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PREFACE

This book treats the analysis and design of beams, with a particular emphasis on com-
putational approaches for thin-walled beams. The underlying formulations are based
on the assumption of linear elasticity. Extension, bending, and torsion are discussed.
Beams with arbitrary cross sections, loading, and boundary conditions are covered,
as well as the determination of displacements, natural frequencies, buckling loads,
and the normal and shear stresses due to bending, torsion, direct shear, and restrained
warping. The Wiley website (http://www.wiley.com/go/pilkey) provides information
on the availability of computer programs that perform the calculations for the formu-
lations of this book.

Most of this book deals with computational methods for finding beam cross-
sectional properties and stresses. The computational solutions apply to solid and
thin-walled open and closed sections. Some traditional analytical formulas for thin-
walled beams are developed here. A systematic and thorough treatment of analytical
thin-walled beam theory for both open and closed sections is on the author’s website.

The technology essential for the study of a structural system that is modeled
by beam elements is provided here. The cross-sectional properties of the individ-
ual beams can be computed using the methodology provided in this book. Then, a
general-purpose analysis computer program can be applied to the entire structure to
compute the forces and moments in the individual members. Finally, the methodol-
ogy developed here can be used to find the normal and shear stresses on the members’
cross sections.

Historically, shear stress-related cross-sectional properties have been difficult to
obtain analytically. These properties include the torsional constant, shear deforma-
tion coefficients, the warping constant, and the shear stresses themselves. The for-
mulations of this book overcome the problems encountered in the calculation of
these properties. Computational techniques permit these properties to be obtained ef-
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xiv PREFACE

ficiently and accurately. The finite element formulations apply to cross sections with
arbitrary shapes, including solid or thin-walled configurations. Thin-walled cross
sections can be open or closed. For thin-walled cross sections, it is possible to prepare
a computer program of analytical formulas to calculate several of the cross-sectional
properties efficiently and with acceptable accuracy.

Shape optimization of beam cross sections is discussed. The cross-sectional shape
can be optimized for objectives such as minium weight or an upper bound on the
stress level. Essential to the optimization is the proper calculation of the sensitivity
of various cross-sectional properties with respect to the design parameters. Standard
optimization algorithms, which are readily available in existing software, can be uti-
lized to perform the computations necessary to achieve an optimal design.

For cross-sectional shape optimization, B-splines, in particular, NURBS can be
conveniently used to describe the shape. Using NURBS eases the task of adjusting
the shape during the optimization process. Such B-spline characteristics as knots and
weights are defined.

Computer programs are available to implement the formulations in this book. See
the Wiley website. These include programs that can find the internal net forces and
moments along a solid or thin-walled beam with an arbitrary cross-sectional shape
with any boundary conditions and any applied loads. Another program can be used
to find the cross-sectional properties of bars with arbitrary cross-sectional shapes,
as well as the cross-sectional stresses. One version of this program is intended to
be used as an “engine” in more comprehensive analysis or optimal design software.
That is, the program can be integrated into the reader’s software in order to perform
cross-sectional analyses or cross-sectional shape optimization for beams. The input
to this program utilizes NURBS, which helps facilitate the interaction with design
packages.

The book begins with an introduction to the theory of linear elasticity and of pure
bending of a beam. In Chapter 2 we discuss the development of stiffness and mass
matrices for a beam element, including matrices based on differential equations and
variational principles. Both exact and approximate matrices are derived, the latter
utilizing polynomial trial functions. Static, dynamic, and stability analyses of struc-
tural systems are set forth in Chapter 3. Initially, the element structural matrices
are assembled to form global matrices. The finite element method is introduced in
Chapter 4 and applied to find simple non–shear-related cross-sectional properties of
beams. In Chapter 5 we present Saint-Venant torsion, with special attention being
paid to the accurate calculation of the torsional constant. Shear stresses generated
by shear forces on beams are considered in Chapter 6; these require the relatively
difficult calculation of shear deformation coefficients for the cross section. In Chap-
ter 7 we present torsional stress calculations when constrained warping is present.
Principal stresses and yield theories are discussed in Chapter 8. In Chapters 9 and 10
we introduce definitions and formulations necessary to enable cross-sectional shape
optimization. In Chapter 9 we introduce the concept of B-splines and in Chapter 10
provide formulas for sensitivities of the cross-sectional properties. In the two ap-
pendixes we describe some of the computer programs that have been prepared to
accompany the book.
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The work of Dr. Levent Kitis, my former student and now colleague, has been cru-
cial in the development of this book. Support for some of the research related to the
computational implementation of thin-walled cross-sectional properties and stresses
was provided by Ford Motor Company, with the guidance of Mark Zebrowski and
Victor Borowski. As indicated by the frequent citations to his papers in this book,
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Weise Kang. Most of the text and figures were skillfully crafted by Wei Wei Ding,
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CHAPTER 1

BEAMS IN BENDING

This book deals with the extension, bending, and torsion of bars, especially thin-
walled members. Although computational approaches for the analysis and design of
bars are emphasized, traditional analytical solutions are included.

We begin with a study of the bending of beams, starting with a brief review of
some of the fundamental concepts of the theory of linear elasticity. The theory of
beams in bending is then treated from a strength-of-materials point of view. Both
topics are treated more thoroughly in Pilkey and Wunderlich (1994). Atanackovic
and Guran (2000), Boresi and Chong (1987), Gould (1994), Love (1944), and Sokol-
nikoff (1956) contain a full account of the theory of elasticity. References such as
these should be consulted for the derivation of theory-of-elasticity relationships that
are not derived in this chapter. Gere (2001), Oden and Ripperger (1981), Rivello
(1969), and Uugural and Fenster (1981) may be consulted for a detailed develop-
ment of beam theory.

1.1 REVIEW OF LINEAR ELASTICITY

The equations of elasticity for a three-dimensional body contain 15 unknown func-
tions: six stresses, six strains, and three displacements. These functions satisfy three
equations of equilibrium, six strain–displacement relations, and six stress–strain
equations.

1.1.1 Kinematical Strain–Displacement Equations

The displacement vector u at a point in a solid has the three components ux (x, y, z),
uy(x, y, z), uz(x, y, z) which are mutually orthogonal in a Cartesian coordinate sys-
tem and are taken to be positive in the direction of the positive coordinate axes. In
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2 BEAMS IN BENDING

vector notation,

u =
ux

uy

uz

 = [
ux uy uz

]T (1.1)

Designate the normal strains by εx , εy , and εz and the shear strains are γxy, γxz, γyz .
The shear strains are symmetric (i.e., γi j = γ j i ). In matrix notation

� =


εx

εy

εz

γxy

γxz

γyz

 = [
εx εy εz γxy γxz γyz

]T = [
εx εy εz 2εxy 2εxz 2εyz

]T

(1.2)

As indicated, γik = 2εik , where γik is sometimes called the engineering shear strain
and εik the theory of elasticity shear strain.

The linearized strain–displacement relations, which form the Cauchy strain ten-
sor, are

εx = ∂ux

∂x
εy = ∂uy

∂y
εz = ∂uz

∂z

γxy = ∂uy

∂x
+ ∂ux

∂y
γxz = ∂uz

∂x
+ ∂ux

∂z
γyz = ∂uz

∂y
+ ∂uy

∂z

(1.3)

In matrix form Eq. (1.3) can be written as
εx

εy

εz

γxy

γxz

γyz

 =


∂x 0 0
0 ∂y 0
0 0 ∂z

∂y ∂x 0
∂z 0 ∂x

0 ∂z ∂y


ux

uy

uz

 (1.4)

or

� = D u

with the differential operator matrix

D =


∂x 0 0
0 ∂y 0
0 0 ∂z
∂y ∂x 0
∂z 0 ∂x

0 ∂z ∂y

 (1.5)
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Six strain components are required to characterize the state of strain at a point
and are derived from the three displacement functions ux , uy, uz . The displacement
field must be continuous and single valued, because it is being assumed that the body
remains continuous after deformations have taken place. The six strain–displacement
equations will not possess a single-valued solution for the three displacements if the
strains are arbitrarily prescribed. Thus, the calculated displacements could possess
tears, cracks, gaps, or overlaps, none of which should occur in practice. It appears
as though the strains should not be independent and that they should be required to
satisfy special conditions. To find relationships between the strains, differentiate the
expression for the shear strain γxy with respect to x and y,

∂2γxy

∂x ∂y
= ∂2

∂x ∂y

∂ux

∂y
+ ∂2

∂x ∂y

∂uy

∂x
(1.6)

According to the calculus, a single-valued continuous function f satisfies the condi-
tion

∂2 f

∂x ∂y
= ∂2 f

∂y ∂x
(1.7)

With the assistance of Eq. (1.7), Eq. (1.6) may be rewritten, using the strain–
displacement relations, as

∂2γxy

∂x ∂y
= ∂2εx

∂y2
+ ∂2εy

∂x2
(1.8)

showing that the three strain components γxy , εx , εy are not independent functions.
Similar considerations that eliminate the displacements from the strain–displacement
relations lead to five additional relations among the strains. These six relationships,

2
∂2εx

∂y ∂z
= ∂

∂x

(
−∂γyz

∂x
+ ∂γxz

∂y
+ ∂γxy

∂z

)
2

∂2εy

∂x ∂z
= ∂

∂y

(
−∂γxz

∂y
+ ∂γxy

∂z
+ ∂γyz

∂x

)
2

∂2εz

∂x ∂y
= ∂

∂z

(
−∂γxy

∂z
+ ∂γyz

∂x
+ ∂γxz

∂y

)
∂2γxy

∂x ∂y
= ∂2εx

∂y2
+ ∂2εy

∂x2

∂2γxz

∂x ∂z
= ∂2εx

∂z2
+ ∂2εz

∂x2

∂2γyz

∂y ∂z
= ∂2εz

∂y2
+ ∂2εy

∂z2

(1.9)
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are known as the strain compatibility conditions or integrability conditions. Although
there are six conditions, only three are independent.

1.1.2 Material Law

The kinematical conditions of Section 1.1.1 are independent of the material of which
the body is made. The material is introduced to the formulation through a material
law, which is a relationship between the stresses � and strains �. Other names are
the constitutive relations or the stress–strain equations.

Figure 1.1 shows the stress components that define the state of stress in a three-
dimensional continuum. The quantities σx , σy, and σz designate stress components
normal to a coordinate plane and τxy, τxz, τyz, τyx , τzx , and τzy are the shear
stress components. In the case of a normal stress, the single subscript indicates that
the stress acts on a plane normal to the axis in the subscript direction. For the shear
stresses, the first letter of the double subscript denotes that the plane on which the
stress acts is normal to the axis in the subscript direction. The second subscript letter
designates the coordinate direction in which the stress acts. As a result of the need
to satisfy an equilibrium condition of moments, the shear stress components must be
symmetric that is,

τxy = τyx τxz = τzx τyz = τzy (1.10)

Then the state of stress at a point is characterized by six components. In matrix form,

σx

x

y

σy

σz

τxy

τxz

τyx

τzx

τyz

τzy

z

Figure 1.1 Notation for the components of the Cartesian stress tensor.
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� =


σx

σy
σz

τxy

τxz

τyz


= [

σx σy σz τxy τxz τyz
]T (1.11)

For a solid element as shown in Fig. 1.1, a face with its outward normal along
the positive direction of a coordinate axis is defined to be a positive face. A face
with its normal in the negative coordinate direction is defined as a negative face.
Stress (strain) components on a positive face are positive when acting along a positive
coordinate direction. The components shown in Fig. 1.1 are positive. Components on
a negative face acting in the negative coordinate direction are defined to be positive.

An isotropic material has the same material properties in all directions. If the
properties differ in various directions, such as with wood, the material is said to
be anisotropic. A material is homogeneous if it has the same properties at every
point. Wood is an example of a homogeneous material that can be anisotropic. A
body formed of steel and aluminum portions is an example of a material that is
inhomogeneous, but each portion is isotropic.

The stress–strain equations for linearly elastic isotropic materials are

εx = σx

E
− ν

E
(σy + σz)

εy = σy

E
− ν

E
(σx + σz)

εz = σz

E
− ν

E
(σx + σy)

γxy = τxy

G

γxz = τxz

G

γyz = τyz

G

(1.12)

where E is the elastic or Young’s modulus, ν is Poisson’s ratio, and G is the shear
modulus. Only two of these three material properties are independent. The shear
modulus is given in terms of E and ν as

G = E

2(1 + ν)
(1.13)
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

εx

εy

εz

· · ·
γxy

γxz

γyz


= 1

E



1 −ν −ν
...

−ν 1 −ν
... 0

−ν −ν 1
...

· · · · · · · · · ... · · · · · · · · ·
... 2(1 + ν) 0 0

0
... 0 2(1 + ν) 0
... 0 0 2(1 + ν)





σx

σy

σz

· · ·
τxy

τxz

τyz


� = E−1 � (1.14)

Stresses may be written as a function of the strains by inverting the six relation-
ships of Eq. (1.12) that express strains in terms of stresses. The result is

σx = λe + 2Gεx

σy = λe + 2Gεy

σz = λe + 2Gεz

τxy = Gγxy τxz = Gγxz τyz = Gγyz

(1.15)

where e is the change in volume per unit volume, also called the dilatation,

e = εx + εy + εz (1.16)

and λ is Lamé’s constant,

λ = νE

(1 + ν)(1 − 2ν)
(1.17)

The matrix form appears as

σx

σy

σz

· · ·
τxy

τxz

τyz


= E

(1 + ν)(1 − 2ν)



1 − ν ν ν
.
.
.

ν 1 − ν ν
.
.
. 0

ν ν 1 − ν
.
.
.

· · · · · · · · ·
.
.
.

.

.

.
1 − 2ν

2
0 0

0
.
.
. 0

1 − 2ν

2
0

.

.

. 0 0
(1 − 2ν)

2





εx

εy

εz

· · ·
γxy

γxz

γyz


� = E � (1.18)
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For uniaxial tension, with the normal stress in the x direction given a constant
positive value σ0, and all other stresses set equal to zero,

σx = σ0 > 0 σy = σz = τxy = τyz = τxz = 0 (1.19a)

The normal strains are given by Hooke’s law as

εx = σ0

E
εy = εz = −νσ0

E
(1.19b)

and the shear strains are all zero. Under this loading condition, the material under-
goes extension in the axial direction x and contraction in the transverse directions y
and z. This shows that the material constants ν and E are both positive:

E > 0 ν > 0 (1.20)

In hydrostatic compression p, the material is subjected to identical compressive
stresses in all three coordinate directions:

σx = σy = σz = −p p > 0 (1.21)

while all shear stresses are zero. The dilatation under this loading condition is

e = − 3p

3λ + 2G
= −3p(1 − 2ν)

E
(1.22)

Since the volume change in hydrostatic compression is negative, this expression for
e implies that Poisson’s ratio must be less than 1

2 :

ν < 1
2 (1.23)

and the following properties of the elastic constants are established:

E > 0 G > 0 λ > 0 0 < ν < 1
2 (1.24)

Materials for which ν ≈ 0 and ν ≈ 1
2 are very compressible or very incompressible,

respectively. Cork is an example of a very compressible material, whereas rubber is
very incompressible.

1.1.3 Equations of Equilibrium

Equilibrium at a point in a solid is characterized by a relationship between internal
(volume or body) forces pV x , pV y, pV z, such as those generated by gravity or accel-
eration, and differential equations involving stress. Prescribed forces are designated
with a bar placed over a letter. These equilibrium or static relations appear as

∂σx

∂x
+ ∂τxy

∂y
+ ∂τxz

∂z
+ pV x = 0
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∂τxy

∂x
+ ∂σy

∂y
+ ∂τyz

∂z
+ pV y = 0 (1.25)

∂τxz

∂x
+ ∂τyz

∂y
+ ∂σz

∂z
+ pV z = 0

where pV x , pV y , pV z are the body forces per unit volume. In matrix form,


∂x 0 0

... ∂y ∂z 0

0 ∂y 0
... ∂x 0 ∂z

0 0 ∂z
... 0 ∂x ∂y





σx

σy

σz

· · ·
τxy

τxz
τyz


+


pV x

pV y

pV z

 =


0

0

0



DT � + pV = 0

(1.26)

where the matrix of differential operators DT is the transpose of the D of Eq. (1.5).
These relationships are derived in books dealing with the theory of elasticity and,
also, in many basic strength-of-materials textbooks.

1.1.4 Surface Forces and Boundary Conditions

The forces applied to a surface (i.e., the boundary) of a body must be in equilibrium
with the stress components on the surface. Let Sp denote the part of the surface of
the body on which forces are prescribed, and let displacements be specified on the
remaining surface Su . The surface conditions on Sp are

px = σx nx + τxyny + τxznz

py = τxynx + σyny + τyznz (1.27)

pz = τxznx + τyzny + σznz

where nx , ny , nz are the components of the unit vector n normal to the surface and
px , py , pz are the surface forces per unit area.

In matrix form,

px

py

pz

 =


nx 0 0

... ny nz 0

0 ny 0
... nx 0 nz

0 0 nz
... 0 nx ny





σx

σy

σz

· · ·
τxy

τxz

τyz


p = NT �

(1.28)
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Note that NT is similar in form to DT of Eq. (1.26) in that the components of NT

correspond to the derivatives of DT. The relations of Eq. (1.27) are referred to as
Cauchy’s formula.

Surface forces (per unit area) p applied externally are called prescribed surface
tractions p. Equilibrium demands that the resultant stress be equal to the applied
surface tractions p on Sp:

p = p on Sp (1.29)

These are the static (force, stress, or mechanical) boundary conditions. Continuity
requires that on the surface Su , the displacements u be equal to the specified dis-
placements u:

u = u on Su (1.30)

These are the displacement (kinematic) boundary conditions.

Unit Vectors on a Boundary Curve It is helpful to identify several useful
relationships between vectors on a boundary curve. Consider a boundary curve lying
in the yz plane as shown in Fig. 1.2a. The vector n is the unit outward normal n =
nyj + nzk and t is the unit tangent vector t = tyj + tzk, where j and k are unit
vectors along the y and z axes. The quantity s, the coordinate along the arc of the
boundary, is chosen to increase in the counterclockwise sense. As shown in Fig. 1.2a,
the unit tangent vector t is directed along increasing s. Since n and t are unit vectors,
n2

y + n2
z = 1 and t2

y + t2
z = 1. The components of n are its direction cosines, that is,

from Fig. 1.2b,

ny = cos θy and nz = cos θz (1.31)

since, for example, cos θy = ny/
√

n2
y + n2

z = ny .

From Fig. 1.2c it can be observed that

cos ϕ = ny sin ϕ = nz

sin ϕ = −ty cos ϕ = tz
(1.32)

As a consequence,

ny = tz nz = −ty (1.33)

and the unit outward normal is defined in terms of the components ty and tz of the
unit tangent as

n = tzj − tyk = t × i (1.34)
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(d) Differential components

ϕ

n
t

nz

tz

ny-ty

ϕ

(c) Unit normal and tangential vectors

dz
ds

dy

ϕ

y

s
r

n
t

y

n

nz

z

ny

θz

(b) Components of the unit normal vector

θy

z

(a) Normal and tangential unit vectors
on the boundary

Figure 1.2 Geometry of the unit normal and tangential vectors.

From Fig. 1.2d it is apparent that

sin ϕ = −dy

ds
and cos ϕ = dz

ds
(1.35)

Thus,

ny = tz = dz

ds
nz = −ty = −dy

ds
(1.36)

The vector r to any point on the boundary is

r = yj + zk

Then

dr = dy j + dz k = dr
ds

ds =
(

dy

ds
j + dz

ds
k
)

ds = t ds (1.37)
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1.1.5 Other Forms of the Governing Differential Equations

The general problem of the theory of elasticity is to calculate the stresses, strains,
and displacements throughout a solid. The kinematic equations � = Du (Eq. 1.4)
are written in terms of six strains and three displacements, while the static equations
DT� + pV = 0 (Eq. 1.26) are expressed as functions of the six stress components.
The constitutive equations � = E� (Eq. 1.18) are relations between the stresses and
strains. The boundary conditions of Eqs. (1.29) and (1.30) need to be satisfied by the
solution for the 15 unknowns.

In terms of achieving solutions, it is useful to derive alternative forms of the
governing equations. The elasticity problem can be formulated in terms of the dis-
placement functions ux , uy , uz . The stress–strain equations allow the equilibrium
equations to be written in terms of the strains. When the strains are replaced in the
resulting equations by the expressions given by the strain–displacement relations,
the equilibrium equations become a set of partial differential equations for the dis-
placements. Thus, substitute � = Du into � = E� to give the stress–displacement
relations � = EDu. The conditions of equilibrium become

DT� + pV = DTEDu + pV = 0 (1.38)

or, in scalar form,

(λ + G)
∂e

∂x
+ G∇2ux + pV x = 0

(λ + G)
∂e

∂y
+ G∇2uy + pV y = 0 (1.39)

(λ + G)
∂e

∂z
+ G∇2uz + pV z = 0

where ∇2 is the Laplacian operator

∇2 = ∂2

∂x2
+ ∂2

∂y2
+ ∂2

∂z2
(1.40)

The dilatation e is a function of displacements

e = ∂ux

∂x
+ ∂uy

∂y
+ ∂uz

∂z
= � · u (1.41)

where u is the displacement vector, whose components along the x , y, z axes are
ux , uy , uz , and ∇ is the gradient operator. The displacement vector is expressed as
u = ux i + uyj + uzk, where i, j, k are the unit base vectors along the coordinates
x, y, z, respectively. The gradient operator appears as

� = i
∂

∂x
+ j

∂

∂y
+ k

∂

∂z
(1.42)
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To complete the displacement formulation, the surface conditions on Sp must
also be written in terms of the displacements. This is done by first writing these
surface conditions of Eq. (1.27) in terms of strains using the material laws, and then
expressing the strains in terms of the displacements, using the strain–displacement
relations. The resulting conditions are

λenx + Gn · �ux + Gn · ∂u
∂x

= px

λeny + Gn · �uy + Gn · ∂u
∂y

= py (1.43)

λenz + Gn · �uz + Gn · ∂u
∂z

= pz

where n = nx i + nyj + nzk. If boundary conditions exist for both Sp and Su , the
boundary value problem is called mixed. The equations of equilibrium written in
terms of the displacements together with boundary conditions on Sp and Su consti-
tute the displacement formulation of the elasticity problem. In this formulation, the
displacement functions are found first. The strain–displacement relations then give
the strains, and the material laws give the stresses.

1.2 BENDING STRESSES IN A BEAM IN PURE BENDING

A beam is said to be in pure bending if the force–couple equivalent of the stresses
over any cross section is a couple M in the plane of the section

M = Myj + Mzk (1.44)

z

y
My

x

Mz

O

Figure 1.3 Beam in pure bending.
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z

y
My

x

Mz

σx ∆A

O

Figure 1.4 Stress resultants on a beam cross section.

where j, k are the unit vectors parallel to the y, z axes, and the x axis is the beam
axis, as shown in Fig. 1.3. In terms of the stress σx , the bending moments may be
calculated as stress resultants by summing the moments about the origin O of the
axes (Fig. 1.4)

My =
∫

zσx dA Mz = −
∫

yσx dA (1.45)

The point about which the moments are taken is arbitrary because the moment of a
couple has the same value about any point.

Since in pure bending there is no axial stress resultant,∫
σx dA = 0 (1.46)

According to the Bernoulli–Euler theory of bending, the cross-sectional planes of
the beam remain plane and normal to the beam axis as it deforms. Choose the x axis
(i.e. the beam axis) such that it passes through a reference point with coordinates
(x, 0, 0). This point is designated by O in Fig. 1.5. The axial displacement ux of a
point on the cross section with coordinates (x, y, z) can be expressed in terms of the
rotations of the cross section about the y and z axes and the axial displacement u(x)

of the reference point (Fig. 1.5). Thus

ux (x, y, z) = u(x) + zθy(x) − yθz(x) (1.47)

where θy , θz are the angles of rotation of the section about the y, z axes. Thus, the
displacement ux at a point on the cross section has been expressed in terms of the
beam axis variables u, θy , and θz . Note that the quantities u, θy , and θz do not vary
over a particular cross section. The terms zθy and yθz vary linearly. Figure 1.6 shows
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z

yux(x,y,z)

x
u(x)

θz θy

O Beam axis

Figure 1.5 Axial displacement. During bending the cross-sectional plane remains plane and
normal to the beam axis.

the displacement of a point P of the section with respect to point O as a result of a
rotation about the y axis.

The axial strain at the point (x, y, z) is found from the strain–displacement equa-
tion (Eq. 1.3)

εx = ∂ux

∂x
= κε + κyz − κz y (1.48)

where

κε = du

dx
κy = dθy

dx
κz = dθz

dx

z

y

θy

x

My

P'

P

O

θy

Figure 1.6 Rotation of a cross section about the y axis.
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At a given cross section, κε , κy , κz are constants, so that the normal strain distribution
over the section is linear in y and z.

In pure bending, the only nonzero stress is assumed to be the normal stress σx ,
which is given by the material law for linearly elastic isotropic materials as σx =
Eεx , so that

σx = E(κε + κyz − κz y) (1.49)

For a nonhomogeneous beam, the elastic modulus takes on different values over
different parts of the section, making E a function of position:

E = E(y, z)

The stress distribution at a given cross section is then expressed as

σx(y, z) = E(y, z)(κε + κyz − κz y) (1.50)

The stress distribution is statically equivalent to the couple at the section so that
the total axial force calculated as a stress resultant is zero and the moments are equal
to the bending moments at the section. Thus, from Eqs. (1.45), (1.46), and (1.50),∫

σx dA = κε

∫
E dA + κy

∫
zE dA − κz

∫
y E dA = 0∫

zσx dA = κε

∫
zE dA + κy

∫
z2 E dA − κz

∫
yzE dA = My (1.51)∫

yσx dA = κε

∫
y E dA + κy

∫
yzE dA − κz

∫
y2E dA = −Mz

Define geometric properties of the cross section as

Qy =
∫

z dA Qz =
∫

y dA (1.52a)

Iy =
∫

z2 dA Iz =
∫

y2 dA Iyz =
∫

yz dA (1.52b)

where Qy and Qz are first moments of the cross-sectional area and Iy , Iz, and Iyz

are the second moments of a plane area or the area moments of inertia. Place the
definitions of Eqs. (1.52) in Eq. (1.51):

κε A + κy Qy − κz Qz = 0

κε Qy + κy Iy − κz Iyz = My

E
(1.53)

κε Qz + κy Iyz − κz Iz = − Mz

E

where the elastic modulus E is assumed to be constant for the cross section.
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C

P

rPC

y

z

rPO

rCO

O

z
_

y
_

Figure 1.7 Translation of the origin O to the centroid C.

The three simultaneous relations of Eq. (1.53) for the constants κε , κy , and κz

become simpler if advantage is taken of the arbitrariness of the choice of origin O.
Let a new coordinate system with origin C be defined as shown in Fig. 1.7 by a
translation of axes. Figure 1.7 shows that the coordinate transformation equation for
any point P of the section is rP O = rPC + rC O , or

rPC = rP O − rC O (1.54a)

The components of this vector equation are

y = y − yC z = z − zC (1.54b)

where y and z are the coordinates of P relative to the y, z coordinate axes and yC and
zC are the coordinates of C relative to the y, z coordinate axes. Choose the origin C
such that the first moments of area in the coordinate system C y z are zero:

Qy =
∫

z dA =
∫

(z − zC ) dA = 0

Qz =
∫

y dA =
∫

(y − yC) dA = 0
(1.55)

With the definitions of Eq. (1.52a), these conditions yield the familiar geometric
centroid of the cross section:

yC = Qz

A
zC = Qy

A
(1.56)
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Transform Eq. (1.53) to the centroidal coordinate system by assuming that Qy ,
Qz , Iy , Iz , and Iyz are measured from the centroidal coordinates. Since Qy and Qz
are equal to zero (Eq. 1.55), Eq. (1.53) reduces to

κε A = 0

κ y Iy − κz Iy z = My

E

κ y Iy z − κz Iz = − Mz

E

where Iy , Iz , and Iyz are the moments of inertia about the y, z centroidal axes. Solve
these expressions for κε, κ y , and κz , and substitute the results into σx of Eq. (1.49)
expressed in terms of centroidal coordinates [i.e., σx = E(κε + κ yz − κz y)]. This
leads to an expression for the normal stress:

σx = − Iy z My + Iy Mz

Iy Iz − I 2
y z

y + Iz My + Iy z Mz

Iy Iz − I 2
y z

z (1.57)

The neutral axis is defined as the line on the cross section for which the normal
stress σx is zero. This axis is the line of intersection of the neutral surface, which
passes through the centroid of the section, and the cross-sectional plane. By equating
Eq. (1.57) to zero, we find that the neutral axis is a straight line defined by

−(Iy z My + Iy Mz)y + (Iz My + Iy z Mz)z = 0

or

y = Iz My + Iy z Mz

Iy z My + Iy Mz
z (1.58)

If Mz = 0, Eq. (1.57) reduces to

σx = My
Izz − Iy z y

Iy Iz − I 2
y z

(1.59)

The centroidal coordinates can be located using Eq. (1.56). Sometimes it is con-
venient to calculate the area moment of inertia first about a judiciously selected co-
ordinate system and then transform them to the centroidal coordinate system. The
calculation for Iz , for instance, is

Iz =
∫

y2 dA =
∫

(y − yC)2 dA

=
∫

(y2 − 2yyC + y2
C) dA

= Iz − y2
C A
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From Eq. (1.55), the integral
∫

y dA in this expression is equal to
∫

yC dA. This is
one of Huygens’s or Steiner’s laws and is referred to as a parallel axis theorem. The
complete set of equations is

Iy = Iy − z2
C A

Iz = Iz − y2
C A (1.60)

Iy z = Iyz − yC zC A

Here Iy, Iz, Iyz and Iy, Iz, Iyz are the moments of inertia about the y, z and y, z
(centroidal) axes, respectively.

Example 1.1 Thin-Walled Cantilevered Beam with an Asymmetrical Cross Sec-
tion. Find the normal stress distribution for the cantilevered angle shown in Fig. 1.8.
The beam is fixed at one end and loaded with a vertical concentrated force P at the
other end.

SOLUTION. The centroid for this asymmetrical section is found to be located as
shown in Fig. 1.9a. Assume that the thickness t is much smaller than the dimension
a. Then the moments of inertia can be calculated from Eq. (1.52b) as

Iy =
∫

z2 dA =
∫ 2a/3−t/2

−4a/3

∫ −a/6+t/2

−a/6−t/2
z2 d y dz

L

x a

2a

P
_

Figure 1.8 Thin-walled cantilevered beam with an asymmetrical cross section.
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(b) Distribution of normal stress σx

-PL

a2t

5PL

4a2t

PL

2a2t

y

z

6

a
a

3

2a

2a

t

D

t

A

(a) Cross section

B

C

(c) Neutral axis

y

z

tA

9
2a

2

a

Figure 1.9 Normal stress distribution of the thin-walled beam of Example 1.1.



20 BEAMS IN BENDING

+
∫ 2a/3+t/2

2a/3−t/2

∫ 5a/6

−a/6−t/2
z2 d y dz

= 4
3 a3t + 1

4 at3 ≈ 4
3 a3t (1)

Iz =
∫

y2 dA = 1
4 a3t + 5

24 at3 ≈ 1
4 a3t

Iyz =
∫

yz dA = 1
3a3t − 5

48at3 ≈ 1
3 a3t

Numerical values for these and other cross-sectional parameters are given in
Table 1.1.

The normal stress σx on a cross-sectional face is given by Eq. (1.57). The sign
convention for My and Mz is detailed in Chapter 2. At a distance L from the free
end, My = −P L and Mz = 0, so that Eq. (1.57) becomes

σx = − Iy z My + Iy Mz

Iy Iz − I 2
y z

y + Iz My + Iy z Mz

Iy Iz − I 2
y z

z

= − (a3t/3)(−P L)

(4a3t/3)(a3t/4) − (a3t/3)2
y + (a3t/4)(−P L)

(4a3t/3)(a3t/4) − (a3t/3)2
z (2)

= 3P L

2a3t
y − 9P L

8a3t
z

TABLE 1.1 Part of the Output File for the Computer Program of the Appendixes for
the Angle Section of Examples 1.1 and 1.2 with a = 1 and t = 0.1a

Corresponds
Cross-Sectional Properties to Equation:

Cross-Sectional Area 0.3000
Y Moment of Area −0.1999 1.52a
Z Moment of Area 0.0499 1.52a

Y Centroid 0.1663 1.56
Z Centroid −0.6663 1.56

Moment of Inertia Iȳ 0.1336 1.52b
Moment of Inertia Iz̄ 0.0252 1.52b
Product of Inertia Iȳz̄ 0.0332 1.52b

Principal Bending Angle (deg) −15.7589 1.82 or 1.95
Principal Moment of Inertia (max) 0.1430 1.88
Principal Moment of Inertia (min) 0.0158 1.88

a See Fig. 5.26b for coordinate systems.
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If the terms involving t3 in (1) are not neglected, we would find

σx = 48P L

at

16a2 − 5t2

512a4 + 944a2t2 + 95t4
y

− 48P L

at

12a2 + 10t2

512a4 + 944a2t2 + 95t4
z

(3)

Equation (2) is the desired distribution of σx on the cross section. The stress at point
A of Fig. 1.9a is found by substituting z = 2a/3 and y = 5a/6 into (2):

(σx)A = P L

2a2t
(4)

At point B, y = −a/6, z = 2a/3, and σx becomes

(σx)B = − P L

a2t
(5)

Finally, at point D, y = −a/6, z = −4a/3, and σx is found to be

(σx)D = 5P L

4a2t
(6)

The distribution of the normal stresses is illustrated in Fig. 1.9b.
The neutral axis is defined by Eq. (1.58) as

y = Iz My

Iyz My
z = Iz

Iyz
z = 3

4
z (7)

This line is plotted in Fig. 1.9c. The angle between the y axis and the neutral axis is
53.13◦.

If the asymmetrical nature of the cross section is ignored, Iyz would be zero and
the normal stress σx of Eq. (1.57) would be

σx = My

Iy
z (8)

The maximum stress occurs at point D with z = −4a/3, so that (8) becomes

(σx)D = P L

a2t
(9)

At points A and B, z = 2a/3 and (8) becomes

(σx)A = (σx)B = − P L

2a2t
(10)

Note that these values are not consistent with (4), (5), and (6).
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The radii of gyration about the centroidal axes y, z are defined by

r y =
√

Iy

A
r z =

√
Iz

A
(1.61)

The elastic section moduli Ye, Ze about the centroidal axes y, z are defined by

Ye = Iy

zmax
Ze = Iz

ymax
(1.62)

where zmax is the maximum distance between the y axis and the material points of
the cross section, that is, zmax is the distance from the y axis to the outermost fiber;
ymax is the maximum distance between the z axis and the material points of the cross
section. The polar moment of inertia Ip with respect to the centroid of the section is
the sum of the area moments of inertia about the y and z axes:

Ip = Iy + Iz (1.63)

Modulus-Weighted Properties If the material properties are not homogeneous
on the cross section, it is useful to introduce a reference modulus Er and to define a
modulus-weighted differential area by

dÃ = E

Er
dA (1.64)

Then, Eq. (1.51) appears as

κε Ã + κy Q̃ y − κz Q̃z = 0

κε Q̃ y + κy Ĩy − κz Ĩyz = My

Er
(1.65)

κε Q̃z + κy Ĩyz − κz Ĩz = − Mz

Er

In this equation, modulus-weighted section properties of the beam are utilized. The
modulus-weighted first moments of area are

Q̃ y =
∫

z dÃ Q̃z =
∫

y dÃ (1.66a)

The modulus-weighted area moments of inertia are given by

Ĩy =
∫

z2dÃ Ĩz =
∫

y2dÃ (1.66b)

and the modulus-weighted area product of inertia is

Ĩyz =
∫

yz dÃ (1.66c)
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For a homogeneous beam, the elastic modulus E has the same value at any point
of the section, and Er is chosen equal to E . The modulus-weighted properties then
become purely geometric properties of the cross section of Eq. (1.52).

Equation (1.65) is simplified if the relationships are transformed to the centroidal
coordinates. For the modulus-weighted case, the components of Eq. (1.54b) are

y = y − ỹC z = z − z̃C (1.67)

As in the homogeneous case, the origin C is chosen such that the first moments of
area in the coordinate system C yz are zero:

Q̃ y =
∫

z dÃ =
∫

(z − z̃C) dÃ = 0

Q̃z =
∫

y dÃ =
∫

(y − ỹC) dÃ = 0

(1.68)

These conditions give

ỹC = Q̃z

Ã
z̃C = Q̃ y

Ã
(1.69)

The point C is the modulus-weighted centroid of the cross section. When the material
is homogeneous, C becomes the familiar geometric centroid, given by Eq. (1.56).

Transform Eq. (1.65) for the constants κε , κy , κz to the centroidal coordinate sys-
tem. Introduce Eq. (1.68). Then

κε Ã = 0

κ y Ĩy − κz Ĩy z = My

Er
(1.70)

κ y Ĩy z − κz Ĩz = − Mz

Er

Solve these equations for κε , κ y , and κz, and substitute the results into σx of
Eq. (1.50), expressed in terms of κε , κ y , and κ z . This leads to the normal stress

σx = E

Er

− Ĩy z My + Ĩy Mz

Ĩy Ĩz − Ĩ 2
y z

y + Ĩz My + Ĩy z Mz

Ĩy Ĩz − Ĩ 2
yz

z

 (1.71)

The parallel axis theorem transformation equations for the modulus-weighted
properties are



24 BEAMS IN BENDING

Ĩy = Ĩy − z̃2
C Ã

Ĩz = Ĩz − ỹ2
C Ã (1.72)

Ĩy z = Ĩyz − ỹC z̃C Ã

The radii of gyration about the centroidal axes y, z are defined as

r y =
√

Ĩy

Ã
r z =

√
Ĩz

Ã
(1.73)

and the elastic section moduli about the centroidal axes are

Ye = Ĩy

zmax
Ze = Ĩz

ymax
(1.74)

Finally, the polar moment of inertia with respect to the centroid is

Ĩ p = Ĩy + Ĩz (1.75)

1.3 PRINCIPAL BENDING AXES

Figure 1.10 shows centroidal axes y, z and a rotated set of centroidal axes y′, z′. The
unit vectors j, k are directed along the y, z axes and the unit vectors j′, k′ along the

y

y'

z'

jr

ϕ
j'

k
k'

z

C

P

Figure 1.10 Rotated centroidal coordinate system.
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y
C

y'

z'

ϕ

P

dA

ϕ

ϕz cos ϕ
y cos ϕ

y sin ϕ

z

z sin ϕ

Figure 1.11 Rotation of the centroidal coordinate system.

y′, z′ axes. The position vector r of a point P on the cross section may be expressed
as

r = yj + zk = y′j′ + z′k′ (1.76)

where y and z are the coordinates of P from the y, z axes. Similarly, y′ and z′ are
the coordinates of P from the y′, z′ axes. The y′, z′ coordinates can be obtained in
terms of the y, z coordinates (Fig. 1.11):

y′ = yj · j′ + zk · j′ = y cos ϕ + z sin ϕ

z′ = yj · k′ + zk · k′ = −y sin ϕ + z cos ϕ
(1.77)

Suppose that the differential area dA is located at point P . The second moments of
the area (i.e., the area moments of inertia) in the rotated coordinate system are

Iy′ =
∫

z′2 dA = Iz sin2 ϕ + Iy cos2 ϕ − 2Iyz sin ϕ cos ϕ

Iz′ =
∫

y′2 dA = Iz cos2 ϕ + Iy sin2 ϕ + 2Iyz sin ϕ cos ϕ (1.78)

Iy′z′ =
∫

y′z′ dA = Iyz(cos2 ϕ − sin2 ϕ) + (Iy − Iz) sin ϕ cos ϕ

where the relations of Eq. (1.77) have been utilized. The use of the familiar trigono-
metric identities 2 cos2 ϕ = 1+cos 2ϕ, 2 sin2 ϕ = 1−cos 2ϕ, 2 sin ϕ cos ϕ = sin 2ϕ,
leads to an alternative form:

Iy′ = Iy + Iz

2
+ Iy − Iz

2
cos 2ϕ − Iyz sin 2ϕ (1.79a)
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Iz′ = Iy + Iz

2
− Iy − Iz

2
cos 2ϕ + Iyz sin 2ϕ (1.79b)

Iy′z′ = Iy − Iz

2
sin 2ϕ + Iyz cos 2ϕ (1.79c)

Equations (1.78) and (1.79) provide the area moments of inertia Iy′, Iz′ , and Iy′x ′
about coordinate axes y′, x ′ at rotation angle ϕ. These three area moments of inertia
as functions of ϕ are shown in Fig. 1.12. Note that these moments of inertia are
bounded. The upper bound for Iy′ and Iz′ is Imax = I1 and the lower bound is
Imin = I2. Also, for the product of inertia Iy′z′ ,

− 1
2 (I1 − I2) ≤ Iy′z′ ≤ + 1

2 (I1 − I2) (1.80)

The extreme values of the moments of inertia I1 and I2 are called principal moments
of inertia and the corresponding angles define the principal directions. In the case
shown in Fig. 1.12, both I1 and I2 are positive. As observed in Fig. 1.12 by the
vertical dashed lines, the product of inertia is zero at the principal directions, which
are 90◦ apart. That is, the two principal directions are perpendicular to each other.

