⎝ ⎠

... , and
σ ×⎡ ⎤=σ × δ =⎢ ⎥⎣ ⎦

Q i
i

l
P A l

E

∴             2( ) ( ) 0
2 i i
Al Wl

Wh
E E

σ − σ − =

From this quadratic equation, we find that

2
1 1
⎛ ⎞

σ = + +⎜ ⎟⎜ ⎟
⎝ ⎠

i
W h A E

A W l ... [Taking +ve sign for maximum value]

Note : When h = 0, then σi = 2W/A. This means that the stress in the bar when the load in applied suddenly is
double of the stress induced due to gradually applied load.

Example 4.18. An unknown weight falls through 10 mm on a collar rigidly attached to the
lower end of a vertical bar 3 m long and 600 mm2 in section. If the maximum instantaneous extension
is known to be 2 mm, what is the corresponding stress and the value of unknown weight? Take
E = 200 kN/mm2.

Solution. Given : h = 10 mm ; l = 3 m = 3000 mm ; A = 600 mm2 ; δl = 2 mm ;
E = 200 kN/mm2 = 200 × 103 N/mm2

Stress in the bar
Let σ = Stress in the bar.

We know that Young's modulus,

E =
Stress .

Strain

σ σ= =
ε δ

l

l

∴ σ =
3

2. 200 10 2 400
133.3 N/mm

3000 3

E l

l

δ × ×= = =  Ans.

These bridge shoes are made to bear high compressive stresses.
Note : This picture is given as additional information and is not a direct example of the current chapter.
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Value of the unknown weight

Let  W = Value of the unknown weight.

We know that σ =
2

1 1
W h A E

A Wl

⎡ ⎤
+ +⎢ ⎥

⎣ ⎦
3400 2 10 600 200 10

1 1
3 600 3000

W

W

⎡ ⎤× × × ×⎢ ⎥= + +
×⎢ ⎥⎣ ⎦

400 600 800 000
1 1

3 W W

× = + +

80 000 800 000
1 1

W W
− = +

Squaring both sides,
6

2

6400 10 160000 800000
1 1

W WW

× + − = +

2 26400 10 6400 10
16 80 or 96

× ×− = =
W W

∴ W = 6400 × 102 / 96 = 6666.7 N  Ans.

4.24 Resilience
When a body is loaded within elastic limit, it changes its dimensions and on the removal of the

load, it regains its original dimensions. So long as it remains loaded, it has stored energy in itself. On
removing the load, the energy stored is given off as in the case of a spring. This energy, which is
absorbed in a body when strained within elastic limit, is known as strain energy. The strain energy is
always capable of doing some work.

The strain energy stored in a body due to external loading, within elastic limit, is known as
resilience and the maximum energy which can be stored in a body up to the elastic limit is called
proof resilience. The proof resilience per unit volume of a material is known as modulus of resil-
ience. It is an important property of a material and gives capacity of the material to bear impact or
shocks. Mathematically, strain energy stored in a body due to tensile or compressive load or resil-

ience, U =
2

2

V

E

σ ×

and Modulus of resilience =
2

2E

σ

where σ = Tensile or compressive stress,

V = Volume of the body, and

E = Young's modulus of the material of the body.

Notes : 1. When a body is subjected to a shear load, then modulus of resilience (shear)

=
2

2C

τ

where τ = Shear stress, and

C = Modulus of rigidity.

2. When the body is subjected to torsion, then modulus of resilience

=
2

4C

τ
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Example 4.19. A wrought iron bar 50 mm in diameter and 2.5 m long transmits a shock energy
of 100 N-m. Find the maximum instantaneous stress and the elongation. Take E = 200 GN/m2.

Solution. Given : d = 50 mm ; l = 2.5 m = 2500 mm ; U = 100 N-m = 100 × 103 N-mm ;
E = 200 GN/m2 = 200 × 103 N/mm2

Maximum instantaneous stress
Let σ = Maximum instantaneous stress.

We know that volume of the bar,

V = 2 2 6 3(50) 2500 4.9 10 mm
4 4

d l
π π× × = × = ×

We also know that shock or strain energy stored in the body (U),

100 × 103 =  
2 2 6

2
3

4.9 10
12.25

2 2 200 10

V

E

σ × σ × ×= = σ
× ×

∴ σ2 = 100 × 103 / 12.25 = 8163   or   σ = 90.3 N/mm2 Ans.
Elongation produced

Let δl =  Elongation produced.

