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16.1 Introduction
A machine part subjected to an axial compressive

force is called a strut. A strut may be horizontal, inclined
or even vertical. But a vertical strut is known as a column,
pillar or stanchion. The machine members that must be
investigated for column action are piston rods, valve push
rods, connecting rods, screw jack, side links of toggle jack
etc. In this chapter, we shall discuss the design of piston
rods, valve push rods and connecting rods.
Note: The design of screw jack and toggle jack is discussed in
the next chapter on ‘Power screws’.

16.2  Failure of a Column or Strut
It has been observed that when a column or a strut is

subjected to a compressive load and the load is gradually
increased, a stage will reach when the column will be
subjected to ultimate load. Beyond this, the column will fail
by crushing and the load will be known as crushing load.
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It has also been experienced, that

sometimes, a compression member does not
fail entirely by crushing, but also by bending
i.e. buckling. This happens in the case of long
columns. It has also been observed, that all
the *short columns fail due to their crushing.
But, if a **long column is subjected to a
compressive load, it is subjected to a
compressive stress. If the load is gradually
increased, the column will reach a stage,
when it will start buckling. The load, at
which the column tends to have lateral
displacement or tends to buckle is called
buckling load, critical load, or crippling load and the column is said to have developed an elastic
instability. The buckling takes place about the axis having minimum radius of gyration or least moment
of inertia. It may be noted that for a long column, the value of buckling load will be less than the
crushing load. Moreover, the value of buckling load is low for long columns, and relatively high for
short columns.

16.3  Types of End Conditions of Columns
In actual practice, there are a number of end conditions for columns. But we shall study the

Euler’s column theory on the following four types of end conditions which are important from the
subject point of view:

1. Both the ends hinged or pin jointed as shown in Fig. 16.1 (a),

2. Both the ends fixed as shown in Fig. 16.1 (b),

3. One end is fixed and the other hinged as shown in Fig. 16.1 (c), and

4. One end is fixed and the other free as shown in Fig. 16.1 (d ).

Fig. 16.1. Types of end conditions of columns.

16.4  Euler’s Column Theory
The first rational attempt, to study the stability of long columns, was made by Mr. Euler. He

* The columns which have lengths less than 8 times their diameter, are called short columns (see also Art 16.8).

** The columns which have lengths more than 30 times their diameter are called long columns.

Depending on the end conditions, different columns
have different crippling  loads
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derived an equation, for the buckling load of long columns based on the bending stress. While deriving
this equation, the effect of direct stress is neglected. This may be justified with the statement, that the
direct stress induced in a long column is negligible as compared to the bending stress. It may be noted
that Euler’s formula cannot be used in the case of short columns, because the direct stress is
considerable, and hence cannot be neglected.

16.5 Assumptions in Euler’s Column Theory
The following simplifying assumptions are made in Euler’s column theory :

1. Initially the column is perfectly straight, and the load applied is truly axial.

2. The cross-section of the column is uniform throughout its length.

3. The column material is perfectly elastic, homogeneous and isotropic, and thus obeys Hooke’s
law.

4. The length of column is very large as compared to its cross-sectional dimensions.

5. The shortening of column, due to direct compression (being very small) is neglected.

6. The failure of column occurs due to buckling alone.

7. The weight of the column itself is neglected.

16.6 Euler’s Formula
According to Euler’s theory, the crippling or buckling load (Wcr) under various end conditions

is represented by a general equation,

Wcr =
2 2 2

2 2

C E I C E A k

l l

π π= ... (Q I = A.k2)

=
2

2( / )

C E A

l k

π

where E = Modulus of elasticity or Young’s modulus for the material of the column,

A = Area of cross-section,

k = Least radius of gyration of the cross-section,

l = Length of the column, and

C = Constant, representing the end conditions of the column or end fixity
coefficient.

The following table shows the values of end fixity coefficient (C ) for various end conditions.

Table 16.1. Values of end fixity coefficient (C ).

S. No. End conditions End fixity coefficient (C)

1. Both ends hinged 1

2. Both ends fixed 4

3. One end fixed and other hinged 2

4. One end fixed and other end free 0.25

Notes : 1. The vertical column will have two moment of inertias (viz. Ixx and Iyy). Since the column will tend to
buckle in the direction of least moment of inertia, therefore the least value of the two moment of inertias is to be
used in the relation.
2. In the above formula for crippling load, we have not taken into account the direct stresses induced in the
material due to the load which increases gradually from zero to the crippling value. As a matter of fact, the
combined stresses (due to the direct load and slight bending), reaches its allowable value at a load lower than
that required for buckling and therefore this will be the limiting value of the safe load.



Columns and Struts     603

16.7  Slenderness Ratio
In Euler’s formula, the ratio l / k is known as slenderness ratio. It may be defined as the ratio of

the effective length of the column to the least radius of gyration of the section.

It may be noted that the formula for crippling load, in the previous article is based on the
assumption that the slenderness ratio l / k is so large, that the failure of the column occurs only due to
bending, the effect of direct stress (i.e. W / A) being negligible.

16.8  Limitations of Euler’s Formula
We have discussed in Art. 16.6 that the general equation for the crippling load is

Wcr =
2

2( / )

C E A

l k

π

∴ Crippling stress,

σcr =
2

2( / )
crW C E

A l k

π=

A little consideration will show that the crippling stress will be high, when the slenderness ratio
is small. We know that the crippling stress for a column cannot be more than the crushing stress of the
column material. It is thus obvious that the Euler’s fromula will give the value of crippling stress of
the column (equal to the crushing stress of the column material) corresponding to the slenderness
ratio. Now consider a mild steel column. We know that the crushing stress for mild steel is 330 N/mm2

and Young’s modulus for mild steel is 0.21 × 106 N/mm2.

Now equating the crippling stress to the crushing stress, we have
2

2
330

( / )

C E

l k

π =

6

2

1 9.87 0.21 10
330

( / )l k

× × × = ... (Taking C = 1)

This equipment is used to determine the crippling load for axially loaded long struts.
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or (l / k)2 = 6281

∴ l / k = 79.25 say 80

Hence if the slenderness ratio is less than 80, Euler’s formula for a mild steel column is not
valid.