To find the angle ϕ at which the moment of inertia Iy′ assumes its maximum
value, set ∂ Iy′/∂ϕ equal to zero. From Eq. (1.79a) this gives

(Iy − Iz)(− sin 2ϕ) − 2Iyz cos 2ϕ = 0 (1.81)

ϕ

2
π

2
π

Iz'

Iy'

I1

I2

Iy'z'

Figure 1.12 Three moments of inertia as a function of the rotation angle ϕ.
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or

tan 2ϕ = 2Iyz

Iz − Iy
(1.82)

This angle ϕ identifies the so-called centroidal principal bending axes. Note that ϕ

of Eq. (1.82) also corresponds to the rotation for which the product of inertia Iy′z′
is zero. This result, which also was observed in Fig. 1.12, is verified by substituting
Eq. (1.81) into Eq. (1.79c). Equation (1.81) determines two values of 2ϕ that are
180◦ apart, that is, two values of ϕ that are 90◦ apart. At these values, the moments
of inertia Iy′ and Iz′ assume their maximum or minimum possible values, that is, the
principal moments of inertia I1 and I2. The magnitudes of I1 and I2 can be obtained
by substituting ϕ of Eq. (1.82) into Eq. (1.79a and b). These same values will be
obtained below by a different technique. The corresponding directions defined by
±j′ and ±k′ are the principal directions. As a particular case, if a cross section is
symmetric about an axis, this axis of symmetry is a principal axis.

Consider another approach to finding the magnitudes of the principal moments of
inertia I1 and I2. It is possible to derive some relationships that are invariant with
respect to the rotating coordinate system. It follows from Eq. (1.78) or (1.79) that

Iy′ + Iz′ = Iy + Iz

Iy′ Iz′ − I 2
y′z′ = Iy Iz − I 2

yz

(1.83)

As noted above, the product of inertia Iy′z′ is zero at the principal directions and Iy′
and Iz′ become I1 and I2. Then

Iy′ + Iz′ = Iy + Iz = I1 + I2

Iy′ Iz′ − I 2
y′z′ = Iy Iz − I 2

yz = I1 I2
(1.84)

The principal moments of inertia I1 and I2 can be considered to be the roots of the
equation

(I − I1)(I − I2) = 0 (1.85)

Expand Eq. (1.85):

I 2 − (I1 + I2)I + I1 I2 = 0 (1.86)

and introduce Eq. (1.84):

I 2 − (Iy + Iz)I + Iy Iz − I 2
yz = 0 (1.87)

The two roots of this equation are the principal moments of inertia
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I1 = Imax = Iy + Iz

2
+ �

I2 = Imin = Iy + Iz

2
− �

(1.88)

where

� =
√(

Iy − Iz

2

)2

+ I 2
yz

Numerical values for some of these parameters are given in Table 1.1 for an angle
section.

It is useful to place the transformation relations of Eq. (1.78) or (1.79) in a partic-
ular matrix form. Equation (1.87) can be expressed as

(I − Iy)(I − Iz) − I 2
yz = 0 (1.89)

or ∣∣∣∣ I − Iy Iyz
Iyz I − Iz

∣∣∣∣ = 0 (1.90)

This determinant is the characteristic equation for the symmetric 2 × 2 matrix A:

A =
[

Iy −Iyz
−Iyz Iz

]
(1.91)

With the negative signs on Iyz , A transforms according to the rotation conventions
implied by Fig. 1.10 with ϕ measured counterclockwise positive from the y axis.
Define a rotation matrix

R =
[

cos ϕ sin ϕ

− sin ϕ cos ϕ

]
(1.92)

It may be verified that the transformation

A′ =
[

Iy′ −Iy′z′
−Iy′z′ Iz′

]
= RAR−1 = RART (1.93)

is identical to the rotation transformation equations of Eq. (1.78) or (1.79) derived
from Fig. 1.10. If the off-diagonal elements of A are taken to be +Iyz , the relation-
ship between A and A′ no longer matches these equations.

An alternative approach is to base the determination of the principal axes on the
diagonalization of matrix A of Eq. (1.91). When the product of inertia Iyz is zero,
the y, z axes are already the principal axes and no further computation is necessary.
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In the special case when Iy = Iz , any axis is a principal axis. If Iyz is not zero, the
two vectors

v1 = Iyzj + (Iy − I1)k

v2 = (Iz − I2)j + Iyzk
(1.94)

are two orthogonal eigenvectors of A corresponding to the eigenvalues I1 and I2.
Some characteristics of eigenvectors are discussed in Chapter 8. The angle ϕ between
the y axis and the axis belonging to the larger principal moment of inertia can be
computed as the angle between ±v1 and j:

ϕ = tan−1 Iy − I1

Iyz
(1.95)

Since the angle between the smaller principal value and the y axis is ϕ + 90◦, the
specification of ϕ is enough to determine both principal axes.

The results of this section apply also to nonhomogeneous beams. It is only nec-
essary to replace all geometric section properties with modulus-weighted ones. If a
nonhomogeneous section has an axis of geometric as well as elastic symmetry, it
may be concluded that this axis is a principal axis.

Normal Stresses from the Principal Bending Axes If y′, z′ are the cen-
troidal principal bending axes, Eq. (1.71) simplifies to

σx = E

Er

(
− Mz y′

Ĩz′
+ Myz′

Ĩy′

)
(1.96)

For homogeneous materials, Eq. (1.96) reduces to

σx = − Mz y′

Iz′
+ My z′

Iy′
(1.97)

In general, the bending moment components are initially calculated in any convenient
coordinate system, and when using Eq. (1.96) or (1.97), it is necessary to compute
the bending moment components along the principal bending axes.

Example 1.2 Thin-Walled Cantilevered Beam with an Asymmetrical Cross Sec-
tion. Return to the cantilevered angle of Fig. 1.8 and find the normal stresses using
Eq. (1.97), which is based on the principal bending axes.

SOLUTION. From Eq. (1) of Example 1.1 and Eq. (1.88),

Iy = 4
3 a3t Iz = 1

4 a3t Iyz = 1
3 a3t (1)

� =
√(

Iy − Iz

2

)2

+ I 2
yz =

√
233

24
a3t (2)
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I1 = Iy + Iz

2
+ � = a3t

24
(19 + √

233)

I2 = Iy + Iz

2
− � = a3t

24
(19 − √

233)

(3)

The centroidal principal bending axes are located by the angle ϕ, where (Eq. 1.82)

tan 2ϕ = 2Iyz

Iz − Iy
= − 8

13
(4)

This relationship leads to the two angles ϕ = −15.8◦ and ϕ = 74.2◦, one of which
corresponds to I1 and the other to I2. Further manipulations are necessary to deter-
mine which angle corresponds to I1 and which to I2. For example, place ϕ = −15.8◦
into Iy′ of Eq. (1.78) and find Iy′ = (a3t/24)(19 + √

233), which is equal to I1.
The problem of the uncertainty of which value of ϕ corresponds to I1 is avoided

if Eq. (1.95) is used. In this case,

ϕ = tan−1 Iy − I1

Iyz
= tan−1

[
1
8

(
13 − √

233
)]

(5)

so that ϕ = −15.8◦ and 164.2◦, both of which identify I1 (Fig. 1.13).
The cross-sectional normal stress σx is given by Eq. (1.97). At an axial distance

L from the free end, the bending moment components along the principal bending
axes are

y'

z'

15.8
y

Corresponds to I2

Corresponds to I1

z

Figure 1.13 Principal bending axes of an asymmetrical cross section.
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My′ = −P L cos(−15.8◦)

Mz′ = −[−P L sin(−15.8◦)] = P L sin(−15.8◦)
(6)

The sign convention for these moments is discussed in Chapter 2. Equation (1.97)
becomes

σx = − Mz y′

Iz′
+ My z′

Iy′
= − P L sin(−15.8◦)y′

(a3t/24)(19 − √
233)

+ −P L cos(−15.8◦)z′

(a3t/24)(19 + √
233)

= 1.75P L

a3t
y′ − 0.674P L

a3t
z′ (7)

At point A of the cross section shown in Fig. 1.9a, y = 5a/6 and z = 2a/3, and
from Eq. (1.77),

y′ = 5a

6
cos(−15.8◦) + 2a

3
sin(−15.8◦) = 0.620a

z′ = −5a

6
sin(−15.8◦) + 2a

3
cos(−15.8◦) = 0.869a

(8)

Substitution of these coordinates into (7) gives (σx)A = P L/2a2t . At point B, y =
−a/6, z = 2a/3, and Eq. (1.77) gives y′ = −0.342a and z′ = 0.596a. From (7),
(σx)B = −P L/a2t . At point D, y = −a/6, z = −4a/3, y′ = 0.203a, z′ =
−1.328a, and (σx)D = 5P L/4a2t . These are the values calculated in Example 1.1.

1.4 AXIAL LOADS

An axial load Nx applied in the x direction at point P of the beam cross section
shown in Fig. 1.7 causes additional normal stress. In this case, it is necessary to
replace the force at P with its force–couple equivalent at the centroid C . The moment
of the equivalent couple is

rPC × Nx i = (zPk + yP j) × Nx i = zP Nx j − yP Nx k (1.98)

where yP , zP are the coordinates of point P in the coordinate system C yz. The
additional bending moments due to the axial force are added to the pure bending
moments M0

y , M0
z at the section

My = M0
y + zP Nx Mz = M0

z − yP Nx (1.99)

With the inclusion of the axial force, Eqs. (1.57) and (1.71) for normal stress
become

σx = Nx

A
− Iy z My + Iy Mz

Iy Iz − I 2
y z

y + Iz My + Iy z Mz

Iy Iz − I 2
y z

z (1.100)
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and

σx = E

Er

(
Nx

Ã
− Ĩy z My + Ĩy Mz

Ĩy Ĩz − Ĩ 2
y z

y + Ĩz My + Ĩy z Mz

Ĩy Ĩz − Ĩ 2
y z

z

)
(1.101)

1.5 ELASTICITY SOLUTION FOR PURE BENDING

A beam for which the moments My and Mz are constant along the length is said to be
in the state of pure bending. The elasticity solution for the displacements ux , uy , and
uz of a homogeneous beam in pure bending is obtained by assuming a strain field
and attempting to satisfy the equations of elasticity. The axes are chosen as shown in
Fig. 1.3. The origin O is at the centroid C of the cross section, so that the (x, y, z)
and (x, y, z) axes coincide. The beam material is assumed to be homogeneous and
body forces are assumed to be absent. It follows from the displacement of Eq. (1.47)
that a reasonable form of the strains is

εx = κε + κyz − κz y

εy = −νεx

εz = −νεx

γxy = 0

γyz = 0

γzx = 0

(1.102)

As shown in Eq. (1.48), the strain εx is obtained from ∂u/∂x . This strain field identi-
cally satisfies the conditions of compatibility of Eq. (1.9). Substitution of the strains
of Eq. (1.102) into the Hooke’s law formulas of Eq. (1.18) shows that the only
nonzero stress is the axial stress:

σx = Eεx (1.103)

The total axial force Nx acting on the cross section is

Nx =
∫

σx dA = E
∫

(κε + κyz − κz y) dA = Eκε A (1.104)

In this calculation, the factors multiplying κy and κz , that is, the integrals E
∫

z dA
and E

∫
y dA, are proportional to the y, z coordinates of the centroid, which are both

zero because the centroid C is at the origin O of the coordinates. For pure bending the
axial force Nx will be zero (Eq. 1.46). It follows from Eq. (1.104) that the constant κε

is zero. Then the y, z components of the bending moment as expressed by Eq. (1.45)
are
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My =
∫

zσx dA = E(κy Iy − κz Iyz)

Mz = −
∫

yσx dA = E(−κy Iyz + κz Iz)
(1.105)

where the moments of inertia are given by Eq. (1.52b). Equation (1.105) can be
solved for the constants κy and κz , giving

κy = Iz My + Iyz Mz

E(Iy Iz − I 2
yz)

κz = Iyz My + Iy Mz

E(Iy Iz − I 2
yz)

(1.106)

It follows from σx = Eεx = E(κyz − κz y) that the axial stress is again given by Eq
(1.57), with y = y and z = z.

The displacements can be obtained from the strain–displacement relations of
Eq. (1.3). With the strains given by Eq. (1.102),

εx = ∂ux

∂x
= κy z − κz y εy = ∂uy

∂y
= −ν(κyz − κz y)

εz = ∂uz

∂z
= −ν(κyz − κz y) γxy = ∂uy

∂x
+ ∂ux

∂y
= 0

γxz = ∂uz

∂x
+ ∂ux

∂z
= 0 γyz = ∂uz

∂y
+ ∂uy

∂z
= 0

(1.107)

The displacements will be determined from these six equations by direct integration.
From the first equation, the axial displacement may be expressed as

ux = κy xz − κz xy + ux0(y, z) (1.108)

where ux0 is an unknown function of y and z. The derivatives of uy and uz with
respect to x are given in terms of ux0 by γxy = 0 and γxz = 0:

∂uy

∂x
= −∂ux

∂y
= κz x − ∂ux0

∂y

∂uz

∂x
= −∂ux

∂z
= −κy x − ∂ux0

∂z

(1.109)

from which the displacements uy and uz are obtained in the form

uy = κz
x2

2
− x

∂ux0

∂y
+ uy0(y, z)

uz = −κy
x2

2
− x

∂ux0

∂z
+ uz0(y, z)

(1.110)

where uy0 and uz0 are unknown functions of y and z, respectively.
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The second and third strain–displacement relations of Eq. (1.107) become

εy = ∂uy

∂y
= −x

∂2ux0

∂y2
+ ∂uy0

∂y
= −ν(κyz − κz y)

or − x
∂2ux0

∂y2
+ ∂uy0

∂y
+ ν(κyz − κz y) = 0

εz = ∂uz

∂z
= −x

∂2ux0

∂z2
+ ∂uz0

∂z
= −ν(κyz − κz y)

or − x
∂2ux0

∂z2
+ ∂uz0

∂z
+ ν(κyz − κz y) = 0

(1.111)

Note the functional form of these equations, with the coordinate x occurring only
once as a factor multiplying a second partial derivative of ux0. Since these equations
must hold for all values of x ,

∂2ux0

∂y2
= 0

∂2ux0

∂z2
= 0 (1.112)

Consequently, uy0 and uz0 can be obtained by integration of Eq. (1.111):

uy0 = −ν

(
κy yz − κz

y2

2

)
+ uy1(z)

uz0 = −ν

(
κy

z2

2
− κz yz

)
+ uz1(y)

(1.113)

The final strain–displacement relation of Eq. (1.107),

γyz = ∂uz

∂y
+ ∂uy

∂z
= 0 (1.114)

becomes

−2x
∂2ux0

∂y ∂z
+ ∂uz0

∂y
+ ∂uy0

∂z
= −2x

∂2ux0

∂y ∂z
+ duz1

dy
+ νκzz + duy1

dz
− νκy y = 0

(1.115)

The functional form of this equality shows that the factor multiplying x is zero

∂2ux0

∂y ∂z
= 0 (1.116)

Hence

duz1

dy
− νκy y + duy1

dz
+ νκz z = 0 (1.117)
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By a separation of variables,

duz1

dy
− νκy y = C0

duy1

dz
+ νκz z = −C0 (1.118)

where C0 is a constant.
The relations

∂2ux0

∂y2
= 0

∂2ux0

∂z2
= 0

∂2ux0

∂y ∂z
= 0 (1.119)

of Eqs. (1.112) and (1.116) show that the function ux0 has the form

ux0 = C1y + C2z + C3 (1.120)

in which the Ck are constants. It follows from Eq. (1.108) that the axial displacement
appears as

ux = κy xz − κz xy + C1 y + C2z + C3 (1.121)

To find uy1, uz1 of Eq. (1.113), integrate Eq. (1.118):

uy1 = −C0z − νκz
z2

2
+ C4

uz1 = C0 y + νκy
y2

2
+ C5

(1.122)

so that, from Eq. (1.113),

uy0 = −ν

(
κy yz − κz

y2 − z2

2

)
− C0z + C4

uz0 = −ν

(
κy

z2 − y2

2
− κz yz

)
+ C0 y + C5

(1.123)

The displacements uy and uz of Eq. (1.110) may therefore be expressed as

uy = κz
x2

2
− ν

(
κy yz − κz

y2 − z2

2

)
− C0z − C1x + C4

uz = −κy
x2

2
− ν

(
κy

z2 − y2

2
− κz yz

)
+ C0 y − C2x + C5

(1.124)

The constants of integration in the expressions derived for the displacements de-
pend on the support conditions. For example, suppose that the centroid at the origin
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of the coordinates (x = 0, y = 0, z = 0) at the left end (x = 0) of the hori-
zontal beam is fixed such that no translational or rotational motion is possible. Then
ux = 0, uy = 0, uz = 0 at x = 0, y = 0, z = 0. Also, at x = 0, y = 0, z = 0,
there is no rotation in the z direction (∂uz/∂x = 0), no rotation in the y direction
(∂uy/∂x = 0), and no rotation about the x axis (∂uy/∂z = 0).

The enforcement of these boundary conditions amounts to restraining the beam at
x = 0, y = 0, z = 0 against rigid-body translation and rotation. From Eqs. (1.121)
and (1.124) these boundary conditions require that

C0 = 0, C1 = 0, C2 = 0, C3 = 0, C4 = 0, C5 = 0 (1.125)

The displacements can now be written as (Eqs. 1.121, 1.124, and 1.125)

ux = (κyz − κz y)x (1.126a)

uy = κz
x2

2
− ν

(
κy yz − κz

y2 − z2

2

)
(1.126b)

uz = −κy
x2

2
− ν

(
κy

z2 − y2

2
− κz yz

)
(1.126c)

Consider a special case of a beam with a cross section symmetric about the z axis
and for which Mz = 0. Then, from Eq. (1.106), κz = 0 and κy = My/E Iy.For this
case, the displacements of Eq. (1.126) become

ux = κyzx (1.127a)

uy = −νκy yz (1.127b)

uz = −κy

2
[x2 + ν(z2 − y2)] (1.127c)

The deflection of the centroidal beam axis is given by Eq. (1.127c) with y and z equal
to zero; that is,

uz(x, 0, 0) = w = −κy
x2

2
= − My

E Iy

x2

2
(1.128)

This is the same deflection given by engineering beam theory (Chapter 2) for a can-
tilevered beam loaded with a concentrated moment at the free end. Some interesting
characteristics of beams in bending can be studied by considering the displacements
away from the central axis.

To find the axial displacement at a particular cross section, say at x = a, consider
ux (x, y, z) of Eq. (1.127a). Thus

ux(a, y, z) = κyza (1.129)
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We see that cross-sectional planes remain planar. This is not surprising since the
assumed strain εx corresponds to a linear variation in the displacements in the y and
z directions (Eq. 1.47).

Note from Eq. (1.127a) that beam fibers in the z = 0 plane do not displace in
the x direction [i.e., ux (x, y, 0) = 0]. Consequently, this plane is referred to as the
neutral plane. The x axis before deformation is designated as the neutral axis.

To illustrate the distortion of the cross-section profile, consider the rectangular
section of Fig. 1.14. From Eq. (1.127b), the horizontal displacements uy of the ver-
tical sides are

uy

(
x,±b

2
, z

)
= ±b

2
(−νκyz) (1.130)

Thus, the vertical sides rotate. The vertical displacements of the top and bottom
(z = ±h/2) are (Eq. 1.127c)

uz

(
x, y,±h

2

)
= −κy

2

[
x2 + ν

(
h2

4
− y2

)]
= M

2E Iy

[
x2 + ν

(
h2

4
− y2

)]
(1.131)

where, as seen in Fig. 1.15a, κy = My/E Iy = −M/E Iy . This shows that the top
and bottom are deformed into parabolic shapes. Assume that b � h. Note that if
the curvature of the longitudinal axis of the beam is concave upward (Fig. 1.15a),
the curvature of the top and bottom surfaces are concave downward (Fig. 1.15b).
This is referred to as anticlastic curvature. For the thin-walled beam of Fig. 1.15,
the anticlastic curvature can be significant. In contrast, if the depth and width are of
comparable size (Fig. 1.14), the effect is small.

z

yh

b

Figure 1.14 Beam cross section.
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Figure 1.15 Anticlastic curvature.

There is a simple physical interpretation of this behavior in bending. For pure
bending as shown in Fig. 1.15a, the upper fibers are in compression and the lower
fibers in tension. Strain εx along the x direction is accompanied by strain −νεx in
the y direction, where ν is Poisson’s ratio. It follows that as the upper fibers are
compressed in the x direction, they become somewhat longer in the y direction.
Conversely, as the lower fibers are extended in the x direction, they shorten in the y
direction.

Engineering Beam Theory In contrast to the pure bending assumptions of this
section, engineering beam theory, which is presented in Chapter 2, is applied to
beams under general lateral loading conditions. The bounding surface of the beam
is often not free of stress; body forces are not necessarily zero; the shear force at
each section is nonzero; and the bending moment is not constant along the beam.
Engineering beam theory neglects the normal stresses σy and σz , which are much
smaller than the axial stress. Also neglected is the influence of Poisson’s ratio, so
that longitudinal fibers deform independently. For engineering beam theory, the nor-
mal stresses and strains are calculated as in the case of pure bending, although the
bending moment is no longer constant along the beam axis.
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CHAPTER 2

BEAM ELEMENTS

In Chapter 1, the deflection of a beam subject to pure bending was obtained using the
theory of elasticity. Theory of elasticity–based solutions are limited to simple load-
ings and geometries. The technical or engineering beam theory is distinguished from
the theory of elasticity approach in that a broad range of problems can be solved. In
this chapter, engineering beam theory is employed to find matrices for beam elements
that can be used to find the response of the beam. That is, the deflection, moments,
and shear forces along the beam can be calculated.

In engineering beam theory, for which the beam can be subject to general loading
conditions, the shear force is not zero and the bending moment is not constant along
the beam. As in the case of the theory of elasticity, engineering beam theory neglects
the normal stresses σy and σz , which are much smaller than the axial stress σx . En-
gineering beam theory also assumes that Poisson’s ratio is zero. Perhaps the most
significant assumption is that normal stresses and strains for any loading or geome-
try may be calculated as in the case of pure bending. That is, although engineering
beam theory is established, as is the theory of elasticity approach, for pure bending,
it is assumed to apply for arbitrary loading, which in general means that the bending
moment is not constant along the beam.

For this chapter the cross sections of the beams are not assumed, in general, to be
symmetric with respect to either the y or z axes. The x axis is the axis of centroids of
the cross sections, which may have differing shapes or dimensions at different values
of x .

40



FUNDAMENTAL ENGINEERING THEORY EQUATIONS FOR A STRAIGHT BEAM 41

2.1 FUNDAMENTAL ENGINEERING THEORY EQUATIONS
FOR A STRAIGHT BEAM

2.1.1 Geometry of Deformation

In Eq. (1.47), on the basis of cross-sectional planes remaining plane and normal to
the beam axis during bending, the axial displacement of a point on a cross section
for bending deformation was taken to be

ux (x, y, z) = u(x) + zθy(x) − yθz(x) (2.1)

where θy and θz are the angles of rotation about the centroidal y and z axes, re-
spectively, and u(x) = ux (x, 0, 0) is the axial displacement of the centerline of the
beam. That is, the beam axis passes through the centroidal x axis of the beam cross
sections. These angles of rotation, also referred to as angles of slope or just slopes,
are the angles between the x axis and the tangents to the deflection curve.

In Chapter 1 we set the derivatives dθy/dx and dθz/dx equal to the constants κy

and κz , respectively. It is shown in references such as Gere (2001) that for small rota-
tions, κy = dθy/dx and κz = dθz/dx are curvatures of the transverse displacement
curve. In Chapter 1, quantities measured with respect to centroidal axes were des-
ignated by superscript lines. In this chapter most of the variables are referred to the
centroidal axes and hence the superscript lines are dropped. For example, y, z, κ y,

and κ z of Chapter 1 are simply y, z, κy, and κz here in Chapter 2.
The axial strain corresponding to the displacement of Eq. (2.1) is Eq. (1.3)

εx = dux

dx
= du

dx
+ z

dθy

dx
− y

dθz

dx
= κε + zκy − yκz (2.2)

where κε = du/dx . The shear strains γxy and γxz take the forms (Eq. 1.3)

γxy = ∂v

∂x
+ ∂ux

∂y
= ∂v

∂x
− θz γxz = ∂ux

∂z
+ ∂w

∂x
= θy + ∂w

∂x
(2.3)

where v = uy(x, 0, 0) and w = uz(x, 0, 0) are the y and z displacements of the cen-
troidal x axis. For the cross sections to remain planar, it is necessary that these shear
strains be zero. In this case, the effects of shear deformation are being neglected.
Thus

γxy = 0 and γxz = 0 (2.4)

lead to, using ordinary derivatives,

θz = dv

dx
and θy = −dw

dx
(2.5)
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or

κz = d2v

dx2
and κy = −d2w

dx2
(2.6)

These are the strain–displacement relations for bending, since the bending strains are
taken to be the curvatures. The displacements v and w are the deflections of the beam
axis.

Bending in the xz Plane Consider, for the moment, standard planar engineer-
ing beam theory for which the cross section is symmetric about the z axis (Iyz = 0)

(Fig. 2.1), only bending about the y axis is taken into account, and the only applied
forces are in the z direction. As discussed in Chapter 1, bending such that the product
of inertia is zero also occurs for an asymmetrical cross section by transforming (ro-
tating) to the principal bending axes. Since the deflection for a planar beam is usually
shown as being downward, the positive z coordinate is chosen to be downward. The
relevant strain–displacement relation, referred to the centroidal coordinate system, is
κy = −d2w/dx2. Since the strain of the centerline of the beam is du/dx = κε, the
strain–displacement relations in matrix form appear as[

κε

κy

]
=

[
d/dx 0

0 −d2/dx2

] [
u
w

]
� = Du u

(2.7)

If shear deformation effects are retained for this standard engineering beam the-
ory, γxz is not zero and the strain–displacement relations with θy = θ and γxz = γ

y

z

C

Figure 2.1 Beam cross section with Iyz = 0.



FUNDAMENTAL ENGINEERING THEORY EQUATIONS FOR A STRAIGHT BEAM 43

can be written as κε

γ

κy

 =
d/dx 0 0

0 d/dx 1
0 0 d/dx

 u
w

θ


� = Du u

(2.8)

2.1.2 Force–Deformation Relations

For the case of a general beam, a material law in the form (Eq. 1.70)

κε Ã = 0

κy Ĩy − κz Ĩyz = My

Er
(2.9a)

κy Ĩyz − κz Ĩz = − Mz

Er

was derived in Chapter 1. For a homogeneous beam, where the elastic modulus E is
the same at any point on the cross section,

κε E A = 0

κy E Iy − κz E Iyz = My (2.9b)

κy E Iyz − κz E Iz = −Mz

Bending in the xz Plane The material law is much simpler for standard pla-
nar engineering beam theory. If there is an axial force N , the first relationship of
Eq. (2.9b) becomes

κε E A = N (2.10a)

and the second relationship of Eq. (2.9b) appears as

κy E I = M (2.10b)

where My and Iy have been set equal to M and I , respectively. In matrix notation,
Eq. (2.10) can be written as[

N
M

]
=

[
E A 0
0 E I

] [
κε

κy

]
s = E �

(2.11a)

or

� =
[

1/E A 0
0 1/E I

]
s

� = E−1 s

(2.11b)
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where

s =
[

N
M

]
These material relationships for the standard planar engineering beam theory can

be supplemented with another equation if shear deformation effects are to be taken
into account. This new constitutive equation should be a relationship between the
shear strain and the shear force on the cross section. From Eq. (1.15), τxz = τ =
Gγxz = Gγ . Let the shear stress and shear force Vz = V be related as V = τaverage A.
Suppose that τ is the shear stress at the centroid of the cross section. Then assume
that τaverage = ksτ , where ks is a dimensionless shear form or shear stiffness factor
that depends on the cross-sectional shape. The determination of this factor is treated
in Chapter 6. The reciprocal of ks is the shear correction factor or shear deformation
coefficient that is found in formula books for various cross-sectional shapes. Then the
constitutive relationship we seek is

V = ksG Aγ (2.12)

and the material law of Eq. (2.11a) is expanded to becomeN
V
M

 =
E A 0 0

0 ksG A 0
0 0 E I

 κε

γ

κy


s = E �

(2.13)

or

� =
1/E A 0 0

0 1/ksG A 0
0 0 1/E I

 s

� = E−1 s

where s is now given as s = [N V M]T.

2.1.3 Equations of Equilibrium

The equilibrium equations, in terms of axial and shear forces and bending moments,
are

d N

dx
= −px

dVy

dx
= −py

dVz

dx
= −pz (2.14)

d Mz

dx
= −Vy

d My

dx
= Vz (2.15)

where px , py, and pz are applied forces per unit length of the beam in the x, y, and z
directions, respectively. The derivation of these relationships is given in mechanics-
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y
z

x
Vz Vy

N

Vz + dVz

N + dN

Vy + dVy

pz py

px

dx Mz + dMz

My + dMy
Mz

My

Figure 2.2 Beam element with applied forces per unit length px , py , and pz .

of-materials textbooks. These equations are derived from the conditions of equilib-
rium for a differential beam element of length dx (Fig. 2.2). With a local right-handed
coordinate system whose origin is placed at the left end of this beam element, the ax-
ial and shear forces N + d N, Vy + dVy , and Vz + dVz on the cross section at the
right end are taken to be positive, that is, in the x, y, and z coordinate directions. In
terms of the conditions of equilibrium, the axial and shear forces on the cross section
at the left end must then be −N,−Vy,−Vz , so that the net differences are d N, dVy ,
and dVz for the differential beam element. Since the applied loads px , py , and pz
are positive in the x , y, and z coordinate directions, the force equilibrium conditions
for the beam element yield the three relations of Eq. (2.14). Similarly, the bending
moments on the cross section at the right end My + d My, Mz + d Mz are taken to
be positive if their vectors are in the y, z coordinate directions. The moments on
the cross section at the left end are then −My,−Mz , and the moment equilibrium
conditions for the beam element yield the two relations of Eq. (2.15).

Equations (2.14) and (2.15) can be combined to form differential equations for
the bending moments:

d2 Mz

dx2
= py

d2 My

dx2
= −pz (2.16)

Bending in the xz Plane For the standard planar engineering beam theory, the
conditions of equilibrium of Eq. (2.16) with My = M reduce to

d2 M

dx2
+ pz = 0 (2.17)

In matrix form, the equilibrium relations are[
d/dx 0

0 d2/dx2

] [
N
M

]
+

[
px
pz

]
= 0

DT
s s + p = 0

(2.18)
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if shear deformation effects are not included. If shear deformation effects are consid-
ered, then d/dx 0 0

0 d/dx 0
0 −1 d/dx

 N
V
M

 +
px

pz
0

 = 0

DT
s s + p = 0

(2.19)

The differential operator Ds of Eq. (2.18) or (2.19 ) is functionally the adjoint
(Pilkey and Wunderlich, 1994) of Du of Eq. (2.7) or (2.8) in the sense that they
satisfy the relationship∫

V
(Duu)Ts dV =

∮
S

uTNTs dS −
∫

V
uTDT

s s dV (2.20)

where the vectors u and s are smooth in the domain and NT is the matrix of direction
cosines of Eq. (1.28) for the tractions on an oblique surface. With appropriate adjust-
ments this adjoint relationship holds for the differential operators for kinematics and
equilibrium of the theory of elasticity.

2.1.4 Boundary Conditions

The boundary conditions for a beam occur in-span or on the ends of a beam where
either conditions on forces (Sp) or displacements (Su) can be imposed. For a fixed
end, for example, u = v = w = θy = θz = 0 on Su and for a free end, N = My =
Mz = Vy = Vz = 0 on Sp.

Bending in the xz Plane The boundary conditions for the standard planar en-
gineering beam theory are, of course, simpler. For example, for a simply supported
end that is not constrained in the axial direction, w = N = M = 0 on Su + Sp = S.
In general, for this planar beam with

s =
N

V
M

 and u =
u

w

θ


the boundary conditions can be summarized as

N = N

V = V or s = s on Sp (2.21)

M = M
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for static or force conditions and

u = u

w = w or u = u on Su (2.22)

θ = θ

for displacement or kinematic conditions. Applied forces or displacement constraints
are designated by overbars.

2.1.5 Displacement Form of the Governing Differential Equations

If the kinematic conditions of Eq. (2.6), referred to the centroidal coordinate system,
are introduced into the constitutive relations of Eq. (2.9b) for homogeneous materi-
als, we obtain the differential equations for the deflections v,w:

d2v

dx2
= Iyz My + Iy Mz

E(Iy Iz − I 2
yz)

(2.23a)

d2w

dx2
= − Iz My + Iyz Mz

E(Iy Iz − I 2
yz)

(2.23b)

For a beam whose elastic modulus E and cross-sectional properties Iy, Iz, Iyz do
not vary with x , these equations can be written, by introduction of Eq. (2.16), in
terms of the applied distributed loads py, pz :

d4v

dx4
= py Iy − pz Iyz

E(Iy Iz − I 2
yz)

(2.24a)

d4w

dx4
= pz Iz − py Iyz

E(Iy Iz − I 2
yz)

(2.24b)

These uncoupled differential equations may be solved one at a time for given loads
and boundary conditions. The solutions, which define the elastic curve for a beam,
are the displacements of the centroidal line in the y and z directions.

Example 2.1 Bending in the xz Plane of a Cantilevered Beam with a Constant
Moment. Suppose that the cross section of the beam of Fig. 2.3a is symmetric about
the z axis. Alternatively, for an asymmetrical cross section transform the coordinates
to the principal bending planes. Then Iyz = 0 and the elastic curve in the xz plane is
defined by Eq. (2.23b)

d2w

dx2
= − My

E Iy
(1)

The deflection is found by integrating this equation.
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Figure 2.3 Cantilever beams.

From equilibrium requirements, the net moment at any cross section is My = M .
Then, from (1), d2w/dx2 = −M/E Iy , so that

dw

dx
= − Mx

E Iy
+ C1 (2)

w = − Mx2

2E Iy
+ C1x + C2 (3)

The displacement boundary conditions are

w(0) = 0 and
dw

dx
(0) = 0

Applied to (2) and (3), these boundary conditions lead to C1 = 0 and C2 = 0. Thus
the deflection of the centroidal beam axis is

uz(x, 0, 0) = w = − Mx2

2E Iy
(4)

which corresponds to Eq. (1.128).

Example 2.2 Bending in the xz Plane of a Cantilevered Beam with an Applied
Concentrated Force. Repeat the analysis of Example 2.1, except that the applied
loading is a concentrated force applied at the free end as shown in Fig. 2.3b.
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SOLUTION. The conditions of equilibrium for the small figure of Fig. 2.3b show
that

My = −P(L − x) (1)

Integrate

d2w

dx2
= − My

E Iy
= P

E Iy
(L − x) (2)

twice to find the deflection and apply the displacement boundary condition at x = 0.
This leads to

w = Px2

E Iy

(
L

2
− x

3

)
(3)

Example 2.3 Cantilevered Beam with an Asymmetric Cross Section. For the can-
tilever beam in Fig. 2.4, the applied loads py and pz can be taken as zero over the
interior of the beam span 0 < x < L , and the applied load P in the z direction at
x = L can be treated as a boundary condition. This cross section does not exhibit
symmetry about either the y or the z axis. We choose to solve this problem in the yz
coordinate system and not transform to the principal bending axes where the product
of inertia is zero. For the angled cross section of Example 1.2 (Fig. 1.8), a −15.8◦
rotation would be required to reach the principal axes.

The fourth-order deflection relations of Eq. (2.24) become

d4v

dx4
= 0

d4w

dx4
= 0 (1)

The boundary conditions at the fixed end are

v(0) = 0 θz(0) = dv

dx
(0) = 0

w(0) = 0 θy(0) = −dw

dx
(0) = 0

(2)

y
z

P

x

z

y

Figure 2.4 Cantilever beam with concentrated applied force in the z direction.
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At the free end, there are conditions on shear forces and bending moments

My(L) = 0 Mz(L) = 0

Vy(L) = 0 Vz(L) = P
(3)

The deflection equations (1) show that both v(x) and w(x) are polynomials of
degree three in x . The general solution w(x) for the deflection in the z direction may
be written as

w(x) = D1x3 + D2x2 + D3x + D4 (4)

where Di , i = 1, 2, 3, 4, are constants. The boundary conditions on w(0) = 0 and
w′(0) = 0 at the fixed end show that both D3 and D4 are zero. Since both My(L)

and Mz(L) are zero, Eq. (2.23b) gives the boundary condition

d2w

dx2
(L) = 0 (5)

The remaining boundary conditions Vy(L) = 0 and Vz(L) = P are implemented by
manipulating Eq. (2.23b). From Eq. (2.15), Eq. (2.23b) becomes

d3w

dx3
= − Iz Vz − IyzVy

E(Iy Iz − I 2
yz)

(6)

Substitution into (6) of the conditions Vy(L) = 0 and Vz(L) = P at x = L gives the
relationship

d3w

dx3
(L) = − P Iz

E(Iy Iz − I 2
yz)

(7)

In terms of the integration constants of (4), conditions (5) and (7) give

2D2 + 6D1L = 0 6D1 = − P Iz

E(Iy Iz − I 2
yz)

(8)

so that

D1 = − P Iz

6E(Iy Iz − I 2
yz)

D2 = −3D1L (9)

and the expression for the deflection w(x) becomes

w(x) = P Iz(3L − x)x2

6E(Iy Iz − I 2
yz)

(10)
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The general solution v(x) for the deflection in the y direction may be written as

v(x) = C1x3 + C2x2 + C3x + C4 (11)

The boundary conditions on v at the fixed end x = 0 show that both C3 and C4 are
zero. The boundary conditions at the free end x = L imply that

d2v

dx2
(L) = 0

d3v

dx3
(L) = P Iyz

E(Iy Iz − I 2
yz)

(12)

from which v(x) is obtained as

v(x) = − P Iyz(3L − x)x2

6E(Iy Iz − I 2
yz)

(13)

Note that if the product of inertia Iyz is nonzero, the deflection v(x) is not identically
zero even though there is no external loading in the y direction.

The deflections v(x) and w(x) are components of the total deflection, which is
calculated as (v2 + w2)1/2.

Example 2.4 Statically Indeterminate Beam with an Asymmetric Cross Sec-
tion. A variety of beams, including statically indeterminate configurations, can be
solved as in Example 2.3; that is, v(x) and w(x) can be found one at a time. Some-
times the inclusion of boundary conditions is more involved than in Example 2.3.
To illustrate this, find the deflection of the statically indeterminate beam with an
asymmetric cross section as shown in Fig. 2.5. Do not transform to the principal
bending axes.

SOLUTION. The applied loading can be represented with delta functions (Table 2.1)
as

py = P

〈
x − L

2

〉−1

pz = P

〈
x − L

2

〉−1

(1)

y
z

P

x

z

y

L
2

L
2

P

Figure 2.5 Statically indeterminate beam.
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TABLE 2.1 Properties of Some Singularity Functions

Definition
Name Pictorial Representation and Integration Property

Dirac delta function 〈x − ai 〉−1 = 0 if x �= ai∫ x
0 〈x − ai 〉−1 dx = 〈x − ai 〉0

Unit step function 〈x − ai 〉0 =
{

0 if x < ai
1 if x ≥ ai∫ x

0 〈x − ai 〉0dx = 〈x − ai 〉

Linear ramp function 〈x − ai 〉 =
{

0 if x < ai
x − ai if x ≥ ai∫ x

0 〈x − ai 〉dx = 〈x − ai 〉2

2

General
Macauley notation

〈x − ai 〉n =
{

0 if x < ai
(x − ai )

n if x ≥ ai∫ x
0 〈x − ai 〉ndx = 〈x − ai 〉n+1

n + 1

Define

α = Iy

E(Iy Iz − I 2
yz)

β = −Iyz

E(Iy Iz − I 2
yz)

γ = Iz

E(Iy Iz − I 2
yz)

(2)

so that the relations of Eq. (2.24) become

d4v

dx4
= α py + β pz = αP

〈
x − L

2

〉−1

+ β P

〈
x − L

2

〉−1

d4w

dx4
= β py + γ pz = β P

〈
x − L

2

〉−1

+ γ P

〈
x − L

2

〉−1
(3)

Integrate the first expression

d3v

dx3
= αP

〈
x − L

2

〉0

+ β P

〈
x − L

2

〉0

+ C1
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d2v

dx2
= αP

〈
x − L

2

〉1

+ β P

〈
x − L

2

〉1

+ C1x + C2

dv

dx
= αP

〈x − L/2〉
2

2

+ β P
〈x − L/2〉

2

2

+ C1
x2

2
+ C2x + C3

v = αP
〈x − L/2〉

3!
3

+ β P
〈x − L/2〉

3!
3

+ C1
x3

3! + C2
x2

2
+ C3x + C4

(4)

The boundary conditions for v(x) are

v(0) = 0
dv

dx
(0) = 0 v(L) = 0 (5)

At x = L, My and Mz are zero, and from Eq. (2.23a),

d2v

dx2
= −βMy + αMz (6)

it follows that

d2v

dx2
(L) = 0 (7)

The four conditions of (5) and (7) can be employed to find the four constants C1, C2,
C3, and C4.