We know that Young's modulus,

E =
Stress

Strain /l l

σ σ= =
ε δ

∴ δl =  3

90.3 2500
1.13 mm

200 10

σ × ×= =
×

l

E
 Ans.

EEEEEXEXEXEXEXERRRRRCISECISECISECISECISESSSSS

1. A reciprocating steam engine connecting rod is subjected to a maximum load of 65 kN. Find the
diameter of the connecting rod at its thinnest part, if the permissible tensile stress is 35 N/mm2.

[Ans. 50 mm]

2. The maximum tension in the lower link of a Porter governor is 580 N and the maximum stress in the
link is 30 N/mm2. If the link is of circular cross-section, determine its diameter. [Ans. 5 mm]

A double-decker train.
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3. A wrought iron rod is under a compressive load of 350 kN. If the permissible stress for the material is
52.5 N/mm2, calculate the diameter of the rod. [Ans. 95 mm]

4. A load of 5 kN is to be raised by means of a steel wire. Find the minimum diameter required, if the
stress in the wire is not to exceed 100 N/mm2. [Ans. 8 mm]

5. A square tie bar 20 mm × 20 mm in section carries a load. It is attached to a bracket by means
of 6 bolts. Calculate the diameter of the bolt if the maximum stress in the tie bar is 150 N/mm2 and in
the bolts is 75 N/mm2. [Ans. 13 mm]

6. The diameter of a piston of the steam engine is 300 mm and the maximum steam pressure
 is 0.7 N/mm2. If the maximum permissible compressive stress for the piston rod material is
40 N/mm2, find the size of the piston rod. [Ans. 40 mm]

7. Two circular rods of 50 mm diameter are connected by a knuckle joint, as shown in Fig. 4.21, by a pin
of 40 mm in diameter. If a pull of 120 kN acts at each end, find the tensile stress in the rod and shear
stress in the pin. [Ans. 61 N/mm2; 48 N/mm2]

Fig. 4.21

8. Find the minimum size of a hole that can be punched in a 20 mm thick mild steel plate having an
ultimate shear strength of 300 N/mm2. The maximum permissible compressive stress in the punch
material is 1200 N/mm2. [Ans. 20 mm]

9. The crankpin of an engine sustains a maximum load of 35 kN due to steam pressure. If the allowable
bearing pressure is 7 N/mm2, find the dimensions of the pin. Assume the length of the pin equal to 1.2
times the diameter of the pin. [Ans. 64.5 mm; 80 mm]

10. The following results were obtained in a tensile test on a mild steel specimen of original diameter
20 mm and gauge length 40 mm.

Load at limit of proportionality = 80 kN

Extension at 80 kN load = 0.048 mm

Load at yield point = 85 kN

Maximum load = 150 kN

When the two parts were fitted together after being broken, the length between gauge length was
found to be 55.6 mm and the diameter at the neck was 15.8 mm.

Calculate Young's modulus, yield stress, ultimate tensile stress, percentage elongation and percentage
reduction in area. [Ans. 213 kN/mm2; 270 N/mm2; 478 N/mm2; 39%; 38%]

11. A steel rod of 25 mm diameter is fitted inside a brass tube of 25 mm internal diameter and 375 mm
external diameter. The projecting ends of the steel rod are provided with nuts and washers. The nuts
are tightened up so as to produce a pull of 5 kN in the rod. The compound is then placed in a lathe and
the brass is turned down to 4 mm thickness. Calculate the stresses in the two materials.

[Ans. 7 N/mm2, 7.8 N/mm2]
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12. A composite bar made up of aluminium bar and steel bar, is firmly held between two unyielding
supports as shown in Fig. 4.22.

Fig. 4.22

An axial load of 200 kN is applied at B at 47°C. Find the stresses in each material, when the
temperature is 97°C. Take Ea = 70 GPa ; Es = 210 GPa ; αa = 24 × 10–6/°C and αs = 12 × 106/°C.

[Ans. 60.3 MPa; 173.5 MPa]
13. A steel rod of 20 mm diameter passes centrally through a copper tube of external diameter 40 mm and

internal diameter 20 mm. The tube is closed at each end with the help of rigid washers (of negligible
thickness) which are screwed by the nuts. The nuts are tightened until the compressive load on the
copper tube is 50 kN. Determine the stresses in the rod and the tube, when the temperature of whole
assembly falls by 50°C. Take Es = 200 GPa ; Ec = 100 GPa ; αs = 12 × 10–6/°C and αc = 18  × 106/°C.