Sometimes, the columns whose slenderness ratio is more than 80, are known as long columns,
and those whose slenderness ratio is less than 80 are known as short columns. It is thus obvious that
the Euler’s formula holds good only for long columns.

16.9 Equivalent Length of a Column
Sometimes, the crippling load according to Euler’s formula may be written as

Wcr =
2

2

E I

L

π

where L is the equivalent length or effective length of the column. The equivalent length of a given
column with given end conditions is the length of an equivalent column of the same material and
cross-section with hinged ends to that of the given column. The relation between the equivalent
length and actual length for the given end conditions is shown in the following table.

Table 16.2. Relation between equivalent length (L) and actual length (l ).

S.No. End Conditions Relation between equivalent length (L) and
actual length (l)

1. Both ends hinged L = l

2. Both ends fixed L =
2

l

3. One end fixed and other end hinged L =
2

l

4. One end fixed and other end free L = 2l

Example 16.1. A T-section 150 mm × 120 mm × 20 mm is used as a strut of 4 m long hinged at
both ends. Calculate the crippling load, if Young’s modulus for the material of the section is
200 kN/mm2.

Solution. Given : l = 4 m = 4000 mm ; E = 200 kN/mm2 = 200 × 103 N/mm2

First of all, let us find the centre of gravity (G) of the
T-section as shown in Fig. 16.2.

Let y  be the distance between the centre of gravity (G) and
top of the flange,

We know that the area of flange,

a1 = 150 × 20 = 3000 mm2

Its distance of centre of gravity from top of the flange,

y1 = 20 / 2 = 10 mm

Area of web, a2 = (120 – 20) 20 = 2000 mm2

Its distance of centre of gravity from top of the flange,

y2 = 20 + 100 / 2 = 70 mm

∴
1 1 2 2

1 2

3000 10 2000 70
34 mm

3000 2000

a y a y
y

a a

+ × + ×= = =
+ +

Fig. 16.2
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We know that the moment of inertia of the section about X-X,

3 3
2 2

XX
150 (20) 20 (100)

3000 (34 – 10) 2000 (70 – 34)
12 12

I
⎡ ⎤

= + + +⎢ ⎥⎣ ⎦
= 6.1 × 106 mm4

and IYY =
3 320 (150) 100 (20)

12 12
+  = 5.7 × 106 mm4

Since IYY is less than IXX, therefore the column will tend to buckle in Y-Y direction. Thus we
shall take the value of I as IYY = 5.7 × 106 mm4.

Moreover as the column is hinged at its both ends, therefore equivalent length,
L = l = 4000 mm

We know that the crippling load,

Wcr =
2 3 6

2 2

9.87 200 10 5.7 10

(4000)

E I

L

π × × × ×=  = 703 × 103 N = 703 kN Ans.

Example 16.2. An I-section 400 mm × 200 mm × 10 mm and 6 m long is used as a strut with
both ends fixed. Find Euler’s crippling load. Take Young’s modulus for the material of the section as
200 kN/mm2.

Solution. Given : D = 400 mm ; B = 200 mm ; t = 10 mm ; l = 6 m = 6000 mm ; E = 200 kN/mm2

= 200 × 103 N/mm2

The I-section is shown in Fig. 16.3.

We know that the moment of inertia of the I-section about X-X,

IXX =
3 3. .

–
12 12

B D b d

=
3 3200 (400) (200 – 10) (400 – 20)

–
12 12

= 200 × 106 mm4

and moment of inertia of the I-section about Y-Y,

IYY =
3 3. .

2
12 12

t B d t⎛ ⎞
+⎜ ⎟

⎝ ⎠

=
3 310 (200) (400 – 20) 10

2
12 12

⎡ ⎤
+⎢ ⎥⎣ ⎦

= 13.36 × 106 mm4

Fig. 16.3Crippling load.
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Since IYY is less than IXX, therefore the section will tend to buckle about Y-Y axis. Thus we shall
take I as IYY = 13.36 × 104 mm4.

Since the column is fixed at its both ends, therefore equivalent length,
L = l / 2 = 6000 / 2 = 3000 mm

We know that the crippling load,

Wcr =
2 3 6

6
2 2

9.87 200 10 13.36 10
2.93 10 N

(3000)

E I

L

π × × × ×= = ×

= 2930 kN Ans.

16.10 Rankine’s Formula for Columns
We have already discussed that Euler’s formula gives correct results only for very long columns.

Though this formula is applicable for columns, ranging from very long to short ones, yet it does not
give reliable results. Prof. Rankine, after a number of experiments, gave the following empirical
formula for columns.

C E

1 1 1

crW W W
= + ...(i)

where Wcr = Crippling load by Rankine’s formula,
WC = Ultimate crushing load for the column = σc × A,

WE = Crippling load, obtained by Euler’s formula = 
2

2

E I

L

π

A little consideration will show, that the value of WC will remain constant irrespective of the
fact whether the column is a long one or short one. Moreover, in the case of short columns, the value
of WE will be very high, therefore the value of 1 / WE will be quite negligible as compared to 1 / WC.
It is thus obvious, that the Rankine’s formula will give the value of its crippling load (i.e. Wcr)
approximately equal to the ultimate crushing load (i.e. WC ). In case of long columns, the value of WE
will be very small, therefore the value of 1 / WE will be quite considerable as compared to 1 / WC. It
is thus obvious, that the Rankine’s formula will give the value of its crippling load (i.e. Wcr)
approximately equal to the crippling load by Euler’s formula (i.e. WE ). Thus, we see that Rankine’s
formula gives a fairly correct result for all cases of columns, ranging from short to long columns.

From equation (i), we know that

E C

C E C E

1 1 1

cr

W W

W W W W W

+
= + =

×

∴ Wcr =
C E C

CC E

E

1

W W W
WW W
W

×
=

+ +

Now substituting the value of WC and WE in the above equation, we have

Wcr = 2 2

2 22

.
11

.

c c

cc

A A

A L A L

E A kE I

σ × σ ×
=

σσ × × + ×+
ππ

... (Q  I = A.k2)

=
2 2

Crushing load

1 1

c A

L L
a a

k k

σ ×
=

⎛ ⎞ ⎛ ⎞+ +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

where σc = Crushing stress or yield stress in compression,
A = Cross-sectional area of the column,

a = Rankine’s constant = 2
c

E

σ
π

,
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L = Equivalent length of the column, and

k = Least radius of gyration.