C1 = − 11
16 P(α + β) C2 = 3

16 P L(α + β) C3 = 0 C4 = 0 (8)

From the second expression of (3),

w(x) = γ P
〈x − L/2〉

3!
3

+ β P
〈x − L/2〉

3!
3

− 11

16
P(β + γ )

x3

3!
+ 3

16
P L(β + γ )

x2

2
(9)

To complete the solution find the support reactions, that is, the moments and shear
forces at the ends of the beam. For the moments, use (6) and the comparable rela-
tionship for d2w/dx2:

d2v

dx2
(0) = C2 = 3

16
P L(α + β) = −βMy(0) + αMz(0)

d2w

dx2
(0) = 3

16
P L(β + γ ) = βMz(0) − γ My(0)

(10)
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These give

My(0) = −3P L

16
Mz(0) = 3P L

16
(11)

From Eqs. (2.15) and (2.23)

d3v

dx3
(x) = −αVy − βVz

d3w

dx3
(x) = −γ Vz − βVy

(12)

Then

d3v

dx3
(0) = C1 = −11

16
P(α + β) = −αVy(0) − βVz(0)

d3w

dx3
(0) = −11

16
P(β + γ ) = −βVy(0) − γ Vz(0)

(13)

giving

Vy(0) = 11
16 P = Vz(0) (14)

Finally, at x = L,

d3v

dx3
(L) = αP + β P + C1 = −αVy(L) − βVz(L)

d3w

dx3
(L) = γ P + β P − 11

16
P(β + γ ) = −βVy(L) − γ Vz(L)

(15)

so that the reactions at x = L are

Vy(L) = − 5
16 P Vz(L) = − 5

16 P (16)

Example 2.5 Beam with In-Span Support. To study the question of when the
equations for beams with asymmetric cross sections appear to be coupled, consider
the beam of Fig. 2.6.

Let the unknown reactions at the in-span support be Ry and Rz . The loading
functions py and pz can be represented as

py(x) = P 〈x − 3a〉−1 + Ry 〈x − 2a〉−1

pz(x) = P 〈x − a〉−1 + Rz 〈x − 2a〉−1
(1)

Retain the definitions for α, β, and γ of Eq. (2) of Example 2.4. From Eq. (2.24),
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y
z

P

x

z

y

a a

P

aa

L

Figure 2.6 Beam with in-span support.

d4v

dx4
= α py + β pz = αP 〈x − 3a〉−1 + αRy 〈x − 2a〉−1

+ β P 〈x − a〉−1 + βRz 〈x − 2a〉−1

(2)

Integration leads to

d3v

dx3
= αP 〈x − 3a〉0 + β P 〈x − a〉0 + (αRy + βRz) 〈x − 2a〉0 + C1

d2v

dx2
= αP 〈x − 3a〉1 + β P 〈x − a〉1 + (αRy + βRz) 〈x − 2a〉1 + C1x + C2

dv

dx
= αP

〈x − 3a〉
2

2

+ β P
〈x − a〉

2

2

+ (αRy + βRz)
〈x − 2a〉

2

2

+ C1
x2

2
+ C2x + C3

v = αP
〈x − 3a〉

3!
3

+ β P
〈x − a〉

3!
3

+ (αRy + βRz)
〈x − 2a〉

3!
3

+ C1
x3

3! + C2
x2

2
+ C3x + C4

(3)

The displacement boundary conditions are

v(0) = 0 v(2a) = 0 v(4a) = 0 (4)

Since My and Mz are zero at x = 0 and x = 4a,

d2v

dx2
= −βMy + αMz (5)

gives the conditions

d2v

dx2
(0) = 0

d2v

dx2
(4a) = 0 (6)
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There are five conditions from (4) and (6) and six unknown constants

C1, C2, C3, C4, Ry, and Rz (7)

It will be necessary to use information from beam analysis for deflection in the xz
plane in order to find the six unknowns. However, the five conditions can be used to
calculate the five quantities C1, C2, C3, C4, and αRy + βRz . Thus

C4 = 0 C2 = 0 C1 = P

32
(3α − 13β)

C3 = a2 P

16
(−α + 3β) αRy + βRz = −11

16
P(α + β)

(8)

For the displacement w(x),

d4w

dx4
= γ pz + β py = γ P 〈x − a〉−1 + γ Rz 〈x − 2a〉−1

+ β P 〈x − 3a〉−1 + βRy 〈x − 2a〉−1

d2w

dx2
= γ P 〈x − a〉1 + β P 〈x − 3a〉1 + (γ Rz + βRy) 〈x − 2a〉1 + D1x + D2

w = γ P
〈x − a〉

3!
3

+ β P
〈x − 3a〉

3!
3

+ (γ Rz + βRy)
〈x − 2a〉

3!
3

+ D1
x3

3! + D2
x2

2
+ D3x + D4 (9)

The boundary conditions for w(x) are

w(0) = 0 w(2a) = 0 w(4a) = 0
d2w

dx2
(0) = 0

d2w

dx2
(4a) = 0

(10)

These five conditions can be used to find the four constants D1, D2, D3, and D4, as
well as the combination of reactions (γ Rz + βRy).

D4 = 0 D2 = 0 D1 = P

32
(3β − 13γ )

D3 = a2 P

16
(−β + 3γ ) γ Rz + βRy = −11

16
P(β + γ )

(11)
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The final relationships of (8) and (11),

−11

16
P(α + β) = αRy + βRz

−11

16
P(β + γ ) = βRy + γ Rz

(12)

can be solved to find the two reactions

Ry = −11P

16
Rz = −11P

16
(13)

It is seen that the solution for this beam is obtained by finding the responses in the two
planes (xy and xz) separately, with the solution being coupled through the boundary
conditions.

The shear forces are obtained by considering the response in both planes.

d3v

dx3
= −αVy − βVz

d3w

dx3
= −γ Vz − βVy

(14)

From (3) and (9) at x = 0,

d3v

dx3
(0) = C1 = P

32
(3α − 13β)

d3w

dx3
(0) = D1 = P

32
(3β − 13γ )

(15)

Evaluate (14) at x = 0 and use (15). Solve the resulting equations to find

Vy(0) = − 3
32 P Vz(0) = 13

32 P (16)

The shear reactions at x = 4a are found in a similar fashion. At x = 4a,

d3v

dx3
(4a) = αP + β P + (αRy + βRz) + C1

d3w

dx3
(4a) = γ P + β P + (βRy + γ Rz) + D1

(17)

From (14) and (17),

Vy(4a) = − 13
32 P Vz(4a) = 3

32 P (18)

Summation of forces and moments quickly shows that the solution found above sat-
isfies the conditions of equilibrium.
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Engineering Beam Theory for Bending in a Single Plane For standard
planar engineering beam theory, the fundamental equations, with shear deformation
included, are Eqs. (2.8), (2.13), and (2.19)

� = Duu s = E� DT
s s + p = 0 (2.25)

The more common forms of the beam equations are obtained by eliminating � from
these relationships.

The most familiar form of the beam equations is the Bernoulli–Euler beam, for
which axial and shear deformations are ignored. Let My = M, Vz = V , θy = θ , and
Iy = I . From the material law of Eq. (2.10b) and the kinematical relationships of
κy = dθ/dx and Eq. (2.5),

M = E Iκy = E I
dθ

dx
= −E I

d2w

dx2
(2.26)

Substitution of this relationship into the equilibrium conditions of Eqs. (2.14) and
(2.15) leads to

V = d M

dx
= − d

dx
E I

d2w

dx2
(2.27a)

−dV

dx
= d2

dx2
E I

d2w

dx2
= pz (2.27b)

In summary, the complete set of differential equations is

d2

dx2
E I

d2w

dx2
= pz (2.28a)

V = − d

dx
E I

d2w

dx2
(2.28b)

M = −E I
d2w

dx2
(2.28c)

θ = −dw

dx
(2.28d)

The inclusion of shear deformation effects leads to a more general form of the dis-
placement equations for the standard engineering beam theory. Substitute the strain–
displacement relations of Eq. (2.8), γ = dw/dx + θ and κy = dθ/dx, into the
constitutive relations of Eq. (2.13), V = ksG Aγ and M = E Iκy . Place the re-
sulting force–displacement relations in the conditions of equilibrium of Eq. (2.19),
−dV/dx = pz and d M/dx = V .

− d

dx

[
ks G A

(
dw

dx
+ θ

)]
= pz (2.29a)
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d

dx

(
E I

dθ

dx

)
− ksG A

(
dw

dx
+ θ

)
= 0 (2.29b)

2.1.6 Mixed Form of the Governing Differential Equations

A useful form of the governing differential equations for standard engineering beam
theory is written in terms of the state variables: displacements v and w, slopes θy and
θz , moments My and Mz , and shear forces Vy and Vz . This is referred to as a mixed
form, as both displacement and force variables are involved. The mixed equations
are obtained by assembling the equilibrium equations of Eqs. (2.14) and (2.15), the
kinematical relations of Eq. (2.5), and the differential equations of Eq. (2.23) in the
form

d2v

dx2
= dθz

dx
= Iyz My + Iy Mz

E(Iy Iz − I 2
yz)

− d2w

dx2
= dθy

dx
= Iz My + Iyz Mz

E(Iy Iz − I 2
yz)

(2.30)

along with the axial relationship du/dx = N/AE . Then

du

dx
= N

AE
dv

dx
= θz

dw

dx
= −θy

dθy

dx
= Iz My + Iyz Mz

E(Iy Iz − I 2
yz)

dθz

dx
= Iyz My + Iy Mz

E(Iy Iz − I 2
yz)

d N

dx
= −px

dVy

dx
= −py

dVz

dx
= −pz

d My

dx
= Vz

d Mz

dx
= −Vy

(2.31)

or, in matrix notation,

dz
dx

= Az + P (2.32a)
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where

z =



u
v

w

θy

θz

N
Vy

Vz

My

Mz


A =



0 0 0 0 0 1/E A 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 −1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 Iz/K Iyz/K
0 0 0 0 0 0 0 0 Iyz/K Iy/K
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 −1 0 0 0


P =



0
0
0
0
0

−px
−py
−pz

0
0


(2.32b)

with K = E(Iy Iz − I 2
yz).

In contrast to the displacement form of the governing equations, these mixed or
state variable equations do not involve derivatives with respect to x of the geomet-
rical or material parameters and all derivatives are of first order. These first-order
equations are often the most useful form of the governing equations, as numerical
integration algorithms frequently utilize first-order derivatives only, and equations
with higher-order derivatives must initially be reduced to a system with first-order
derivatives.

For standard planar engineering beam theory the mixed equations are found by
eliminating the strains � from Eq. (2.25) and ignoring axial motion terms,

dw

dx
= −θ + V

ksG A
(2.33a)

dθ

dx
= M

E I
(2.33b)

dV

dx
= −pz (2.33c)

d M

dx
= V (2.33d)

or in matrix notation,

dz
dx

= Az + P (2.34a)

where

z =


w

θ

V
M

 A =


0 −1 1/ksG A 0
0 0 0 1/E I
0 0 0 0
0 0 1 0

 P =


0
0

−pz
0

 (2.34b)
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If axial deformation terms are included, Eq. (2.34a) still applies, but the matrices
are defined as

z =


u
w

θ

N
V
M

 A =


0 0 0 1/E A 0 0
0 0 −1 0 1/ksG A 0
0 0 0 0 0 1/EI
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 1 0



P =


0
0
0

−px
−pz

0

 (2.35)

2.1.7 Principle of Virtual Work: Integral Form
of the Governing Equations

The principle of virtual work represents, in a sense, the global (integral) form of the
conditions of equilibrium. Consult a structural mechanics textbook such as Pilkey
and Wunderlich (1994) for a thorough discussion of the fundamentals of the principle
of virtual work. Virtual work is expressed in terms of a small, admissible change
(virtual) in displacements or strains. These virtual quantities, which correspond to
variations of functions as in the calculus of variations, are indicated by δ.

The principle of virtual work is embodied in the relationship

δW = δWint + δWext = 0 (2.36)

where δW is the total virtual work, δWint the internal virtual work, and δWext the vir-
tual work of the applied loadings. The principle can be stated as: A deformable solid
is in equilibrium if the sum of the internal virtual work and the external virtual work
is zero for virtual displacements that satisfy the strain–displacement equations and
the displacement boundary conditions (i.e., the virtual displacements are kinemati-
cally admissible). The fundamental unknowns for the principle of virtual work are
the displacements, and the variations are taken on the displacements. This principle
is also called the principle of virtual displacements.

The dimensions of a bar transverse to its axial (longitudinal) coordinate are very
small relative to the length of the bar. Hence, the influence of the strains associated
with the transverse directions will be neglected. The principle-of-virtual-work rela-
tionship −δW = −δWint − δWext = 0 can be expressed in terms of stresses and
strains as
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−δWint︷ ︸︸ ︷∫
V
(σx δεx + τxy δγxy + τxz δγxz + σy δεy + σz δεz + τyz δγyz)︸ ︷︷ ︸

neglected

dV

−δWext︷ ︸︸ ︷
−

∫
Sp

(δux px + δuy py + δuz pz) dS = 0 (2.37)

where the virtual work due to body forces has been ignored.

Kinematical Relations The three displacements [ux uy uz]T = u describe
the movement of a point. As discussed in Section 2.1.1, the description of the bending
and axial motion of a point on the axis of a beam involves more quantities. These
are the three translations u, v,w and the two rotations θy, θz . The displacements
ux , uy, uz of a point on the cross section of a beam are related to the beam axis
variables u, v,w, θy, θz by Eq. (2.1)

ux = u + zθy − yθz uy = v uz = w (2.38)

Strain–Displacement Relations Substitute the displacements of Eq. (2.38)
into the strain–displacement relations of Eq. (1.3) that are needed in the virtual work
expression of Eq. (2.37) [Eqs. (2.2) and (2.3), repeated]:

εx = ∂ux

∂x
= du

dx
+ z

dθy

dx
− y

dθz

dx

= κε + zκy − yκz (2.39a)

γxy = ∂uy

∂x
+ ∂ux

∂y
= dv

dx
− θz (2.39b)

γxz = ∂uz

∂x
+ ∂ux

∂z
= dw

dx
+ θy (2.39c)

where the curvatures are defined κε = du/dx, κy = dθy/dx , and κz = dθz/dx .
From Eq. (2.37), the internal virtual work is expressed as

−δWint =
∫

V
(σx δεx + τxy δγxy + τxz δγxz) dV (2.40)

Substitute the strain expressions of Eq. (2.39) into Eq. (2.40):

−δWint =
∫

x

∫
A

[
σx δ

(
du

dx
+ z

dθy

dx
− y

dθz

dx

)
+ τxy δ

(
dv

dx
− θz

)
+ τxz δ

(
dw

dx
+ θy

)]
dA dx (2.41a)
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=
∫

x

[(∫
A

σx dA

)
δ

du

dx
+
(∫

A
σx z dA

)
δ

dθy

dx
+
(

−
∫

A
σx y dA

)
δ

dθz

dx

N My Mz

+
(∫

A
τxy dA

)
δ

(
dv

dx
− θz

)
+

(∫
A

τxz dA

)
δ

(
dw

dx
+ θy

)]
dx (2.41b)

Vy Vz

=
∫

x

(
N δκε + My δκy + Mz δκz + Vy δγxy + Vz δγxz

)
dx (2.41c)

where stress resultants are defined by (Eqs. 1.45 and 1.46)

N =
∫

A
σx dA My =

∫
A

σx z dA Mz = −
∫

A
σx y dA

Vy =
∫

A
τxy dA Vz =

∫
A

τxz dA

(2.41d)

Kinematic Assumptions to Simplify the Virtual Work Bernoulli’s hypoth-
esis maintains that plane cross sections remain plane and orthogonal to the beam axis
during bending. This corresponds to neglecting the direct shear strains (Eq. 2.4):

γxy = dv

dx
− θz = 0 γxz = dw

dx
+ θy = 0 (2.42)

Thus Eq. (2.5)

θz = dv

dx
and θy = −dw

dx
(2.43)

when shear deformation is ignored.
The internal virtual work expression of Eq. (2.41) can now be expressed as

−δWint =
∫

x

(
N δ

du

dx
− My δ

d2w

dx2
+ Mz δ

d2v

dx2

)
dx (2.44)

Introduction of the Material Law If the transverse normal stresses σy and σz

are ignored and the constitutive relations of Eq. (1.12) are introduced into Eq. (2.40),
we obtain

−δWint =
∫

V

(
Eεx δεx + Gγxy δγxy + Gγxz δγxz

)
dV (2.45)
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From Eq. (2.39) with the shear strains γxy and γxz ignored,

−δWint =
∫

x

[∫
A

E(κε + zκy − yκz) δ(κε + zκy − yκz) dA

]
dx (2.46)

If E is constant over the cross section, this becomes

− δWint =
∫

x
E

{[(∫
A

dA

)
κε +

(∫
A

z dA

)
κy −

(∫
A

y dA

)
κz

]
δκε

A Qy Qz

+
[(∫

A
z dA

)
κε +

(∫
A

z2 dA

)
κy −

(∫
A

zy dA

)
κz

]
δκy

Qy Iy Iyz

−
[(∫

A
y dA

)
κε +

(∫
A

yz dA

)
κy −

(∫
A

y2dA

)
κz

]
δκz

}
dx (2.47)

Qz Iyz Iz

where the geometric properties of Eq. (1.52) have been utilized. To study bending
only, ignore the strain in the axial direction. Also, since the centroid of the cross
section is the origin of the coordinates, the first moments Qy and Qz are zero. Then

−δWint =
∫

x
E(Iyκy δκy − Iyzκz δκy − Iyzκy δκz + Izκz δκz) dx (2.48)

The terms with the products of inertia Iyz can be avoided by moving to the cen-
troidal principal bending axes. For this orientation (Chapter 1) Iy′z′ = 0 and Iy′ and
Iz′ are the principal moments of inertia. In this case

−δWint =
∫

x
E(Iy′κy δκy + Iz′κz δκz) dx (2.49)

Insertion of this expression into the principle of virtual work of Eq. (2.37) leads
to

−δW = −δWint − δWext

=
∫

x
E(Iyκy δκy + Izκz δκz) dx −

∫
Sp

(δuy py + δuz pz) dS

= 0 (2.50)

where the primes on y′ and z′ have been dropped and the applied axial force px has
been ignored.
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2.2 RESPONSE OF BEAM ELEMENTS

2.2.1 First-Order Form of the Governing Equations

There are a variety of effective analytical and numerical methods for solving a sys-
tem of first-order equations of the form of Eq. (2.32). The first-order-form solutions
are readily converted to stiffness matrix form in case the beam is a member of a
framework. In this section several analytical solution techniques are discussed.

Exponential Expansion A familiar solution to the first-order scalar differential
equation dz/dx = Az + p is

z = z0eAx + eAx
∫ x

0
e−Aτ p(τ ) dτ

Similarly, integration of the matrix relations of Eq. (2.32) (dz/dx = Az + P) for a
constant coefficient matrix A gives

z = eAx za + eAx
∫ x

x=a
e−Aτ P(τ ) dτ (2.51)

for an element beginning at x = a. For element e of length � extending from x = a
to x = b,

zb = Ue
[

za +
∫ b

a
(Ue)−1P dτ

]
= Ueza + ze (2.52)

where

ze = ze
b = Ue

∫ �

0
[Ue(τ )]−1P(τ ) dτ (2.53)

and as indicated above for a constant coefficient matrix A,

Ue = Ue(�) = eA(b−a) = eA� (2.54)

with b − a = �.
As is evident in Eq. (2.52), the matrix Ue transfers the state variables z from x = a

to x = b. Hence Ue is referred to as a transfer matrix.
The transfer matrix of Eq. (2.54) can be expanded as

Ue = eA� = I + A�

1! + A2�2

2! + · · · =
∞∑

s=0

As�s

s! (2.55)

where I is the identity matrix, a diagonal matrix with diagonal values of unity.
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Since [Ue(x)]−1 = e−Ax for constant A, it follows that

[Ue(x)]−1 = Ue(−x) (2.56)

Then the loading expression of Eq. (2.53), with the help of Eq. (2.56), can be written
as

ze = eA(b−a)

∫ b

a
e−A(τ−a)P dτ = eA�

∫ �

0
e−Aτ P dτ (2.57)

Example 2.6 Transfer Matrix for a Bernoulli–Euler Beam. To illustrate the use
of Eq. (2.55) to compute a transfer matrix, consider a Bernoulli–Euler beam with
[Eq. (2.34b) with no shear deformation terms]

A =


0 −1 0 0
0 0 0 1/E I
0 0 0 0
0 0 1 0

 (1)

To use Eq. (2.55), the powers of A are needed. We find that

A2 = AA =


0 0 0 −1/E I
0 0 1/E I 0
0 0 0 0
0 0 0 0

 (2)

A3 = AA2 =


0 0 −1/E I 0
0 0 0 0
0 0 0 0
0 0 0 0

 (3)

A4 = AA3 = 0 (4)

It is apparent that As = 0 for s greater than 3. This result is expected since the
analytical solution for this beam is a polynomial of order 3. Substitution of (2), (3),
and (4) into Eq. (2.55) leads to the correct transfer matrix:

Ue =


1 −� −�3/6E I −�2/2E I
0 1 �2/2E I �/E I
0 0 1 0
0 0 � 1

 (5)

Numerous methods are available for computing transfer matrices; consult a ref-
erence such as Pilkey and Wunderlich (1994). The number of terms needed in an
expansion of eA� can be reduced by using a Padé approximation. The Laplace trans-
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form is one of the feasible solution techniques that can be used. Another approach is
to use the Cayley–Hamilton theorem (i.e., the minimal polynomial) to represent the
solution eA� as a matrix polynomial. This requires knowledge of the eigenvalues of
A, which can be difficult to obtain for a large matrix A.

For some structural members (e.g., circular plates), A is not constant. In such
cases, numerical integration techniques can be used to find the transfer matrix, as
can Picard iteration.

Example 2.7 Deflection of a Cantilevered Beam with an Asymmetrical Cross
Section. For the cantilevered beam of Example 2.3 with an asymmetrical cross sec-
tion, the applied loads py and pz can be taken as zero over the interior of the beam
span 0 < x < L, and the applied load P in the z direction at x = L can be treated as a
boundary condition. Ignore du/dx = N/AE and d N/dx = −px . From Eq. (2.32b)

A =



0 0 0 1 0 0 0 0
0 0 −1 0 0 0 0 0
0 0 0 0 0 0 Iz/K Iyz/K
0 0 0 0 0 0 Iyz/K Iy/K
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 −1 0 0 0


z =



v

w

θy

θz

Vy
Vz

My

Mz


(1)

where

K = E(Iy Iz − I 2
yz)

The transfer matrix is found by applying Eq. (2.55). Note that As = 0 for s greater
than 3.

Ue =



1 0 0 L −Iy L3/6K Iyz L3/6K Iyz L2/2K Iy L2/2K
0 1 −L 0 Iyz L3/6K −Iz L3/6K −Iz L2/2K −Iyz L2/2K
0 0 1 0 −Iyz L2/2K Iz L2/2K Iz L/K Iyz L/K
0 0 0 1 −Iy L2/2K Iyz L2/2K Iyz L/K Iy L/K
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 L 1 0
0 0 0 0 −L 0 0 1


(2)

Since there are no applied loads on the interior of the beam, ze is zero and Eq. (2.52)
reduces to

zL = Uez0 (3)
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The initial parameter vector z0 is defined by applying boundary conditions to (3).
The boundary conditions at the fixed end are

v(0) = 0 θz(0) = dv

dx
(0) = 0

w(0) = 0 θy(0) = −dw

dx
(0) = 0

(4)

At the free end there are conditions on the shear forces and bending moments:

My(L) = 0 Mz(L) = 0

Vy(L) = 0 Vz(L) = P
(5)

Equation (3) can be rewritten as



vL

wL

θyL

θzL

VyL = 0

VzL = P

MyL = 0

MzL = 0



=



...
...

...
... · · · · · · · · · · · ·

...
...

...
... · · · · · · · · · · · ·

...
...

...
... · · · · · · · · · · · ·

...
...

...
... · · · · · · · · · · · ·

...
...

...
... 1 0 0 0

...
...

...
... 0 1 0 0

...
...

...
... 0 L 1 0

...
...

...
... −L 0 0 1





v0 = 0

w0 = 0

θy0 = 0

θz0 = 0

Vy0

Vz0

My0

Mz0



(6)

where columns 1 through 4 have been canceled because the corresponding displace-
ments at x = 0 are zero, and rows 1 through 4 have been temporarily ignored because
the displacements at x = L are unknown.

The unknown shear forces and bending moments at x = 0 can be calculated using
the reduced transfer matrix of (6):


Vy0
Vzo

My0
Mzo

 =


1 0 0 0
0 1 0 0
0 L 1 0

−L 0 0 1


−1 

0
P
0
0

 =


0
P

−L P
0

 (7)

Of course, these are the reactions that can be obtained from the conditions of equi-
librium. With all the elements of z0 now known, zL can be calculated using Eq. (3)
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zL =



1 0 0 L − Iy L3

6K

Iyz L3

6K

Iyz L2

2K

Iy L2

2K

0 1 −L 0
Iyz L3

6K
− Iz L3

6K
− Iz L2

2K
− Iyz L2

2K

0 0 1 0 − Iyz L2

2K

Iz L2

2K

Iz L

K

Iyz L

K

0 0 0 1 − Iy L2

2K

Iyz L2

2K

Iyz L

K

Iy L

K

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 L 1 0

0 0 0 0 −L 0 0 1





0

0

0

0

0

0

−L P

0



=



− Iyz L3 P

3K

Iz L3 P

3K

− Iz L2 P

2K

− Iyz L2 P

2K

0

P

0

0



(8)

These are the values obtained in Example 2.3.

Example 2.8 Transfer Matrix for a General Beam Element Based on Standard
Planar Engineering Beam Theory. Standard planar engineering beam theory for
beam elements with such effects as elastic foundations and axial loads remains as a
fourth-order problem in that the governing equations are four first-order equations or
a single fourth-order equation. For example, for a beam with compressive axial load
N , displacement (Winkler) foundation modulus kw, rotary foundation modulus kθ ,
mass per unit length ρ, radius of gyration r2

y = I/A, applied moment per unit length
c, frequency of harmonic motion ω, shear correction factor αz = 1/ks , and thermal
moment MT = ∫

A Eα �T z dA (α is the coefficient of thermal expansion and �T
is the temperature change), the first-order differential equations for the response are
given by
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dw

dx
= −θ + V

ksG A

dθ

dx
= M

E I
+ MT

E I
dV

dx
= kww − ρω2w − pz(x)

d M

dx
= V + (kθ − N )θ − ρr2

yω
2θ − c(x)

(1)

or, in matrix notation,

dz
dx

= Az + P (2)

where

z =


w

θ

V
M

 A =


0 −1 1/ksG A 0
0 0 0 1/E I

kw − ρω2 0 0 0
0 kθ − N − ρr2

yω
2 1 0

 P =


0

MT /E I
−pz
−c


If the applied loadings are set to zero, (1) or (2) can be combined into the fourth-order
equation

d4w

dx4
+ (ζ − η)

d2w

dx2
+ (λ − ζη)w = 0 (3)

where

ζ = 1

E I
(N − kθ + ρr2

yω
2)

η = 1

ksG A
(kw − ρω2)

λ = 1

E I
(kw − ρω2)

A number of techniques are available to solve the first-order equations of (2)
or the fourth-order equation of (3). One of these, an exponential expansion, was
presented earlier in this section. Other solution methods are detailed in Pilkey (1994)
and in Pilkey and Wunderlich (1994). The transfer matrix solution for a general beam
element is given in Table 2.2. This table includes applied loading functions for a
variety of types of loading.

Note that in Table 2.2 the transfer matrix has been “extended” by introducing
a fifth column to include the particular solutions Fw, Fθ , FV , FM due to applied
loading. These correspond to the responses w, θ , V , M, respectively. In addition to
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TABLE 2.2A Transfer and Stiffness Matrices for a General Beam Element

Notation

l

λ = (kw − ρω2)/E I
ξ = E I/(ks AG)

kθ = rotary foundation modulus
� = element length

G = shear modulus of elasticity
ks A = equivalent shear area, ks = 1/αz

η = (kw − ρω2)/(ks AG)

kw = displacement (Winkler) foundation modulus
ω = natural frequency
I = moment of inertia

ry = radius of gyration
αz = shear correction factor (Chapter 6)
ζ = (N − kθ + ρr2

yω2)/E I
ρ = mass per unit length
E = elastic modulus, Young’s modulus
N = axial force compessive: replace by −N for tensile axial force

To use the matrices, follow the steps:

1. Calculate the three parameters γ, ζ, η. If shear deformation is not to be considered, set
1/ks AG = 0.

2. Compare the magnitude of these parameters and look up the appropriate ei using the
definitions of ei given below

3. Substitute these expressions in the matrices below.

(continued)

the fifth column, the transfer matrix of Table 2.2 is extended with a fifth row, and a
fifth element in the vector za has been added.

Example 2.9 Reduction of a General Beam Element Solution to the Transfer
Matrix for a Bernoulli–Euler Beam. To demonstrate the use of Table 2.2 to find a
transfer matrix, consider a Bernoulli–Euler beam. First, evaluate the constants λ, η,
and ζ of Table 2.2. Since for a Bernoulli–Euler beam kw, ρ, N , and kθ are zero, we
find that

λ = 0 η = 0 ζ = 0 (1)

From the column in Table 2.2 for λ = 0, η = 0, ζ = 0, we find that

e0 = 0 e1 = 1 e2 = � e3 = �2

2
e4 = �3

6
(2)

Insertion of these values for ei , i = 0, 1, . . . , 4, into the transfer matrix at the top of
Table 2.2 leads immediately to the correct transfer matrix. This is the same matrix
derived in Example 2.6.
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TABLE 2.2A (Continued)

Transfer Matrix (Sign Convention 1)

l



e1 + ζe3 −e2 − e4

E I
+ (e2 + ζe4)

ks AG
− e3

E I
Fw

λe1 e1 − ηe3
e3

E I

(e2 − ηe4)

E I
Fθ

λE I (e2 + ζe4) −λE I e3 e1 + ζe3 −λe4 FV
λE I e3 E I (e0 − ηe2) e2 e1 − ηe3 FM

0 0 0 0 1




wa
θa
Va
Ma
1



Ue za

Fw = [pa(e5 − e6/�) + pbe6/� + ca(e4 − e5/�) + cbe5/� − MT a(e3 − e4/�)

− MT be4/�]/E I − {pa[e3 + ζe5 − (e4 + ζe6)/�] + pb(e4 + ζe6)/�}/ks AG

Fθ = {pa(−e4 + e5/�) − pbe5/� + ca[−e3 + ηe5 + (e4 − ηe6)/�] − cb(e4 − ηe6)/�

+ MT a[(e2 − ηe4) − (e3 − ηe5)/�] + MT b(e3 − ηe5)/�}/E I

FV = pa{−(e2 + ζe4) + (e3 + ζe5)/�} − pb(e3 + ζe5)/� + λ[ca(e5 − e6/�) + cbe6/�

+ MT a(−e4 + c5/�) − MT be5/�]
FM = pa(−e3 + e4/�) − pbe4/� + ca[(−e2 + e3/�) + η(e4 − e5/�)] − cb(e3 − ηe5)/�

+ MT a[(e1 − 1 − e2/�) + η(−e3 + e4/�)] + MT b(e2 − � − ηe4)/�

2.2.2 Sign Conventions for Beams

The sign convention for internal forces employed thus far in this book is in common
use for analytical formulas of structural members. We refer to this as Sign Conven-
tion 1. The face of a beam element with its outward normal along a positive direction
of a coordinate axis is said to be a positive face. A face with its normal in the oppo-
site direction is defined to be a negative face. As indicated in Fig. 2.7, where only
bending in the xz plane is displayed, for Sign Convention 1 force and moment com-
ponents on the positive face of a beam element are positive when acting along the
positive direction of the coordinates. Components are defined to be positive on the
negative face when acting in the negative direction of the coordinate axis.

Another sign convention, which will be called Sign Convention 2, is more appro-
priate for use with the stiffness method of analysis of a network of beams. In the
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TABLE 2.2A (Continued)

Stiffness Matrix (Sign Convention 2)

l


Va
Ma
Vb
Mb

 =


k11 k12 k13 k14
k21 k22 k23 k24
k31 k32 k33 k34
k41 k42 k43 k44




wa
θa
wb
θb

 + pe0

pe = ke ve + pe0

k11 = [(e2 − ηe4)(e1 + ζe3) + λe3e4]E I/�

k12 = [e3(e1 − ηe3) − e2(e2 − ηe4)]E I/�

k13 = −(e2 − ηe4)E I/�

k14 = −e3 E I/�

k21 = k12

k22 = {−(e1 − ηe3)[e4 − ξ(e2 + ζe4)] + e2e3}E I/�

k23 = e3 E I/� = −k14

k24 = [e4 − ξ(e2 + ζe4)]E I/�

k31 = k13, k41 = k14, k42 = k24

k32 = k23, k43 = k34

k33 = [(e1 + ζe3)(e2 − ηe4) + λe3e4]E I/� = k11

k34 = {(e1 + ζe3)e3 + λe4[e4 − ξ(e2 + ζe4)]}E I/�

k44 = {e2e3 − (e1 − ηe3)[e4 − ξ(e2 + ζe4)]}E I/� = k22

� = e2
3 − (e2 − ηe4)[e4 − ξ(e2 + ζe4)]

pe0 =


V 0

a
M0

a
V 0

b
M0

b


V 0

a = [(e2 − ηe4)Fw + e3 Fθ ]E I/�

M0
a = −{e3 Fw + [e4 − ξ(e2 + ζe4)]Fθ }E I/�

V 0
b = FV − {[(e1 + ζe3)(e2 − ηe4) + λe3e4]Fw

+ [(e1 + ζe3)e3 + λe4[e4 − ξ(e2 + ζe4)]]Fθ }E I/�

M0
b = FM − {[(e1 + ζe3)e3 + ξe4[e4 − ξ(e2 + ζe4)]]Fw

+ [e2e3 − (e1 − ηe3)[e4 − ξ(e2 + ζe4)]]Fθ }E I/�
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l
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z

Na Nb

Ma
Va

ba

MbVb

(a) Sign Convention 1: positive forces,  moments, slopes, and displacements
are shown. Used for analytical formulas of beam elements.

l

+w

x

-θ

y
z

Na Nb

Ma
Va

ba

MbVb

(b) Sign Convention 2: positive forces, moments, slopes, and displacements are
shown. Positive deflection and slope are the same for as for Sign Convention 1.
Sign Convention 2 is convenient to use in the matrix analysis of beam networks.

Figure 2.7 Sign conventions for beam element.

case of Sign Convention 2, the force and moment components on both ends of the
beam element are positive along the positive coordinate directions. From Fig. 2.7 it
is evident that the difference between the two sign conventions occurs at the left end,
x = a, where the force and moment components differ in sign.

2.2.3 Definition of Stiffness Matrices

A stiffness matrix provides a relationship between the forces pe on both ends of a
beam element and the displacements ve on both ends. For the eth beam element, the
stiffness matrix ke is defined as

pe = keve (2.58)

Let the forces (actually, forces and moments) at the left end (x = a) of a beam
element be pa . For example, for standard planar engineering beam theory

pa =
[

Va

Ma

]
(2.59)
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Also, designate the forces and moments at the right end (x = b) as pb, the displace-
ments (deflections and slopes) at the left end as va = [wa θa]T, and displacements
at the right end as vb. Then Eq. (2.58) can be written as[

pa

pb

]
=

[
kaa kab

kba kbb

] [
va

vb

]
pe = ke ve

(2.60)

where k jk are matrices.

2.2.4 Determination of Stiffness Matrices

Conversion of Transfer Matrices Recall that the state vector z of the transfer
matrix solution (zb = Ueza + ze) is composed of the displacements and forces at the
end x = a and at the end x = b of member e. Thus, if the displacements at a are va

and the forces are pa , the state vector appears as

za =
[

va

pa

]
(2.61)

Similarly, at the right end (x = b),

zb =
[

vb

pb

]
(2.62)

Also, subdivide the applied force vector ze of Eq. (2.57) as

ze =
[

Fv

Fp

]
(2.63)

Then the transfer matrix solution can be written as[
vb

pb

]
=

[
Uvv Uvp

Upv Upp

] [
va

pa

]
+

[
Fv

Fp

]
zb = Ue za + ze

(2.64)

where the transfer matrix has been subdivided into the square submatrices Uvv , Uvp,
Upv , Upp. It is assumed that the forces are defined according to Sign Convention 2.

It is apparent by comparing Eqs. (2.60) and (2.64) that the stiffness matrix can be
obtained by reorganizing the transfer matrix. From (Eq. 2.64)

pb = Upvva + Upppa + Fp vb = Uvvva + Uvppa + Fv

it follows that

pa = U−1
vp vb − U−1

vp Uvvva − U−1
vp Fv
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and

pb = Upvva + Upppa + Fp = (Upv − UppU−1
vp Uvv)va + UppU−1

vp vb + Fp − UppU−1
vp Fv

In matrix form
pa

pb

 =


−U−1

vp Uvv

... U−1
vp

· · · · · · · · · · · · · · · ... · · · · · · · · ·
Upv − UppU−1

vp Uvv

... UppU−1
vp




va

vb

 +


−U−1

vp Fv

Fp − UppU−1
vp Fv


pe = ke ve + pe0 (2.65)

The force vector pe0 of Eq. (2.65) can be used to include the influence of distributed
load between the nodes.

Example 2.10 Stiffness Matrix for a Bernoulli–Euler Beam. The transfer matrix
of Eq. (5) of Example 2.6 can be converted to a stiffness matrix using Eq. (2.65).
First change the signs of Va and Ma to make the adjustment from Sign Convention 1
to Sign Convention 2. From Eq. (5),

Uvv =
[

1 −�

0 1

]
Uvp =

[
�3/6E I �2/2E I

−�2/2E I −�/E I

]
Upv =

[
0 0
0 0

]
Upp =

[−1 0
−� −1

] (1)

The inverse matrix U−1
vp is needed in Eq. (2.65). We find that

U−1
vp =

[−12E I/�3 −6E I/�2

6E I/�2 2E I/�

]
(2)

From Eq. (2.65) with pe0 equal to zero

Va

Ma

Vb

Mb


=



12E I/�3 −6E I/�2
... −12E I/�3 −6E I/�2

−6E I/�2 4E I/�
... 6E I/�2 2E I/�

· · · · · · · · · · · · ... · · · · · · · · · · · ·
−12E I/�3 6E I/�2

... 12E I/�3 6E I/�2

−6E I/�2 2E I/�
... 6E I/�2 4E I/�





wa

θa

wb

θb


(3)

=
[

ke
aa ke

ab
ke

ba ke
bb

]
ve

pe = ke ve
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where

ke
aa =

[
12E I/�3 −6E I/�2

−6E I/�2 4E I/�

]
ke

ab =
[−12E I/�3 −6E I/�2

6E I/�2 2E I/�

]
ke

ba =
[−12E I/�3 6E I/�2

−6E I/�2 2E I/�

]
ke

bb =
[

12E I/�3 6E I/�2

6E I/�2 4E I/�

]
(4)

Common notation for a stiffness matrix of element e is
Va

Ma

Vb

Mb

 =


k11 k12 k13 k14
k21 k22 k23 k24
k31 k32 k33 k34
k41 k42 k43 k44




wa

θa

wb

θb


pe = ke ve

(5)

where, for example,

ke
aa =

[
k11 k12
k21 k22

]
(6)

If pe0 of Eq. (2.65) is included, it would appear as

pe0 =
[
pe0

a pe0
b

]T =
[
V 0

a M0
a V 0

b M0
b

]eT =
[
−U−1

vp Fv Fp − UppU−1
vp Fv

]T

(7)

The stiffness components can be interpreted physically. From (5) observe that
the stiffness element ki j (e.g., k12 = −6E I/�2) is the force developed at coordi-
nate i due to a unit displacement at coordinate j , with all other displacements set
equal to zero. The displacements at the ends of an element are often referred to as
degrees of freedom (DOFs), which are usually defined as the independent coordi-
nates (displacements) necessary to characterize the location of a point in a structure
undergoing deformation.

The stiffness matrix of (3) is often scaled so that
Va

Ma/�

Vb
Mb/�

 = E I

�3


12 −6 −12 −6
−6 4 6 2

−12 6 12 6
−6 2 6 4




wa

�θa

wb
�θb


pe = ke ve

(8)

Example 2.11 Stiffness Matrix for a General Beam Element Using Standard En-
gineering Beam Theory. Apply the conversion formula of Eq. (2.65) to convert the
general transfer matrix of Table 2.2 to a general stiffness matrix. The resulting stiff-
ness matrix is shown in Table 2.2.
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Example 2.12 Reduction of a General Beam Element Solution to the Stiffness
Matrix for a Bernoulli–Euler Beam. As shown in Example 2.9 for a Bernoulli–
Euler beam, the constants λ, η, and ζ needed to utilize Table 2.2 are zero. This leads
to the values given in Example 2.9 for ei , i = 0, 1, . . . , 4. When these values are
placed in the stiffness matrix of Table 2.2, the Bernoulli–Euler stiffness matrix of
Eq. (3) of Example 2.10 results.