[Ans. 99.6 MPa; 19.8 MPa]
14. A bar of 2 m length, 20 mm breadth and 15 mm thickness is subjected to a tensile load of 30 kN.

Find the final volume of the bar, if the Poisson’s ratio is 0.25 and Young's modulus is 200 GN/m2.
[Ans. 600 150 mm3]

15. A bar of 12 mm diameter gets stretched by 3 mm under a steady load of 8 kN. What stress would be
produced in the bar by a weight of 800 N, which falls through 80 mm before commencing the stretch-
ing of the rod, which is initially unstressed. Take E = 200 kN/mm2.

[Ans. 170.6 N/mm2]

QQQQQUEUEUEUEUESTSTSTSTSTIONSIONSIONSIONSIONS
1. Define the terms load , stress and strain. Discuss the various types of stresses and strain.

2. What is the difference between modulus of elasticity and modulus of rigidity?
3. Explain clearly the bearing stress developed at the area of contact between two members.
4. What useful informations are obtained from the tensile test of a ductile material?
5. What do you mean by factor of safety?
6. List the important factors that influence the magnitude of factor of safety.
7. What is meant by working stress and how it is calculated from the ultimate stress or yield stress of a

material? What will be the factor of safety in each case for different types of loading?
8. Describe the procedure for finding out the stresses in a composite bar.
9. Explain the difference between linear and lateral strain.

10. Define the following :
(a) Poisson's ratio, (b) Volumetric strain, and (c) Bulk modulus

11. Derive an expression for the impact stress induced due to a falling load.
12. Write short notes on :

(a) Resilience (b) Proof resilience, and (c) Modulus of resilience

OBJECTOBJECTOBJECTOBJECTOBJECTIVE IVE IVE IVE IVE TTTTTYPYPYPYPYPE QE QE QE QE QUEUEUEUEUESTSTSTSTSTIONSIONSIONSIONSIONS
1. Hooke’s law holds good upto

(a) yield point (b) elastic limit

(c) plastic limit (d) breaking point

2. The ratio of linear stress to linear strain is called

(a) Modulus of elasticity (b) Modulus of rigidity

(c) Bulk modulus (d) Poisson's ratio
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3. The modulus of elasticity for mild steel is approximately equal to

(a) 80 kN/mm2 (b) 100 kN/mm2

(c) 110 kN/mm2 (d) 210 kN/mm2

4. When the material is loaded within elastic limit, then the stress is ......... to strain.
(a) equal (b) directly proportional (c) inversely proportional

5. When a hole of diameter ‘d' is punched in a metal of thickness `t', then the force required to punch a
hole is equal to
(a) d.t.τu (b) π d.t.τu

(c)
4

π
× d 2  τu (d)

4

π
 × d2.t.τu

where τu = Ultimate shear strength of the material of the plate.
6. The ratio of the ultimate stress to the design stress is known as

(a) elastic limit (b) strain
(c) factor of safety (d) bulk modulus

7. The factor of safety for steel and for steady load is
(a) 2 (b) 4
(c ) 6 (d) 8

8. An aluminium member is designed based on
(a) yield stress (b) elastic limit stress
(c) proof stress (d) ultimate stress

9. In a body, a thermal stress is one which arises because of the existence of
(a) latent heat (b) temperature gradient
(c) total heat (d) specific heat

10. A localised compressive stress at the area of contact between two members is known as
(a) tensile stress (b) bending stress
(c) bearing stress (d) shear stress

11. The Poisson’s ratio for steel varies from
(a) 0.21 to 0.25 (b) 0.25 to 0.33
(c) 0.33 to 0.38 (d) 0.38 to 0.45

12. The stress in the bar when load is applied suddenly is ............. as compared to the stress induced due
to gradually applied load.
(a) same (b) double
(c) three times (d) four times

13. The energy stored in a body when strained within elastic limit is known as
(a) resilience (b) proof resilience
(c) strain energy (d) impact energy

14. The maximum energy that can be stored in a body due to external loading upto the elastic limit is
called
(a) resilience (b) proof resilience
(c) strain energy (d) modulus of resilience

15. The strain energy stored in a body, when suddenly loaded, is .............. the strain energy stored when
same load is applied gradually.
(a) equal to (b) one-half
(c) twice (d) four times

ANSWEANSWEANSWEANSWEANSWERRRRRSSSSS

1. (b) 2. (a) 3. (d) 4. (b) 5.  (b)

6. (c) 7. (b) 8. (a) 9. (b) 10.  (c)

11. (b) 12. (b) 13. (c) 14. (b) 15.  (d)
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