The following table gives the values of crushing stress and Rankine’s constant for various
materials.

Table 16.3. Values of crushing stress (σσσσσc ) and Rankine’s constant (a )
for various materials.

S.No. Material σc in MPa 2

σ=
π

ca
E

1. Wrought iron 250
1

9000

2. Cast iron 550
1

1600

3. Mild steel 320
1

7500

4. Timber 50
1

750

16.11  Johnson’s Formulae for Columns
Prof. J.B. Johnson proposed the following two formula for short columns.

1. Straight line formula. According to straight line formula proposed by Johnson, the critical
or crippling load is

Wcr = 1

2
– –

3 3
y y

y y
L L

A A C
k C E k

⎡ ⎤σ σ ⎡ ⎤⎛ ⎞ ⎛ ⎞σ = σ⎢ ⎥⎜ ⎟ ⎜ ⎟⎢ ⎥π ×⎝ ⎠ ⎝ ⎠⎣ ⎦⎢ ⎥⎣ ⎦
where A = Cross-sectional area of column,

σy = Yield point stress,

C1 =
2

3 3 .
y y

C E

σ σ
π

= A constant, whose value depends upon the type of material as well as
the type of ends, and

L

k
= Slenderness ratio.

If the safe stress (Wcr / A) is plotted against slenderness ratio (L / k), it works out to be a straight
line, so it is known as straight line formula.

2. Parabolic formula. Prof. Johnson after proposing the straight line formula found that the
results obtained by this formula are very approximate. He then proposed another formula, according
to which the critical or crippling load,

Wcr =

2

2
1 –

4

y
y

L
A

kC E

⎡ ⎤σ ⎛ ⎞× σ ⎢ ⎥⎜ ⎟
⎝ ⎠π⎢ ⎥⎣ ⎦

 with usual notations.

If a curve of safe stress (Wcr / A) is plotted against (L / k), it works out to be a parabolic, so it is
known as parabolic formula.

Fig. 16.4 shows the relationship of safe stress (Wcr / A) and the slenderness ratio (L / k) as given
by Johnson’s formula and Euler’s formula for a column made of mild steel with both ends hinged
(i.e. C = 1), having a yield strength, σy = 210 MPa. We see from the figure that point A (the point of
tangency between the Johnson’s straight line formula and Euler’s formula) describes the use of two
formulae. In other words, Johnson’s straight line formula may be used when L / k < 180 and the
Euler’s formula is used when L / k > 180.
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Similarly, the point B (the point of tangency between the Johnson’s parabolic formula and Euler’s
formula) describes the use of two formulae. In other words, Johnson’s parabolic formula is used when
L / k < 140 and the Euler’s formula is used when L / k > 140.
Note : For short columns made of ductile materials, the Johnson’s parabolic formula is used.

Fig. 16.4. Relation between slendeness ratio and safe stress.

16.12 Long Columns Subjected to Eccentric Loading
In the previous articles, we have discussed the effect of loading on long columns. We have

always referred the cases when the load acts axially on the column (i.e. the line of action of the load
coincides with the axis of the column). But in actual practice it is not always possible to have an axial
load on the column, and eccentric loading takes place. Here we shall discuss the effect of eccentric
loading on the Rankine’s and Euler’s formula for long columns.

Consider a long column hinged at both ends and subjected to an eccentric load as shown in
Fig. 16.5.

Fig. 16.5. Long column subjected to eccentric loading.

Let W = Load on the column,

A = Area of cross-section,

e = Eccentricity of the load,

Z = Section modulus,

yc = Distance of the extreme fibre (on compression side) from the axis of the
column,

k = Least radius of gyration,

I = Moment of inertia = A.k2,

E = Young’s modulus, and

l = Length of the column.
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We have already discussed that when a column is subjected to an eccentric load, the maximum

intensity of compressive stress is given by the relation

σmax =
W M

A Z
+

The maximum bending moment for a column hinged at both ends and with eccentric loading is
given by

M = W.e. sec 
2 .

l W

E I
 = W.e. sec 2 .

l W

k E A ... (Q I = A.k2)

∴ σmax =

. .sec
2 .
l W

W e
W k E A

A Z
+

= 2

. . . sec
2 .

.

c
l W

W e y
k E AW

A A k
+ ... (Q Z = I/yc = A.k2/yc)

=
2

.
1 sec

2 .
ce yW l W

A k E Ak

⎡ ⎤
+⎢ ⎥

⎣ ⎦

=
*

2

.
1 sec

2 .

⎡ ⎤
+⎢ ⎥

⎣ ⎦
ce yW L W

A k E Ak
... (Substituting l = L, equivalent length for both ends hinged).

16.13 Design of Piston Rod
Since a piston rod moves forward and backward in the engine cylinder, therefore it is subjected

to alternate tensile and compressive forces. It is usually made of mild steel. One end of the piston rod
is secured to the piston by means of tapered rod provided with nut. The other end of the piston rod is
joined to crosshead by means of a cotter.

* The expression σmax = 2

.
1 sec

2 .
ce yW L W

A k E Ak

⎡ ⎤
+⎢ ⎥

⎣ ⎦
 may also be written as follows:

  σmax = 
2

.
sec

2
ce yW W L W

I IA A k E
A k

+ ×
× ...

2
2

Substituting and
⎛ ⎞= =⎜ ⎟
⎝ ⎠

I I
k A

A k

   
.

sec
2 .

W W e L W

A Z E I
= +

Piston rod is made of mild steel.
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Let p = Pressure acting on the piston,
D = Diameter of the piston,
d = Diameter of the piston rod,

W = Load acting on the piston rod,
Wcr = Buckling or crippling load = W × Factor of safety,

σt = Allowable tensile stress for the material of rod,
σc = Compressive yield stress,
A = Cross-sectional area of the rod,
l = Length of the rod, and
k = Least radius of gyration of the rod section.