Direct Evaluation Standard textbooks describe a variety of methods for deter-
mining stiffness matrices. Often, a direct evaluation is introduced using the govern-
ing differential equations. Consider Eq. (5) of Example 2.10. Use the configuration
of Fig. 2.8a to calculate ki1, i = 1, 2, 3, 4, which correspond to the first column of
the stiffness matrix. For displacements wa = 1, θa = 0, wb = 0, and θb = 0, Eq. (5)
of Example 2.10 becomes

k11 = Va k21 = Ma k31 = Vb k41 = Mb

The fixed–fixed beam element of Fig. 2.8b, which corresponds to the configuration
of Fig. 2.8a with wa = 1, θa = 0, wb = 0, and θb = 0, can be used to com-
pute Va, Ma, Vb, and Mb. For Sign Convention 2, the conditions of equilibrium give
M(x) = −Ma − Va x . Integration of Eq. (2.28c), d2w/dx2 = −M/E I , leads to

dw

dx
= 1

E I

(
Ma x + Va

x2

2

)
+ C1 = −θ w = 1

E I

(
Ma

x2

2
+ Va

x3

6

)
+ C1x + C2

 a
 bVa

 Ma

Vb

 Mb

θa= 0

 wa=1
θb= 0

 wb= 0

Va

 Ma

Vb

 Mb

x

  (a) Beam element configuration for computing ki1, i=1, 2, 3, 4

(b) Equivalent physical model

Figure 2.8 Element for computing the first column of the stiffness matrix.
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At the left and right ends, x = xa = 0 and x = xb = �, respectively. The
boundary conditions θa = 0 and wb = 0 give C1 = 0 and C2 = −Ma�2/2E I −
Va�3/6E I . Apply θb = 0 to the first equation and wa = 1 to the second. These show
that

Va = 12E I

�3
= k11 Ma = −6E I

�2
= k21

The force Mb and Vb can be obtained by imposing the conditions of equilibrium on
the beam of Fig. 2.8a.

Vb = −Va = −12E I

�3
= k31 Mb = −Va� − Ma = −6E I

�2
= k41

The second, third, and fourth columns of the stiffness matrix of Eq. (3) of Ex-
ample 2.10 are computed in the same fashion.

Approximation by Trial Function In the preceding section, an exact beam the-
ory solution was placed in the form of a stiffness matrix. It is possible to do this for
beams, but often not for other types of structural elements. In such cases, an assumed
or trial function solution can be employed to obtain an approximate stiffness matrix.
This is the approach that is commonly used to find stiffness matrices for the finite
element method.

Shape Functions We assume that the deflection of a beam element can be approx-
imated by a polynomial

w = C0 + C1x + C2x2 + C3x3 · · · = ŵ0 + ŵ1x + ŵ2x2 + ŵ3x3 · · · (2.66)

where the coefficients of the polynomial C j = ŵ j , j = 0, 1, 2, . . . are unknown
constants. These coefficients are often referred to as generalized displacements. This
polynomial is a trial function or basis function. Retain only the first four terms of
this series:

w =
[
1 x x2 x3

]
ŵ0
ŵ1
ŵ2
ŵ3

 = Nuŵ = ŵTNT
u (2.67)

where

Nu =
[
1 x x2 x3

]
We choose to express this series as an interpolation function by transforming the

coefficients ŵ j so that the series is written in terms of the unknown displacements
at the ends of the beam element. Express these unknown displacements for the eth
element as
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ve =


wa

θa = −dwa/dx
wb

θb = −dwb/dx

 (2.68)

The derivative of w with respect to x is

dw

dx
= dNu

dx
ŵ = ŵT

(
dNu

dx

)T

where

dNu

dx
=

[
0 1 2x 3x2

]
Also, properties of a transpose of a scalar [i.e., (dw/dx)T = dw/dx] and a matrix
product [i.e., (AB)T = BTAT] were utilized.

To construct a relationship between the coefficients ŵ and the unknown end dis-
placements ve, evaluate w = Nuŵ and θ = −dw/dx = −(dNu/dx)ŵ at x = xa =
0 and x = xb = �

wa

θa

wb

θb

 =


w(0)

−dw(0)/dx
w(�)

−dw(�)/dx

=


1 0 0 0
0 −1 0 0
1 � �2 �3

0 −1 −2� −3�2




ŵ0
ŵ1
ŵ2
ŵ3


ve = N̂u ŵ

It follows that the coefficients ŵ can be expressed in terms of the discrete, unknown
nodal displacements ve as

ŵ = N̂−1
u ve = Gve (2.69)

where

G =N̂−1
u =


1 0 0 0
0 −1 0 0

−3/�2 2/� 3/�2 1/�

2/�3 −1/�2 −2/�3 −1/�2


The desired relationship between w and the unknown nodal displacements ve is

w = Nuŵ = NuGve = Nve (2.70)
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or

w(x) =
(

1 − 3
x2

�2
+ 2

x3

�3

)
wa +

(
−x + 2

x2

�
− x3

�2

)
θa

+
(

3
x2

�2
− 2

x3

�3

)
wb +

(
x2

�
− x3

�2

)
θb

where N = NuG.
This final expression is the interpolation form of the assumed deflection polyno-

mial. The components of this expression are often referred to as shape, basis, or in-
terpolation functions. Correspondingly, the matrix N is often called a shape function
matrix. Equation (2.70) represents an interpolation of the displacement w between
the nodes.

Interpolation Functions Based on a Normalized Coordinate Various interpo-
lation functions are tabulated in mathematical handbooks. When derivatives of the
displacements at the nodes are involved, as with the beams of this section, the Her-
mitian interpolation polynomial (Fig. 2.9) can be employed. These can be obtained
from Eq. (2.70) using the normalized coordinate ξ = x/�. From Eq. (2.70),

w(ξ) = [
1 ξ ξ2 ξ3

]
1 0 0 0
0 −1 0 0

−3 2 3 1
2 −1 −2 −1




wa

�θa
wb

�θb



= [
1 ξ ξ2 ξ3

]
1 0 0 0
0 −� 0 0

−3 2� 3 �

2 −� −2 −�




wa

θa

wb

θb


Nu(ξ) G ve

= Nu(ξ)Gve = Nve = N(ξ)ve (2.71a)

or

w(ξ) =
(

1 − 3ξ2 + 2ξ3
)

wa +
(
−ξ + 2ξ2 − ξ3

)
θa�

+
(

3ξ2 − 2ξ3
)

wb +
(
ξ2 − ξ3

)
θb� (2.71b)

The bracketed quantities are Hermitian polynomials. It should be noted that G of
Eq. (2.69) differs from G of Eq. (2.71a).

The polynomial trial functions of Eq. (2.70) or (2.71b) can be used with the prin-
ciple of virtual work to generate stiffness matrices.
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wa = 1

 a  b

 H1

θa

 wb= 1

ξ,  x

ξ  = 0 ξ  = 1

 H2

 H3

 H4

θa l = 1

θb l = 1

1

θb

 w(ξ) = wa H1 + θal H2 + wb H3 + θbl H4

 w(ξ) = (1 − 3ξ2 + 2ξ3)wa

 +(−ξ + 2ξ2 − ξ3)θal

 +(ξ2 − ξ3)θbl

 + (3ξ2 − 2ξ3)wb

ξ  =
 x
l

Figure 2.9 Hermitian interpolation polynomials as shape functions.

Principle of Virtual Work for Beams As indicated in Section 2.1.7, the principle
of virtual work can be represented as

δWint + δWext = 0 (2.72)

From the “Strain–Displacement Relations” subsection of Section 2.1.7, for Bernoulli–
Euler bending in the xz plane

−δWint =
∫

x
δκy My dx =

∫
x
δ

dθy

dx
My dx

= −
∫

x
δ

d2w

dx2
My dx =

∫
x

E I δκy κy dx

=
∫

x

(
δ

d2w

dx2

)
E I

d2w

dx2
dx (2.73)
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The virtual work due to the applied loads follows from Eq. (2.50) in the form

−δWext = −
∫

x
δw pz dx (2.74)

The sum of the virtual works for element e from x = a to x = b is

− (δWint + δWext)
e =

∫ b

a

(
δ

d2w

dx2

)
E I

d2w

dx2
dx −

∫ b

a
δw pz dx (2.75)

and for the entire system, the principle of virtual work (Eq. 2.72) becomes

−δW = − (δWint + δWext)

=
∑

e
all elements

[∫ b

a

(
δ

d2w

dx2

)
E I

d2w

dx2
dx −

∫ b

a
δw pz dx

]
= 0 (2.76)

Stiffness Matrix from the Principle of Virtual Work The procedure to be de-
scribed is generally applicable in the sense that it can be used to derive stiffness
matrices for many types of elements. To find the beam element stiffness matrix, sub-
stitute the assumed polynomial for w Eq. (2.70) or (2.71) into Eq. (2.75). Begin by
finding the variational quantities δw and δw′′ expressed in terms of the trial series,
where w′′ = d2w/dx2. In Eq. (2.70) or (2.71), G is constant and Nu is a function of
the axial coordinate of x or ξ . Then

δw = δ(Nve) = N δve = δveTNT (2.77)

where δveT are the virtual end displacements, and

w′′ = N′′
uGve = BuGve = N′′ve = B ve

δw′′ = B δve = δveTBT
(2.78)

with N′′
u = Bu, B = N′′ = BuG, and N′′

u(x) = [0 0 2 6x].
Substitute these expressions into Eq. (2.75):

− (δWint + δWext)
e =

∫ b

a

δw′′︷ ︸︸ ︷
δveTBT E I

w′′︷︸︸︷
Bve dx −

∫ b

a

δw︷ ︸︸ ︷
δveTNT pz dx

= δveT


∫ b

a
BT(x)E I B(x) dx︸ ︷︷ ︸ ve −

∫ b

a
NT(x) pz(x) dx︸ ︷︷ ︸

ke ve pe0


e

(2.79)

Since B(x) = N′′(x) = Bu(x)G, N(x) = Nu(x)G, BT = GTBT
u , NT = GTNT

u :
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− (δWint + δWext)
e

= δveT

GT
∫ b

a
BT

u (x)E I Bu(x) dx G︸ ︷︷ ︸ ve −GT
∫ b

a
NT

u (x)pz(x) dx︸ ︷︷ ︸
ke ve pe0


e

(2.80)

Finally,

− (δWint + δWext)
e = δveT

(
keve + pe0

)
(2.81)

The virtual work for element e can be expressed from a different standpoint in
terms the displacements ve and internal forces (moments and shear forces) pe at the
ends x = a and x = b of the element. In this case, the virtual work for an element is
expressed as δveTpe; that is,

− (δWint + δWext)
e = δveTpe (2.82)

Equate the two expressions for virtual work of Eqs. (2.81) and (2.82). This gives

δveT
(

keve + pe0
)

= δveTpe

or

pe = keve + pe0 (2.83)

This fundamental relationship corresponds to Eq. (2.65).
In summary, the vectors pe, ve, pe0 and the stiffness matrix ke of the relationship

pe = keve + pe0 are defined as

pe =
[

pa

pb

]
=


Va

Ma

Vb

Mb

 ve =
[

va

vb

]
=


wa

θa

wb

θb


pe0 = −

∫ b

a
NT(x)pz dx = −GT

∫ b

a
NT

u (x)pz dx (2.84)

ke =
∫ b

a
BT(x)E I B(x) dx = GT

∫ b

a
BT

u (x)E I Bu(x) dxG

where

ke is the stiffness matrix for element e.
ve is the column matrix of displacements on the ends of element e.
pe is the column matrix of forces on the ends of element e.
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pe0 is the column matrix of the influence of the applied loads on element e.
N(x) is the row matrix of the assumed displacements for element e (Eq. (2.70).
The components of N are referred to as shape functions or interpolation functions.
Nu(x) is the row matrix defined by Eq. (2.67).
G is a matrix defined in Eq. (2.69).
B and Bu are equal to N′′ and N′′

u , respectively.

For constant E I , the stiffness matrix of Eq. (2.84) becomes

ke = E I
∫ b

a
BTB dx (2.85)

Recall that the principle of virtual work corresponds (under prescribed displace-
ment conditions) to the equations of equilibrium. For a framework composed of beam
elements including element e, Eq. (2.80) represents the contribution of the eth ele-
ment to the equilibrium of the entire framework. This contribution is expressed as
the virtual work of the eth element that belongs to the virtual work of the entire
framework.

Example 2.13 Evaluation of the Stiffness Matrix for a Beam. Find the stiffness
matrix for a Bernoulli–Euler beam element. Assume that the cross-sectional area is
constant along the beam.

SOLUTION. Introduce the trial function

w(x) = Nu(x)Gve = Nve (1)

with Eq. (2.67):

Nu =
[
1 x x2 x3

]
(2)

We wish to evaluate the stiffness matrix ke of pe = keve defined as Eq. (2.80)

ke = GT
∫ �

0

{
BT

u (x)E I Bu(x) dx
}

G (3)

with

ve = [wa θa wb θb]eT

and

pe = [Va Ma Vb Mb]eT

Also,
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Bu(x) = N′′
u(x) = d2Nu(x)

dx2
= [0 0 2 6x] (4)

and

BT
u (x) =


0
0
2

6x

 (5)

For constant E I ,

∫ �

0
BT

u E I Bu dx = E I
∫ �

0


0 0 0 0
0 0 0 0
0 0 4 12x
0 0 12x 36x2

 dx

= E I


0 0 0 0
0 0 0 0
0 0 4� 6�2

0 0 6�2 12�3

 (6)

Finally, using Eq. (2.69), we obtain

G =


1 0 0 0
0 −1 0 0

−3/�2 2/� 3/�2 1/�

2/�3 −1/�2 −2/�3 −1/�2

 (7)

Inserting these values into (3) leads to

ke = E I

�3


12 −6� −12 −6�

− 6� 4�2 6� 2�2

−12 6� 12 6�

− 6� 2�2 6� 4�2

 (8)

Note that use of the cubic polynomial of (2) to represent w results in the exact
rather than an approximate stiffness matrix. That is, ke of (8) is the same stiffness
matrix obtained by “exact” approaches earlier in this section.

Example 2.14 Stiffness Matrix Based on Normalized Coordinate. Calculate the
stiffness matrix for a Bernoulli–Euler beam element using the normalized coordinate
ξ = x/�.

SOLUTION. From Eq. (2.71a), the displacement assumed is

w(ξ) = Nu(ξ)Gve (1)
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with ξ = x/�, G given in Eq. (2.71a), and

Nu(ξ) =
[
1 ξ ξ2 ξ3

]
(2)

ve = [wa θa wb θb]eT (3)

The corresponding force vector is

pe = [Va Ma Vb Mb]eT (4)

In terms of the coordinate x , the stiffness matrix ke of pe = keve is calculated using
Eq. (2.84):

ke =
∫ b

a
BT(x)E I B(x) dx =

∫ �

0
BT(x)E I B(x) dx

= GT
∫ �

0
BT

u (x)E I Bu(x) dxG

(5)

with G from Eq. (2.69). For the normalized coordinate, dx = � dξ and

Bu(ξ) = N′′
u(ξ) = d2

dx2
Nu(ξ) = d2Nu(ξ)

�2dξ2
= 1

�2 [0 0 2 6ξ ] (6)

BT
u (ξ) = N′′T

u (ξ) = 1

�2


0
0
2
6ξ

 (7)

Then

ke = GT
∫ �

0
BT

u (x)E I Bu(x) dx G = GT
∫ 1

0
BT

u (ξ)E I Bu(ξ)� dξG

G from Eq. (2.69) G from Eq. (2.71a)

Bu(x) from Example 2.13 Bu(ξ) from (6) of this example

= GT E I
∫ 1

0

1

�4


0 0 0 0
0 0 0 0
0 0 4 12ξ

0 0 12ξ 36ξ2

 � dξ G = GT



0 0
... 0 0

0 0
... 0 0

· · · · · · .
.. · · · · · ·

0 0
.
.. 4 6

0 0
..
. 6 12


E I

�3
G

(8)
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Finally, with G of Eq. (2.71a),

ke = GT
∫ 1

0
BT

u (ξ)E I Bu(ξ)� dξG =



12 −6�
... −12 − 6�

−6� 4�2
... 6� 2�2

· · · · · · ... · · · · · ·
−12 6�

... 12 6�

−6� 2�2
... 6� 4�2


E I

�3

︸ ︷︷ ︸
ke

(9)

which, as expected, is the same matrix obtained in Example 2.13.

Example 2.15 Loading Vector. The loading vector pe0 is calculated using Eq.
(2.84). If the normalized coordinate ξ = x/� is introduced,

pe0 = −
∫ b

a
NT(x)pz(x) dx = −GT

∫ �

0
NT

u (x)pz(x) dx

G from Eq. (2.69)

Nu from Eq. (2.67)

= −�GT
∫ 1

0
NT

u (ξ)pz(ξ) dξ

Nu and G from Eq. (2.71a)

= −�

∫ 1

0
NT(ξ)pz(ξ) dξ = −�

∫ 1

0


1 − 3ξ2 + 2ξ3

(−ξ + 2ξ2 − ξ3)�

3ξ2 − 2ξ3

(ξ2 − ξ3)�

 pz(ξ) dξ (1)

For pz of constant magnitude p0 ,

pe0 = p0�


− 1

2

1
12�

− 1
2

− 1
12�

 (2)

For hydrostatic loading with pz varying linearly pz = p0ξ from ξ = 0 to ξ = 1:
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pe0 = p0�

60


−9

2�

−21
−3�

 (3)

For the more general linear case with pz taking on the value p0 at ξ = 0 and p1 at
ξ = 1,

pz = p0 + (p1 − p0)ξ (4)

pe0 = p0�

60


−21

3�

−9
−2�

 + p1�

60


−9

2�

−21
−3�

 (5)

Example 2.16 Stiffness Matrix for Axial Extension and Bending. The stiffness
matrix for axial extension of a bar from x = a to x = b is[

Na

Nb

]e

=
[

E A/� −E A/�

−E A/� E A/�

]e [
ua

ub

]e

+
[

N 0
a

N 0
b

]e

pe = ke ve + pe0

(1)

where for constant distributed axial load px0,[
N 0

a

N 0
b

]e

= −px0
�

2

[
1
1

]
If this stiffness matrix is combined with that for the bending of a bar

Na

Va

Ma

Nb

Vb

Mb



e

=



E A

�
0 0 − E A

�
0 0

0
12E I

�3
−6E I

�2
0 −12E I

�3
−6E I

�2

0 −6E I

�2

4E I

�
0

6E I

�2

2E I

�

− E A

�
0 0

E A

�
0 0

0 −12E I

�3

6E I

�2
0

12E I

�3

6E I

�2

0 −6E I

�2

2E I

�
0

6E I

�2

4E I

�



e 

ua

wa

θa

ub

wb

θb



e

pe = ke ve (2)

These stiffness matrices adhere to sign convention 2, as do all of the stiffness matrices
of this chapter.
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Example 2.17 Stiffness Matrix for a Bar in Space. The stiffness matrix for a bar
for which forces and displacements occur along three coordinate directions is ob-
tained by continuing the sort of uncoupled superposition used in Example 2.16. This
leads to the stiffness matrix of (1) on page 93 with the symbols defined in Fig. 2.10.

The bar stiffness relationship is of the form pe = keve + pe0. The relationship of
(1) represents extension in the x direction, bending in the xz plane (in-plane), bending
in the xy plane (out-of-plane), and torsion about the x axis. Torsion is discussed
in Chapter 5. The torsion in (1) is for “simple” torsion with no consideration of
restrained warping. For a bar with this torsion only, the stiffness matrix appears as

[
Mxa

Mxb

]e

=


G J

�
−G J

�

−G J

�

G J

�


e [

θxa

θxb

]e

+
[

M0
xa

M0
xb

]e

(2)

pe = ke ve + pe0

where G is the shear modulus of elasticity and J is the torsional constant, which is
equal to the polar moment of inertia for bars of circular cross section. As shown in

 a

 b

 Na
 Mxa

 x
 z

θya

 y

θxa = θa

pe = ve

=

e

;

Mxa
Mya
Mza

Nb
Vyb
Vzb

 ua

 va
Vya

θyb

 Mya

θxa

 wa
 Vza

θza
 Mza

 Vyb

 Nb
 ub

θzb
 Mzb

 wb
 Vzb

 vb

 Myb

 Mxb

θxb

Vza

Vya

Na

Mxb
Myb
Mzb

θxa
θya
θza

ub
vb
wb

wa

va

ua

θxb
θyb
θzb

e

θxb = θb

Figure 2.10 Local coordinate system, forces, and displacements on the ends of a bar in
space. Sign Convention 2.
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=
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pe
=

ke
ve

+
pe0

(1
)
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Va = V(0)

Ma = M(0)
Mb = M(l)

Vb = V(l)

pz

kw

EI

ba

x, u, ξ  =
θ

z, w
y

x
l

l

Figure 2.11 Beam element on elastic foundation. Sign Convention 1.

Chapter 5, the governing equations for torsion are the same as those for extension
of a bar with a change of variables E → G, A → J , u → θx (φ), N → Mx .
Hence, with this adjustment in notation the stiffness matrix of (2) is obtained from
the stiffness matrix for extension of Example 2.16.

Example 2.18 Stiffness Matrix for a Beam Element on an Elastic Founda-
tion. Determine the stiffness matrix for a beam element on an elastic (Winkler)
foundation.

SOLUTION. The methods described earlier in this chapter can be employed to de-
rive an exact stiffness matrix for a beam on an elastic foundation. Although the third-
order polynomial trial function of this section led to an exact stiffness matrix for a
simple Bernoulli–Euler beam element, the same polynomial leads to an approximate
stiffness matrix for a beam on elastic foundation element.

Notation for the beam element of Fig. 2.11 is:

E is the modulus of elasticity for the beam (force/length2).

I is the moment of inertia of the cross section about the centroidal y axis (length4).

� is length of the beam element (length).

kw is the modulus of the elastic (Winkler) foundation (force/length2).

κy is the curvature of the beam element.

L = 4
√

4E I/kw = 1/λ is the characteristic length of the beam on an elastic
foundation element (length).

Differential Relationships The displacement or Winkler elastic foundation im-
poses a force of magnitude kww on the beam element. This is introduced as an
equivalent distributed load (force/length), opposite in sign to pz (Fig. 2.12). The
fundamental differential equations governing the motion of this beam element are
derived using the procedure described in Chapter 1 for the simple beam element.
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x
θ

z, w

dx

V(x)

M(x) M + dM

V + dV
EI

pz

x

kww

y

Figure 2.12 Differential element for beam on elastic foundation. Sign Convention 1.

Conditions of equilibrium:

dV

dx
+ pz − kww = 0

d M

dx
− V = 0 (1)

Material law:

M = E Iκy V = G Asγ (2)

Kinematics:

κy = dθ

dx
γ = θ + dw

dx
(3)

If shear deformation is not taken into account,

γ = 0 or θ = −dw

dx
κy = −d2w

dx2
(4)

Combine (1), (2), (3), and (4) to obtain the differential equation

d2

dx2

(
E I

d2w

dx2

)
+ kww − pz = 0 (5)

The exact solution of this rather simple fourth-order differential equation is read-
ily established for constant E I and kw (Pilkey, 1994). This solution is of the form

w(x) = C0eλx cos λx + C1eλx sin λx + C3e−λx cos λx + C4e−λx sin λx (6)

where λ = 4
√

kw/4E I .
The exact stiffness matrix (which is provided in Table 2.2) is readily obtained

from this solution using the techniques discussed earlier in this chapter. However,
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here we choose to utilize the polynomial trial function and the principle of virtual
work to derive an approximate stiffness matrix.

Approximate Stiffness Matrix from the Principle of Virtual Work The principle
of virtual work expression of Eq. (2.76) should be supplemented with an extra term
for the elastic foundation

−δW = −(δWint + δWext)

=
∑

e
all elements

[∫ b

a

(
δ

d2w

dx2

)
E I

d2w

dx2
dx −

∫ b

a
δw pz dx −

∫ b

a
δw(−kww) dx

]

= 0 (7)

where it is recognized that an elastic foundation of modulus kw has the same effect
as a distributed load pz , but of opposite sign.

Choose as a trial function the same third-order polynomial of Eq. (2.67) used for
the simple Bernoulli–Euler beam element. Substitute w = NuGve = Nve into (7),
where

Nu =
[
1 x x2 x3

]
(8)

and G is given in Eq. (2.69). With N
′′
u = d2Nu/dx2 the virtual work for element e is

δW e = δveT GT
∫ b

a
N′′T

u (x)E I N′′
u(x) dxG︸ ︷︷ ︸

ke
B

ve

+ δveT GT
∫ b

a
NT

u (x)kwNu(x) dxG︸ ︷︷ ︸
ke

w

ve

− δveT GT
∫ b

a
NT

u (x)pz(x) dx︸ ︷︷ ︸
−pe0

(9)

where

ke
B is the stiffness matrix for bending of the element [Eq. (8) of Example 2.13].

ke
w is the element stiffness matrix for the elastic foundation.

pe0 is the loading vector.
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Introduce the familiar notation NuG = N, B = N′′. Then

δW e = δveT
∫ b

a
BTEI B dx︸ ︷︷ ︸

ke
B

ve + δveT
∫ b

a
NTkwN dx︸ ︷︷ ︸

ke
w

ve (10)

− δveT
∫ b

a
NT pz dx︸ ︷︷ ︸
−pe0

The total virtual work of (7) can be expressed as

δW =
∑

elements

δveT
[(

ke
B + ke

w

)
ve + pe0

]
(11)

Calculation of the Element Stiffness Matrix ke
w for the Elastic Foundation The

matrices ke
B and pe0 of (11) were developed in earlier examples. The stiffness matrix

ke
w for the elastic foundation will be calculated here. We wish to find

ke
w = GT

∫ �

o

(
NT

u kwNu dx
)

G (12)

with Eq. (2.69)

G = N̂−1
u =


1 0 0 0
0 −1 0 0

−3/�2 2/� 3/�2 1/�

2/�3 −1/�2 −2/�3 −1/�2

 (13)

Assume that kω, the modulus for the foundation, is constant. Then

∫ �

o
NT

u kwNu dx = kw

∫ �

o


1 x x2 x3

x x2 x3 x4

x2 x3 x4 x5

x3 x4 x5 x6

 dx

= kw


� �2/2 �3/3 �4/4

�2/2 �3/3 �4/4 �5/5
�3/3 �4/4 �5/5 �6/6
�4/4 �5/5 �6/6 �7/7

 (14)

so that

ke
w = GT

∫ �

o

(
NT

u kwNu dx
)

G
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= kw�

420


156 −22� 54 13�

−22� 4�2 −13� −3�2

54 −13� 156 22�

13� −3�2 22� 4�2

 (15)

Although the third-order polynomial led to an exact matrix ke
B, the same polynomial

gives an approximate stiffness matrix ke
w for the elastic foundation.

2.2.5 Development of an Element by Mapping
from a Reference Element

It is common practice with the finite-element method to develop elements using a
mapping from the simple geometry of a reference element to the geometry of the
real element. In general, reference elements are used to simplify calculations with
elements of complex shape of the sort that occur often in later chapters. A refer-
ence element �r is defined with a very simple geometry. The geometry of �r is
then mapped to the geometry of the real element � by a transformation. This trans-
formation defines the coordinates of each point of the real domain � in terms of
coordinates of the corresponding point in the reference domain �r . The geometrical
transformation has the following properties.

1. It is a bijective mapping; that is, for each point of �r , there is precisely one
point of �, and any two distinct points of �r are mapped to two distinct points
of �.

2. The geometrical nodes of �r are mapped to the geometrical nodes of �.
3. Every part of the boundary of �r , defined by the geometrical nodes of that

boundary, corresponds to the part the boundary of � defined by the corre-
sponding nodes.

Shape Functions We choose to use the polynomials of third degree employed
earlier in this chapter in developing shape function for a straight beam in bending
(i.e., we will use cubic line elements). The reference element of Fig. 2.13a has the
domain −1 ≤ ξ ≤ 1, and the corresponding physical element domain of Fig. 2.13b is
a ≤ x ≤ b. The physical element domain could also be represented as xa ≤ x ≤ xb.
These elements have two geometrical nodes, and each node has two displacement
variables, a deflection and a slope. If w(x) is a function (the deflection) to be interpo-
lated over element e, the nodal vector ve in the physical domain for a Bernoulli–Euler

x
a b

ξ
-1 1

a

xa

b

xb

(a) Reference element (b) Physical element

Figure 2.13 Beam bending elements in the reference and physical domains.
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beam element is

ve = [wa θa wb θb]T =
[
wa − dwa

dx
wb − dwb

dx

]T

(2.86)

where the subscript a indicates values at node a and the subscript b is for values at
node b. The nodal vector for the reference element is different because the derivatives
are taken with respect to ξ :

ve
r =

[
wa − dwa

dξ
wb − dwb

dξ

]T

(2.87)

Points on the line in the reference domain with two nodes can be transformed to
points in the physical domain using

x(ξ) = a1 + a2ξ

The coefficients a1, a2 are found in terms of the deflections at the nodes a and b in
the physical domain by evaluating this equation at the nodes (ξ = −1 and ξ = +1)

a = a1 − a2

b = a1 + a2

which, upon solution for a1 and a2, shows that the geometric transformation is

x(ξ) = a + b

2
+ b − a

2
ξ (2.88)

The Jacobian J of an element is defined by

dw

dξ
= dw

dx

dx

dξ
= J

dw

dx
(2.89a)

and the value of J is determined by the physical node coordinate relationship of
Eq. (2.88):

J = dx

dξ
= b − a

2
= �

2
(2.89b)

where � is the length of the physical line element. The inverse Jacobian defined by

dw

dx
= J−1 dw

dξ
(2.89c)

is the reciprocal of the Jacobian

J−1 = 1

J
= 2

�
(2.89d)
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The interpolation formula for a function w(ξ) defined on the reference element is
written as a linear combination of basis functions

w(ξ) = Nu(ξ)ŵ

where ŵ = [
ŵ0 ŵ1 ŵ2 ŵ3

]T is the vector of generalized displacements. The
basis functions for the cubic element are

Nu(ξ) =
[
1 ξ ξ2 ξ3

]
(2.90)

The nodal vector for the function w(ξ) on the reference element is

ve
r =



w(ξa)

−dw

dξ
(ξa)

w(ξb)

−dw

dξ
(ξb)


=



Nu(ξa)

−dNu

dξ
(ξa)

Nu(ξb)

−dNu

dξ
(ξb)


ŵ

in which ξa = −1 and ξb = 1. When the preceding equation is evaluated, the nodal
vector is expressed in terms of the coefficient vector ŵ as

ve
r =


1 −1 1 −1
0 −1 2 −3
1 1 1 1
0 −1 −2 −3

 ŵ = N̂∗
uŵ

The matrix N̂∗
u is invertible, so that

ŵ = N̂∗−1
u ve

r = 1

4


2 −1 2 1

−3 1 3 1
0 1 0 −1
1 −1 −1 −1

 ve
r (2.91a)

The results of the preceding paragraph give a nodal interpolation formula using
the reference element nodal vector

w(ξ) = Nu(ξ)ŵ = Nu(ξ)N̂∗−1
u ve

r (2.91b)

We wish to convert this expression to a nodal interpolation formula for the element
in the physical domain

w(ξ) = N∗(ξ)ve (2.91c)



RESPONSE OF BEAM ELEMENTS 101

The relationship between ve
r , the nodal vector for the reference element Eq. (2.87),

and ve, the nodal vector in the physical domain (Eq. (2.86), can be formed as

ve
r = �ve (2.91d)

where, from Eq. (2.89), the transformation matrix � is given by

� =


1 0 0 0
0 �/2 0 0
0 0 1 0
0 0 0 �/2

 (2.92)

From Eq. (2.91b–d), the nodal interpolation formula for the function w(ξ) be-
comes

w(ξ) = Nu(ξ)N̂∗−1
u ve

r = Nu(ξ)N̂∗−1
u �ve = N∗(ξ)ve = veTN∗T(ξ) (2.93)

Thus, the four shape functions N∗
i for the cubic element are defined by

N∗(ξ) = [
N∗

1 N∗
2 N∗

3 N∗
4

] = Nu(ξ)N̂∗−1
u � (2.94)

The shape functions and their derivatives are listed in Table 2.3. These shape func-
tions depend on the length of the physical line element and are not determined by
the reference line element alone. The advantage of defining the shape functions in
this way is that the nodal interpolation formula uses the nodal vector ve, in which
the derivatives are with respect to the physical domain coordinate x , rather than the
nodal vector ve

r , in which the derivatives are with respect to the reference domain
coordinate ξ .

Stiffness Matrix The element stiffness matrix ke is obtained from the internal
virtual work in the principle of virtual work of Eq. (2.76). From this expression the
internal virtual work for element e is given by

−δW e
int =

∫ b

a
δ

d2w

dx2
E I

d2w

dx2
dx (2.95)

TABLE 2.3 Shape Functions and Derivatives for the Cubic Line Element

i 4N∗
i 4

d N∗
i

dξ
4

d2 N∗
i

dξ2
4

d3 N∗
i

dξ3
4

d4 N∗
i

dξ4

1 (1 − ξ)2(2 + ξ) −3(1 − ξ2) 6ξ 6 0

2 −(1 − ξ)2(1 + ξ)�/2 (1 − ξ)(1 + 3ξ)�/2 (1 − 3ξ)� −3� 0

3 (1 + ξ)2(2 − ξ) 3(1 − ξ2) −6ξ −6 0

4 (1 + ξ)2(1 − ξ)�/2 (1 + ξ)(1 − 3ξ)�/2 (1 + 3ξ)� 3� 0
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To express this integral in the reference domain, use

dx = �

2
dξ (from Eq. 2.89b)

ξ =
{−1 at x = a
+1 at x = b

(from Eq. 2.88)

d2w

dx2
= d

dx

dw

dx
= d

dx
J−1 dw

dξ
= J−2 d2w

dξ2
= 4

�2

d2w

dξ2
(from Eq. 2.89c and d)

Then

−δW e
int =

∫ b

a
δ

d2w

dx2
E I

d2w

dx2
dx = 16E I

�4

∫ 1

−1
δ

d2w

dξ2

d2w

dξ2

�

2
dξ

= 8E I

�3

∫ 1

−1
δ

d2w

dξ2

d2w

dξ2
dξ = 8E I

�3

∫ 1

−1
δveT d2N∗T

dξ2

d2N∗

dξ2
vedξ

where Eq. (2.93) has been introduced. Also,

d2w

dξ2
= d2N∗

dξ2
ve = veT d2N∗T

dξ2

Then the stiffness matrix is given by Eq. (2.79)

ke = 8E I

�3

∫ 1

−1

d2N∗T

dξ2

d2N∗

dξ2
dξ (2.96)

With the shape functions of Table 2.3, ke is found to be the exact stiffness matrix of
Eq. (3) of Example 2.10.

2.3 MASS MATRICES FOR DYNAMIC PROBLEMS

Consider an undamped structure undergoing dynamic motion. The governing equa-
tions of motion for a beam moving dynamically are obtained using D‘Alembert’s
principle by including an acceleration times mass term as a new force. Thus, in the
governing differential equation or in the principle of virtual work expression, include
a term pz(x) = −ρẅ(x), where ρ is the mass per unit length and ẅ = ∂2w/∂t2 is
the acceleration at axial location x .

In the case of the governing differential equations of Eq. (2.28), the first relation-
ship becomes the partial differential equation

∂

∂x2
E I

∂2w

∂x2
+ ρ

∂2w

∂t2
= pz (2.97a)
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and the remaining relationships are

V = − ∂

∂x
E I

∂2w

∂x2
(2.97b)

M = −E I
∂2w

∂x2
(2.97c)

θ = −∂w

∂x
(2.97d)

Direct general solutions of these equations are difficult to achieve. Some solution
techniques are introduced in Chapter 3. These solution methods involve a mass ma-
trix to represent the inertia properties of a beam element. Element mass matrices for
beams are discussed in this section.

2.3.1 Consistent Mass Matrices

The introduction of the inertia term to the integral governing equations (Eq. 2.75) of
the principle of virtual work relation for the eth element leads to

−(δWint + δWext)
e =

∫ b

a

(
δ
∂2w

∂x2

)
E I

∂2w

∂x2
dx

+
∫ b

a
δw ρ(x)

∂2w

∂t2
dx −

∫ b

a
δw pz dx (2.98)

In contrast to static responses, the degrees of freedom for dynamic responses in-
clude not only the nodal deflections and slopes, but also their time derivatives. To
find an approximate solution, we choose to employ trial solutions for the displace-
ments and accelerations. Often, the same trial solution is chosen for both. For beam
elements, the trial solutions are usually cubic polynomials. For sinusoidal vibrations
(displacements), the acceleration also responds sinusoidally and use of the same ap-
proximate solution for displacements and accelerations does not introduce an addi-
tional approximation.

For the displacement and acceleration of the eth element, use the shape functions

w(x) = N(x)ve = Nu(x)Gve (2.99a)

ẅ(x) = N(x)v̈e = Nu(x)Gv̈e (2.99b)

where Nu(x) and G are given by Eqs. (2.67) and (2.69), respectively, and

v̈e = ∂2ve

∂t2

In the expression of Eq. (2.99a) the function Nu depends only on the coordinate x ;
hence the derivatives with respect to time affect only the unknown nodal displace-
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ments. Introduce the trial functions of Eq. (2.99) into the principle of virtual work
relation of Eq. (2.98)

δW e = δveT GT
∫ b

a
N′′T

u (x)E I N′′
u(x) dxG︸ ︷︷ ︸

ke stiffness matrix

ve

+ δveT GT
∫ b

a
NT

u (x) ρ(x) Nu(x) dxG︸ ︷︷ ︸
me mass matrix

v̈e

+ δveT
[
−GT

∫ b

a
NT

u (x) pz(x) dx

]
︸ ︷︷ ︸

pe0 loading vector

(2.100)

where N′′
u = d2 Nu/dx2. The mass matrix is identified as

me =
∫ b

a
ρNTN dx = GT

∫ b

a
NT

u (x) ρ(x) Nu(x) dxG (2.101)

If the same N is substituted into Eq. (2.101) for the mass matrix me as was em-
ployed to develop the stiffness matrix ke, the mass matrix me is said to be consistent.
If Nu of Eq. (2.67) is used, both Nu and N contain up to cubic terms. Substitution of
N of Eq. (2.70) into Eq. (2.101) gives for constant mass density ρ

me = ρ�

420


156 −22� 54 13�

−22� 4�2 −13� −3�2

54 −13� 156 22�

13� −3�2 22� 4�2

 (2.102)

Note that this mass matrix me is symmetric. It often leads to computationally effi-
cient solutions. A “more exact” mass matrix can be obtained by employing a “more
exact” N in Eq. (2.101). This can result in ρ appearing inside the mass matrix in
transcendental terms and the corresponding analysis will be less efficient but more
accurate.

From Eq. (2.100), the element equations, comparable to pe = keve for static
responses, become

Va
Ma

Vb

Mb

 = ρ�

420


156 −22� 54 13�

−22� 4�2 −13� −3�2

54 −13� 156 22�

13� −3�2 22� 4�2




ẅa

θ̈a

ẅb

θ̈b


pe = me v̈e
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+ E I

�3


12 −6� −12 −6�

−6� 4�2 6� 2�2

−12 6� 12 6�

−6� 2�2 6� 4�2




wa

θa
wb

θb

 +


V 0

a
M0

a
V 0

b
M0

b


+ ke ve + pe0 (2.103)

2.3.2 Lumped Mass Matrices

A common approach to model mass is to represent the continuous mass as concen-
trated masses, that is, assume that the distributed mass can be modeled as lumps of
mass at particular locations along an element. This lumped mass modeling provides
an alternative to consistent mass matrix discretization of the mass ρ(x). For structural
elements such as beams, the mass can be lumped by moving the mass surrounding a
node to that node. For example, in the case of the beam element of Fig. 2.14, part of
the distributed mass of the element is lumped at node a and part at node b. If half of
the mass is lumped at each node,

ma = mb = ρ�

2
(2.104)

If these masses are considered to contribute to translational motion, the mass matrix
would appear as

me =


ma

0
mb

0

 = ρ�

2


1

0
1

0

 (2.105)

Terms to take into account the effects of rotational inertia are usually placed in the
two diagonal coefficients of Eq. (2.105), which now contain zeros (Pilkey and Wun-
derlich, 1994). The diagonal character of this matrix can be useful in terms of com-
putational implementation of a solution.

A number of alternatives for the formation of mass matrices have been proposed.
For example, a linear combination of the consistent and lumped mass matrices is
sometimes utilized. This can take the form

m = αmconsistent + βmlumped (2.106)

x

ρ ( x) ma mb

l l

Figure 2.14 Lumped mass assumption.
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where α and β are weighting constants. This combined mass model is referred to as
a nonconsistent or high-order mass matrix.

Several other variations for mass matrices are discussed in the literature (Pilkey
and Wunderlich, 1994). For example, there are schemes for diagonalizing consistent
mass matrices.

2.3.3 Exact Mass and Dynamic Stiffness Matrices

The stiffness matrix is often calculated by substituting the trial solution w = Nve

into the internal virtual work relationship Eq. (2.73)

−δWint =
∫

x

(
δ
∂2w

∂x2

)
E I

∂2w

∂x2
dx (2.107)

giving (Eq. 2.79)

ke =
∫ b

a

∂2NT

∂x2
E I

∂2N
∂x2

dx (2.108)

The accuracy of beam system analysis depends in part on the accuracy of the beam
element stiffness matrix, which depends on the trial function N. In general, the closer
N is to the exact solution for the beam response, the better the stiffness matrix ke. The
familiar stiffness matrix is used to find the static response of a structure. Thus far in
this chapter, the polynomials employed as the shape functions of N in Eq. (2.108) are
functions of the axial coordinate x and do not represent time-dependent responses.
In some cases these polynomials in x have been the exact solution of the governing
differential equations for the static response of a beam and hence they have led to
an exact stiffness matrix ke. In this section it is shown that the effect of dynamic
response can be included in the stiffness matrix and that this matrix can be related to
the mass matrix. As indicated in Chapter 3, the improved accuracy of the dynamic
response of a structure concomitant with the use of more accurate stiffness and mass
matrices is usually obtained at the expense of an increase in computational effort.