The diameter of the piston rod is obtained as discussed below:
1. When the length of the piston rod is small i.e. when slenderness ratio (l / k) is less than 40,

then the diameter of piston rod may be obtained by equating the load acting on the piston
rod to its tensile strength, i.e.

W = 2

4 td
π × × σ

or 2 2

4 4 tD p d
π π× × = × × σ

∴ d =
t

p
D

σ
2. When the length of the piston rod is large, then the diameter of the piston rod is obtained

by using Euler’s formula or Rankine’s formula. Since the piston rod is securely fastened
to the piston and cross head, therefore it may be considered as fixed ends. The Euler’s
formula is

Wcr =
2

2

E I

L

π

and Rankine’s formula is,

Wcr = 2

1

c A

L
a

k

σ ×

⎛ ⎞+ ⎜ ⎟
⎝ ⎠

Example 16.3. Calculate the diameter of a piston rod for a cylinder of 1.5 m diameter in which
the greatest difference of steam pressure on the two sides of the piston may be assumed to be 0.2 N/mm2.
The rod is made of mild steel and is secured to the piston by a tapered rod and nut and to the crosshead
by a cotter. Assume modulus of elasticity as 200 kN/mm2 and factor of safety as 8. The length of rod
may be assumed as 3 metres.

Solution. Given : D = 1.5 m = 1500 mm ; p = 0.2 N/mm2 ; E = 200 kN/mm2 = 200 × 103 N/mm2 ;
l = 3 m = 3000 mm

We know that the load acting on the piston,

W =
4

π
 × D2 × p = 

4

π
 (1500)2 × 0.2 = 353 475 N

∴  Buckling load on the piston rod,

Wcr = W × Factor of safety = 353 475 × 8 = 2.83 × 106 N

Since the piston rod is considered to have both ends fixed, therefore from Table 16.2, the
equivalent length of the piston rod,

L =
3000

1500 mm
2 2

l = =
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Let d = Diameter of piston rod in mm, and

I = Moment of inertia of the cross-section of the rod = 
4

64
d

π ×

According to Euler’s formula, buckling load (Wcr),

2.83 × 106 =
2 3 4

4
2 2

9.87 200 10
0.043

(1500) 64

E I d
d

L

π × × × π= =
×

∴ d 4 = 2.83 × 106 / 0.043 = 65.8 × 106 or   d = 90 mm

According to Rankine’s formula, buckling load,

Wcr = 2

1

c A

L
a

k

σ ×

⎛ ⎞+ ⎜ ⎟
⎝ ⎠

...(i)

We know that for mild steel, the crushing stress,

σc = 320 MPa = 320 N/mm2, and a = 
1

7500
and least radius of gyration for the piston rod section,

k =
4

2

4

64 4

I d d

A d

π= × =
π

Substituting these values in the above equation (i), we have

2.83 × 106 =

2

2 4

2 2

2

320 251.4 251.44
4800 48001 1500 4 11

7500

d
d d

d
dd

π×
= =

+×⎛ ⎞ ++ ⎜ ⎟
⎝ ⎠

251.4 d4 – 2.83 × 106 d2 – 2.83 × 106 × 4800 = 0

or d4 – 11 257 d 2  – 54 × 106 = 0

∴ d2 =
2 611 250 (11 257) 4 1 54 10 11 257 18 512

2 2

± + × × × ±=

= 14 885 ... (Taking +ve sign)

or d = 122 mm

Taking larger of the two values, we have

d = 122 mm Ans.

16.14  Design of Push Rods
The push rods are used in overhead valve and side valve

engines. Since these are designed as long columns, therefore
Euler’s formula should be used. The push rods may be treated as
pin end columns because they use spherical seated bearings.

Let W = Load acting on the push rod,

D = Diameter of the push rod,

d = Diameter of the hole through the
push rod,

I = Moment of inertia of the push rod,

= 4

64
D

π × , for solid rod
These rods are used in overhead
valve and side valve engines.
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=
64

π
 (D 4  –  d 4), for tubular section

l = Length of the push rod, and

E = Young’s modulus for the material of push rod.

If m is the factor of safety for the long columns, then the critical or crippling load on the rod is
given by

Wcr = m × W

Now using Euler’s formula, Wcr = 
2

2

EI

L

π
, the diameter of the push rod (D) can be obtained.

Notes: 1. Generally the diameter of the hole through the push rod is 0.8 times the diameter of push rod, i.e.

d = 0.8 D

2. Since the push rods are treated as pin end columns, therefore the equivalent length of the rod (L) is
equal to the actual length of the rod ( l ).

Example 16.4. The maximum load on a petrol engine push rod 300 mm long is 1400 N. It is
hollow having the outer diameter 1.25 times the inner diameter. Spherical seated bearings are used
for the push rod. The modulus of elasticity for the material of the push rod is 210 kN/mm2. Find a
suitable size for the push rod, taking a factor of safety of 2.5.

Solution. Given : l = 300 mm ; W = 1400 N ; D = 1.25 d ; E = 210 kN/mm2 = 210 × 103 N/mm2 ;
m = 2.5

Let d = Inner diameter of push rod in mm, and
D = Outer diameter of the push rod in mm = 1.25 d ...(Given)

∴ Moment of inertia of the push rod section,

I =
64

π
 (D4 – d4)  = 

64

π
 [(1.25 d)4 – d4] = 0.07 d4 mm4

We know that the crippling load on the push rod,
Wcr = m × W = 2.5 × 1400 = 3500 N

Now according to Euler’s formula, crippling load (Wcr),

3500 =
2 3 4

4
2 2

9.87 210 10 0.07
1.6

(300)

E I d
d

L

π × × ×= = ...(Q L = l)

∴ d 4 = 3500 / 1.6 = 2188 or d = 6.84 mm Ans.
and D = 1.25 d = 1.25 × 6.84 = 8.55 mm Ans.

16.15 Design of Connecting Rod
A connecting rod is a machine member which is subjected to alternating direct compressive and

tensile forces. Since the compressive forces are much higher than the tensile forces, therefore the
cross-section of the connecting rod is designed as a strut and the Rankine’s formula is used.