For a beam, the governing equations of motion including dynamic motion appear
as

∂w

∂x
= −θ + V

ks G A
(2.109a)

∂θ

∂x
= M

E I
+ MT

E I
(2.109b)

∂V

∂x
= kww + ρ

∂2w

∂t2
− pz(x, t) (2.109c)

∂M

∂x
= V + (kθ − N )θ + ρr2

y
∂2θ

∂t2
− c(x, t) (2.109d)
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where the terms are defined in Example 2.8 and Table 2.2. The differential equations
of Eq. (2.109), including the effects of shear deformation and rotary inertia as well
as bending, are the Timoshenko beam equations. These equations reduce to those
for a Rayleigh beam (bending and rotary inertia) by setting the shear deformation
term 1/ksG A equal to zero. A shear beam models bending with shear deformation
and is obtained by setting the rotary inertia term ρr2

y∂
2θ/∂t2 equal to zero. The

familiar Bernoulli–Euler beam is obtained by setting both the shear deformation and
the rotary inertia terms to zero. For free vibrations, let the motion be harmonic [e.g.,
set w(x, t) = w(x) sin ωt , and let the applied loadings MT , pz , and c be equal to
zero]. The free vibration equations are given in Example 2.8. As indicated earlier
in this chapter, the solution of these governing differential equations, including free
vibration effects, is given in Table 2.2.

Dynamic Stiffness Matrices The differential equations for harmonic motion
of a beam of Example 2.8 can be solved exactly, giving the exact stiffness matrix
provided in Table 2.2. Since this stiffness matrix includes the effects of inertia, it is
often referred to as a dynamic stiffness matrix and is designated as ke

dyn. This exact
stiffness matrix, which is obtained in Table 2.2 by the simple transformation from a
transfer matrix Eq. (2.65), can also be computed by using the exact solution of the
harmonic motion differential equations of Example 2.8 to compose w = Nve and
forming the dynamic stiffness matrix as Eq. (2.108)

ke
dyn =

∫ b

a

∂2NT

∂x2
E I

∂2N
∂x2

dx N = Nexact (2.110)

Exact Mass Matrices A frequency-dependent mass matrix can be formed in a fash-
ion similar to that employed to set up the dynamic stiffness matrix of Eq. (2.110).
Thus, place the trial solution N formed of exact shape functions in the integral ex-
pression for a mass matrix Eq. (2.101):

me =
∫ b

a
ρNTN dx N = Nexact (2.111)

which is an exact mass matrix.

Relationship between Stiffness and Mass Matrices The exact frequency-
dependent mass and dynamic stiffness matrices can be shown to be related (Pilkey
and Wunderlich, 1994). For example, the exact mass matrix of Eq. (2.111) can be
obtained by differentiating the element dynamic stiffness matrix of Eq. (2.110) by
the frequency parameter ω2. That is,

me = −∂ke
dyn

∂ω2
(2.112)
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It can be useful to economize somewhat in the calculation of a frequency-
dependent mass matrix by forming a “quasistatic” mass matrix m̃e, defined as

m̃e =
∫ b

a
ρNT

0 N dx (2.113)

where N = Nexact and N0 contains static shape functions such as the N∗ of Table 2.3.
With this notation, using the static trial function designated as N0, the consistent
mass matrix of Section 2.3.1 is given by

∫ b

a
ρNT

0 N0 dx (2.114)

For computational convenience, as discussed in Chapter 3, it is useful to define a
frequency-dependent stiffness matrix ke(ω) in terms of the dynamic stiffness matrix
ke

dyn(ω) and a frequency-dependent mass matrix me(ω) as

ke
dyn = ke(ω) − ω2me(ω) (2.115)

for the eth element. Symbolic manipulation software can be quite helpful in imple-
menting the mathematical operations necessary to form these frequency-dependent
matrices for beam elements. For computational purposes it is useful to bring the fre-
quencies ω outside of the frequency-dependent matrices. This can be accomplished
by expanding the mass and stiffness matrices in Taylor series in ω2. Thus,

me =
∞∑

n=0

mnω2n m̃e =
∞∑

n=0

m̃nω2n

ke =
∞∑

n=0

knω
2n ke

dyn =
∞∑

n=0

(
kdyn

)
n ω2n (2.116)

where the matrices with subscript n are not functions of the frequency ω.
Typically, for computational purposes only a few terms in these expansions are

needed. It can be shown that the expansion terms are related by

(n + 1)kn+1 = nmn = n(n + 1)m̃n = −n(n + 1)(kdyn)n+1 n ≥ 1 (2.117)

Furthermore,

(kdyn)0 = k0 traditional stiffness matrix for static responses

(kdyn)1 = −m0 traditional consistent mass matrix (2.118)

k1 = 0
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2.4 GEOMETRIC STIFFNESS MATRICES FOR
BEAMS WITH AXIAL LOADING

Axial forces in beams are introduced into an analysis in a fashion similar to the treat-
ment of mass. The governing differential equations of motion of Eq. (2.109), which
are partial differential equations, and the harmonic motion version of the governing
differential equations of Example 2.8, which are ordinary differential equations, in-
clude terms that account for the axial force N . It is essential to distinguish between
the axial force N of Eq. (2.109), which represents the effect of axial forces on bend-
ing motion, and the same axial force N of Example 2.16, where the axial deformation
is of concern. It is the effect of N on bending that is considered in this subsection.
Table 2.2, which models this effect on bending of the axial force, contains the exact
solution of the governing differential equations of Example 2.8.

The principle of virtual work can be used to create a matrix that accounts, approx-
imately, for the bending effects of the axial force N , similar to the consistent mass
matrix for the inclusion of inertia in an analysis. The introduction of axial force N
to the integral form of the governing equations Eq. (2.118) of the principle of virtual
work relation for the eth element gives

−(δWint + δWext)
e =

∫ b

a

(
δ

d2w

dx2

)
E I

d2w

dx2
dx

−
∫ b

a

(
δ

dw

dx

)
N

dw

dx
dx −

∫ b

a
δw pz dx (2.119)

where N is in compression. The second integral on the right-hand side, when N is
factored out and w(x) = N(x)ve = Nu(x)Gve is introduced, leads to the stiffness
matrix

ke
σ =

∫ b

a
N′TN′ dx = GT

∫ b

a
N′T

u N′
u dxG (2.120)

where N′ = dN/dx . This matrix is referred to as the geometric, differential, or
stress stiffness matrix. Matrix ke

σ is used in the study of structural stability, that is, in
the analysis for the buckling load of beams or beam systems. The phenomenon of a
tensile axial force N increasing the bending stiffness is referred to as stress stiffening:
hence the terminology stress stiffness matrix.

Use of the same displacement trial function to form ke
σ that is used in deriving ke

leads to a geometric stiffness matrix that is said to be consistent. Substitution of the

cubic Nu = [
1 x x2 x3

]T
into Eq. (2.120) gives

ke
σ = 1

30�


36 −3� −36 −3�

−3� 4�2 3� −�2

−36 3� 36 3�

−3� −�2 3� 4�2

 (2.121)
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This symmetric matrix is a commonly used approximate geometric stiffness matrix
for beam elements.

There is no requirement that the matrices ke and ke
σ be based on the same dis-

placement functions. Note that only first-order derivatives of N occur in the ke
σ of

Eq. (2.120), whereas second-order derivatives appear in the ke term. Hence a “sim-
pler” displacement function is sometimes employed in calculating ke

σ .
Use of a more accurate N in Eq. (2.120) can give more accurate but computation-

ally less favorable geometric stiffness matrices. An exact geometric stiffness matrix
is obtained by using N = Nexact in Eq. (2.120). The exact geometric stiffness matrix
can also be calculated from the dynamic stiffness matrix using

ke
σ = ∂kdyn

∂N
(2.122)

2.5 THERMOELASTIC ANALYSIS

The solutions presented thus far in this chapter taking into account temperature
changes �T apply when �T �= �T (y, z). As indicated in Section 1.2, the beam
theory here is based on the assumption that the transverse normal strains and stresses
(σy and σz) are small. For large transverse normal stresses and strains, a systematic
solution of a beam with general thermal loading is available (Copper, 1993). This
approach couples a plane strainlike solution to the strength-of-material thermal re-
sponse equations for a beam. It is found that if the quantity of ν(σy + σz) where ν is
Poisson’s ratio, is large, it is important to be careful in using the traditional strength
of materials formulas to account for thermal loading. Rather, it may well be neces-
sary to introduce the coupled approach.

Copper (1993) gives several examples to illustrate that if the change in tempera-
ture varies with the coordinates y and z, the stresses and deflection as calculated by
traditional strength of materials can be quite inaccurate. In the case of a square cross
section with the change in temperature varying cubically with z, the use of strength of
materials formulas tends to underestimate both the stress and the deflection. Another
example from the same reference is that of a free–free hollow tube with a change in
temperature that varies with the radial and axial coordinates. It is shown that the error
in calculating normal stress σx and the shear stress τr x using traditional strength of
materials formulas is ν × 100%. Thus, as ν → 1

2 , the error approaches 50%.
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CHAPTER 3

BEAM SYSTEMS

In Chapter 2, element matrices for beams were developed. In this chapter we study
methods of analyzing complex beams or systems of beams using the element matri-
ces of Chapter 2. The static, dynamic, and unstable responses can be computed. The
responses include deflections, moments, shear forces along the beam system, as well
as natural frequencies and buckling loads.

In practice, most structural analyses are performed using general-purpose analysis
software based on the displacement method. Alternatively, the force method or the
transfer matrix method can be employed. The displacement and force methods lead
to large systems of equations, the number of equations depending on the complexity
of the structure. With the transfer matrix method, the size of the system equations
does not depend on the complexity of the structure. However, the transfer matrix
is restricted to linelike structures, such as a single bay framework. Here the discus-
sion is directed primarily to the displacement method, with a brief description of
the transfer matrix method. See a textbook on structural mechanics for a thorough
presentation of the force and transfer matrix methods.

Most of the treatment in this chapter is limited to structures with concentrated
applied loads. Books on structural mechanics deal with various methods of handling
applied distributed loading.

In addition to the static analysis of beams and frameworks, in this chapter we also
discuss dynamic responses and stability problems. The computation of the eigenval-
ues (i.e., natural frequencies and buckling loads) is described.

112
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 Nodes

Figure 3.1 Spatially discretized framework with beam elements connected at the nodes.

3.1 STRUCTURAL SYSTEMS

3.1.1 Coordinate System and Degrees of Freedom

Beam structures are usually modeled as a finite number of beam elements connected
at joints (nodes). This is a spatially discretized model (Fig. 3.1) where the forces and
displacements at the nodes are the unknowns.

The locations of the nodes are defined in a global coordinate system (X, Y, Z ).
After the unknown forces and displacements at the nodes are computed, the inter-
nal forces [e.g., moments and shear forces in a local coordinate system (x, y, z)]
and displacements between the nodes of the beam elements can be calculated. These
internal forces are then employed in computing the cross-sectional distribution of
stresses. Most of the rest of this book deals with the problem of computing nor-
mal and shear stresses on the beam cross section, along with cross-sectional proper-
ties.

As mentioned previously, the degrees of freedom (DOF) of a node are the inde-
pendent coordinates (i.e., displacements) essential for the complete description of
the motion of the node. For a beam element in bending with motion in a plane, each
node can have three DOF: one transverse displacement, one axial displacement, and
one rotation. In terms of forces, one shear force, one axial force, and one bending
moment correspond to these DOF.

3.1.2 Transformation of Forces and Displacements

For a beam element of a planar framework, the forces and displacements can be
treated in the local x, y, z coordinate system as shown in Fig. 3.2a or in the global
X, Y, Z coordinate system of Fig. 3.2b. In both cases, the motion is in-plane; that is,
the bending deflection is in the xz plane. The local reference frame x, y, z is aligned
in a natural direction with the x axis along the element. The components of the
forces and displacements at the ends of beam element e are shown in both coordinate
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(b) Element force and displacement components in the global X,Y,Z coordinate
system

(a) Element force (including shear force, axial force, and bending moment) and
displacement (including deflection, axial displacement, and rotation about y)
components in the local x, y, z coordinate system; motion in the xz plane
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ee

e

e
FXa
FZa
MYa
FXb
FZb
MYb

uXa

θYa
uXb

uZa
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θYb

e

Figure 3.2 Representations of forces and displacements in the local and global coordinate
systems on the ends of beam element e with in-plane motion. Sign Convention 2.

systems in Fig. 3.2. In the local coordinate system, the forces and displacements
are pe, ve, and in the global system, the forces and displacements are designated
by pe

G, ve
G .

In analyzing structures it is customary to transform the components of force and
displacement vectors for all elements to the same coordinate system, here the global
coordinate system. Thus, these components are transformed from the local to the
global coordinate systems. The equations for the transformation of vector compo-
nents are shown in Fig. 3.3. The equations in this figure are applicable to either node
a or b.

To place the local–global relationships of Fig. 3.3 in matrix notation, define the
transformation matrix Te:



STRUCTURAL SYSTEMS 115

 α

z,w,V (local)

 x, u, N (local)

θ  = θY

M = MY
 X, uX, FX (global)

 Z, uZ, FZ
  (global)

 x

 X

 α

 N

 FX
 FZ

 α

 u = uX cos α −  uZ sin α

w = uX sin α +  uZ cos α

θ = θY

 Local  Global  Local Global

 Displacements

 Forces

 N = FX cos α −  FZ sin α

V = FX sin α +  FZ cos α

M = MY

 uX = u cos α + w sin α

uZ =    u sin α +  w cos α

θY = θ

 FX = N cos α +  V sin α

FZ =   N sin α +  V cos α

MY = M

Figure 3.3 Transformation to and from local and global coordinates of the components of
the force and displacement vectors at a or b. The right-hand-rule vector corresponding to a
is positive along the positive y direction. Angle a is shown positive. It is measured from the
global to the local coordinate systems.

Te =



cos α − sin α 0
... 0 0 0

sin α cos α 0
... 0 0 0

0 0 1
... 0 0 0

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
0 0 0

... cos α − sin α 0

0 0 0
... sin α cos α 0

0 0 0
... 0 0 1



e

=

Taa
... Tab

· · · · · · · · ·
Tba

... Tbb


e

(3.1)
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From the definitions of ve, ve
G, pe, pe

G of Fig. 3.2 the transformations can be written
as follows:

Displacement variables (displacement components on the ends of a bar element):

local ← global global ← local

ve = Teve
G ve

G = TeTve (3.2a)

Force variables (force components on the ends of a bar element):

local ← global global ← local

pe = Tepe
G pe

G = TeTpe (3.2b)

The superscript T indicates the transpose of a matrix.

The transformation matrix Te was established above for a bar element displacing
in the x, z plane. The matrix Te varies for other planes or spaces as well as for
other members (e.g., truss members). Figure 3.4 shows the local and global force
and displacement components for bars undergoing out-of-plane motion (xy plane).
The transformation matrix Te for out-of-plane motion is also shown.

Note that Te
j j , j = a or b, of Eq. (3.1) satisfies

TeT
j j Te

j j = I also TeTTe = I (3.3)

where I is the unit diagonal matrix. Hence, the transformation is orthogonal. Since
(Te)−1Te = I, it follows that

(Te)−1 = TeT (3.4)

It is important to be able to transform the stiffness matrix from one coordinate sys-
tem to another. Let ke of pe = keve+pe0 be the stiffness matrix for the displacements
and forces referred to the local coordinate system. Similarly, ke

G of pe
G = ke

Gve
G +pe0

G
is the stiffness matrix for which the displacement and force components are referred
to the global coordinate system. To find a relationship between ke

G and ke, form

TeTpe = TeTkeve + TeTpe0 = TeTkeTeve
G + TeTpe0 = ke

Gve
G + pe0

G (3.5)

Thus the stiffness matrix has transformed according to

ke
G = TeTkeTe (3.6a)

and the applied loading vector as

pe0
G = TeTpe0 (3.6b)
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Figure 3.4 Forces, displacements, and transformation for out-of-plane motion. Sign Con-
vention 2. The right-hand rule vector corresponding to α is positive along the positive z direc-
tion. Measure a from the global to local coordinate systems.

A product of the form TeTkeTeis referred to as a congruent transformation. Under a
congruent transformation ke

G will be a symmetric matrix if ke is symmetric (which
it is).

3.2 DISPLACEMENT METHOD OF ANALYSIS

The displacement method can be formulated directly from the conditions of equilib-
rium, with the imposition of compatibility of displacements at the nodes, in which
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case it is called the direct stiffness method, or it can be considered to be a variation-
ally based approach since it follows from the principle of virtual work.

3.2.1 Direct Stiffness Method

For the displacement method the equations modeling the response of the structural
system represent the conditions of equilibrium for the nodal forces. The nodal equi-
librium conditions for the forces of a simple framework are shown in Fig 3.5a. The
displacements (at the nodes) need to be compatible. Nodal displacement compatibil-
ity conditions are shown in Fig. 3.5a.

The equations of equilibrium and compatibility of Fig. 3.5 deserve explanation.
Heretofore, the ends of a beam element have been labeled with the letters a and b.
In this chapter, where several beam elements are assembled into a structure, the ends
of each element will be labeled with numbers. A framework formed of two beam
elements is shown in Fig. 3.5. The two elements are identified with numbers enclosed
by squares. There are three nodes, the numbers for which are enclosed by circles.
Superscripts designate the elements. Subscripts designate nodes or ends of elements.
The subscript G means that the components are referred to the global coordinate
system.

Thus,

(pe
j )G, e = 1, 2; j = 1, 2, 3 are the force components for element e at node j . The

components are expressed in the global coordinate system. In the notation of
Fig. 3.2b for in-plane (X, Z ) motion

(pe
j )G =

FX

FZ

MY

e

j

(3.7)

(ve
j )G, e = 1, 2; j = 1, 2, 3 are the displacements for element e at node j .

These displacements are the components along the global coordinates. From
Fig. 3.2b

(ve
j )G =

uX

uZ

θY

e

j

(3.8)

P
∗
j , j = 1, 2, 3 are the globally aligned concentrated system forces applied at node

j . Included in this vector are the reactions.

V j , j = 1, 2, 3 are the system displacements, along the global coordinates, of node
j .

The notation needed to represent the forces and displacements in the two (local
and global) coordinate systems may appear to be rather intimidating. Initially, the
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Equilibrium Conditions

1  *

Compatibility of the
Displacements on the Bar
Ends and at Nodes

Node 1: (v1)G = V1
1

Node 2: (v2 )G = (v2)G = V2
21

Node 3: (v3 )G = V3
2

(a) Conditions for the three nodes of a two-element framework

Global Coordinate System

 X

 Z

(b) Forces at node 2

 2

 1

 3

 1

 2

 2

 1

 3

 1

 2

 2

P2
*

(p2)G
2

(p2)G
1

Conditions of Equilibrium

(p2)G + (p2)G = P2
1 2 *

Node 1: (p1)G = P1

Node 3: (p3)G = P3
2  *

Node 2: (p2)G + (p2)G =

P

2
2  *1

Figure 3.5 Conditions of equilibrium for forces and displacement compatibility require-
ments at the nodes.

displacement and force components for element e were represented in the local co-
ordinate systems as ve and pe. Then these components were transformed to the global
coordinate system as (ve)G and (pe)G . Finally, since the equations for the response
of the whole structure are to be expressed in terms of the displacements and forces
at the nodes, another notation system for the nodal variables needs to be adopted.
As indicated above, V j represents the displacements at node j of the system. The
components of these unknown nodal displacements are designated as UX ,UZ , and
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�Y , or

V j =
UX

UZ

�Y


j

(3.9)

Prescribed displacements are defined as V j . The global aligned concentrated system
reactions or forces applied at node j are P

∗
j . The applied loading components of P

∗
j

are designated as P X , P Z , and MY , so that

P
∗
j =

P X

P Z

MY


j

(3.10)

We choose to represent the unknown reactions in P
∗
j as

P
∗
j =

RX

RZ

MR


j

(3.11)

The equations for equilibrium and compatibility conditions at the nodes are shown
in Fig. 3.5. The equilibrium conditions are simply the familiar conditions of statics
applied to each node. For example, for node 2 the forces at the ends of elements 1 and
2 are shown in Fig. 3.5b as (p1

2)G and (p2
2)G , while the applied external loads are des-

ignated as P
∗
2. The equilibrium conditions at node 2 are then (p1

2)G + (p2
2)G = P

∗
2.

The compatibility conditions at a particular node prescribe that the local displace-
ments in the global coordinate system are equal to the global displacements. Thus,
in the case of node 2, where elements 1 and 2 are attached to each other, the element
end displacements (v1

2)G and (v2
2)G are the same as the displacement V2 of the node.

That is, (v1
2)G = (v2

2)G = V2. In most structural analyses, all local force and dis-
placement components are referred to the global coordinate system and hence it is
convenient to drop the use of the subscript G.

We are now in the position to establish equations of equilibrium for the entire
structural system. In doing so, the compatibility conditions for the nodes are to be
imposed. Let us continue to consider the two-element, three-node plane frame of
Fig. 3.5. For elements 1 and 2, which span from nodes 1 to 2 and 2 to 3, respectively,
the stiffness equations of Example 2.10, Eqs. (4) and (6), appear as[

p1
1

p1
2

]
=

[
k1

11 k1
12

k1
21 k1

22

][
v1

1

v1
2

]
+

[
p10

1

p10
2

]
(3.12)

p1 = k1 v1 + p10
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p2

2

p2
3

]
=

[
k2

22 k2
23

k2
32 k2

33

][
v2

2

v2
3

]
+

[
p20

2

p20
3

]
(3.13)

p2 = k2 v2 + p20

where, for example,

pe
2 = (pe

2)G =
FX

FZ

MY

e

2

ve
2 = (ve

2)G =
uX

uZ

θY

e

2

(3.14)

Recall that the subscript G has been intentionally dropped in expressing Eqs. (3.12)
and (3.13).

Introduce the compatibility equations of Fig. 3.5a, that is, v1
1 = V1, v1

2 = v2
2 =

V2, and v2
3 = V3, into the stiffness relations of Eqs. (3.12) and (3.13):

[
p1

1

p1
2

]
=

[
k1

11 k1
12

k1
21 k1

22

][
V1

V2

]
+

[
p10

1

p10
2

]
[

p2
2

p2
3

]
=

[
k2

22 k2
23

k2
32 k2

33

][
V2

V3

]
+

[
p20

2

p20
3

] (3.15)

Substitute these relationships into the conditions of nodal equilibrium of Fig. 3.5a;
that is,

p1
1 = P

∗
1

p1
2 + p2

2 = P
∗
2 (3.16)

p2
3 = P

∗
3

Thus, from Eqs. (3.15) and (3.16),

p1
1 = k1

11V1 + k1
12V2 + p10

1 = P
∗
1

p1
2 + p2

2 = k1
21V1 + k1

22V2 + p10
2 + k2

22V2 + k2
23V3 + p20

2 = P
∗
2

= k1
21V1 + (k1

22 + k2
22)V2 + k2

23V3 + p10
2 + p20

2 = P
∗
2

p2
3 = k2

32V2 + k2
33V3 + p20

3 = P
∗
3

(3.17)

These system equations in matrix form appear as
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k1

11 k1
12

k1
21 k1

22 + k2
22 k2

23

k2
32 k2

33




V1

V2

V3

 =


P

∗
1

P
∗
2

P
∗
3

 −


p10

1

p10
2 + p20

2

p20
3

 =


P1

P2

P3


K V = P

∗ − P
◦ = P

(3.18)

The construction of equilibrium conditions at each node has resulted in this sys-
tem of equations that represents the global statement of equilibrium

KV = P
∗ − P

◦
or KV = P (3.19)

where

V is the vector of unknown nodal displacements (including nodal translations and
rotations).

P
∗

is the vector of concentrated reactions or loads applied at the nodes. Whereas
the applied loads are known quantities, the reactions are usually unknown.

P
◦
is the vector of nodal quantities accounting for loading applied between the

nodes.

P is equal to P
∗ − P

◦
.

K is the global or system stiffness matrix. This matrix is singular, a characteristic
that is removed when the boundary conditions are introduced.

The system stiffness equations of Eq. (3.19) can be solved for the nodal displace-
ments. Further processing of the solution leads to other characteristics of the response
of the structure, such as reactions and stresses.

From the form of the stiffness matrix components of K of Eq. (3.18) we can
observe how the global system of equations is “assembled”:

K =
K11 K12 K13

K21 K22 K23
K31 K32 K33

 =
k1

11 k1
12

k1
21 k1

22 + k2
22 k2

23
k2

32 k2
33



=


k1

k2

 (3.20)

In the assembled equations, each unknown displacement component occurs only
once in the displacement vector V. It is apparent from Eq. (3.20) that the global stiff-
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ness matrix is assembled by adding appropriate stiffness coefficients which represent
elements that are connected to each other. In Eq. (3.20), this addition is achieved by
summing, K jk = k1

jk + k2
jk (e.g., K11 = k1

11 and K22 = k1
22 + k2

22). This special
summation process is possible only because the element stiffness matrices were fit
into a unique global node numbering system. That is, the assembly process is one
of the addition of elements of the local stiffness matrices that have the same global
address. Other techniques that do not involve the explicit renumbering of element
stiffness matrices for assembling K are available in the literature.

Example 3.1 Alternative Assembly Notation. As is to be expected, it is not neces-
sary to represent the stiffness matrices in partitioned form; for example

km =
[

km
ii km

i j

km
ji km

j j

]
(1)

to use the superposition procedure above for assembling the global stiffness matrix.
If the local stiffness matrices of the framework of Fig. 3.5 are expressed as [Eq. (5)
of Example 2.10]

k1 =


k1

11 k1
12 k1

13 k1
14

k1
21 k1

22 k1
23 k1

24

k1
31 k1

32 k1
33 k1

34

k1
41 k1

42 k1
43 k1

44

 k2 =


k2

33 k2
34 k2

35 k2
36

k2
43 k2

44 k2
45 k2

46

k2
53 k2

54 k2
55 k2

56

k2
63 k2

64 k2
65 k2

66

 (2)

where the displacements and forces at the ends of elements 1 and 2 are shown in
Fig. 3.6. The assembly procedure of adding stiffness coefficients of common global

 1

 2

5

6

1

2

44

33

Figure 3.6 Notation for the stiffness matrices of Eq. (2) of Example 3.1.
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addresses leads to the global stiffness matrix

K =



k1
11 k1

12 k1
13 k1

14 0 0

k1
21 k1

22 k1
23 k1

24 0 0

k1
31 k1

32 k1
33 + k2

33 k1
34 + k2

34 k2
35 k2

36

k1
41 k1

42 k1
43 + k2

43 k1
44 + k2

44 k2
45 k2

46

0 0 k2
53 k2

54 k2
55 k2

56

0 0 k2
63 k2

64 k2
65 k2

66


(3)

This is, of course, the global stiffness matrix given in Eq. (3.18).

Example 3.2 Framework. Find the forces and displacements along the frame of
Fig. 3.7.

 1

 2

601

2
3

12 m

12 m

z1, w1

x1, u1

x2, u2

z2, w2

P2 = PZ2
X, UX

Z, UZ

ΘY

E = 210  GN/m2

Element 1: A = 0.04 m2 I = 0.000 133 m4

Global coordinates and
nodal displacements:

P2 = 1000 kN

Element 2: A = 0.09 m2 I = 0.000 675 m4

0.3 m
0.3 m

0.2 m
0.2 m

Figure 3.7 Framework with nodal loading.
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SOLUTION. Local Element Stiffness Matrices. The element stiffness matrix for
a bar element undergoing axial extension and bending is given by Eq. (2) of Ex-
ample 2.16.

ke =



E A/� 0 0 −E A/� 0 0
0 12E I/�3 −6E I/�2 0 −12E I/�3 −6E I/�2

0 −6E I/�2 4E I/� 0 6E I/�2 2E I/�
−E A/� 0 0 E A/� 0 0

0 −12E I/�3 6E I/�2 0 12E I/�3 6E I/�2

0 −6E I/�2 2E I/� 0 6E I/�2 4E I/�


(1)

This local stiffness matrix for the eth element belongs to the relationship

N e
a

V e
a

Me
a

N e
b

V e
b

Me
b


= ke



ue
a

we
a

θe
a

ue
b

we
b

θe
b


pe = ke ve

(2)

Element 1: The length of element one is 13.85 m. In the local coordinate system,
(1) with this length is given by

k1 = 106


606.218 0 0 −606.218 0 0

0 0.126 −0.875 0 −0.126 −0.875
0 −0.875 8.083 0 0.875 4.041

−606.218 0 0 606.218 0 0
0 −0.126 0.875 0 0.126 0.875
0 −0.875 4.041 0 0.875 8.083


(3)

Element 2: For element 2, � = 12 m and the stiffness matrix in local coordinates is
given by

k2 = 106


1575 0 0 −1575 0 0

0 0.984 − 5.906 0 −0.984 − 5.906
0 −5.906 47.25 0 5.906 23.625

−1575 0 0 1575 0 0
0 −0.984 5.906 0 0.984 5.906
0 −5.906 23.625 0 5.906 47.25

 (4)
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Transformation of Element Variables from Local to Global Coordinate
Systems The stiffness matrix ke needs to be transformed from the local to the
global coordinate systems using (Eq. 3.6a) ke

G = TeTkeTe, with Te given by
Eq. (3.1).

Element 1: Equation (3.1), with α = 60◦, gives

Te =


0.5000 −0.8660 0.0000 0.0000 0.0000 0.0000
0.8660 0.5000 0.0000 0.0000 0.0000 0.0000
0.0000 0.0000 1.0000 0.0000 0.0000 0.0000
0.0000 0.0000 0.0000 0.5000 −0.8660 0.0000
0.0000 0.0000 0.0000 0.8660 0.5000 0.0000
0.0000 0.0000 0.0000 0.0000 0.0000 1.0000

 (5)

Then, the element stiffness matrix ke
G referred to the global coordinate system be-

comes

k1
G = T1Tk1T1

= 106


151.649 −262.445 −0.758 −151.649 262.445 −0.758

−262.445 454.695 −0.438 262.445 −454.695 −0.438
−0.758 −0.438 8.083 0.758 0.438 4.041

−151.649 262.445 0.758 151.649 −262.445 0.758
262.445 −454.695 0.438 −262.445 454.695 0.438
−0.758 −0.438 4.041 0.758 0.438 8.083


=

[
k1

11G k1
12G

k1
21G k1

22G

]
(6)

where k1
jkG are 3 × 3 submatrices.

Element 2: The local and global coordinate systems coincide for element 2. The
angle α is equal to zero and k2

G = k2 of (4). In partitioned form,

k2
G =

[
k2

11G k2
12G

k2
21G k2

22G

]

Assembly of the System Equations The system equations KV = P for the
frame of Fig. 3.7 are assembled as explained in Section 3.2.1. The nodal displace-
ments V are defined by Eq. (3.9):

V =
V1

V2
V3

 V1 =
UX1

UZ1
�Y 1

 V2 =
UX2

UZ2
�Y 2

 V3 =
UX3

UZ3
�Y 3

 (7)
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where UX j,UZ j,�Y j, j = 1, 2, 3 are the nodal displacement components. Express
Eq. (3.18) as

k1
G

k2
G




V1

V2

V3

 =


P

∗
1

P
∗
2

P
∗
3

 −


p10

1G

p10
2G + p20

2G

p20
3G

 =


P1

P2

P3


K V = P

∗ − P
0 = P

(8)

or 
k1

11G k1
12G

k1
21G k1

22G + k2
22G k2

23G

k2
32G k2

33G




V1

V2

V3

 =


P1

P2

P3


where the subscript G has been included to emphasize that all the variables are re-
ferred to the global coordinate system. Since there are no distributed loads between

the nodes, P
0 = 0 and P = P

∗
.

In their present form, the equations of (8) apply to the two-element framework of
Fig. 3.7. The fixed boundaries at nodes 1 and 3 have not yet been introduced to the
solution. The global stiffness matrix K of (8) is a 9 × 9 matrix, which is singular
before the boundary conditions are taken into account. If the boundary conditions
are applied to (8), the resulting reduced stiffness matrix will be nonsingular and (8)
will be reduced to a set of equations that can be solved for the nodal displacements.

The procedure described in this example for assembling and storing the global
stiffness matrix, applying the boundary conditions, and solving the resulting system
of equations is appropriate for a structural system with a limited number of elements,
but is thought to be somewhat cumbersome for a large structural system. There is a
sizable literature covering the problem of efficiently implementing this process of
developing the system equations.

Nodes 1 and 3 are fixed so that the boundary conditions are the constraints on the
displacements

V1 =
UX1

UZ1
�Y 1

 = 0 and V3 =
UX3

UZ3
�Y 3

 = 0 (9)

Then, in the vector V of (8), the nodal displacements V1 and V3 are set equal to
zero. The unknown nodal displacements UX2,UZ2, and �Y 2 occur at node 2, and
the vector V2 is equal to

V2 = [UX2 UZ2 �Y 2]T (10)
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Then the complete nodal displacement vector is

V = [V1 V2 V3]T = [0 0 0 UX2 UZ2 �Y 2 0 0 0]T (11)

For each displacement component that is zero at nodes 1 and 3, there will be a

corresponding reaction, which is unknown. In the vector P = P
∗ = [

P1 P2 P3
]T

of (8), the reactions correspond to P1 and P3. Hence, we will replace the nodal
force vectors P1and P3 by the unknown reactions. The load vector P2 is equal P

∗
2

of Eq. (3.18). Recall that the distributed load vector P
◦

is ignored, as there are no
distributed loads applied between the nodes of the framework of Fig. 3.7. We find
that

P2 =
P X2

P Z2

MY 2

 = 103

 0.0
1000.0

0.0

 (12)

where the forces are in newtons and the moments in newton-meters. Then the com-
plete loading vector P will appear as

P = P
∗ = [

P1 P2 P3
]T

=
[

RX1 RZ1 MR1 0.0 (1000)103 0.0 RX3 RZ3 MR3

]T
(13)

Now introduce the boundary conditions to (8). The displacement boundary con-
ditions V1 = 0 and V3 = 0 lead to the cancellation of the columns in K corre-
sponding to V1 and V3. For the framework of Fig. 3.7, this means cancel columns
1, 2, 3 and 7, 8, 9 of K. Also, in K temporarily ignore the rows corresponding to
P1 = P

∗
1 = [RX1 RZ1 MR1]T and P3 = P

∗
3 = [RX3 RZ3 MR3]T. Thus, ig-

nore rows 1, 2, 3 and 7, 8, 9. These manipulations lead to a square matrix that can be
solved for the unknown displacements V2:[

k1
22G + k2

22G

]
V2 = P2 (14)

where the displacements at node 2 are

V2 =
UX2

UZ2
�Y 2

 (15)

and the loading vector P2 is

P2 = 103

 0.0
1000.0

0.0

 (16)
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Thus, (14) appears as

106

 1726.649 −262.445 0.758
−262.445 455.679 −5.469

0.758 −5.469 55.333

UX2
UZ2
�Y 2

 = 103

 0.0
1000.0

0.0

 (17)

K̃ Ṽ = P̃

where K̃, Ṽ, and P̃ are reduced matrices.
This is a set of simultaneous linear algebraic equations for UX2, UZ2, and �Y 2,

the nodal displacements. Symbolically, Ṽ = K̃−1P̃. We find that

V2 =
UX2

UZ2
�Y 2

 = 10−4

 3.659
24.081
2.33

 (18)

where the two translations are in meters and the rotation in radians.

Postprocessing to Find Element Forces and Displacements The reac-
tions at nodes 1 and 3 (the fixed ends of the framework) are obtained from (8), where
the entries P1 and P3 are the unknown reactions corresponding to the constraints on
the boundaries (i.e., V1 = 0 and V3 = 0). Thus, in (8) we will use

V =
V1

V2
V3

 (19)

where

V1 =
0

0
0

 V3 =
0

0
0

 V2 = 10−4

 3.659
24.081
2.33

 (20)

and

P =
P1

P2

P3

 (21)

where

P1 =
RX1

RZ1
MR1

 P2 = 103

 0.0
1000.0

0.0

 P3 =
RX3

RZ3
MR3

 (22)
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From (8), the reactions are found to be

P1 =
RX

RZ

MR


1

= 105

 5.763
−9.99

0.023


and

P3 =
RX

RZ

MR


3

= 105

−5.763
−9.944 × 10−3

−0.087

 (23)

The displacements in the local coordinates for element 1 are calculated using

v1 = T1v1
G = T1

[
(v1

1)G

(v1
2)G

]
(24)

where (Fig. 3.5) (v1
1)G = V1 = 0 and (v1

2)G = V2. Then using the notation of
Fig. 3.2,

v1 =


u1
w1
θ1
u2
w2
θ2

 = T1v1
G = T1

[
(v1

1)G

(v1
2)G

]
= T1


uX1
wZ1
θY 1
uX2
wZ2
θY 2

 = T1 × 10−4


0
0
0
3.659

24.081
2.33



= 10−4


0
0
0

−19.025
15.209

2.33

 (25)

The forces in the local coordinate system for element 1 can be computed using
p1 = k1v1, where k1 is taken from (3) and v1 from (25). These forces will be ex-
pressed with Sign Convention 2. We find that

p1 = k1v1 = 104


115.332

−0.04
0.227

−115.332
0.04

0.321

 (26)

Alternatively, these forces can be found by using

p1 = T1p1
G with p1

G = k1
Gv1

G (27)
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M [kNm]

1

2 3

Reactions [kN] [kNm] V [kN]

1

2
3

w [mm]

1

2 3

N [kN]

2 3

576.3

-999

2.3

-3.21

-8.7
-576.3

-0.999

-0.400

0.994

0.366
2.41

576.3
+

+
1153

0.994

z2

x2

8.718

2.27

z1

x1

-0.400

2.44

0.000 233

θ [rad]

1

Figure 3.8 Displacements and forces for the framework of Fig. 3.6. Sign Convention 1.

For element 2, the displacements and forces are the same in the global and local
coordinate systems; that is, v2 = v2

G and p2 = p2
G . The reactions at nodes 1 and 3

are equal to the forces and moments at the appropriate ends of elements 1 and 2.
Figure 3.8 shows the distribution of forces and displacements for this framework.

The forces are displayed in Sign Convention 1. These results correspond to the values
that would be found in strength of materials or elasticity textbooks.

At this stage of an analysis it would be wise to verify that the reactions are in
equilibrium with the applied loads. Also, are the forces at each node in equilibrium
and are the conditions of equilibrium and compatibility satisfied for each element?

Example 3.3 Beam on Elastic Foundation. Determine the deflection, shear
forces, and bending moments along the beam on elastic foundation of Fig. 3.9.
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3.0 m 11.0 m 5.0 m 1.0 m

20 m

P1 = 4.0 MN

P2 = 5.5 MN

P3 = 2.5 MN

E = 200 GN/m2, I = 0.001 m4, kw = 30 MN/m2

Figure 3.9 Beam on elastic foundation.

SOLUTION. In using the displacement method, the exact stiffness matrix of
Table 2.2 or the approximate stiffness matrix of Eq. (15) of Example 2.18 can
be employed. The exact stiffness matrix for a Bernoulli–Euler beam on a Winkler
foundation is taken from Table 2.2 using λ = kw/E I, η = 0, ζ = 0, ξ = 0. This
leads to

ke
w =


k11 k12 k13 k14
k21 k22 k23 k24
k31 k32 k33 k34
k41 k42 k43 k44


e

(1)

where

� = e2
3 − e2e4

k11 = (e2e1 + λe3e4)E I

�
q2 = 1

2

√
λ

k12 = k21 = (e3e1 − e2
2)E I

�
e0 = −λe4

k13 = k31 = −e2 E I

�
e1 = AB

k14 = k41 = −e3 E I

�
e2 = 1

2q
(AD + BC)

k22 = (−e1e4 + e2e3)E I

�
e3 = 1

2q2
C D

k23 = k32 = −k14 e4 = 1

4q3
(AD − BC)

(2)
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k24 = k42 = e4 E I

�
e5 = 1 − e1

λ

k33 = k11 e6 = � − e2

λ

k34 = k43 = (e1e3 + λe2
4)E I

�

k44 = k22

A = cosh q� B = cos q�

C = sinh q� D = sin q�

Equations (1) and (2) define the exact stiffness matrix for a beam element on an
elastic foundation. The approximate stiffness matrix based on a third-degree polyno-
mial [Eq. (15) of Example 2.18] is

ke
w = kw�

420


156 −22� 54 13�

− 22� 4�2 − 13� − 3�2

54 −13� 156 22�

13� − 3�2 22� 4�2

 (3)

The global stiffness matrix can be assembled and the stiffness equations

KV = P
∗ − P

◦
(4)

formed. For the displacement method, the displacement boundary conditions are ap-
plied to (4). However, for a beam resting on an elastic foundation, there are no pre-
scribed displacement conditions on the ends of the beam system. Hence, (4) is solved
without reduction. Due to the support provided by the elastic foundation, there is no
rigid-body motion and the stiffness matrix K is not singular. At each node there will
be two unknown displacements, the deflection w and the slope θ .

With the displacement method the vector V is assembled for a straight beam such
that the deflection w and slope θ = −w′ are continuous at a node for each element
connected at the node. In contrast, however, the displacement method of analysis
does not assure that the moment M and shear force V are continuous at a node.
Indeed, the displacement method will, in general, lead to M and V that are not con-
tinuous across a node, even though for the actual beam M and V may be continuous.