A connecting rod subjected to an axial load W may buckle with X-axis as neutral axis (i.e. in the
plane of motion of the connecting rod) or Y-axis as neutral axis (i.e. in the plane perpendicular to the
plane of motion). The connecting rod is considered like both ends hinged for buckling about X-axis
and both ends fixed for buckling about Y-axis. A connecting rod should be equally strong in buckling
about either axes.

Let A = Cross-sectional area of the connecting rod,

l = Length of the connecting rod,

σc = Compressive yield stress,

Wcr = Crippling or buckling load,
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Ixx and Iyy = Moment of inertia of the section about X-axis and Y-axis respectively,

and

kxx and kyy = Radius of gyration of the section about X-axis and Y-axis respectively.

Fig. 16.6. Buckling of connecting rod.

According to Rankine’s formula,

Wcr about X-axis = 2 2

1 1

c c

xx xx

A A

L l
a a

k k

σ × σ ×
=

⎛ ⎞ ⎛ ⎞+ +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

... (Q  For both ends hinged, L = l)

and Wcr about Y-axis = 2 2

1 1
2

c c

yy yy

A A

L l
a a

k k

σ × σ ×
=

⎛ ⎞ ⎛ ⎞+ +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

... For both ends fixe ,
2

d⎛ ⎞=⎜ ⎟
⎝ ⎠
Q

l
L

In order to have a connecting rod equally strong in buckling about both the axes, the buckling
loads must be equal, i.e.

2 2

1 1
2

c c

xx yy

A A

l l
a a

k k

σ × σ ×
=

⎛ ⎞ ⎛ ⎞+ +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

or

2 2

2xx yy

l l

k k
⎛ ⎞ ⎛ ⎞=⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

∴ k2
xx = 4 k2

yy     or Ixx = 4 Iyy ... (Q I = A × k2)

This shows that the connecting rod is four
times strong in buckling about Y-axis than about
X-axis. If Ixx > 4 Iyy, then buckling will occur about
Y-axis and if Ixx < 4 Iyy, buckling will occur about
X-axis. In actual practice, Ixx is kept slightly less than
4 Iyy. It is usually taken between 3 and 3.5 and the
connecting rod is designed for buckling about X-axis.
The design will alwyas be satisfactory for buckling
about Y-axis.

The most suitable section for the connecting
rod is I-section with the proportions as shown in Fig.
16.7 (a).

Area of the section

= 2 (4 t × t) + 3 t × t = 11 t2

∴ Moment of inertia about X-axis,

Ixx = 3 3 41 419
4 (5 ) – 3 (3 )

12 12
t t t t t⎡ ⎤ =⎣ ⎦

and moment of inertia about Y-axis,

Iyy =
3 3 41 1 131

2 (4 ) (3 )
12 12 12

t t t t t
⎡ ⎤× × + =⎢ ⎥⎣ ⎦

Fig. 16.7. I-section of connecting rod.
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∴
419 12

3.2
12 131

xx

yy

I

I
= × =

Since the value of xx

yy

I

I
 lies between 3 and 3.5, therefore I-section chosen is quite satisfactory.

Notes : 1. The I-section of the connecting rod is used due to its lightness and to keep the inertia forces as low as
possible. It can also withstand high gas pressure.

2. Sometimes a connecting rod may have rectangular section. For slow speed engines, circular sections
may be used.

3. Since connecting rod is manufactured by forging, therefore the sharp corners of I-section are rounded
off as shown in Fig. 16.7 (b) for easy removal of the section from the dies.

Example 16.5. A connecting rod of length l may be considered as a strut with the ends free to
turn on the crank pin and the gudgeon pin. In the directions of the axes of these pins, however, it may
be considered as having fixed ends. Assuming that Euler’s formula is applicable, determine the ratio
of the sides of the rectangular cross-section so that the connecting rod is equally strong in both
planes of buckling.

Solution. The rectangular cross-section of the connecting rod is shown in Fig. 16.8.
Let b = Width of rectangular cross-section, and

h = Depth of rectangular cross-section.
∴Moment of inertia about X-X,

Ixx =
3.

12

b h

and moment of inertia about Y-Y,

Iyy =
3.

12

h b

According to Euler’s formula, buckling load,

Wcr =
2

2

E I

L

π

∴ Buckling load about X-X,

Wcr (X-axis) =
2

2
xxE I

l

π
... (Q L = l, for both ends free to turn)

and buckling load about Y-Y,

Wcr (Y-axis) =

2 2

2 2

4

( / 2)

yy yyE I E I

l l

π π
= ... (Q L = l / 2, for both ends fixed)

In order to have the connecting rod equally strong in both the planes of buckling,
Wcr (X-axis) = Wcr (Y-axis)

22

2 2

4 yyxx
E IE I

l l

ππ
= or Ixx = 4 Iyy

∴
3 34

12 12

b h h b= or h2 = 4 b2

and h2 / b2 = 4 or h / b = 2 Ans.

16.16  Forces Acting on a Connecting Rod
A connecting rod is subjected to the following forces :
1. Force due to gas or steam pressure and inertia of reciprocating parts, and
2. Inertia bending forces.
We shall now derive the expressions for the forces acting on a horizontal engine, as discussed

below:

Fig. 16.8
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1.  Force due to gas or steam pressure and inertia of reciprocating parts

Consider a connecting rod PC as shown in Fig. 16.9.

Fig. 16.9. Forces on a connecting rod.

Let p = Pressure of gas or steam,

A = Area of piston,

mR = Mass of reciprocating parts,

= Mass of piston, gudgeon pin etc. + 1
3  rd mass of connecting rod,

ω = Angular speed of crank,

φ = Angle of inclination of the connecting rod with the line of stroke,

θ = Angle of inclination of the crank from inner dead centre,

r = Radius of crank,

l = Length of connecting rod, and

n = Ratio of length of connecting rod to radius of crank = l / r.