The exact deflection w corresponding to Table 2.2 with the definitions of (2) is

w(x) = A0eλ∗x cos λ∗x + A1eλ∗x sin λ∗x + A2e−λ∗x cos λ∗x + A3e−λ∗x sin λ∗x

(5)

where Ai , i = 0, 1, 2, 3, are constants and λ∗ = 4
√

kw/4E I . The deflection w corre-
sponding to the approximate solution given by ke

w of (3) is the cubic polynomial

w(x) = C0 + C1x + C2x2 + C3x3 (6)
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where Ci , i = 0, 1, 2, 3, are constants. Both of these representations of w(x) are con-
tinuous. From the relationship θ(x) = −w′(x), (6) gives the approximate solution
for the slope

θ(x) = −C1 − 2C2x − 3C3x2 (7)

whereas the exact solution θ(x) = −w′(x), with w(x) taken from (5), is of a form
similar to (5). From (6) and M(x) = −E Iw′′, we find the approximate expression
for the bending moment:

M(x) = −2E I C2 − 6E I C3x (8)

which is linear and obviously varies from the exact solution M(x) = −E Iw′′, which
appears similar to (5). A third derivative of (6) leads to the shear force [i.e., V =

P1

P2

P3

1      2        3                                 4                                 5             6              7     8

1      2        3                4                5              6               7         8         9 10  11

1  2  3 4  5  6     7     8    9 10  11   12   13  14    15   16   17   18 19    20   22
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21 Elements
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44 Unknowns
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10 Elements
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22 Unknowns

Mesh C

Mesh B

Mesh A

Figure 3.10 Three meshes that become more refined with A, B, and C.
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−E Iw′′′(x)]. This approximate V is constant,

V (x) = −6E I C3 (9)

Clearly this is different from the exact solution for V , which with V = −E Iw′′′(x) is
similar to (5). These results indicate that it may be problematic if forces (or stresses)
are computed using the derivatives of the assumed approximate displacement of (6).

We compute the solution using the displacement method with the stiffness matrix
of (3) for the three mesh refinements shown in Fig. 3.10. In particular, we study the
response at the point of application of the force P3. The moment M at the load P3
can be computed using pe = keve or M = −E Iw′′. Similarly, the shear force can
be calculated using pe = keve or V = −E Iw′′′. From the results of Fig. 3.11, it
is apparent that the accuracy improves as the number of elements increases. Note
that the two different calculation techniques give different values for the moment
and shear forces. The exact values can be obtained by analyzing the beam with the
displacement method using the exact stiffness matrix of (1) and (2). An even simpler
analysis would be to superimpose three solutions for a beam of length L on an infinite
foundation with a single concentrated load. This solution for a single load is available
in formula books (e.g., Pilkey, 1994).

Bending Moment Distributions The bending moment distributions for mesh
refinements A, B, and C, as well as for the exact solution, are shown in Fig. 3.12. The
moments for the approximate solution are from pe = keve. This expression provides
the moments at the nodes only. We have chosen to connect the values of the moments
at the nodes with straight lines.

Figure 3.13 shows the solution for moments for the same three mesh refinements,
but M = −E Iw′′ is employed to calculate the moment distributions. As indicated
above, the second derivatives of the assumed w(x) leads to a linear expression, for
the moment distribution. Jumps in the values of the moments at the nodes can occur.
The approximation for Fig. 3.13, involving derivatives of the deflection, is not as
good as the approximate moments of Fig. 3.12.

Shear Force Distributions Figures 3.14 and 3.15 show shear force distribu-
tions, plotted similar to the moment distributions of Figs. 3.12 and 3.13. Consider
the shear forces distributions determined using V = −E Iw′′′ shown in Fig. 3.15. As
indicated in (9), the third derivative of the deflection assumption (cubic polynomial)
is constant. This method leads to a piecewise constant distribution of shear force be-
tween the nodes. Jumps in shear force can occur at the element boundaries. The use
of derivatives of the shape function to compute the shear force results in a poorer
approximation than that shown in Fig. 3.14.

3.2.2 Characteristics of the Displacement Method

Introduction of Boundary Conditions Displacement boundary conditions are
imposed on the system stiffness equations when using the displacement method. This
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Figure 3.12 Moment distributions for the three mesh refinements A, B, and C, using nodal
forces pe = keve. The nodal values are arbitrarily connected with straight lines. The exact
moment distribution is also shown.
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Figure 3.16 Framework with global nodal displacements UX , UZ , �Y .

was illustrated in Example 3.2, Fig. 3.7, where all of the displacements at the fixed
ends of nodes 1 and 3 were set equal to zero.

Consider the framework of Fig. 3.16, where the node 1 end is free to rotate, but is
constrained against translation in the X and Z directions. The node 3 end can rotate
about Y as well as translate in the X direction. However, it is restrained against
translation in the Z direction. The displacement boundary conditions are

UX1 = 0, UZ1 = 0, UZ3 = 0 (3.21)

Let the unknown reaction forces be RX1, RZ1, and RZ3. The system stiffness equa-
tions KV = P are given by Eq. (3.18) with

V =
V1

V2
V3

 =



UX1
UZ1
�Y 1
UX2
UZ2
�Y 2
UX3
UZ3
�Y 3


=



0
0

�Y 1
UX2
UZ2
�Y 2
UX3

0
�Y 3


P =

P1

P2

P3

 =



RX1
RZ1

MY 1

P X2

P Z2

MY 2

P X3
RZ3

MY 3


(3.22)

where MY 1, P X2, P Z2, MY 2, P X3, and MY 3 are loads applied at the nodes. Note
that the components in P include the forces applied at the nodes and the reactions
generated at nodes due to constraints on certain displacements imposed at some of
these nodes. The zero components in the displacement vector V of Eq. (3.22) essen-
tially cancel columns 1, 2, and 8 of K of Eq. (3.18). To establish a square matrix that



140 BEAM SYSTEMS

can be solved for the unknown displacements, we will temporarily ignore the rows in
Eq. (3.18) corresponding to the three reactions RX1, RZ1, and RZ3. Equation (3.18)
now appears as

k1
33 k1

34 k1
35 k1

36 0 0

k1
43 k1

44 + k2
44 k1

45 + k2
45 k1

46 + k2
46 k2

47 k2
49

k1
53 k1

54 + k2
54 k1

55 + k2
55 k1

56 + k2
56 k2

57 k2
59

k1
63 k1

64 + k2
64 k1

65 + k2
65 k1

66 + k2
66 k2

67 k2
69

0 k2
74 k2

75 k2
76 k2

77 k2
79

0 k2
94 k2

95 k2
96 k2

97 k2
99





�Y 1

UX2

UZ2

�Y 2

UX3

�Y 3


=



MY 1

P X2

P Z2

MY 2

P X3

MY 3


K̃ Ṽ = P̃

(3.23)

where K̃, Ṽ, and P̃ are the reduced matrices. Thus, in this example, the displacement
boundary conditions, along with discarding the rows corresponding to the reactions,
have reduced the 9 × 9 singular stiffness matrix to a 6 × 6 nonsingular matrix. Equa-
tion (3.23) can be solved for the displacements

Ṽ = [�Y 1 UX2 UZ2 �Y 2 UX3 �Y 3]T (3.24)

Once the displacements have been calculated, they can be employed to find the
reactions RX1, RZ1, and RZ3 using the three rows (first, second, and eighth) that
were ignored.


k1

13 k1
14 k1

15 k1
16 0 0

k1
23 k1

24 k1
25 k1

26 0 0

0 k2
84 k2

85 k2
86 k2

87 k2
89





�Y 1

UX2

UZ2

�Y 2

UX3

�Y 3


=


RX1

RZ1

RZ3

 (3.25)

Properties of the System Stiffness Matrix The two-element, three-node
framework of this chapter can be used to illustrate that the system stiffness matrix K
is singular prior to the introduction of the boundary conditions. The system stiffness
equations of Eqs. (3.18) and (3.20),K11 K12 K13

K21 K22 K23
K31 K32 K33

 V1
V2
V3

 =
P1

P2

P3


K V = P

(3.26)
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correspond to the structure of Fig. 3.5. Since displacement constraints have not been
introduced, the structure can undergo arbitrary rigid-body motion as well as relative
nodal motions which correspond to elastic displacements. For example, rigid-body
motion can cause nodal displacement components in V1 to have arbitrary values,
while the displacement components in V2 can depend on the relative motions of
nodes 1 and 3. From Cramer’s rule for the solution of a system of linear equations,
it follows that if the solutions V1, V2, and V3 are not unique, the determinant of
matrix K must be zero. If | K | = 0, then K is singular. Unique solutions V1, V2,
and V3 exist only after proper displacement constraints such as those of Fig. 3.16
are imposed and rigid-body motion is prevented. Then K̃, the reduced matrix, is not
singular.

As with element stiffness matrices, system stiffness matrices are symmetric. In-
troduction of proper boundary constraints eliminates rigid-body motion and results
in a positive-definite stiffness matrix. The symmetric and positive definite conditions
imply that the matrix has a unique inverse and that the eigenvalues are real and posi-
tive. For the matrix K to be positive definite,

aTKa > 0

for all nonzero vectors a. Although a singular matrix can be positive semi-definite,
aTKa ≥ 0, it is not positive definite.

Each row of a system of stiffness equations KV = P corresponds to a force at
a node. The nonzero terms in the stiffness matrix on the main diagonal correspond
to DOF at the node and the remaining nonzero terms in the row correspond to DOF
of other nodes of elements, connected to the node. The stiffness matrix K is usually
sparse since for a framework with many nodes and elements, the matrix usually
contains mostly zero terms. As part of the solution procedure for the equations, the
stiffness matrix is often rearranged to achieve a banded matrix of minimum width.

Other System Matrix Assembly Techniques Many variations of the assem-
bly procedure described here for system matrices are available. In Chapters 4 and 5
we discuss a technique to make this procedure more systematic.

3.3 TRANSFER MATRIX METHOD OF ANALYSIS

In Section 2.2.1, the transfer matrix Ue was obtained as the solution to the first-order
form of the governing differential equations for a beam. The transfer matrix relates
to the state variables z at the left end a of element e to the state variables at the right
end b of the element:

zb = Ueza + ze (3.27)

The primary use of transfer matrices in this book is as an important intermediate
step in deriving stiffness matrices for beam elements. However, for linelike struc-
tural systems, such as structures made of beam elements, responses can be calcu-
lated directly from the transfer matrices. In contrast to the displacement method,
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for which the equations represent the conditions of equilibrium, the transfer matrix
method solution for a whole structure satisfies the equilibrium conditions, kinematic
admissibility, and the material law simultaneously.

From Chapter 2, the transfer matrix for a Bernoulli–Euler beam element with sign
convention 1 appears as

w

θ

V
M


b

=


1 −� −�3/6E I −�2/2E I
0 1 �2/2E I �/E I
0 0 1 0
0 0 � 1




w

θ

V
M


a

+


Fw

Fθ

FV

FM


zb = Ue za + ze

(3.28)

It is frequently useful, as noted in Table 2.2, to include the loading terms ze in the
transfer matrix Ue. This leads to an expression that is equivalent to Eq. (3.28), utiliz-
ing an extended state vector z and an extended transfer matrix Ue:

w

θ

V
M
1


b

=


1 −� −�3/6E I −�2/2E I Fw

0 1 �2/2E I �/E I Fθ

0 0 1 0 FV
0 0 � 1 FM

0 0 0 0 1




w

θ

V
M
1


a

zb = Ue za

(3.29)

The structure shown in Fig. 3.17 has four beam elements for which there are four
extended transfer matrices:

z2 = U1z1

z3 = U2z2

z4 = U3z3

z5 = U4z4

(3.30)

L

l2l1 l3 l4

1 2 3 4 5
1 2 3 4

z1 z2 z3 z4
z5

U1 U2 U3 U4

x

Figure 3.17 State vectors and transfer matrices for the four elements of a beam.
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where z1 is the extended state vector at the left end, U1 is the extended transfer matrix
of the first element of length �1, and z2 is the state vector at node 2(x = �1). The
remaining quantities shown in Fig. 3.17 are defined similarly.

The state vector at any of the nodes in Fig. 3.17 can be expressed in terms of the
initial state vector at node 1. For example, in the case of z3 of Eq. (3.30) z3 = U2z2,
introduce z2 = U1z1 giving z3 = U2U1z1. It follows that the state vectors at nodes
2, 3, 4, and 5 can be written as

z2 = U1z1

z3 = U2U1z1

z4 = U3U2U1z1

z5 = U4U3U2U1z1

(3.31)

Thus, the state vector at any location along the beam is found by progressive multi-
plication of the transfer matrices for all elements to the left of the location. That is,
the state variables z j for node j are expressed as

z j = U j−1U j−2 · · · U2U1z1 (3.32)

For a beam with M elements, the state variables at the right end of the beam are
given by

zx=L = zL = UMUM−1 · · · U2U1z1 = Uz1 (3.33)

where U is an assembled global or overall transfer matrix that extends from left to
right along the beam. In contrast to the displacement method, where assembly of the
global stiffness matrix is an additive process, the global transfer matrix is obtained
by multiplication of the element matrices.

The unknowns in Eqs. (3.32) and (3.33) are the initial state variables w1, θ1, V1,
and M1 of z1, which are determined by applying the four boundary conditions, two
of which occur at each of the two ends of the beam. This is referred to as an initial
value solution of a boundary value problem. A transfer matrix solution involves two
“sweeps” along the beam. Initially, the overall or global transfer matrix U (Eq. 3.33)
is constructed, normally by a computer program that calls up stored transfer matrices
as needed to perform the matrix multiplications. The four boundary conditions are
applied to Eq. (3.33), leading to four linear equations that can be solved for the four
unknown state variables w1, θ1, V1, and M1. Now that z1 has been determined, a
second ”sweep” along the beam using Eq. (3.32) is utilized to calculate the state
variables w, θ , V , and M along the beam. In the case of the fixed, simply supported
beam of Fig. 3.17, the four boundary conditions are w1 = 0, θ1 = 0, wx=L = 0,
Mx=L = 0.

The transfer matrix technique is simple and systematic. It involves the product of
small matrices and leads to a system matrix of the same dimensions as the element
matrices. This is in contrast to the displacement method for which the size of the
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system matrix depends on the complexity of the structure. The shortcomings of the
transfer matrix method, which applies only to structures with a chainlike topology, is
that it tends to be numerically unstable when there are large variations in the value of
some parameters or if the boundaries of the structure are so far apart that they have
little influence on each other. Details of the use of the transfer matrix method can be
found in books on structural mechanics.

3.4 DYNAMIC RESPONSES

The dynamic response of frameworks is discussed briefly here. See references on
structural dynamics for more thorough coverage. The governing equations for the
dynamic motion of a linear undamped system can be expressed as

MV̈ + KV = P(t) (3.34)

where M is the system mass matrix assembled from the element mass matrices of
Chapter 2. In this section, matrices K, V, P, and M are treated often as being the re-

duced matrices K̃, Ṽ, P̃, and M̃ discussed earlier in this chapter. Care must be taken
in the use of particular mass matrices, especially for transient loading P(t). For ex-
ample, for nonsinusoidal vibrations the errors associated with modeling by consistent
mass matrices may need to be reduced by utilizing a finer mesh of elements.

Two dynamic response problems are considered. In the first problem, the natural
frequencies and corresponding mode shapes are sought. The second problem is for
the computation of the motion of the system for prescribed time-dependent loading.

3.4.1 Free Vibration Analysis

Free motion corresponds to the relationship MV̈ + KV = P of Eq. (3.34) with the
applied loading set equal to zero, that is,

MV̈ + KV = 0 (3.35)

The natural frequencies ω (scalars) and the corresponding mode shapes � (vectors)
are obtained from this relationship.

For harmonic motion

V = � sin ωt (3.36)

The structure responds in a mode corresponding to a value of the frequency ω. Sub-
stitute Eq. (3.36) into Eq. (3.35), giving

ω2M� = K�

or
(K − ω2M)� = 0 (3.37)
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For nontrivial �, this implies that∣∣∣K − ω2M
∣∣∣ = 0 or | K − λM | = 0 (3.38)

with ω2 = λ. This is the characteristic equation with eigenvalue λ, which can be
solved for a set of values of λ.

Several efficient algorithms, with corresponding computer software, are available
for solving eigenvalue problems. These computer programs often solve a problem in
the form of the standard eigenvalue problem

(A − λI)� = 0 (3.39)

where I is the unit diagonal matrix, A is symmetric, λ are the eigenvalues of A,

and � is the eigenvector. Such techniques as Cholesky decomposition (Pilkey and
Wunderlich, 1994) can be employed to obtain a standard form. It would appear that
A is equal to M−1K, or if λ is defined to be equal to 1/ω2, A is equal to K−1M . Use
of these expressions for A does not necessarily effectively lead to the standard form.
For example, M−1K is in general not symmetric, so that additional manipulations
would be necessary to reach the standard eigenvalue problem.

For each possible rigid-body motion of a structure, the eigenvalues λ will be zero.
The mode shapes � are “shapes” of the deformed structure and give relative magni-
tudes of the degrees of freedom, not the absolute values.

Orthogonality is an important property of the mode shapes. Suppose that ω2
r , �r

and ω2
s , �s are two distinct solutions of the eigenvalue problem, in the sense that

they satisfy

K�r = ω2
r M�r (3.40a)

K�s = ω2
s M�s (3.40b)

Premultiply Eq. (3.40a) by �T
s and Eq. (3.40b) by �T

r :

�T
s K�r = ω2

r �T
s M�r (3.41a)

�T
r K�s = ω2

s �T
r M�s (3.41b)

Transpose the second relationship, remember that matrices M and K are symmetric,
and subtract from Eq. (3.41a), giving

(ω2
r − ω2

s )�
T
s M�r = 0 (3.42)

In general, the natural frequencies are distinct, ωr �= ωs , so that

�T
s M�r = 0 r �= s (3.43)
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This is the orthogonality condition for the mode shapes. From Eqs. (3.43) and
(3.41a),

�T
s K�r = 0 r �= s (3.44)

which is the orthogonality condition with respect to the stiffness matrix K. Define,
for r = s,

�T
s M�s = Ms (3.45a)

and

�T
s K�s = Ks = ω2

s Ms (3.45b)

where Ms , the generalized mass and Ks are scalars. Assemble the vector mode
shapes �i as the matrix

� = [
�1 �2 · · · �nd

]
(3.46)

where nd is the number of degrees of freedom. Then Eq. (3.45) can be expressed as

�TM� = Mnd �TK� = Knd (3.47)

where

Mnd =


M1 0

M2
. . .

0 Mnd

 Knd =


K1 0

K2
. . .

0 Knd


Details about this eigenvalue problem are available in numerous sources. Use-

ful information includes the number of eigenvalues, repeated eigenvalues, and the
relative accuracy of the different types of mass matrices.

3.4.2 Forced Response

The governing equations for the dynamic linear response of a structure are given by

MV̈ + KV = P (3.48)

where P = P(t) is a prescribed time-dependent applied load. These are ordinary
differential equations that can be solved using numerical integration techniques (see,
e.g., Pilkey and Wunderlich, 1994). Often, especially for linear equations such as
those of Eq. (3.48), a modal superposition solution is employed using the natural
frequencies and mode shapes. This method is described briefly here.

For an undamped system the governing equations (Eq. 3.48) are normally cou-
pled, that is, at least one of the equations contains more than one of the displacement
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components in V. Transformation to an appropriate set of coordinates can lead to
equations that are uncoupled. These new coordinates are referred to as principal,
normal, modal, or natural coordinates.

It is always possible to determine principal coordinates for linear systems. The
vector V contains the coordinates (DOF) in which the equations of motion are cou-
pled. Let

q = [
q1 q2 · · · qnd

]T (3.49)

where nd is the number of DOF, be the coordinates (principal coordinates) in which
the equations of motion are uncoupled.

For the relationship between the coupled V and uncoupled coordinates, choose

V = �q (3.50)

where � contains the mode shape vectors �i of Eq. (3.46). Substitute Eq. (3.50) into
Eq. (3.48) and premultiply by �T:

�TM�q̈ + �TK�q = �TP (3.51)

The orthogonality conditions of Eq. (3.47) reduce Eq. (3.51) to the set of uncoupled
differential equations

Mnd q̈ + Knd q = P or Mi q̈i + Ki qi = Pi i = 1, 2, . . . , nd (3.52)

where P = �TP, Mi = �T
i M�i (Eq. 3.45a), Ki = �T

i K�i (Eq. 3.45b), and
Pi = �T

i P. These relationships are uncoupled in the sense that only one of the
qi , i = 1, 2, . . . , nd appears in each equation. Thus, the transformation of coordi-
nates of Eq. (3.50), with � defined by Eq. (3.46), uncouples Eq. (3.48). The coupled
governing equations for the nd -DOF system have been replaced by nd uncoupled
equations. Each of the uncoupled equations is in the form of an equation of motion
for a single-DOF system.

The uncoupled equations of Eq. (3.52) have familiar solutions. In matrix form,

q = Aq(0) + Bq̇(0) + F (3.53a)

with

q(0) =


q1(0)

q2(0)
...

qnd (0)

 = �−1


V10
V20
...

Vnd 0

 = �−1V(0)

q̇(0) =


q̇1(0)

q̇2(0)
...

q̇nd (0)

 = �−1


V̇10

V̇20
...

V̇nd 0

 = �−1V̇(0) (3.53b)
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A =


cos ω1t 0

cos ω2t
. . .

0 cos ωnd t



B =



sin ω1t

ω1
0

sin ω2t

ω2
. . .

0
sin ωnd t

ωnd


and

F =


F1 0

F2
. . .

0 Fnd


where

Fi = 1

Mi ωi

∫ t

0
Pi (τ ) sin ωi (t − τ) dτ

and V(0) = [
V10 V20 · · · Vnd 0

]T and V̇(0) = [
V̇10 V̇20 · · · V̇nd 0

]T
are

the prescribed initial conditions (displacements and velocities) of the system.
In scalar form,

qi = qi (0) cos ωi t + q̇i (0)
sin ωi t

ωi

+ 1

Miωi

∫ t

0
Pi (τ ) sin ωi (t − τ) dτ i = 1, 2, . . . nd (3.54a)

qi (0) = �T
i

MV(0)

Mi
=

(
nd∑
j

nd∑
k

m jkφi j Vk0

)/
Mi (3.54b)

q̇i (0) = �T
i

MV̇(0)

Mi
=

(
nd∑
j

nd∑
k

m jkφi j V̇k0

)/
Mi

where φi j is the j th element in φi and m jk is the element in the j th row and the kth
column of M.
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Substitution of q of Eq. (3.53a) or qi of Eq. (3.54a) into Eq. (3.50),

V = �q =
nd∑

i=1

qi (t)�i

provides the responses of an nd -DOF system with arbitrary loading.
If a viscous damping model is included, the governing equations can be of the

form

MV̈ + CV̇ + KV = P (3.55)

where C is a damping matrix. The principal coordinates for M and K will not, in
general, decouple Eq. (3.55), which includes C. This is due to the term �TC�,
which is not in general a diagonal matrix. If C is proportional to M or K (i.e., C =
αM + βK, where α and β are constants), the normal nodes � for the undamped
system will make �TC� a diagonal matrix and will result in equations that are not
coupled.

Several other damping models are discussed in the literature. In the case of modal
damping, a damping term is added to each modal equation. Thus, if a viscous damp-
ing term is added to Eq. (3.52),

Mi q̈i + Ci q̇i + Ki qi = Pi (3.56)

where Ci is the damping assigned to the ith mode. In practice, usually a damping
ratio ζi = Ci/2Miωi ) = Ci/Ccr, with the critical damping Ccr = 2

√
Mi Ki , is

assigned to each mode, so that Eq. (3.56) becomes

q̈i + 2ζi ωi q̇i + ω2
i qi = Pi

Mi
(3.57)

Sometimes, Mi is scaled such that Mi = 1. The expression for Ccr follows by re-
placing ωi by its single-degree-of-freedom equivalent ωi = √

Ki/Mi .
If Pi = 0, the solution to Eq. (3.57) is

qi = A1eα1t + A2eα2t (3.58)

where

α1,2 = 1
2

(
−2ζi ωi ±

√
4ζ 2

i ω2
i − 4ω2

i

)
= ωi

(
−ζi ±

√
ζ 2

i − 1
)

(3.59)

Three separate cases can be identified.

ζi < 1 qi is underdamped and oscillates

ζi > 1 qi is overdamped and exponentially decays (3.60)

ζi = 1 qi is critically damped, Ci = Ccr
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The solution to the ordinary differential equation of Eq. (3.57) for ζi < 1 gives
the modal coordinate

qi = e−ζi ωi t

 q̇i (0) + qi (0)ζiωi

ωi

√
1 − ζ 2

i

sin ωi

√
1 − ζ 2

i t + qi (0) cos ωi

√
1 − ζ 2

i t


+ 1

Miωi

√
1 − ζ 2

i

∫ t

0
Pi (τ )e−ζi ωi (t−τ) sin ωi

√
1 − ζ 2

i (t − τ) dτ (3.61)

where the modal initial conditions are computed using qi (0) = �T
i MV(0)/Mi and

q̇i (0) = �T
i MV̇(0)/Mi .

For undamped responses, set ζi = 0 in Eq. (3.61). For the harmonic excitation
Pi = P0 sin ωt , the final term of Eq. (3.61) becomes

(P0/Mi )ω
2
i[(

1 − (ω/ωi )
2)2 + 4ζ 2

i (ω/ωi )
2
]1/2

sin(ωt − θi ) (3.62)

with θi = tan−1
[
2ζiωiω/

(
ω2

i − ω2
)]

.

3.5 STABILITY ANALYSIS

The analysis for instability of a structural system is quite similar to the analysis for
natural frequencies, which is outlined in Section 3.4. The critical load, or a related
factor, is the eigenvalue in a stability analysis. The element geometric stiffness ma-
trices ke

σ are assembled into the system geometric stiffness matrix Kσ .
For a multimember structural system, it is often necessary to define the axial

forces that lead to instability in terms of each other. Frequently, it is assumed that
the internal axial forces in the various members remain in constant proportion to
each other, with the proportionality constants being found by a static analysis of the
system for some nominal value of the applied loading. If Kσ is the global geometric
stiffness matrix for a reference level of axial forces, λKσ would be the geometric
stiffness matrix of another level of axial forces, where λ is a scalar multiplier called
the load factor. The principle of virtual work gives the system equilibrium equations
in the form

(K − λKσ ) V = 0 (3.63)

where V is a vector containing the nodal displacements. This relationship can be
solved reliably and efficiently for λ with standard, readily available eigenvalue prob-
lem software.
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3.6 ANALYSES USING EXACT STIFFNESS MATRICES

Typically, stiffness or mass matrices are derived based on approximate polynomial
shape functions. In the case of beams, as discussed in Chapter 2, it is often possible
to derive exact stiffness and mass matrices since the governing differential equations
can be solved exactly. For a general beam element, such as given in Table 2.2, the
effect of translational and rotary inertias, shear deformation, axial force, and transla-
tional and rotary elastic foundations are included. The corresponding matrix, which
is referred to as a dynamic stiffness matrix, is a function of frequency ω and axial
force N .

The exact stiffness matrix ke for the eth element can be derived from the dynamic
stiffness matrix ke

dyn using

ke = ke
dyn(ω = 0) (3.64)

As detailed in Chapter 2, the exact mass matrix for the eth element can be obtained
from the dynamic stiffness matrix ke

dyn using (Eq. 2.112)

me = −∂ke
dyn

∂ω2
(3.65)

where ω2 is the frequency squared. Similarly, the exact element geometric stiffness
matrix ke

σ can be obtained from (Eq. 2.122)

ke
σ = ∂ke

dyn

∂N
(3.66)

where N is the axial force.
System analyses for the static response, buckling loads, or natural frequencies

involve, of course, the assembled systems matrices. In the case of the dynamic stiff-
ness matrix, suppose that the system matrix is Kdyn(ω, N ). For buckling problems,
the natural frequency in this system matrix is set equal to zero, and the resulting dy-
namic stiffness matrix is a function of axial forces. To calculate the buckling load or
natural frequencies, a determinant search can be conducted to find the roots of the
equation ∣∣Kdyn(ω, N )

∣∣ = 0 (3.67)

Since the curve of the value of the determinant | Kdyn(ω, N ) | versus the axial force
or natural frequency can be poorly behaved, it is often necessary to calculate the
value of the determinant at very fine intervals. Sometimes eigenvalues are missed.
Studies of this problem have led to computational methods to avoid missing eigen-
values and to accelerate the search procedure (e.g., Kennedy and Williams, 1991).
However, these determinant search procedures still tend to be cumbersome and time
consuming.
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An alternative method that avoids the determinant search for finding eigenvalues
is to use the global mass matrix M(ω, N ) or the geometric stiffness matrix Kσ (ω, N )

and set up the eigenvalue problems∣∣∣Kdyn(ω, N ) − ω2M(ω, N )

∣∣∣ = 0 (3.68)∣∣Kdyn(ω, N ) − NKσ (ω, N )
∣∣ = 0 (3.69)

An iterative solution of this problem can converge rapidly to the solution of the
eigenvalue problem. For example, consider the problem of finding the natural fre-
quencies when the critical N is not of interest. Then, write Eq. (3.68) as∣∣∣Kdyn(ω) − ω2M(ω)

∣∣∣ = 0 (3.70)

The iterative solution can take the form∣∣Kdyn(0) − ω2M(0)
∣∣ = 0 ⇒ ω = ω0

1, ω
0
2, ω

0
3, . . .∣∣Kdyn(ω

0
1) − ω2M(ω0

1)
∣∣ = 0 ⇒ ω = ω1

1, ω
1
2, ω

1
3, . . .

...∣∣∣Kdyn(ω
j−1
1 ) − ω2M(ω

j−1
1 )

∣∣∣ = 0 ⇒ ω = ω
j
1, ω

j
2 , ω

j
3 , . . .

(3.71)

where the superscript j refers to the eigensolution for the j th iteration. The fre-
quencies ω0

1, ω
0
2, ω

0
3, . . . correspond to those that are found using Eq. (3.70) with a

consistent mass matrix for M and a static stiffness matrix K rather than Kdyn. On
occasion, more accurate higher eigenvalues are computed from Eq. (3.71) if Kdyn

and M are evaluated at ω
j−1
n , n > 1, instead of at the lowest frequency ω

j−1
1 .
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CHAPTER 4

FINITE ELEMENTS FOR
CROSS-SECTIONAL ANALYSIS

In this chapter we present the essential finite element analysis concepts used in the
cross-sectional analysis of beams and describe how the warping-independent section
properties, such as areas or moments of inertia, are computed by integration. The
description of the finite element method is in terms of a nine-node Lagrangian ele-
ment in two dimensions, which is the only kind of element used for meshing cross
sections in the rest of this book. Detailed accounts of the finite element method are
available in a number of textbooks (e.g., Dhatt and Touzot, 1984; Pilkey and Wun-
derlich, 1994; and Zienkiewicz, 1977).

4.1 SHAPE FUNCTIONS

As indicated in Chapter 2, reference elements can be used to simplify calculations
when dealing with elements of complex shape. The geometry of a reference element
�r with its simple geometry, is mapped to the geometry of the real element � by a
transformation. This transformation defines the coordinates of each point of the real
domain � in terms of the coordinates of the corresponding point in the reference do-
main �r . The geometrical transformation has the properties defined in Section 2.2.5.

An example of the geometrical transformation from a reference element to a real
element is shown in Fig. 4.1. The reference element, on the left, is a square with
node 1 at the point (η, ζ ) = (−1,−1) and node 9 at (η, ζ ) = (1, 1) of the reference
domain. The part of the boundary of the reference element between any two nodes
is a straight line. The corresponding part of the boundary of the real element may be
curved, as shown in Fig. 4.1b.
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Figure 4.1 Reference and real domains for the nine-node Lagrangian element.

An interpolation formula for a function f (η, ζ ) defined on the reference domain
is written as a linear combination of a set of known basis functions Nu(η, ζ ):

f (η, ζ ) = Nu(η, ζ )ŵ (4.1)

where Nu(η, ζ ) is composed of nb basis functions and the coefficients (generalized
displacements) ŵ are determined by nb values of the function f (η, ζ ). The basis
functions are usually chosen as independent monomials. For the nine-node element
of Fig. 4.1, they are given by

Nu(η, ζ ) =
[
1 η ζ η2 ηζ ζ 2 η2ζ ηζ 2 η2ζ 2

]
(4.2)

Also, ŵ = [
ŵ1 ŵ2 ŵ3 · · · ŵnb

]T, where nb is equal to 9 for the nine-node
element.

The geometric transformation for the elements of Fig. 4.1 are represented by the
geometrical mapping functions y(η, ζ ) and z(η, ζ ). It is possible to define the ge-
ometric transformation for the nine-node quadrilateral based on the four nodes 1,
7, 3, and 9 alone. The real element sides are constrained to be straight lines. An-
other possibility is to utilize for the element geometrical mapping functions y(η, ζ )

and z(η, ζ ), the function f (η, ζ ) interpolation formulas based on Eq. (4.1) and nine
function values for the nine-node element. Elements whose geometric transforma-
tion equations and function interpolation formulas have the same form are said to
be isoparametric. For the isoparametric nine-node element, then, geometrical map-
ping functions y(η, ζ ) and z(η, ζ ) utilize the interpolation formula for the function
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f (η, ζ ). For example, the geometrical mapping function y(η, ζ ) expresses the nodal
y coordinates of the real element as

yi = y(ηi , ζi ) = Nu(ηi , ζi )ŵy 1 ≤ i ≤ 9 (4.3)

where ŵy = [
ŵy1 ŵy2 ŵy3 · · · ŵy9

]T. In matrix form, with

y = [y(η1, ζ1) y(η2, ζ2) · · · y(η9, ζ9)]T

= [y1 y2 · · · y9]T
(4.4)

these nine equations become

y = N̂uŵy (4.5)

where N̂u is the 9 × 9 matrix whose i th row is Nu(ηi , ζi )

N̂u =



1 −1 −1 1 1 1 −1 −1 1
1 −1 0 1 0 0 0 0 0
1 −1 1 1 −1 1 1 −1 1
1 0 −1 0 0 1 0 0 0
1 0 0 0 0 0 0 0 0
1 0 1 0 0 1 0 0 0
1 1 −1 1 −1 1 −1 1 1
1 1 0 1 0 0 0 0 0
1 1 1 1 1 1 1 1 1


(4.6)

In forming this matrix, use (η1, ζ1) = (−1,−1), (η2, ζ2) = (0,−1), (η3, ζ3) =
(−1, 1), . . . (η9, ζ9) = (1, 1). Since the matrix N̂u is invertible, the coefficient vector
ŵy is found from

ŵy = N̂−1
u y (4.7)

and this determines the geometrical transformation for y coordinates

y(η, ζ ) = Nu(η, ζ )ŵy = Nu(η, ζ )N̂−1
u y (4.8)

A similar computation shows that the z coordinates are transformed according to

z(η, ζ ) = Nu(η, ζ )N̂−1
u z (4.9)

The term Nu(η, ζ )N̂−1
u defines the shape functions or interpolation functions, that is,

N(η, ζ ) = Nu(η, ζ )N̂−1
u (4.10)
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Lagrangian elements are characterized by the nodal unknowns being values of
the dependent function at the nodes, e.g., f (ηi , ζi ) or for geometrical coordinates,
y(ηi , ζi ) and z(ηi , ζi ). With the exception of some lower-order members of the La-
grange family, these elements have internal nodes (see Fig. 4.1). The geometrical
transformation for the nine-node Lagrangian element of Fig. 4.1 is defined in terms
of the shape functions by

y(η, ζ ) = N(η, ζ )y z(η, ζ ) = N(η, ζ )z (4.11)

where N is a row vector of length 9 whose entries are the shape functions and y, z
(Eq. 4.4) are the y, z coordinates of the nodes of the real element. In expanded form,
the geometrical transformation equations are

y(η, ζ ) =
9∑

i=1

Ni (η, ζ )yi z(η, ζ ) =
9∑

i=1

Ni (η, ζ )zi (4.12)

The shape functions for the nine-node element are explicitly determined by sub-
stituting the inverse of the matrix N̂u into Eq. (4.10). The inverse of N̂u is

N̂−1
u = 1

4



0 0 0 0 4 0 0 0 0
0 −2 0 0 0 0 0 2 0
0 0 0 −2 0 2 0 0 0
0 2 0 0 −4 0 0 2 0
1 0 −1 0 0 0 −1 0 1
0 0 0 2 −4 2 0 0 0

−1 0 1 2 0 −2 −1 0 1
−1 2 −1 0 0 0 1 −2 1

1 −2 1 −2 4 −2 1 −2 1


(4.13)

Table 4.1 lists the shape functions and their derivatives with respect to η and ζ .

TABLE 4.1 Shape Functions and Derivatives for the Nine-Node Element

i 4Ni 4
∂ Ni

∂η
4
∂ Ni

∂ζ

1 ηζ(1 − η)(1 − ζ ) ζ(1 − 2η)(1 − ζ ) η(1 − η)(1 − 2ζ )

2 −2η(1 − η)(1 − ζ 2) −2(1 − 2η)(1 − ζ 2) 4ηζ(1 − η)

3 −ηζ(1 − η)(1 + ζ ) −ζ(1 − 2η)(1 + ζ ) −η(1 − η)(1 + 2ζ )

4 −2ζ(1 − η2)(1 − ζ ) 4ηζ(1 − ζ ) −2(1 − η2)(1 − 2ζ )

5 4(1 − η2)(1 − ζ 2) −8η(1 − ζ 2) −8ζ(1 − η2)

6 2ζ(1 − η2)(1 + ζ ) −4ηζ(1 + ζ ) 2(1 − η2)(1 + 2ζ )

7 −ηζ(1 + η)(1 − ζ ) −ζ(1 + 2η)(1 − ζ ) −η(1 + η)(1 − 2ζ )

8 2η(1 + η)(1 − ζ 2) 2(1 + 2η)(1 − ζ 2) −4ηζ(1 + η)

9 ηζ(1 + η)(1 + ζ ) ζ(1 + 2η)(1 + ζ ) η(1 + η)(1 + 2ζ )
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4.2 TRANSFORMATION OF DERIVATIVES AND INTEGRALS

The partial derivatives of a function f (η, ζ ) with respect to η and ζ in the reference
domain �r are related to its derivatives with respect to y and z in the physical domain
� by 

∂ f

∂η

∂ f

∂ζ

 =


∂y

∂η

∂z

∂η

∂y

∂ζ

∂z

∂ζ




∂ f

∂y

∂ f

∂z

 (4.14)

The 2 × 2 matrix in this equation is the Jacobian matrix J of the geometrical trans-
formation. Substitution of Eq. (4.11) into the expression for J leads to

J =


∂y

∂η

∂z

∂η

∂y

∂ζ

∂z

∂ζ

 =


∂N
∂η

y
∂N
∂η

z

∂N
∂ζ

y
∂N
∂ζ

z

 =


∂N
∂η

∂N
∂ζ

[
y z

] =
[

J11 J12
J21 J22

]
(4.15)

The entries of the Jacobian matrix J depend on the point (η, ζ ), where J is evaluated,
and on the nodal coordinates y, z of the element.

The partial derivatives of the function f (y, z) with respect to y and z in the phys-
ical domain � are of interest. These can be related to the derivatives of f (y, z) with
respect to η and ζ in the reference domain �r by

∂ f

∂y

∂ f

∂z

 =


∂η

∂y

∂ζ

∂y

∂η

∂z

∂ζ

∂z




∂ f

∂η

∂ f

∂ζ

 (4.16)

The 2 × 2 matrix in this equation is the inverse of the Jacobian matrix of the geomet-
rical transformation

J−1 =


∂η

∂y

∂ζ

∂y

∂η

∂z

∂ζ

∂z

 = 1

| J |
[

J22 −J12
−J21 J11

]
(4.17)

where | J | denotes the determinant of J:

| J | = J11 J22 − J12 J21 (4.18)

The determinant | J | can be expressed in terms of the shape function derivatives and
the element nodal coordinate vectors as
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| J | = ∂N
∂η

y
∂N
∂ζ

z − ∂N
∂η

z
∂N
∂ζ

y = yT
(

∂NT

∂η

∂N
∂ζ

− ∂NT

∂ζ

∂N
∂η

)
z (4.19)

where Eq. (4.15) and the identity (AB)T = BTAT have been introduced. The square
matrix in the brackets, which is 9 × 9 for the nine-node element, depends only on η,
ζ , and | J | depends on the nodal coordinates y, z as well as on η, ζ . The determinant
of the Jacobian is required to be strictly positive:

| J (η, ζ ) | > 0 (4.20)

at every point of the reference domain. A violation of this condition indicates that the
geometrical transformation is not bijective. That is, if the determinant of the Jacobian
is not strictly positive, there is no guarantee that for each point of �r there is exactly
one point of � and that any two distinct points of �r are mapped to two distinct
points of �. The sign of | J | should be checked whenever it occurs in a computation,
and preferably also at the corners, where it is more likely to become negative.

An example with the problems that can arise if | J | is not strictly positive can be
seen from the transformation matrix of Eq. (4.16), which, according to Eq. (4.17),
is inversely proportional to | J |. If | J | is zero somewhere (e.g., along a curve), the
Jacobian matrix is singular and cannot be inverted.

4.3 INTEGRALS

Integrating a function f (η, ζ ) over the reference element is simpler than integrating
the corresponding function f (y, z) over the real element. From the calculus, the
transformation formula for integrals is∫

�

f (y, z) dy dz =
∫

�r

f (η, ζ )| J | dη dζ (4.21)

For an isoparametric element, wherein the function interpolation formulas are based
on the same set of shape functions as the geometrical transformation equation
(Eq. 4.11), the function f (η, ζ ) in Eq. (4.21) is not only a function of η and ζ but
will also be dependent on its nodal values f, where

f = [ f (η1, ζ1) f (η2, ζ2) · · · f (η9, ζ9)]T .

It follows from Eq. (4.11) that

f (η, ζ ) = N(η, ζ )f (4.22)

where N is the row vector of Eq. (4.10).
The area Ae of the real element e can be found by computing

Ae =
∫

�

dy dz =
∫

�r

| Je | dη dζ (4.23)
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where Je is the Jacobian matrix for the eth element. Introduction of Eq. (4.19) into
Eq. (4.23) leads to

Ae = yTA∗z (4.24)

where A∗ is defined by

A∗ =
∫ 1

−1

∫ 1

−1

(
∂NT

∂η

∂N
∂ζ

− ∂NT

∂ζ

∂N
∂η

)
dη dζ (4.25)

For the isoparametric nine-node element, the matrix A∗ using the derivatives of the
shape functions from Table 4.1 is calculated to be

A∗ = 1

6



0 −4 1 4 0 0 −1 0 0
4 0 −4 0 0 0 0 0 0

−1 4 0 0 0 −4 0 0 1
−4 0 0 0 0 0 4 0 0

0 0 0 0 0 0 0 0 0
0 0 4 0 0 0 0 0 −4
1 0 0 −4 0 0 0 4 −1
0 0 0 0 0 0 −4 0 4
0 0 −1 0 0 4 1 −4 0


(4.26)

Given a collection of M elements in the finite element mesh, the integral over
the domain made up of these elements is found by summing the contributions of all
elements:

∫
f (y, z) dy dz =

M∑
e=1

∫ 1

−1

∫ 1

−1
f (η, ζ )| Je (η, ζ ) | dη dζ (4.27)

In practice, integration over reference elements is performed numerically, most
often by Gaussian quadrature formulas. See a reference on finite elements (e.g.,
Pilkey and Wunderlich, 1994) for details on numerical integration procedures. The
bidirectional method of integration by Gaussian quadrature, for instance, is a direct
extension of one-dimensional quadrature formulas to two-dimensional elements. A
function is integrated over the region −1 ≤ η ≤ 1,−1 ≤ ζ ≤ 1 by choosing m1
and m2 Gaussian integration points ηi , ζ j in the η and ζ directions, respectively, and
evaluating the integral holding ζ constant and integrating over η and then holding η

constant and integrating over ζ . For quadrilateral elements, the bidirectional formula
for a function φ(η, ζ ) is

∫ 1

−1

∫ 1

−1
φ(η, ζ ) dη dζ =

m1∑
i=1

m2∑
j=1

Wi W j φ(ηi , ζ j ) (4.28)
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where Wi , W j are the weighting coefficients. This method uses m1 × m2 integration
points and, in theory, integrates all monomials:

ηkζ n such that 0 ≤ k ≤ 2m1 − 1 and 0 ≤ n ≤ 2m2 − 1 (4.29)

exactly.
Table 4.2 shows the weights and integration points that can be used for various

values of m1 and m2. Only cases for which m1 = m2 are given in this table. The use
of m1 × m2 points is referred to as “m1 × m2 Gaussian quadrature.”

TABLE 4.2 Gauss Quadrature Formulas for Quadrilateral Elements, m1 = m2
a

Number of
Gauss Points Gauss Points Weights

m1 = m2 m1 × m2 ηi , ζ j Wi × W j

1 1
(1 × 1) 4(= 2 × 2) at center

2 4
(2 × 2) 1(= 1 × 1) at points 1, 2, 3, 4

3 9

(3 × 3)
25

81

(
= 5

9
× 5

9

)
at points 1, 3, 7, 9

40

81

(
= 5

9
× 8

9

)
at points 2, 4, 6, 8

64

81

(
= 8

9
× 8

9

)
at point 5

a ∫ +1

−1

∫ +1

−1
φ(η, ζ )dηdζ =

m1∑
i=1

m2∑
j=1

Wi W j φ(ηi , ζ j )

m1 and m2 are the number of integration (Gauss) points
in η and ζ directions, respectively.
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4.4 CROSS-SECTIONAL PROPERTIES

Several cross-sectional properties of a beam that are independent of warping can be
found by integration using the finite-element mesh for the section. The area A of the
cross section is

A =
∫

A
dy dz =

∑
e

Ae =
∑

e

∫ 1

−1

∫ 1

−1
| Je | dη dζ =

∑
e

yT
e A∗ze (4.30)

where the sum is over all elements e in the mesh, and the matrix A∗ of Eq. (4.25)
is the same for each element. For the nine-node element, A∗ is the constant matrix
given in Eq. (4.26).

The expression of Eq. (4.30) can be evaluated in closed form. Since A∗ is a sparse
matrix, the expanded form of the expression for the element area Ae is compact.
With Eq. (4.26) and

ze = [z(η1, ζ1) z(η2, ζ2) · · · z(η9, ζ9)]T = [z1 z2 · · · z9]T (4.31)

we find that

Ae = 2
3 yT

e Z (4.32)

where

Z = [Z1 Z2 Z3 Z4 Z5 Z6 Z7 Z8 Z9]T (4.33)

with

Z1 = z4 − z2 + z3 − z7

4
Z2 = z1 − z3

Z3 = z2 − z6 + z9 − z1

4
Z4 = z7 − z1

Z5 = 0 (4.34)

Z6 = z3 − z9

Z7 = z8 − z4 + z1 − z9

4
Z8 = z9 − z7

Z9 = z6 − z8 + z7 − z3

4

The cross-sectional area is obtained as
∑

Ae. It may, however, be preferable to com-
pute the area by Gaussian quadrature to maintain computational uniformity, because
it is not plausible to write such closed-form algebraic expressions for all integrals.
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The first moments of area are defined by

Qy =
∫

z dA Qz =
∫

y dA (4.35)

and are calculated as

Qy =
∑

e

∫ 1

−1

∫ 1

−1
Nze| Je | dη dζ

Qz =
∑

e

∫ 1

−1

∫ 1

−1
Nye| Je | dη dζ

(4.36)

The coordinates of the centroid C of the cross section are then found from

yC = Qz

A
zC = Qy

A
(4.37)

The area moments of inertia defined by

Iy =
∫

z2 dA Iz =
∫

y2 dA (4.38)

are computed as

Iy =
∑

e

∫ 1

−1

∫ 1

−1
(Nze)

2 | Je | dη dζ

Iz =
∑

e

∫ 1

−1

∫ 1

−1

(
Nye

)2 | Je | dη dζ

(4.39)

Similarly, the product of inertia defined by

Iyz =
∫

yz dA (4.40)

is calculated as

Iyz =
∑

e

∫ 1

−1

∫ 1

−1
NyeNze| Je | dη dζ (4.41)

The preceding equations for Iy , Iz , and Iyz express these properties in the global
coordinate system in which the nodal coordinates of the elements are measured. The
origin of this coordinate system is chosen arbitrarily. The area moments of inertia are
often needed in the coordinate system with its origin at the centroid and axes parallel
to the global coordinate axes. These properties are found by the parallel axis theorem
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of Eq. (1.60) with the transformation equations

Iy = Iy − z2
C A = Iy − Q2

y

A

Iz = Iz − y2
C A = Iz − Q2

z

A
(4.42)

Iyz = Iyz − yC zC A = Iyz − Qy Qz

A

where Iy, Iz , and Iyz are the moments of inertia about y, z centroidal axes.

Example 4.1 Properties of an Asymmetric Cross Section. Return to Examples 1.1
and 1.2 in which the properties of an asymmetric cross section were found using the
formulas of Chapter 1. We now continue by solving this problem using the finite-
element mesh definitions of this chapter. The properties will first be solved for a
convenient coordinate system. They will then be calculated with respect to the cen-
troidal coordinate system using the parallel axis theorem.

SOLUTION. Start by dividing the cross section into two elements as shown in
Fig. 4.2. Let a = 1.0 in. and t = 0.1 in. Number the nodes for each element as
in Fig. 4.1a. The nodal y and z coordinates of these elements, ze and ye, with respect
to the coordinate axes of Fig. 4.2, are

y1 =



−0.05
−0.05
−0.05

0
0
0
0.05
0.05
0.05


z1 =



−2
−1.025
−.05
−2
−1.025
−0.05
−2
−1.025
−0.05


y2 =



−0.05
−0.05
−0.05

0.475
0.475
0.475
1
1
1


z2 =



−0.05
0
0.05

−0.05
0
0.05

−0.05
0
0.05


(1)

The Jacobian matrix, Je, for each of the elements can be calculated using Eq. (4.15)
and the shape functions and their derivatives from Table 4.1. For element 1,

J11 = ∂N
∂η

y1 = 0.05

J12 = ∂N
∂η

z1 = 0

J21 = ∂N
∂ς

y1 = 0

J22 = ∂N
∂ς

z1 = 0.975
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(0,-2)

(1,0)

(0,0)

2

y

z

0.1

0.1

1

Figure 4.2 Asymmetrical cross section.

and (Eq. 4.18)

| J1 | = 0.04875 (2)

For element 2,

J11 = ∂N
∂η

y2 = 0.525

J12 = ∂N
∂η

z2 = 0

J21 = ∂N
∂ς

y2 = 0

J22 = ∂N
∂ς

z2 = 0.5

and

| J2 | = 0.0265 (3)
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The integrals of Eq. (4.36) can be solved, using the shape functions of Table 4.1, to
find the first moments of area.

Qy =
2∑

e=1

∫ 1

−1

∫ 1

−1
Nze| Je | dη dς = −0.199875

Qz =
2∑

e=1

∫ 1

−1

∫ 1

−1
Nye| Je | dη dς = 0.049875

(4)

Similarly, the integrals of Eqs. (4.39) and (4.41) give the moments of inertia and
product of inertia

Iy =
2∑

e=1

∫ 1

−1

∫ 1

−1
(Nze)

2| Je | dη dς = 0.26675

Iz =
2∑

e=1

∫ 1

−1

∫ 1

−1
(Nye)

2| Je | dη dς = 0.0335 (5)

Iyz =
2∑

e=1

∫ 1

−1

∫ 1

−1
NyeNze| Je | dη dς = 0.0

For the simple geometry of this problem, it can be seen from inspection that the
area of the cross section is 0.3. Alternatively, the area of the cross section could be
calculated using the expression (Eq. 4.30)

A =
∑

e
yT

e A∗ze (6)

where the matrix A∗ is given by (Eq. 4.26)

A∗ = 1

6



0 −4 1 4 0 0 −1 0 0
4 0 −4 0 0 0 0 0 0

−1 4 0 0 0 −4 0 0 1
−4 0 0 0 0 0 4 0 0

0 0 0 0 0 0 0 0 0
0 0 4 0 0 0 0 0 −4
1 0 0 −4 0 0 0 4 −1
0 0 0 0 0 0 −4 0 4
0 0 −1 0 0 4 1 −4 0


(7)

Then

A = yT
1 A∗z1 + yT

2 A∗z2 = 0.3 (8)
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The centroid of the cross section is obtained from Eq. (4.37):

yC = Qz

A
= 0.166 zC = Qy

A
= −0.666 (9)

To find the moments of inertia about a coordinate system with its origin at the
centroid, apply the parallel axis theorem of Eq. (4.42):

Iy = Iy − z2
C A = 0.13358

Iz = Iz − y2
C A = 0.025208 (10)

Iy z = Iyz − yC zC A = 0.03323

It can readily be shown that the values calculated here are the same as those of
Example 1.2 (Table 1.1).

4.5 MODULUS-WEIGHTED PROPERTIES

As described in Chapter 1, modulus-weighted section properties are used for non-
homogeneous beams. All the previous formulas are then modified by replacing
the differential element of area by its modulus-weighted counterpart. That is, as in
Eq. (1.64),

d Ã = E

Er
dA (4.43)

where Er is a reference elastic modulus. Each element e may be assigned a different
elastic modulus Ee, and with an arbitrarily selected reference modulus Er , the area
integrals become∫

f (y, z) d Ã =
M∑

e=1

∫ 1

−1

∫ 1

−1
f (η, ζ )| Je(η, ζ ) | Ee

Er
dη dζ (4.44)
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CHAPTER 5

SAINT-VENANT TORSION

The elasticity problem of torsion as formulated by Saint-Venant is the subject of
this chapter. A finite element formulation, which defines a numerical algorithm for
calculating the torsional constant and the Saint-Venant torsional stresses, follows
the classical statement of the problem. The determination of element stiffness and
load matrices and the subsequent finite element assembly procedure are described
in detail. Books such as Boresi and Chong (1987), Love (1944), Rivello (1969),
and Sokolnikoff (1956) discuss the Saint-Venant problem in a classical setting. In
addition, Muskhelishvili (1953) is an excellent reference, especially for nonhomoge-
neous cross sections. General descriptions of finite element procedures for solving
boundary value problems are found in Dhatt and Touzot (1984) and Zienkiewicz
(1977).

5.1 FUNDAMENTALS OF SAINT-VENANT TORSION

Coulomb formulated a solution for the torsion of thin wires in which it is assumed
that cross sections remain plane after deformations and that they simply rotate. This
formulation can be shown to be accurate for bars of circular cross sections. In a
further step, Saint-Venant made the assumption that the cross sections of a beam
subjected to pure torsion rotate about the axis of twist such that although the cross
sections warp out of their original plane, their projections onto this plane retain their
original shape. The axis of twist passes through the center of twist, which is the
location on the cross section for which there are no y and z displacements due to a
torque.

The displacements uy and uz of a point A of the cross section are shown in
Fig. 5.1, in which the x axis is the axis of twist. The angle of twist of a section along

167
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z

A (y, z)

y

xq

f

r

o

A' (y', z')

uy

z

y

uz

Figure 5.1 Displacements uy and uz of point A under twisting about the x axis.

the x axis is φ, so that the cylindrical coordinates of point A are (r, φ). As a result
of further deformation, the rotation of a section of a shaft of length x is xθ , where θ

is the angle of twist per unit length, which is assumed to be constant. As a result of
the twisting deformations, A moves to A′, whose position is given by the cylindrical
coordinates (r, φ + xθ). In Fig. 5.1, O A = O A′ = r, y = r cos φ, z = r sin φ. For
small deformations, xθ is small so that sin(xθ) ≈ xθ and cos(xθ) ≈ 1. Then

uy = y′ − y = r[cos(φ + xθ) − cos φ]
= r(cos φ cos xθ − sin φ sin xθ) − r cos φ

= y(cos xθ − 1) − z sin(xθ) ≈ −zxθ (5.1)

uz = z′ − z = r[sin(φ + xθ) − sin φ]
= r(cos φ sin xθ + sin φ cos xθ) − r sin φ

= y sin xθ + z(cos xθ − 1) ≈ yxθ

As indicated above, for bars of circular cross section, the axial displacement ux ,
which is also called the warping displacement, is zero. For cross sections of arbitrary
shape, experimental evidence indicates that the axial displacement of each cross sec-
tion along the bar is about the same. Thus, ux = f (y, z) where f is a function.
Saint-Venant accepted this result as a fundamental assumption. It is useful to intro-
duce θ into this expression so that f (y, z) = θω(y, z). Then the axial displacement
ux is proportional to the angle of twist per unit length, and the displacement field is
written in the form

ux = θω(y, z) (5.2)

The unknown function ω(y, z) in this equation is called the warping function.
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The strains for this assumed displacement field are found from the strain–
displacement relations of Eq. (1.3) as

εx = ∂ux

∂x
= θ ′ω(y, z) = 0 since θ is constant

εy = ∂uy

∂y
= 0 εz = ∂uz

∂z
= 0

γxy = ∂uy

∂x
+ ∂ux

∂y
= θ

(
−z + ∂ω

∂y

)
(5.3)

γxz = ∂uz

∂x
+ ∂ux

∂z
= θ

(
y + ∂ω

∂z

)
γyz = ∂uz

∂y
+ ∂uy

∂z
= 0

For these strains, the constitutive relations of Eq. (1.12) give the stresses

τxy = Gγxy = Gθ

(
∂ω

∂y
− z

)
τxz = Gγxz = Gθ

(
∂ω

∂z
+ y

)
(5.4)

σx = 0, σy = 0, σz = 0, τyz = 0

With this assumed displacement field, the dilatation, that is, the change in volume
per unit volume, is identically zero (Eq. 1.41):

e = � · u = ∂ux

∂x
+ ∂uy

∂y
+ ∂uz

∂z
= 0 (5.5)

where

u = ux i + uyj + uzk and � = i
∂

∂x
+ j

∂

∂y
+ k

∂

∂z
.

Also, the Laplacians of uy and uz are zero:

∇2uy = ∂2uy

∂x2
+ ∂2uy

∂y2
+ ∂2uy

∂z2
= 0 ∇2uz = ∂2uz

∂x2
+ ∂2uz

∂y2
+ ∂2uz

∂z2
= 0 (5.6)

With zero body forces, the equilibrium equations of Eq. (1.39) in the y and z direc-
tions are identically satisfied; that is,

(λ + G)
∂e

∂y
+ G∇2uy = 0

(λ + G)
∂e

∂z
+ G∇2uz = 0

(5.7)
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z
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τxy

τxz z

y

Mx

Figure 5.2 Notation employed in finding the resultant moment on a cross section.

The equilibrium equation in the x direction of Eq. (1.39), (λ+G)∂e/∂x +G∇2ux =
0, with Eq. (5.2) leads to

∇2ω = ∂2ω

∂y2
+ ∂2ω

∂z2
= 0 (5.8)

where ∇2 = ∂2/∂y2 + ∂2/∂z2. A partial differential of this form is called Laplace’s
equation. A solution to Laplace’s equation is called a harmonic function.

On the cylindrical surface of the bar (Fig. 5.2), at the boundary of the cross sec-
tion, the x component of the unit normal vector n = nx i + nyj + nzk is zero. If this
surface is free of applied forces px , py , and pz , the second boundary condition of
Eq. (1.43), with Eq. (5.5) and nx = 0, becomes

n · �uy + n · ∂u
∂y

= ny
∂uy

∂y
+ nz

∂uy

∂z
+ ny

∂uy

∂y
+ nz

∂uz

∂y
= −nz xθ + nz xθ = 0

(5.9)

Similarly, the condition of the third relationship of Eq. (1.43) is identically satisfied.
The remaining condition, given by the first of Eq. (1.43),

n · �ux + n · ∂u
∂x

= 0 = nx
∂ux

∂x
+ ny

∂ux

∂y
+ nz

∂ux

∂z
+ nx

∂ux

∂x
+ ny

∂uy

∂x
+ nz

∂uz

∂x
(5.10)

shows that the relationship that must be satisfied on the cylindrical surface is(
∂ω

∂y
− z

)
ny +

(
∂ω

∂z
+ y

)
nz = 0 (5.11)

The boundaries at the ends of the bar coincide with cross sections of the bar
having unit normals nx = ±1, ny = 0, nz = 0. The surface conditions of Eq. (1.27)
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for these ends are then

px = 0 py = ±τxy pz = ±τxz (5.12)

The + sign corresponds to the end of the bar with an external normal in the direction
of the positive x axis. From Eq. (5.4), for the + sign of Eq. (5.12),

px = 0 py = Gθ

(
∂ω

∂y
− z

)
pz = Gθ

(
∂ω

∂z
+ y

)
(5.13)

The resultant of the stresses of Eq. (5.12) on the end of a bar is a torque. The y and
z direction resultant forces on an end of area A,∫∫

A

τxy dy dz
∫∫
A

τxz dy dz (5.14)

vanish (Pilkey and Wunderlich, 1994). The resultant moment Mx from moment equi-
librium requirements on a cross section (Fig. 5.2) is the area integral

Mx =
∫∫
A

(
τxz y − τxyz

)
dy dz (5.15)

or in vector notation,

Mx i =
∫

A
(yj + zk) × (

pyj + pzk
)

dA (5.16)

From Eq. (5.13), the torque is

Mx = Gθ

∫
A

[(
∂ω

∂z
+ y

)
y −

(
∂ω

∂y
− z

)
z

]
dA (5.17)

Suppose that the torque Mx can be expressed as a function of the shear modulus of
elasticity G, a material constant; the angle of twist per unit length θ; and a constant
J that is based on the geometry of the cross section. Thus, let there be a constant J
such that

Mx = G Jθ (5.18)

This is the same relationship found for bars of circular cross section when J is the
polar moment of inertia of the cross section. In Eq. (5.18), J is the torsional constant
and G J is the torsional stiffness of the bar. By comparison of Eqs. (5.17) and (5.18),
J can be determined from the warping function

J =
∫

A

[(
∂ω

∂z
+ y

)
y −

(
∂ω

∂y
− z

)
z

]
dA (5.19)
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 +          dx

dx

x

dMx

dx

mx

Mx
Mx

Figure 5.3 Element subject to distributed torque mx .

The problem formulation is now complete. The warping function ω is obtained
by solving Eq. (5.8) subject to the surface and boundary conditions. The torsional
constant J is found from Eq. (5.19). For a particular torque Mx , the stresses as given
by Eqs. (5.4) and (5.18) are

τxy = Mx

J

(
∂ω

∂y
− z

)
τxz = Mx

J

(
∂ω

∂z
+ y

) (5.20)

The torque Mx and angle of twist φ are related through Eq. (5.18)

G J
dφ

dx
= Mx (5.21)

since θ = dφ/dx . The conditions of equilibrium applied to a segment of bar
(Fig. 5.3) shows that the applied distributed axial moment mx (force · length/length)
is related to the axial moment Mx by

d Mx

dx
= −mx (5.22)

These governing equations of motion (Eqs. 5.21 and 5.22) can be combined to form
the single higher-order governing equation for the angle of twist along the bar

d

dx
G J

dφ

dx
= −mx (5.23)

In terms of the state variable notation of Eq. (2.32a), Eqs. (5.21) and (5.22) appear
as

dz
dx

= Az + P (5.24)

where
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z =
[

φ

Mx

]
A =

0
1

G J

0 0

 P =
[

0
−mx

]

If axial extension and bending in two planes are included, the governing equations
for the displacements and forces along the bar are defined by

z = [
u v w θx θy θz N Vy Vz Mx My Mz

]T

A =



0 0 0 0 0 0
1

E A
0 0

1

G J
0 0

0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 −1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0
1

G J
0 0

0 0 0 0 0 0 0 0 0 0
Iz

K

Iyz

K

0 0 0 0 0 0 0 0 0 0
Iyz

K

Iy

K

0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 −1 0 0 0 0



P =



0

0
0

0

0

0

−px
−py
−pz
−mx

0
0


(5.25)

where θx = φ and K = E(Iy Iz − I 2
yz). If these equations are transformed (rotated)

to the principal bending planes, they lead to the stiffness matrix of Example 2.17.
The warping-function approach (for the torsional constant and the torsional

stresses on the cross section) is often referred to as a displacement formulation of
the torsion problem. It is applicable to multiply connected cross sections. For such
sections it is necessary to apply the surface conditions of Eq. (5.11) to both the
internal and external boundaries. The Saint-Venant solution is exact within the limits
of linear elasticity if the following conditions are satisfied:

1. The beam has a uniform cross section.

2. There is no warping restraint at any of the cross sections.

3. The torque is applied at the ends by surface forces whose distribution matches
that of the calculated shear stresses.

If the warping of the beam is restrained, normal longitudinal stresses are devel-
oped even if the only loading is a torque. These normal stresses, also called warping
stresses, are important in the analysis of thin-walled beams and are treated later in
this book.
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Example 5.1 Bar of Circular Cross Section. Consider a straight bar of circular
cross section subject to torque Mx . The x-axis deformation of a cross section must
be the same when viewed from either end of the bar. Hence, ux = 0. From Eq. (5.1),
the deformations in the y and z directions are

uy = −zxθ uz = yxθ (1)

Equation (5.3) shows that

εx = 0, εy = 0, εz = 0, γxy = −θz, γxz = θy, γyz = 0 (2)

The constitutive relations of Eq. (5.4) reduce to

σx = 0, σy = 0, σz = 0, τyz = 0, τxy = Gγxy = −Gθz,

τxz = Gγxz = Gθy (3)

If the body forces are equal to zero, these stress components satisfy the equations of
equilibrium of Eq. (1.25).

The condition that must be satisfied on the cylindrical surface is Eq. (5.11):

−zny + ynz = 0 (4)

since ux = θω = 0. It follows from Fig. 5.4 that

ny = n cos β = n
y

a
nz = n sin β = n

z

a
(5)

so that (4) is satisfied.
On the ends of the bar, it can be shown that the resultant shear forces of Eq. (5.14)

are zero, as required. The resultant moment of Eq. (5.15) is

Mx =
∫∫
A

(τxz y − τxyz) dy dz = Gθ

∫
A
(y2 + z2) dA = Gθ

∫
A

r2 dA (6)

β
y

r

n
z

a

Figure 5.4 Notation for a circular cross section.
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where the stresses of (3) have been employed. Also, with y2 + z2 = r2, it is ob-
served that for circular cross sections the torsional constant J is the polar moment of
inertia, Ix .

The relationship between the angle of twist and the applied torque is (6)

θ = dφ

dx
= Mx

G J
(7)

where J = ∫
A r2 dA = Ix = Ip = Iz + Iy . The solution developed here is referred

to as the Coulomb solution for a bar of circular cross section subject to torsion.
The shear stresses of (3) should be reasonably accurate at a distance of several

bar diameters from the ends where the torques are applied (Saint-Venant’s principle).
From (3) and (7)

τxy = − Mx z

J
τxz = Mx y

J
(8)

The resultant shear stress is given by

τ =
√

τ 2
xy + τ 2

xz = Mx

J

√
z2 + y2 = Mxr

J
(9)

which is the torsion formula given in elementary strength-of-materials textbooks.
The resultant stress τ is perpendicular to the radius r and lies in the plane of the
cross section.

The polar moment of inertia for a hollow shaft of inner radius ri (diameter di ) and
outer radius ro (diameter do) is (Fig. 5.5a)

J = π

2
(r4

o − r4
i ) = π

32
(d4

o − d4
i ) (10)

riro

do

di

t

ro

do

(a) Hollow (b) Thin (c) Solid

r

Figure 5.5 Circular cross sections.
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For a very thin shaft (Fig. 5.5b) of thickness t , this reduces to the approximate ex-
pression

J = 2πr3t (11)

For solid shafts (Fig. 5.5c), (10) becomes

J = πr4
o

2
= πd4

o

32
(12)

Example 5.2 Torsion When the Warping Function Is Constant. Let the warping
function ω(y, z) be equal to the constant c. Then ∇2ω = 0 of Eq. (5.8) is satisfied
by ω = c. The cylindrical surface condition of Eq. (5.11) becomes

−zny + ynz = 0 (1)

From Eq. (1.36), (1) is

−z
dz

ds
− y

dy

ds
= 0 (2)

so that

d

ds

(
y2 + z2

2

)
= 0 (3)

This implies that y2 + z2 = r2 is constant on the surface of the bar. It is concluded
that a constant warping function corresponds to the torsion of a bar of circular cross
section.

Recall that the axial displacement ux is proportional to the warping function ω

(Eq. 5.2). If ux = 0 at an end of the bar, c is equal to zero and there is no warp-
ing along the bar. Thus, the solution here corresponds to the Coulomb solution of
Example 5.1 for the torsion of a bar of circular cross section.

It can be shown that the warping function ω(y, z) can be determined only up
to a constant. This is proven by uniqueness studies in such books as Little (1973).
However, the shear stresses of Eq. (5.20) are found to be unique since they involve
derivatives of ω. This nonuniqueness property of ω(y, z) must be taken into account
if ω(y, z) is to be employed in a study.

Example 5.3 Elliptical Cross Section—Displacement Formulation. Use the dis-
placement formulation of the torsion equations to find the torsional constant and
stresses for a uniform bar of elliptical cross section (Fig. 5.6). Let the warping func-
tion be of the form ω = Cyz, where C is a constant. It is shown in Example 5.5 that
this is the correct form of the warping function.
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y

Mx

z

b

a x

Figure 5.6 Bar of elliptical cross section.

SOLUTION. Note that the assumed ω satisfies Laplace’s equation. On the surface
of the bar, Eq. (5.11) must be satisfied. Introduce the direction cosines of Eq. (1.36),
giving (

∂ω

∂y
− z

)
dz

ds
−

(
∂ω

∂z
+ y

)
dy

ds
= 0 (1)

From the equation for the ellipse of Fig. 5.6, y2/a2 + z2/b2 = 1, the ratio
dy

ds

/dz

ds
of direction cosines can be calculated. Equation (1) becomes(

∂ω

∂y
− z

)
yb2 +

(
∂ω

∂z
+ y

)
za2 = 0 (2)

Substitution of the assumed warping function ω = Cyz into this expression gives

C = −a2 − b2

a2 + b2
(3)

An alternative approach for finding C is to substitute ω = Cyz into (1) to find

(C − 1)z
dz

ds
− (C + 1)y

dy

ds
= 0 (4)

Integrate, giving

y2 C + 1

1 − C
+ z2 = constant (5)

Comparison of this to the ellipse equation y2b2/a2 + z2 = b2 gives (3) again.
The torsional constant J and the shear stresses can be found using Eqs. (5.19) and

(5.20):
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J =
∫

A

[(
∂ω

∂z
+ y

)
y −

(
∂ω

∂y
− z

)
z

]
dA

= 2

a2 + b2

∫
A
(b2y2 + a2z2) dy dz = πa3b3

a2 + b2
(6)

τxy = Mx

J

(
∂ω

∂y
− z

)
= − 2

ab3π
Mx z

τxz = Mx

J

(
∂ω

∂z
+ y

)
= 2

a3bπ
Mx y (7)

Example 5.4 Rectangular Cross Section. Calculate the displacements at the end
of a rod of rectangular cross section as shown in Fig. 5.7a.

SOLUTION. Begin with a warping function of the form

ω = yz + C sin kz sinh ky (1)

where C and k are constants to be selected such that the boundary conditions are
satisfied. Application of the boundary conditions of Eq. (5.11) leads to the warping
function

ω = yz +
∞∑

n=1,3,5,...

cn sin
(nπ

2b
z
)

sinh
(nπ

2b
y
)

(2)

where

cn = (−1)(n+1)/2 32b2

n3π3

1

cosh (nπa/2b)

The torsional constant J is obtained from Eq. (5.19):

J =
∫

A

(
y2 + z2 + y

∂ω

∂z
− z

∂ω

∂y

)
dy dz (3)

Introduce the numerical values Mx = 100, 000 in.-lb, a = 6 in., b = 4 in., and
assume that the bar is made of aluminum. Then, from Eq. (5.18), θ = 2.045 × 10−4

rad/in. The displacements uy and uz of Eq. (5.1) and ux of Eq. (5.2) can now be
computed. The warping function is plotted in Fig. 5.7b (Reagan, 2002).

5.1.1 Force Formulation

The formulation for Saint-Venant torsion that was just presented is referred to as a
displacement formulation. This approach resulted in a Laplace’s equation expressed
in terms of the warping function ω.

A force formulation of the Saint-Venant torsion problem can be derived as an al-
ternative to the displacement approach. For the force form, introduce a stress function
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(a) Dimensions

Figure 5.7 Bar of rectangular cross section.
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ψ(y, z) defined as

τxy = ∂ψ

∂z
τxz = −∂ψ

∂y
(5.26)

The conditions of equilibrium of Eq. (1.25) reduce to

∂τxy

∂y
+ ∂τxz

∂z
= 0

∂τyx

∂x
= ∂τzx

∂x
= 0 (5.27)

by setting the body forces equal to zero and noting that (Eq. 5.4) σx = 0, σy =
0, σz = 0, τyz = 0. The stresses of Eq. (5.26) satisfy these equilibrium condi-
tions. The torsion problem is to find the Prandtl stress function ψ . For the strains
of Eq. (5.3), the compatibility conditions of Eq. (1.9) reduce to

−∂2γxz

∂y2
+ ∂2γxy

∂y∂z
= 0

∂2γxz

∂z∂y
− ∂2γxy

∂z2
= 0 (5.28)

Since

γxy = 1

G

∂ψ

∂z
and γxz = − 1

G

∂ψ

∂y

Eq. (5.28) can be expressed as

∂

∂y
∇2ψ = 0

∂

∂z
∇2ψ = 0 (5.29)

where

∇2 = ∂2

∂y2
+ ∂2

∂z2

For both expressions of Eq. (5.29) to hold, ∇2ψ must be equal to a constant. To
evaluate the constant, note from Eq. (5.26) that

∂2ψ

∂y2
= −∂τxz

∂y
= −Gθ

(
∂2ω

∂y∂z
+ 1

)
∂2ψ

∂z2
= ∂τxy

∂z
= Gθ

(
∂2ω

∂z∂y
− 1

) (5.30)

The sum of these expressions shows that

∇2ψ = −2Gθ (5.31)

which is a Poisson’s equation. This is the compatibility equation for torsion of a bar.
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From Eq. (5.11), with Eqs. (5.4) and (5.26), the boundary condition becomes

∂ψ

∂y

dy

ds
+ ∂ψ

∂z

dz

ds
= 0 or

dψ

ds
= 0 (5.32)

since (Eq. 1.36) ny = dz/ds and nz = −dy/ds. It follows that ψ is constant along
the boundary of the cross section. The magnitude of the constant is arbitrary be-
cause the stresses are derivatives of ψ rather than being defined in terms of ψ itself.
Without loss of generality, ψ is often taken to be zero along the boundary. That is,
the boundary condition that accompanies Eq. (5.31) is that ψ = 0 along the cross-
section boundary.

From Eq. (5.15), the resultant moment is given by

Mx =
∫∫
A

(
−∂ψ

∂y
y − ∂ψ

∂z
z

)
dy dz (5.33)

and, upon integration by parts and the introduction of ψ = 0 on the boundary, this
relationship reduces to

Mx = 2
∫∫
A

ψ dy dz (5.34)

The torsional constant becomes

J = Mx

Gθ
= 2

Gθ

∫∫
A

ψ dy dz (5.35)

It is possible to solve analytically a few problems with simple cross-sectional
shapes using these force method relationships. Begin by judiciously assuming the
form of the stress function, perhaps a polynomial. Then, choose the coefficients in
the assumed stress function so that Poisson’s equation (Eq. 5.31) and the boundary
condition of ψ = 0 is satisfied. This stress function can then be employed to compute
the stresses, twisting moment, and the torsional constant from Eqs. (5.26), (5.34),
and (5.35). Numerical methods such as those described in this book can be utilized
to solve very general problems, with arbitrary cross-sectional shapes.

Example 5.5 Elliptical Cross Section—Force Formulation. Torsional stresses
can be calculated for several simple cross-sectional shapes using the force method
with the stress functions. The stress functions are established based on the equations
that define the boundary of the section. To illustrate this procedure, examine the
uniform bar of Example 5.3 that has a cross section of elliptical shape. The equation
for the ellipse of Fig. 5.6 is

y2

a2
+ z2

b2
= 1 (1)
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Suppose that the stress function ψ on the boundary, which must be constant, is cho-
sen to be zero. This requirement is satisfied by the stress function

ψ = C

(
y2

a2
+ z2

b2
− 1

)
(2)

where C is a constant to be determined. Substitute ψ of (2) into Poisson’s equation
of Eq. (5.31), giving

2C

(
1

a2
+ 1

b2

)
= −2Gθ (3)

so that C is equal to

C = − a2b2

a2 + b2
Gθ (4)

The stress function of (2) is now fully defined.
The shear stress components are obtained by substituting the stress functions in

Eq. (5.26):

τxy = ∂ψ

∂z
= − 2a2z

a2 + b2
Gθ τxz = −∂ψ

∂y
= 2b2y

a2 + b2
Gθ (5)

For b < a, the maximum shear stress occurs at z = b, the boundary closest to the
centroid of the ellipse:

τmax = τxy |z=b = − 2a2b

a2 + b2
Gθ (6)

Equation (5.34) gives the torque

Mx = 2
∫∫
A

ψ dy dz

= − 2a2b2

a2 + b2
Gθ

 1

a2

∫∫
A

y2 dy dz + 1

b2

∫∫
A

z2 dy dz −
∫∫
A

dy dz


= − 2a2b2

a2 + b2
Gθ

(
Iz

a2
+ Iy

b2
− A

)
(7)

where

Iz =
∫∫
A

y2 dy dz Iy =
∫∫
A

z2 dy dz, (8)
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and A = ∫∫
A dy dz. For an ellipse, these formulas lead to Iz = πa3b/4, Iy =

πab3/4, and A = πab. Place these values in (7):

Mx = πa3b3

a2 + b2
Gθ (9)

From (5) and (9), the stresses in terms of the twisting moment are

τxy = − 2

ab3π
Mx z τxz = 2

a3bπ
Mx y (10)

The resultant shear force per unit area at point y, z is

(
τ 2

xy + τ 2
xz

)1/2 = 2Mx

abπ

(
z2

b4
+ y2

a4

)1/2

(11)

Observe that constant stress contours will be ellipses. From Eq. (5.35)

J = πa3b3

a2 + b2
(12)

The quantity G J is referred to as the torsional rigidity of the cross section. The
same results were found in Example 5.3 using the displacement formulation with the
warping function ω = Cyz, where C is a constant. For a = b, the expression for the
shear stress on an elliptical cross section reduces to the well-known stress values for
a circle.

The warping displacement ux = θω can be evaluated using Eq. (5.4). From the
first relationship,

∂ux

∂y
= τxy

G
+ θz = Mx

G

( −2

ab3π
+ 1

J

)
z = Mx

Gπa3b3
(b2 − a2)z (13)

where (10), Eq. (5.18), and (12) have been introduced. Integration of (13) gives

ux = Mx

Gπa3b3
(b2 − a2)zy + h(z) (14)

From the second relationship of Eq. (5.4),

ux = Mx

Gπa3b3
(b2 − a2)zy + g(y) (15)

These two expressions are equal only if h(z) and g(y) are equal to the same constant.
If there is no warping displacement at the origin [(y, z) = (0, 0)], this constant
will be zero. The deformed shape will be asymmetrical with respect to the y and
z axes and will exhibit a hyperbolic paraboloid pattern. This warping displacement
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corresponds to the warping assumed in Example 5.3, where ω was set equal to Cyz,
where C is a constant.

Saint-Venant proposed an approximate formula for torsion of a solid section of
any cross-sectional shape. He noticed that (9) can be written as

Mx

θ
= πa3b3G

a2 + b2
= G A4

π3ab(a2 + b2)
= G A4

π2 A(a2 + b2)
= G A4

4π2 Ip
≈ G A4

40Ip
(16)

where Ip = Ix = Iy + Iz = (a2 + b2)πab/4 = (a2 + b2)A/4. Observe in this
relationship, that J of Eq. (5.35) is given by

J = A4

40Ip
(17)

Saint-Venant suggested that (16) can be applied to any shape if A and Ip are as-
signed the values of the area and centroidal polar moment of inertia for the cross
section in question. This relationship sometimes gives questionable results if one
cross-sectional dimension is much greater than the others.

Example 5.6 Equilateral Triangle Cross Section. The solution procedure of Ex-
ample 5.5 can be employed for several other simple cross sections. For example, for
the equilateral triangular cross section of Fig. 5.8, the solution can begin with the
stress function

ψ = Gθ

2h

(
y − √

3z − 2h

3

)(
y + √

3z − 2h

3

)(
y + h

3

)
(1)

To find Mx or J , the integral∫∫
A

ψ dy dz = Gθ
h4

30
√

3
(2)

y

z

h

h
3

h
3
2

Figure 5.8 Equilateral triangle of height h.
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is needed. Then, from Eq. (5.34),

Mx = Gθ
h4

15
√

3
(3)

and from Eq. (5.35),

J = h4

15
√

3
(4)

The shear stress components are found by substituting the stress function into
Eq. (5.26):

τxy = ∂ψ

∂z
= − Mx

2h J
(6yz + 2hz) τxz = −∂ψ

∂y
= − Mx

2h J
(3y2 − 2hy − 3z2)

(5)

The maximum shear stress occurs at (−h/3, 0), the boundary closest to the centroid
of the triangle

τmax = τxz |(−h/3,0)= − Mx h

2J
(6)

5.1.2 Membrane Analogy

Prandtl recognized the resemblance of the governing equations for Saint-Venant tor-
sion of a bar and the equilibrium equations for a flat membrane stretched across an
opening of the same shape as the yz plane cross section of the bar. Lateral pressure
p causes deflection u in the membrane. If N is the uniform tension per unit length in
the membrane, the differential equation of equilibrium for transverse motion is

∂2u

∂y2
+ ∂2u

∂z2
= − p

N
(5.36)

This relationship is the same as Eq. (5.31) if u is substituted for ψ and p/N for 2Gθ .
This analogy is helpful in visualizing the distribution of shear stress components. The
volume between the deformed membrane and the yz plane is

∫∫
A u dy dz, so that

by comparison with Eq. (5.34) the twisting moment is equal to twice the volume of
the deformed membrane. Contour lines of constant u correspond to lines of constant
stress function ψ . It can be shown that the slope of the membrane equals the value
of the shear stress. The similarities are referred to as the membrane analogies. One
use of the membrane analogy is in the comparison of the torques and shear stresses
for two different shapes of cross section. Suppose that two membranes are stretched
over the two cross sections and the same pressure p and same tension N are applied
to each cross section. A comparison of the two stretched membranes permits a com-
parison of the shear stesses and torques for the two cross sections, provided that the
two bars have the same shear modulus G and the same rate of twist θ .
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5.2 CLASSICAL FORMULAS FOR THIN-WALLED CROSS SECTIONS

The torsion characteristics of most bars of thin- and thick-walled cross sections are
determined quite differently. The basic tenet of being thin-walled is that the thickness
of a component section should be small relative to the other cross-sectional dimen-
sions. There is, however, no clearly defined distinction between sections that should
be treated as thin and thick. Sometimes the rule of thumb

tmax

b
≤ 0.1 (5.37)

is imposed, where tmax is the maximum thickness of a cross-section element and b
is some other cross-sectional dimension. The section is considered to be suitable for
analysis by thin-walled analysis methods if the foregoing condition is satisfied. If
tmax/b > 0.1, the accuracy of a thin-walled analysis theory may be questionable.