We know that the force on the piston due to pressure of gas or steam,

FL = Pressure × Area = p × A

and inertia force of reciprocating parts,

FI = Mass × *Acceleration = mR × ω2 × r 
cos 2

cos
n

θ⎛ ⎞θ +⎜ ⎟
⎝ ⎠

It may be noted that in a horizontal engine, reciprocating parts are accelerated from rest during
the first half of the stroke (i.e. when the piston moves from inner dead centre to outer dead centre). It
is then retarted during the latter half of the stroke (i.e. when the piston moves from outer dead centre
to inner dead centre). The inertia force due to the acceleration of reciprocating parts, opposes the
force on the piston. On the other hand, the inertia force due to retardation of the reciprocating parts,
helps the force on the piston.

∴ Net force acting on the piston pin (or gudgeon or wrist pin),

FP = Force due to pressure of gas or steam ± Inertia force

= FL ± FI

The –ve sign is used when the piston is accelerated and +ve sign is used when the piston is
retarted.

* Acceleration of reciprocating parts = 
2 cos 2

cosr
n

θ⎛ ⎞ω θ +⎜ ⎟
⎝ ⎠
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The force FP gives rise to a force FC in the connecting rod and a thrust FN on the sides of the
cylinder walls (or normal reaction on crosshead guides). From Fig. 16.9, we see that force in the
connecting rod at any instant.

FC = P P

2

2

cos sin
1 –

=
φ θ

F F

n
The force in the connecting rod will be maximum when the crank and the connecting rod are

perpendicular to each other (i.e. when θ =
90°). But at this position, the gas pressure
would be decreased considerably. Thus, for
all practical purposes, the force in the
connecting rod (FC) is taken equal to the
maximum force on the piston due to
pressure of gas or steam (FL), neglecting
piston inertia effects.

2. Inertia bending forces
Consider a connecting rod PC and a

crank OC rotating with uniform angular
velocity ω rad /s. In order to find the
acceleration of various points on the
connecting rod, draw the Klien’s
acceleration diagram CQNO as shown in
Fig. 16.10 (a). CO represents the
acceleration of C towards O and NO
represents the acceleration of P towards O.
The acceleration of other points such as D,
E, F and G etc. on the connecting rod PC
may be found by drawing horizontal lines
from these points to intersect CN at d, e, f
and g respectively. Now dO, eO, fO and
gO represents the acceleration of D, E, F
and G all towards O. The inertia force acting
on each point will be as follows :

Inertia force at C = m × ω2 × CO

Inertia force at D = m × ω2 × dO

Inertia force at E = m × ω2 × eO, and
so on.

The inertia forces will be opposite to
the direction of acceleration or centrifugal
forces. The inertia forces can be resolved into two components, one parallel to the connecting rod and
the other perpendicular to the rod. The parallel (or longitudinal) components adds up algebraically to
the force acting on the connecting rod (FC) and produces thrust on the pins. The perpendicular (or
transverse) components produces bending action (also called whipping action) and the stress induced
in the connecting rod is called whipping stress.

* For derivation, please refer to author’s popular book on ‘Theory of Machines’.

Connecting rod.

*
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Fig. 16.10. Inertia bending forces.

A little consideration will show that the perpendicular components will be maximum, when the
crank and connecting rod are at right angles to each other.

The variation of the inertia force on the connecting rod is linear and is like a simply supported
beam of variable loading as shown in Fig. 16.10 (b) and (c). Assuming that the connecting rod is of
uniform cross-section and has mass m1 kg per unit length, therefore

Inertia force per unit length at the crank pin

= m1 × ω2r

and inertia force per unit length at the gudgeon pin

= 0

Inertia forces due to small element of length dx at a distance x from the gudgeon pin P,

     dFI = m1 × ω2r × 
x

l
 × dx

∴ Resultant inertia force,

    FI =
2 2

2 1
1

0 02

l
l m rx x
m r dx

l l

⎡ ⎤× ω
× ω × × = ⎢ ⎥

⎣ ⎦∫
= 2 21

2 2

m l m
r r

× × ω = × ω ... (Substituting m1.l = m)

This resultant inertia force acts at a distance of 2l / 3 from the gudgeon pin P.

Since it has been assumed that 1
3  rd mass of the connecting rod is concentrated at gudgeon pin

P (i.e. small end of connecting rod) and 2
3  rd at the crank pin (i.e. big end of connecting rod),
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therefore the reactions at these two ends will be in the same proportion, i.e.

RP =
1

3
 FI, and  RC = 

2

3
 FI

Now the bending moment acting on the rod at section X-X at a distance x from P,

MX = RP × x – *m1 × ω2r × 
1

2 3

x x
x

l
× ×

=
3

21
I 2

.1
–

3 2 3

m l x
F x r

l
× × ω × ... P I

1

3
⎛ ⎞=⎜ ⎟
⎝ ⎠
QR F

... (Multiplying and dividing the latter expression by l)

=
3 3

I I
I 2 2

– –
3 33

F x Fx x
F x

l l

⎛ ⎞× × = ⎜ ⎟
⎝ ⎠

...(i)

For maximum bending moment, differentiate MX with respect to x and equate to zero, i.e.

MX 0
d

dx
= or

2
I

2

3
1 – 0

3

F x

l

⎡ ⎤
=⎢ ⎥

⎣ ⎦

∴
2

2

3
1 – 0

x

l
= or 3x2 = l2     or

3

l
x =

Substituting this value of x in the above equation (i), we have maximum bending moment,

Mmax =

3

I I
2

3
– –

3 33 3 3 3

l

F Fl l l

l

⎡ ⎤⎛ ⎞
⎢ ⎥⎜ ⎟⎝ ⎠ ⎡ ⎤⎢ ⎥ = ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦

=
I I22

3 3 3 9 3

×× =F F ll

=
2 22

2 9 3 9 3

m l l
r m r× × ω × = × ω × ... 2

I 2
⎛ ⎞= × ω⎜ ⎟
⎝ ⎠
Q

m
F r

and the maximum bending stress, due to inertia of the connecting rod,

σmax = maxM

Z
where Z = Section modulus.

From above we see that the maximum bending moment varies as the square of speed, therefore,
the bending stress due to high speed will be dangerous. It may be noted that the maximum axial force
and the maximum bending stress do not occur simultaneously. In an I.C. engine, the maximum gas
load occurs close to top dead centre whereas the maximum bending stress occurs when the crank
angle θ = 65° to 70° from top dead centre. The pressure of gas falls suddenly as the piston moves from
dead centre. In steam engines, even though the pressure is maintained till cut off occurs, the speed is
low and therefore the bending stress due to inertia is small. Thus the general practice is to design a
connecting rod by assuming the force in the connecting rod (FC) equal to the maximum force on the
piston due to pressure of gas or steam (FL), neglecting piston inertia effects and then checked for
bending stress due to inertia force (i.e. whipping stress).

* B.M. due to variable loading from 2
10 to

x
m r

l
⎛ ⎞ω ×⎜ ⎟
⎝ ⎠

 is equal to the area of triangle multiplied by distance

of C.G. from X-X . .
3

⎛ ⎞
⎜ ⎟
⎝ ⎠

x
i e .
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Example 16.6. Determine the dimensions of an I-section connecting rod for a petrol engine

from the following data :

Diameter of the piston = 110 mm

Mass of the reciprocating parts = 2 kg

Length of the connecting rod from centre to centre

= 325 mm

Stroke length = 150 mm

R.P.M. = 1500 with

possible
overspeed of
2500

Compression ratio = 4 : 1

Maximum explosion pressure = 2.5 N/mm2

Solution. Given : D = 110 mm = 0.11 m ; mR = 2 kg ;
l = 325 mm = 0.325 m ; Stroke length = 150 mm = 0.15 m ;
Nmin = 1500 r.p.m. ; Nmax = 2500 r.p.m. ; *Compression ratio = 4 : 1 ; p = 2.5 N/mm2

We know that the radius of crank,

r =
Stroke length 150

75 mm 0.075 m
2 2

= = =

and ratio of the length of connecting rod to the radius of crank,

n =
325

4.3
75

l

r
= =

We know that the maximum force on the piston due to pressure,

FL =
4

π
 × D2 × p = 

4

π
 (110)2 2.5 = 23 760 N

and maximum angular speed,

ωmax =
2 2 2500

261.8 rad / s
60 60

π × π ×= =maxN

We know that maximum inertia force of reciprocating parts,

FI =
2

R
cos 2

( ) cosmaxm r
n

θ⎛ ⎞ω θ +⎜ ⎟
⎝ ⎠

... (i)

The inertia force of reciprocating parts is maximum, when the crank is at inner dead centre, i.e.
when θ = 0°.

∴ FI = mR (ωmax)
2r 

1
1

n
⎛ ⎞+⎜ ⎟
⎝ ⎠

... [From equation (i)]

= 2(261.8)2 0.075 
1

1
4.3

⎛ ⎞+⎜ ⎟
⎝ ⎠

 = 12 672 N

Since the connecting rod is designed by taking the force in the connecting rod (FC) equal to the
maximum force on the piston due to gas pressure (FL), therefore

Force in the connecting rod,

FC = FL = 23 760 N

Connecting rod of a petrol engine.

* Superfluous data.
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Consider the I-section of the connecting rod with the proportions as shown in Fig. 16.11. We
have discussed in Art. 16.15 that for such a section

xx

yy

I

I
= 3.2

or
2

2

xx

yy

k

k
= 3.2, which is satisfactory.

We have also discussed that the connecting rod is designed
for buckling about X-axis (i.e. in a plane of motion of the connecting
rod), assuming both ends hinged. Taking a factor of safety as 6, the
buckling load,

Wcr = FC × 6 = 23 760 × 6 = 142 560 N

and area of cross-section,

A = 2 (4t × t) + t × 3t = 11 t2 mm2

Moment of inertia about X-axis,

Ixx =
3 3 4

44 (5 ) 3 (3 ) 419
– mm

12 12 12

t t t t t⎡ ⎤
=⎢ ⎥⎣ ⎦

∴ Radius of gyration,

kxx =
4

2

419 1
1.78

12 11
xxI t

t
A t

= × =

We know that equivalent length of the rod for both ends hinged,

L = l = 325 mm

Taking for mild steel, σc = 320 MPa = 320 N/mm2 and a = 1 / 7500, we have from Rankine’s
formula,

Wcr = 2

1

c

xx

A

L
a

k

σ ×

⎛ ⎞+ ⎜ ⎟
⎝ ⎠

142 560 =
2

2

320 11

1 325
1

7500 1.78

t

t

×

⎛ ⎞+ ⎜ ⎟
⎝ ⎠

40.5 =
2 4

2

2

4.44 4.441

t t

t
t

=
++

or t4 – 40.5 t2 – 179.8 = 0

∴ t 2 =
240.5 (40.5) 4 179.8 40.5 48.6

44.55
2 2

± + × ±= =

... (Taking +ve sign)

or t = 6.67 say 6.8 mm

Therefore, dimensions of cross-section of the connecting rod are

Height = 5 t = 5 × 6.8 = 34 mm Ans.
Width = 4 t = 4 × 6.8 = 27.2 mm Ans.

Fig. 16.11
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Thickness of flange and web

= t = 6.8 mm = 0.0068 m Ans.
Now let us find the bending stress due to inertia force on the connecting rod.

We know that the mass of the connecting rod per metre length,

m1 = Volume × density = Area × length × density

= A × l × ρ = 11 t2 × l × ρ ..(Q A = 11 t2)

= 11(0.0068)2 1 × 7800 = 3.97 kg ... (Taking ρ = 7800 kg / m3)

∴ Maximum bending moment,

Mmax =
2

2 2
1

9 3 9 3

l l
m r m rω × = ω × ... (Q m = m1.l )

= 3.97 (261.8)2 (0.075) × 
2(0.325)

9 3
= 138.3 N-m

and section modulus,

Zxx =
4

3419 2 419

5 / 2 12 5 30
xxI t

t
t t

= × =

=
419

30
 (0.0068)3 = 4.4 × 10–6 m3

∴ Maximum bending or whipping stress due to inertia bending forces,

σb(max) =
6 2

–6

138.3
31.4 10 N/m

4.4 10
max

xx

M

Z
= = ×

×
= 31.4 MPa, which is safe

Note :  The maximum compressive stress in the connecting rod will be,

σc(max) = Direct compressive stress + Maximum bending stress

=
320

6
 + 31.4 = 84.7 MPa

EEEEEXEXEXEXEXERRRRRCISECISECISECISECISESSSSS

1. Compare the ratio of strength of a solid steel column to that of a hollow column of internal diameter
equal to 3/4th of its external diameter. Both the columns have the same cross-sectional areas, lengths
and end conditions. [Ans. 25/7]

2. Find the Euler’s crippling load for a hollow cylindrical steel column of 38 mm external diameter and
35 mm thick. The length of the column is 2.3 m and hinged at its both ends. Take E = 200 GN/m2. Also
determine the crippling load by Rankine’s formula, using

σc = 320 MPa ; and a = 
1

7500
[Ans. 17.25 kN ; 17.4 kN]

3. Determine the diameter of the pistion rod of the hydraulic cylinder of 100 mm bore when the maxi-
mum hydraulic pressure in the cylinder is limited to 14 N/mm2. The length of the piston rod is 1.2 m.
The factor of safety may be taken as 5 and the end fixity coefficient as 2. [Ans. 45 mm]

4. Find the diameter of a piston rod for an engine of 200 mm diameter. The length of the piston rod is 0.9
m and the stroke is 0.5 m. The pressure of steam is 1 N/mm2. Assume factor of safety as 5.

[Ans. 31 mm]
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5. Determine the diameter of the push rod made of mild steel of an I.C. engine if the maximum force
exerted by the push rod is 1500 N. The length of the push rod is 0.5 m. Take the factor of safety as 2.5
and the end fixity coefficient as 2. [Ans. 10 mm]

6. The eccentric rod to drive the D-slide valve mecha-
nism of a steam engine carries a maximum compres-
sive load of 10 kN. The length of the rod is 1.5 m.
Assuming the eccentric rod hinged at both the ends,
find

(a) diameter of the rod, and

(b) dimensions of the cross-section of the rod if it is
of rectangular section. The depth of the section is
twice its thickness.

                       Take factor of safety = 40 and E = 210 kN/mm2.
[Ans. 60 mm ; 30 × 60 mm]

7. Determine the dimensions of an I-section connecting
rod for an internal combustion engine having the fol-
lowing specifications :

Diameter of the piston = 120 mm

Mass of reciprocating parts = 350 kg/m2 of
piston area

Length of connecting rod = 350 mm

Engine revolutions per minute = 1800

Maximum explosion pressure = 3 N/mm2

Stroke length = 180 mm

The flange width and the depth of the I-section rod are
in the ratio of 4 t : 6 t where t is the thickness of the
flange and web. Assume yield stress in compression
for the material as 330 MPa and a factor of safety as
6.                                                     [Ans. t = 7.5 mm]

8. The connecting rod of a four stroke cycle Diesel engine
is of circular section and of length 550 mm. The diameter and stroke of the cylinder are 150 mm and
240 mm respectively. The maximum combustion pressure is 4.7 N/mm2. Determine the diameter of
the rod to be used, for a factor of safety of 3 with a material having a yield point of 330 MPa.

Find also the maximum bending stress in the connecting rod due to whipping action if the engine runs
at 1000 r.p.m. The specific weight of the material is 7800 kg/m3.

[Ans. 33.2 mm ; 48 MPa]

QQQQQUEUEUEUEUESTSTSTSTSTIONSIONSIONSIONSIONS
1. What do you understand by a column or strut ? Explain the various end conditions of a column or

strut.

2. State the assumptions used in Euler’s column theory.

3. Define ‘slenderness ratio’. How it is used to define long and short columns ?

4. What is equivalent length of a column ? Write the relations between equivalent length and actual
length of a column for various end conditions.

5. Explain Johnson’s formula for columns. Describe the use of Johnson’s formula and Euler’s formula.

6. Write the formula for obtaining a maximum stress in a long column subjected to eccentric loading.

Screwjacks
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7. How the piston rod is designed ?

8. Explain the design procedure of valve push rods.

9. Why an I-Section is usually preferred to a round section in case of connecting rods?

OBJECTOBJECTOBJECTOBJECTOBJECTIVEIVEIVEIVEIVE      TTTTTYPYPYPYPYPE E E E E QQQQQUEUEUEUEUESTSTSTSTSTIONSIONSIONSIONSIONS

1. A machine part is designed as a strut, when it is subjected to

(a) an axial tensile force (b) an axial compressive force

(c) a tangential force (d) any one of these

2. Slenderness ratio is the ratio of

(a) maximum size of a column to minimum size of column

(b) width of column to depth of column

(c) effective length of column to least radius of gyration of the column

(d) effective length of column to width of column

3. A connecting rod is designed as a

(a) long column (b) short column

(c) strut (d) any one of these

4. Which of the following formula is used in designing a connecting rod ?

(a) Euler’s formula (b) Rankine’s formula

(c) Johnson’s straight line formula (d) Johnson’s parabolic formula

5. A connecting rod subjected to an axial load may buckle with

(a) X-axis as neutral axis (b) Y-axis as neutral axis

(c) X-axis or Y-axis as neutral axis (d) Z-axis

6. In designing a connecting rod, it is considered like .............. for buckling about X-axis.

(a) both ends hinged (b) both ends fixed

(c) one end fixed and the other end hinged (d) one end fixed and the other end free

7. A connecting rod should be

(a) strong in buckling about X-axis

(b) strong in buckling about Y-axis

(c) equally strong in buckling about X-axis and Y-axis

(d) any one of the above

8. The buckling will occur about Y-axis,if

(a) Ixx = Iyy (b) Ixx = 4Iyy

(c) Ixx > 4Iyy (d) Ixx < 4Iyy

9. The connecting rod will be equally strong in buckling about X-axis and Y-axis, if

(a) Ixx = Iyy (b) Ixx = 2Iyy

(c) Ixx = 3Iyy (d) Ixx = 4Iyy

10. The most suitable section for the connecting rod is

(a) L-section (b) T-section

(c) I-section (d) C-section

ANSWEANSWEANSWEANSWEANSWERRRRRSSSSS

1. (b) 2. (c) 3. (c) 4. (b) 5. (c)

6. (a) 7. (c) 8. (c) 9. (d) 10. (c)
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