Thin-walled sections are open if the centerlines of the walls are not closed curves.
Angle, I beam, wide-flange, and channel sections, which are formed of narrow rect-
angular elements, are open sections. Sections are referred to as being closed if they
have at least one closed curve.

The cross-sectional shear stresses for a bar subjected to a pure torque form a
system of self-equilibrating forces, since otherwise there would be a resultant shear
force. For closed sections the stresses form a closed-loop continuous pattern around
the cross section (Fig. 5.9a). In an open section the shear stress loop occurs within
the individual thin sections as shown in Fig. 5.9b. The restriction of the closed-loop

Mx
Mx

(a) Closed section (b) Open section

Figure 5.9 Shear stress patterns in closed and open cross sections.
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system of shear stresses by the thinness of the walls is the basis of the comparatively
low torsional strength of open sections.

5.2.1 Open Sections

We begin the study of the torsion of a bar with a thin-walled open cross section by
analyzing a single thin rectangular strip as shown in Fig. 5.10. For this case, assume
that the Prandtl stress function ψ does not vary with z, except perhaps at the z edges
of the cross section, and is a function of y only. Ignore the decrease in stress at the z
edges. Poisson’s equation (Eq. 5.31) reduces to

d2ψ

dy2
= −2Gθ (5.38)

which is satisfied by the stress function

ψ = −Gθ

(
y2 − t2

4

)
(5.39)

As required by the force formulation of Section 5.1.1, ψ is zero on the boundaries of
y = ±t/2. Then (Eq. 5.34)

Mx = 2
∫∫

ψ dy dz = 1
3 bt3G

dφ

dx
(5.40)

giving

J = 1
3 bt3 (5.41)

z

x

y

Mx , f

b t

Figure 5.10 Torsion of a thin rectangular strip.
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z

y

Figure 5.11 Shear stress distribution for an open cross section.

These formulas apply only when t is much smaller than b. The shear stresses of
Eq. (5.26) become τxy = 0, τxz = 2Mx y/J , so that τxz is distributed linearly across
the thickness as shown in Fig. 5.11. That is, the torsional stress varies linearly over
the cross section from zero at the center to a maximum at the outer edge:

τmax = τxz

∣∣∣
y=±t/2

= −∂ψ

∂y

∣∣∣
y=±t/2

= ±tG
dφ

dx
= ± t Mx

J
(5.42)

In this solution, it is not possible to set the value of the stress function to zero
on the shorter edges of the rectangle. Consequently, the stress distribution τxz =
2Mx y/J is not valid near the shorter edges, where the boundary conditions require
that the stress function be zero. In addition, the torque due to τxz is one-half the actual
torque Mx . This is, in part, because the neglected shear stresses τxy are concentrated
near the shorter edges and have longer moment arms than the stresses τxz .

For a complex thin-walled open cross section, J is usually taken to be

J = 1
3

m∑
i=1

bi t
3
i (5.43)

where m is the number of straight or curved segments of thickness ti and height bi
that make up the cross section. This formula, which is sometimes referred to as Saint-
Venant’s approximation, follows from Eq. (5.41), being extended to bars for which
the cross sections are formed of multisegments. Similar to Eq. (5.42), the maximum
shear is given by

τmax = tmax Mx

J
(5.44)
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Figure 5.12 Bars with open thin-walled cross sections of the same thickness and same total
length.

The angle of twist is calculated using

dφ

dx
= Mx

G J
(5.45)

According to these rather simple formulas, all the cross sections shown in
Fig. 5.12 will experience the same angles of twist and stresses for bars undergo-
ing the same twisting moment.

Example 5.7 Comparison of a Thin-Walled Cylinder with and without a Slit. To
illustrate the difference in structural characteristics of open and closed sections, com-
pare the stiffness and stresses of a steel tube of circular cross section, 4 in. outside
radius and 1

4 in. thickness, with the stiffness and stresses of the same tube with a
longitudinal slit as shown in Fig. 5.13.

SOLUTION. For the torsion of a bar, define stiffness as the ratio of the torque to the
angle of twist or to the rate of angle of twist. Thus, the stiffness is given by

Mx

dφ/dx
= G J (1)

so that for bars of the same material a comparison of stiffness is a problem of com-
paring J for each case.

ri

t

ro

Figure 5.13 Cylinders of circular cross sections illustrating closed and open cross sections.
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For a circular cross section, J is the polar moment of inertia Ip (Example 5.1).
For a thin-walled tube

J = π

2
(r4

o − r4
i ) = π

2
(44 − 3.754) = 91.49 in4 (2)

For the cylinder with the slit, J is given by Eq. (5.43):

J = 1
3

m∑
i=1

bi t
3
i = 1

3 bt3 = 1
3 (24.35)

(
1
4

)3 = 0.13 in4 (3)

where the midline circumference (bi ) is π(8− 1
4 ) = 24.35 in. The use of the midline,

inner circumference, or outer circumference is usually not numerically significant in
this calculation, as they are so close to each other in value for a thin-walled section.
It follows that the tube is

Jtube

Jslit
= 91.49

0.13
= 721.5 (4)

times as stiff as the slit cylinder.
The peak stress in the tube is (Example 5.1)

τmax = Mxro

J
= Mx

4

91.49
= 0.0437Mx (5)

and for the cylinder with a slit (Eq. 5.44),

τmax = tmax Mx

J
= Mx

4 · 0.13
= 1.92Mx (6)

It can be concluded that the stresses in a cylinder with a slit are substantially higher
than those in a tube.

5.2.2 Closed Sections, Hollow Shafts

Simple and reasonably accurate formulas can be obtained for hollow, cylindrical
shafts of noncircular cross sections with wall thicknesses that are much smaller than
the overall dimensions of the cross section. It is necessary to assume that the tor-
sional stress τ is uniformly distributed across the thickness of these closed sections.
Experiments and comparisons with more exact analyses show that this assumption
is reasonable for most hollow thin-walled cross sections in the elastic range. It is
convenient to replace stress (force per length2) by force per unit length along the
wall. Multiply the stress, which is assumed not to vary through the thickness, by the
thickness to obtain a quantity q referred to as the shear flow (Fig. 5.14); that is,

q = τ t (5.46)
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 Shear flow q

t (can vary along s)

Mx

 Middle line

Figure 5.14 Shear flow in a thin-walled hollow shaft.

Formula Derivation Refer to the thin-walled tube of Fig. 5.15. Consider first the
condition of equilibrium of the forces in the x direction for the element shown in
Fig. 5.15a,

∑
Fx = 0, τ1t1 �x − τ2t2 �x = 0, or τ1t1 = τ2t2. The product of shear

stress and wall thickness (i.e., the shear flow q, is constant on any such planes).
Equilibrium of moments shows that the shear stresses on the adjoining corners of
an element (Fig. 5.15b) are equal (i.e., τ1 = τ4 and τ2 = τ3). Then it follows that
τ4t1 = τ4t2 = q. At the other two corners, τ1 = τ3 and τ2 = τ4 or τ3t1 = τ3t2 = q.
It can be concluded that q is constant around the cross section of a section per-
pendicular to the x axis. The words shear flow for q are employed because of the
analogy between q and the flow of a constant quantity of water around a closed
channel.

The shear flow can be shown to be related to the applied torque. Let r of Fig. 5.15c
be the lever arm of the force q �s with respect to some convenient point O. Note
that the element of length �s contributes rq �s to the total moment. If �s is small,
r �s ≈ 2 �A∗. It follows from the configuration in Fig. 5.15c that �Mx = qr �s =
q2 �A∗. Sum the torque contributions of all the elements to find the total torque.
Thus, Mx = 2q A∗, where A∗ is the total enclosed area. In terms of the stress τ =
q/t , this relationship becomes

τ = Mx

2A∗t
(5.47)

It follows that the maximum stress occurs at the location of the thinnest section.
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∆x

τ2t2 ∆x

t2

t1

τ1t1 ∆x

τ2

τ1

τ3

τ4

∆s

Mx

Mx

r
∆A*

q ∆s

(a) (b) (c)

O

x

Figure 5.15 Torsion of a thin-walled hollow cylinder.

To find the angle of twist of a thin-walled hollow section, set the work done by
an externally applied torque (Mx/2) (dφ/dx) equal to the internal (strain) energy
stored in the bar (per unit length) [

∫
V (τγ /2) dV ]:

Mx

2

dφ

dx
=

∫
V

τγ

2
dV (5.48)

where V is the volume per unit length, τ the torsional stress, and γ the corresponding
strain. Expressions for work and strain energy are given in many solid mechanics
books (e.g., in Pilkey and Wunderlich, 1994). Substitute into Eq. (5.48) Hooke’s law
(γ = τ/G), �V = t �s, and Eq. (5.47):

dφ

dx
= Mx

4A∗2G

∮
ds

t
(5.49)

where the integration is taken completely around the profile of the hollow cross sec-
tion.

In summary, the torsional stress and displacement equations for a thin-walled hol-
low bar are:

Stress or shear flow:

q = Mx

2A∗ τ = Mx

2A∗t
q = τ t (5.50)

where A∗ is the area enclosed by the middle line of the wall.
Angle of twist:

dφ

dx
= Mx

G J
J = 4A∗2∮

(1/t) ds
= 4A∗2∫ S

0 (1/t) ds
(5.51)
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where s is the perimeter coordinate and S is the length of the middle line of the
wall.

The expression for J of Eq. (5.51) is referred to as Bredt’s formula (Bredt, 1896), as
is the expression for τ of Eq. (5.50).

In the case of a bar of length L,

φ = Mx L

G J
(5.52)

If t is constant,

J = 4A∗2t

S
(5.53)

and

dφ

dx
= Mx S

4A∗2Gt
= τ S

2A∗G
(5.54)

Variable Wall Thickness For a particular torque Mx , q = Mx/2A∗ represents
the shear flow, even if the wall thickness varies. The maximum shear stress occurs
where the wall thickness is thinnest, that is, τmax = q/tmin. Suppose that a hollow
section has a perimeter formed of lengths Si (i = 1, 2, . . . ) with constant thicknesses
ti (i = 1, 2, . . . ) and moduli Gi (i = 1, 2, . . . ), respectively. Superimpose Eq. (5.54)
for each segment:

dφ

dx
= Mx

4A∗2

(
S1

t1G1
+ S2

t2G2
+ · · ·

)
(5.55)

Special Observations It follows from Eq. (5.50) that although the shear flow
q is constant around the wall, the shear stress τ = q/t can vary because t can
vary. The highest shear stress occurs where the wall is thinnest, that is, where t is a
minimum. Note that there is no distinction between different section shapes, in the
sense that according to Eq. (5.50), for the same torque Mx the shear flow q will be
the same for all cross-sectional geometries with the same enclosed area A∗. Because
the wall thickness is very small relative to the other dimensions of the cross section,
normally there is no harm in using the outer or inner dimensions of the cross section
in calculating the enclosed area if it is difficult to compute the area enclosed by the
middle line of the cross section. There is the possibility of buckling when dealing
with thin-walled structures. Thus, a hollow cylinder for which the stresses are below
allowable stress levels may not be safe from the standpoint of stability. In the case
of a circular cylinder of mild steel, buckling can occur at a normal allowable stress
level for a thickness of about 1.5% of the radius.

Example 5.8 Accuracy of Bredt’s Formula for Hollow Thin-Walled Shafts. Com-
pare the stresses predicted by the exact theory for the torsion of circular shafts (Ex-
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ample 5.1) with those of the approximate Bredt’s theory of thin-walled hollow tubes
(Eq. 5.50).

SOLUTION. Begin with a thin-walled cylinder of circular cross section with inside
radius ri and outside radius ro. For Bredt’s hollow section formula (Eq. 5.50), τ =
Mx/2A∗t , with t = ro − ri , use an enclosed area of A∗ = π [(ro + ri )/2]2, since the
midwall radius is (ro + ri )/2. This gives

τapprox = Mx

2A∗t
= Mx

2π [(ro + ri )/2]2 (ro − ri )
= Mx

(π/2)(ro + ri )2(ro − ri )
(1)

For the exact theory, use Eq. (9) of Example 5.1 with r = ro and J = Ip, the polar
moment of inertia.

τmax = Mxro

J
= Mxro

(π/2)(r4
o − r4

i )
= Mxro

(π/2)(r2
o + r2

i )(ro − ri )(ro + ri )
(2)

To compare the two theories, study the ratio

τapprox − τmax

τmax
= −

(
ri

ro

)
1 − ri/ro

1 + ri/ro
(3)

For ri/ro = 0.95, (3) shows that the difference between the maximum stresses of the
two theories is 2 1

2 %. As expected, with an increase in wall thickness of the tube, the
percent difference increases. Thus, the difference increases to 11% for ri/ro = 0.75.

For the tube of Example 5.7, with ro = 4 in. and t = 1
4 in., the difference is 3%.

Example 5.9 Thin-Walled Cylinder of Circular Cross Section. Apply Eq. (5.50)
to find the torsional stresses in a hollow thin-walled circular section. Show that this
gives the same formula obtained by equilibrium applied to a thin-walled cylinder of
circular cross section with axial torque.

SOLUTION. Consider a thin-walled cylinder of circular cross section, of constant
thickness t and midline radius r with axial torque Mx . Assume that the cylinder is

t

τ
r

x

Mx

Area = 2πrt

Figure 5.16 Thin-walled hollow cylinder of circular cross section.
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so thin that the difference between r and the inner and outer radii does not have a
significant effect on the solution. Also assume that the torsional stress is uniformly
distributed throughout the wall thickness. Summation of moments about the x axis
(Fig. 5.16) gives τ2πrt ·r = Mx or τ = Mx/2πr2t . From Eq. (5.50), τ = Mx/2A∗t .
For the circular cylinder, A∗ = πr2 so that τ = Mx/2πr2t . The two formulas are
the same.

Example 5.10 Torque Capacity of a Thin-Walled Tube. Find the allowable torque
of the thin-walled tube of Fig. 5.17 if the average shear stress is not to exceed τallow.
Also, find the angle of twist.

SOLUTION. The stress τ is given by Bredt’s formula of Eq. (5.50). The area en-
closed by the midthickness line is

A∗ = π(r)2 + 2(r)2r = (π + 4)r2 = 7.14r2 (1)

Give τ its design value of τallow and calculate the allowable torque (Eq. 5.50):

Mx = 2A∗q = 2A∗tτallow (2)

With S = 2π(r) + 2(2r) = (2π + 4)r = 10.28r , the angle of twist per unit length
for this torque is (Eq. 5.54)

dφ

dx
= Mx S

4A∗2Gt
= Mx (0.05)

Gtr3
(3)

Example 5.11 Stiffness of Open and Closed Cross Sections. Suppose that the
open and closed cross sections shown in Fig. 5.18 have the same cross-sectional
areas. Which one is stiffer if b is much greater than t , say b ≥ 10t?

r r

t

2r

Figure 5.17 Tube cross section with semicircular ends.
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b
t

b

bb

t

b

b

Figure 5.18 Open and closed sections of the same cross-sectional area.

SOLUTION. For the thin-walled hollow triangle section, the stiffness (ratio of
torque to rate of angle of twist) is

Mx

dφ/dx
= G J (1)

with Eq. (5.53)

J = 4A∗2t

S
S = 3b A∗ = 1

2

(
b

2

)(√
3

2
b

)
=

√
3

8
b2 (2)

This gives

J = 1
16 b3t (3)

so that the stiffness becomes

Mx

dφ/dx
= Gb3t

16
(4)

For the open-angle section (Eq. 5.43)

J = 1
3

3∑
i=1

bi t
3
i = bt3 (5)

giving the stiffness

Mx

dφ/dx
= Gbt3 (6)

If b ≥ 10t , the closed-section bar is more than six times stiffer than the open-section
bar.

The formulas for open and closed sections can be combined so that cross sections
such as that of Fig. 5.19 can be analyzed. The torsional constant for this hollow tube
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Figure 5.19 Hollow section with fins.

with fins is the sum of Eqs. (5.43) and (5.51):

J = 1

3

m∑
i=1

bi t
3
i + 4A∗2∮

(1/t) ds
(7)

The stresses in the fins and hollow section are given by Eqs. (5.42) and (5.50), re-
spectively.

Multicell Sections The formulas of this section can be extended to apply to an
n-celled tube of the sort shown in Fig. 5.20. As shown in the figure, suppose that the

1

Mx2

3

n - 1
n

qnqn-1

q1

q2

q3

Figure 5.20 Multicell section.
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section is formed of cells with independent shear flows. The equation of equilibrium
for this multicell section is obtained by summation of the formulas for single cells of
Eq. (5.50):

Mx = 2
n∑

i=1

qi A∗
i (5.56)

where qi is the shear flow in the i th cell and A∗
i is the enclosed area of the i th cell.

Since the equilibrium condition of Eq. (5.56) is not sufficient to determine the n un-
known shear flows, this is a statically indeterminate problem. To solve this problem,
turn to the deformation relation of Eq. (5.51).

Suppose that there are three cells, say 1, 2, 3. For cell 2 acting by itself, Eq. (5.51)
would be

dφ

dx
= Mx

4A∗2
2 G

∮
S2

ds

t
= q2

2A∗
2G

∮
S2

ds

t
(5.57)

where S2 indicates integration around cell 2. However, the shear flow q1 and q3 that
occur in adjoining cells 1 and 3 must be taken into account. Segments that belong to
two adjoining cells are referred to as webs. The shear flow in the first web should be
reduced to q2 − q1 and that in the second web to q2 − q3. Then Eq. (5.57) can be
expressed as

dφ

dx
= 1

2A∗
2G

(
q2

∮
S2

ds

t
− q1

∫
S12

ds

t
− q3

∫
S23

ds

t

)
(5.58)

where the integration in the latter two integrals is along the first and second webs of
lengths S12 and S23, respectively. Equation (5.58) can be extended to represent the
i th cell:

dφ

dx
= 1

2A∗
i G

qi

∮
Si

ds

t
−

m∑
j=1
( j �=i)

(
q j

∫
Si j

ds

t

) i = 1, 2, . . . , n (5.59)

where the i th cell is assumed to be bounded by m cells rather than by two. Equations
(5.59) and (5.56) are n +1 equations for solving for the n +1 unknowns, dφ/dx and
q1, q2, . . . , qn .

Example 5.12 Wing Section. Calculate the shear flows and the rate of angle of
twist for the wing section of Fig. 5.21 if the torque of 200,000 in-lb is applied. Let
G = 3.8 · 106 psi.

SOLUTION. Assume that cell 1 is half of an ellipse with the semimajor axis = 8 in.
and semiminor axis = 4 in. so that A∗

1 = π(8)(4)/2 = 50.3 in2. The areas of the
other cells are A∗

2 = A∗
3 = 128 in2. To approximate the length of the half ellipse, use
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Cell 1

8 in.

Cell 3

16 in. 16 in.

8 in.0.3 in.0.4 in.
0.4 in.

0.2 in.
0.3 in. 0.3 in.

0.3 in. 0.3 in.

Cell 2Mx

Figure 5.21 Multicell section.

S1 = π

√
a2 + b2

2
(1)

With a = 8 and b = 4, (1) gives S1 = 19.9 in. From Eqs. (5.56) and (5.59),

Mx = 2 [q1(50.3) + q2(128) + q3(128)]

dφ

dx
= 1

2G A∗
1

[
q1

(
19.9

0.2
+ 8

0.4

)
− q2

8

0.4

]
dφ

dx
= 1

2G A∗
2

[
q2

(
2 · 8

0.4
+ 2 · 16

0.3

)
− q1

8

0.4
− q3

8

0.4

]
dφ

dx
= 1

2G A∗
3

[
q3

(
2 · 8

0.4
+ 2 · 16

0.3

)
− q2

8

0.4

]
(2)

Solve these four equations for the four unknowns dφ/dx , q1, q2, q3 with Mx =
200, 000 in-lb. This gives

dφ
dx = 4.367 · 10−5 rad/in.

q1 = 200.50 lb/in.

q2 = 363.26 lb/in.

q3 = 339.20 lb/in.

(3)

5.3 COMPOSITE CROSS SECTIONS

The use of modulus-weighted properties is described in Chapter 1 for the flexural
analysis of composite, or nonhomogeneous, cross sections. The elastic modulus was
assumed to take on different values for different parts of the cross section, making
E a function of position, E = E(y, z). A reference elastic modulus Er is chosen
and modulus-weighted differential area defined (Eq. 1.64), d Ã = (E/Er ) dA. For a
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finite element mesh, with Ee as the elastic modulus for element e, assign modulus
weights

λe = Ee

Er
(5.60)

The composite cross section with elementary areas dA is transformed to an equivalent
cross section with the elementary areas

d Ã = λe dA = Ee

Er
dA (5.61)

The analysis of the transformed cross section gives stresses that are multiplied by the
factor λe of the corresponding material to determine the actual normal stresses. The
formula for these stresses, which are due to an axial load Nx and bending moments
My , Mz , is given in Eq. (1.101).

When calculating the Saint-Venant torsional stresses for a nonhomogeneous cross
section, the shear modulus is considered to be a function G(y, z) of the coordinates
y, z of the material points belonging to the section. The expression of Eq. (5.17) for
the section torque becomes

Mx = θ

∫
G

[(
∂ω

∂z
+ y

)
y −

(
∂ω

∂y
− z

)
z

]
dA (5.62)

Define a modulus-weighted differential element of area dA∗ by

dA∗ = G

Gr
dA (5.63)

where Gr is the shear modulus of the reference material. Substitute this expression
into Eq. (5.62), so that the torque Mx may be rewritten as

Mx = θGr J∗ (5.64)

where the modulus-weighted torsional constant is defined by (Eq. 5.19)

J∗ =
∫ [(

∂ω

∂z
+ y

)
y −

(
∂ω

∂y
− z

)
z

]
dA∗ (5.65)

The nonzero shear stresses due to torsion are given by (Eqs. 5.4 and 5.64)

τxy = Gθ

(
∂ω

∂y
− z

)
= G

Gr

Mx

J∗

(
∂ω

∂y
− z

)
τxz = Gθ

(
∂ω

∂z
+ y

)
= G

Gr

Mx

J∗

(
∂ω

∂z
+ y

) (5.66)
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The modulus weight ratio for G in terms of Poisson’s ratios is (Eq. 1.13)

G

Gr
= 1 + νr

1 + ν

E

Er
(5.67)

where νr is the Poisson’s ratio for the reference material. From Eqs. (5.63), (5.67),
and (5.60) for element e in a finite element mesh, the transformed area element is

dA∗ = Ge

Gr
dA = 1 + νr

1 + νe

Ee

Er
dA = 1 + νr

1 + νe
λe dA (5.68)

Then the shear stresses of Eq. (5.66) are

τxy = λe
1 + νr

1 + νe

Mx

J∗

(
∂ω

∂y
− z

)
τxz = λe

1 + νr

1 + νe

Mx

J∗

(
∂ω

∂z
+ y

) (5.69)

In conjunction with the preceding development, it should be noted that if the
Poisson’s ratio is variable, the basic contention that

σy = σz = τyz = 0 (5.70)

ceases to be applicable. For two materials with very different elastic moduli, it is
not unusual to find that the difference in the Poisson’s ratios is very small, as in the
case of copper and aluminum. If it is assumed that the different materials making up
the section all have the same Poisson’s ratio, the modulus weighted elastic and shear
moduli have the same value:

Ge

Gr
= Ee

Er
= λe (5.71)

for all elements e. In addition, the validity of the assumption that σy , σz , and τyz are
negligible is preserved. The modulus-weighted torsional constant is calculated with
the same differential area (Eq. 5.61) as the section properties Ĩy , Ĩz , Ĩyz defined in
Eq. (1.66):

J∗ = J̃ =
∫ [(

∂ω

∂z
+ y

)
y −

(
∂ω

∂y
− z

)
z

]
dÃ (5.72)

The formulas for the nonzero shear stresses simplify to

τxy = λe
Mx

J̃

(
∂ω

∂y
− z

)
τxz = λe

Mx

J̃

(
∂ω

∂z
+ y

) (5.73)
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5.4 STIFFNESS MATRICES

Stiffness matrices for the cross-sectional characteristics of bars subject to torsion
will be studied using the principle of virtual work. As an alternative formulation,
Galerkin’s weighted residual method is introduced as a means of finding the stiffness
matrix.

5.4.1 Principle of Virtual Work

From Section 2.1.7 the principle of virtual work appears as

δW = δWint + δWext = 0 (5.74)

For torsion this can be expressed as

δW = δWint + δWext = −
∫

V
δ�T� dV +

∫
L

mx δφ dx (5.75)

or

−δWint − δWext =
∫

V
δ�T� dV −

∫
L

mx δφ dx (5.76)

where φ is the angle of twist and mx is the applied moment per unit length.
The warping function ω and the angle of twist φ are the essential displacements.

The stresses in Eq. (5.76) can be expressed as (Eq. 5.4)[
τxy

τxz

]
=

[
G 0
0 G

] [
γxy

γxz

]
� = E �

(5.77)

The strains are given by (Eq. 5.3)

� =
[
γxy
γxz

]
= θ

−z + ∂ω

∂y

y + ∂ω

∂z

 = ∂φ

∂x

−z + ∂ω

∂y

y + ∂ω

∂z

 (5.78)

Combine these two expressions to form

� = Gφ′

−z + ∂ω

∂y

y + ∂ω

∂z

 (5.79)

there φ′ = ∂φ/∂x .
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From Eq. (5.78), the variation of the strains would be

δ� = G δφ′

−z + ∂ω

∂y

y + ∂ω

∂z

 + Gφ′

δ
∂ω

∂y

δ
∂ω

∂z

 (5.80)

or

δ� =


(

∂ω

∂y
− z

)
∂

∂x
δφ + φ′ ∂

∂y
δω(

∂ω

∂z
+ y

)
∂

∂x
δφ + φ′ ∂

∂z
δω

 (5.81)

and

δ�T =
[(

∂ω

∂y
− z

)
∂

∂x
δφ + φ′ ∂

∂y
δω

(
∂ω

∂z
+ y

)
∂

∂x
δφ + φ′ ∂

∂z
δω

]
(5.82)

With Eqs. (5.82) and (5.79), the principle of virtual work expression of Eq. (5.76)
becomes∫

δ�T� dV −
∫

L
mx δφ dx

=
∫

V
G
[{(∂ω

∂y
− z

) ∂

∂x
δφ + φ′ ∂

∂y
δω

}
φ′( − z + ∂ω

∂y

)
+

{(∂ω

∂x
+ y

) ∂

∂x
δφ + φ′ ∂

∂z
δω

}
φ′(y + ∂ω

∂z

)]
dV −

∫
L

mx δφ dx

= 0 (5.83)

Separate this into two expressions equal to zero, one with the δφ terms and the other
δω terms. In the case of the δφ terms,∫

∂

∂x
δφ

[(
∂ω

∂y
− z

)(
−z + ∂ω

∂y

)
+

(
∂ω

∂z
+ y

)(
y + ∂ω

∂z

)]
Gφ′ dV

−
∫

L
mx δφ dx (5.84)

Simplify this expression to∫
L

∂

∂x
δφ

∫
A

{[(
∂ω

∂y

)2

+
(

∂ω

∂z

)2

− z
∂ω

∂y
+ y

∂ω

∂z

]

+
(

−z
∂ω

∂y
+ y

∂ω

∂z
+ y2 + z2

)}
dA Gφ′ dx

−
∫

L
mx δφ dx = 0 (5.85)
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Reorganize some of the terms on the left-hand side of Eq. (5.85):

∫
A

[(
∂ω

∂y

)2

+
(

∂ω

∂z

)2

− z
∂ω

∂y
+ y

∂ω

∂z

]
dA

=
∫

A

[
∂

∂y

(
ω

∂ω

∂y

)
+ ∂

∂z

(
ω

∂ω

∂z

)
− ω

(
∂2ω

∂y2
+ ∂2ω

∂z2

)
− z

∂ω

∂y
+ y

∂ω

∂z

]
dA

=
∫

A

[
∂

∂y

(
ω

∂ω

∂y
− zω

)
+ ∂

∂z

(
ω

∂ω

∂z
+ yω

)]
dA

=
∮

ω

[(
∂ω

∂y
− z

)
ny +

(
∂ω

∂z
+ y

)
nz

]
ds (5.86)

Here ∂2ω/∂y2 + ∂2ω/∂z2 = 0 from Eq. (5.8) was introduced and the final inte-
gral was obtained with the assistance of Green’s integral theorem (Rubinstein and
Rubinstein, 1993):∫ (

−∂ P

∂z
+ ∂Q

∂y

)
dA =

∮ (−Pnz + Qny
)

ds

=
∮ (

P
dy

ds
+ Q

dz

ds

)
ds =

∮
(P dy + Q dz) (5.87)

From the cylindrical surface condition of Eq. (5.11), the final integral of Eq. (5.86)
vanishes. Substitute J of Eq. (5.19) into Eq. (5.85), showing that Eq. (5.84) reduces
to ∫

L

d

dx
δφ G J

dφ

dx
dx −

∫
L

δφ mx dx = 0 (5.88)

Integration by parts, using appropriate boundary conditions, leads to∫
L

δφ

(
d

dx
G J

dφ

dx
+ mx

)
dx = 0 (5.89)

or

d

dx
G J

dφ

dx
= −mx (5.90)

which is the same as Eq. (5.23). This is the governing equation for torsional motion
along the longitudinal axis (x) of the bar. As can be observed in Eq. (5.25), Eq. (5.90)
is the same as the governing equation for a bar in extension with a change in the
definitions of variables

(G → E J → A φ → u mx → px Mx → N ) (5.91)
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With the adjustments in notation, the stiffness matrix for extension of Example 2.16
can be used for a bar subject to Saint-Venant torsion. The stiffness matrix for torsion
is given in Example 2.17.

It was just shown that the δφ terms of the principle of virtual work expression of
Eq. (5.83) lead to differential equations for the axial response of a bar in Saint-Venant
torsion. The δω terms of Eq. (5.83) will lead to an equation for the cross-sectional
problem of finding ω and then the cross-sectional properties and stresses for a bar in
torsion. Assemble the δω terms of Eq. (5.83):∫

V
Gφ′2

(
∂

∂y
δω

∂ω

∂y
+ ∂

∂z
δω

∂ω

∂z
− ∂

∂y
δω z + ∂

∂z
δω y

)
dV

= G
∫

L
φ′2 dx

∫
A

[(
∂

∂y
δω

∂ω

∂y
+ ∂

∂z
δω

∂ω

∂z

)
−

(
∂

∂y
δω z − ∂

∂z
δω y

)]
dA

= 0 (5.92)

This implies that∫
A

[(
∂

∂y
δω

∂ω

∂y
+ ∂

∂z
δω

∂ω

∂z

)
−

(
∂

∂y
δω z − ∂

∂z
δω y

)]
dA = 0 (5.93)

This is the expression that will be solved for ω(y, z), which will then be used to
compute cross-sectional characteristics.

Finite Element Formulation Model the cross section with finite elements and
approximate the warping function ω over each element (e) by

ω(y, z) =
∑

Niωi = N�e = �eTNT (5.94)

where Ni are the shape functions, N is a vector of the shape functions defined
by Eq. (4.10) for a nine-node element, ωi are the nodal values of ω, and �e =
[ω1 ω2 ω3 · · · ωnb ]T is a vector of nodal values of the warping function ω

with nb equal to 9 for the nine-node element. The derivatives of ω can be expressed
as

∂ω

∂y
= ∂N

∂y
�e ∂ω

∂z
= ∂N

∂z
�e (5.95)

Also,

δω = N δ�e = δ�eTNT ∂

∂y
δω = δ�eT ∂NT

∂y

∂

∂z
δω = δ�eT ∂NT

∂z
(5.96)

Insertion of Eqs. (5.95) and (5.96) into Eq. (5.93) gives∫
Ae

δ�eT
[(

∂NT

∂y

∂N
∂y

+ ∂NT

∂z

∂N
∂z

)
�e−

(
z
∂NT

∂y
− y

∂NT

∂z

)]
dA

= δ�eT (
ke�e − pe) = 0 (5.97)
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where the element stiffness matrix ke and element loading vector pe for element e
are

ke =
∫

Ae

(
∂NT

∂y

∂N
∂y

+ ∂NT

∂z

∂N
∂z

)
dA pe =

∫
Ae

(
z
∂NT

∂y
− y

∂NT

∂z

)
dA (5.98)

5.4.2 Weighted Residual Methods

The displacement formulation for Saint-Venant torsion has been reduced in Sec-
tion 5.1 to the partial differential equation (Eq. 5.8)

∇2ω = 0 (5.99)

to be solved for the warping function ω with the boundary condition (Eq. 5.11)

∂ω

∂y
ny + ∂ω

∂z
nz = �ω · n =∂ω

∂n
= zny − ynz = n · g (5.100)

where

n = nyj + nzk �ω = ∂ω

∂y
j + ∂ω

∂z
k g = zj − yk

This section formulates this boundary value problem for solution by the weighted
residual method, in particular by Galerkin’s approach.

In general terms, a continuum mechanics problem requires the solution of a set of
differential equations

A(u) = 0 (5.101)

for the functions u in a domain �, which is a line, an area, or a volume, such that the
functions u satisfy certain conditions

B(u) = 0 (5.102)

on the boundaries � of the domain. In the torsion problem, the vector of operators
A has a single nonzero entry, and the vector u of unknown functions has the single
component ω:

A(ω) = ∇2ω B(ω) = n · g − ∂ω

∂n
(5.103)

The domain � is the cross-sectional area of a beam subjected to torsion, and the
boundaries � are the closed boundary curves of the cross section.

The integral statement, in weighted residual form, of the general problem is∫
vTA(u) d� +

∫
vTB(u) d� = 0 (5.104)
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for all weighting functions v and v, where these functions have as many components
as the unknown vector of functions u. This integral form of this continuum mechan-
ics problem is sometimes referred to as a weak formulation. Note that the residual
expression for both the differential equations in the domain and boundary conditions
are combined in a single expression. For the torsion problem defined by the functions
of Eq. (5.103), Eq. (5.104) gives the integral formulation∫

v∇2ω dA +
∫

v

(
n · g − ∂ω

∂n

)
ds = 0 (5.105)

where s is the arc length.
The integral form of the torsion problem of Eq. (5.105) will now be recast into

another form by choosing the weighting functions v and v to be identical and in-
tegrating by parts. The latter operation is simplified by invoking Green’s theorem
and Green’s first identity. This identity (Rubinstein and Rubinstein, 1993), which
replaces the second derivatives of ω with its first derivatives, takes the form∫

v∇2ω dA =
∫

v
∂ω

∂n
ds −

∫
�v · �ω dA (5.106)

Green’s theorem will be applied in its usual form,∫ (
∂Q

∂y
− ∂ P

∂z

)
dA =

∫
(P dy + Q dz) (5.107)

For our torsion problem, take P and Q of Eq. (5.107) to be

P = vy Q = vz (5.108)

Then, with g = zj − yk,

vg · n = Qj · n − Pk · n = Qny − Pnz = Qtz + Pty

= (Pj + Qk) · t (5.109)

where ty , tz are components of the unit tangent vector (t = tyj + tzk) and, from
Eq. (1.33), ny = tz and nz = −ty . Since, from Eq. (1.37), dr = dyj + dzk = t ds,
it follows that∫

vg · n ds =
∫

(Pj + Qk) · t ds =
∫

(P dy + Q dz) (5.110)

Introduction of the Green’s theorem of Eq. (5.107) leads to∫
vg · n ds =

∫ (
∂vz

∂y
− ∂vy

∂z

)
dA =

∫
�v · g dA (5.111)
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where

�v = ∂v

∂y
j + ∂v

∂z
k and g = zj − yk

Substitution of Eqs. (5.106) and (5.111) into the integral form of the torsion problem
(Eq. 5.105) gives ∫

�v · �ω dA −
∫

�v · g dA = 0 (5.112)

or ∫
A

[(
∂v

∂y

∂ω

∂y
+ ∂v

∂z

∂ω

∂z

)
−

(
∂v

∂y
z − ∂v

∂z
y

)]
dA = 0 (5.113)

Introduce the trial function of Eqs. (5.94) and (5.95) for element e:∫
Ae

[(
∂v

∂y

∂N
∂y

+ ∂v

∂z

∂N
∂z

)
�e −

(
∂v

∂y
z − ∂v

∂z
y

)]
dA = 0 (5.114)

Galerkin’s Method For Galerkin’s method the functions v in element e are re-
placed by the shape functions. Thus, let

v = Nve = veTNT (5.115)

where ve contains the nodal values of v. Then Eq. (5.114) becomes∫
A

veT
[(

∂NT

∂y

∂N
∂y

+ ∂NT

∂z

∂N
∂z

)
�e −

(
z
∂NT

∂y
− y

∂NT

∂z

)]
dA

= veT (
ke�e − pe) = 0 (5.116)

where ke and pe are given by Eq. (5.98). The development of the interpolation ex-
pressions of Eq. (5.115) is discussed in Chapter 4. It follows from Eqs. (5.97) and
(5.116) that the principle of virtual work and Galerkin’s method lead to the same
element stiffness relations.

5.4.3 Isoparametric Elements

To develop a nine-node isoparametric element, make use of the transformation equa-
tions described in Chapter 4. The warping function is approximated over each ele-
ment e by

ω(η, ζ ) =
9∑

i=1

Niωi = N(η, ζ )�e (5.117)
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where �e is the vector of nodal values ωi of ω for the element and N is a vector of
the shape functions Ni . The element stiffness matrix ke of Eq. (5.98) can be written
as

ke =
∫

Ae

(
∂NT

∂y

∂N
∂y

+ ∂NT

∂z

∂N
∂z

)
dy dz =

∫
Ae

[
∂NT

∂y

∂NT

∂z

]
∂N
∂y
∂N
∂z

 dy dz

(5.118)

From Eq. (4.23), Ae = ∫
�

dy dz = ∫
�r

| Je | dη dζ . As noted in Eq. (4.16),
∂N
∂y

∂N
∂z

 =


∂N
∂η

∂η

∂y
+ ∂N

∂ζ

∂ζ

∂y

∂N
∂η

∂η

∂z
+ ∂N

∂ζ

∂ζ

∂z

 =


∂η

∂y

∂ζ

∂y

∂η

∂z

∂ζ

∂z




∂N
∂η

∂N
∂ζ

 = J−1
e


∂N
∂η

∂N
∂ζ

 = Be = B

(5.119)

a 2 × 9 matrix. On occasion the subscript e will be dropped from Be, although this
matrix always applies to element e. Also,[

∂NT

∂y

∂NT

∂z

]
=

[
∂NT

∂η

∂η

∂y
+ ∂NT

∂ζ

∂ζ

∂y

∂NT

∂η

∂η

∂z
+ ∂NT

∂ζ

∂ζ

∂z

]

=
[
∂NT

∂η

∂NT

∂ζ

]
∂η

∂y

∂η

∂z

∂ζ

∂y

∂ζ

∂z


=

[
∂NT

∂η

∂NT

∂ζ

]
(J−1

e )T = BT (5.120)

Thus,

ke =
∫ 1

−1

∫ 1

−1

[
∂NT

∂η

∂NT

∂ζ

] (
J−1

e

)T
J−1

e


∂N
∂η

∂N
∂ζ

 | Je | dη dζ (5.121)

or

ke =
∫ 1

−1

∫ 1

−1
BTB | Je | dη dζ (5.122)

From Eq. (5.98) the element load vector pe is defined by

pe =
∫ 1

−1

∫ 1

−1
BT

[
Nz

−Ny

]
| Je | dη dζ (5.123)
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The element equations for the eth element are then

ke�e = pe (5.124)

5.5 ASSEMBLY OF SYSTEM MATRICES

The element equations of Eq. (5.124),

ke�e = pe 1 ≤ e ≤ M

where M is the number of elements, should be assembled into the global set of linear
equations

K� = P (5.125)

where K is the system stiffness matrix and P is the system load vector. This system
equation is to be solved for �, the nodal values of the warping function ω.

In solving for the unknown ω for the Saint-Venant torsion problem, two condi-
tions must be satisfied: the equilibrium and compatibility of the nodal values of the
unknown function ω. Recall that the element stiffness relations ke�e = pe were de-
rived from the principle of virtual work and from Galerkin’s method. The principle of
virtual work corresponds to the conditions of equilibrium and static boundary con-
ditions for kinematically admissible displacements. Galerkin’s method placed the
differential equations of equilibrium (i.e., Laplace’s equation for ω) along with all
boundary conditions in integral form. Thus equilibrium is satisfied within each ele-
ment.

The compatibility of nodal values is satisfied if the value of ω at a node shared by
several elements is the same. Thus, the compatibility condition is satisfied by defin-
ing a global vector � of nodal values for ω. The nodes in the mesh are numbered
sequentially, and each entry of � is associated with a single node. A nodal con-
nectivity matrix C is defined to express the relationship between element and global
nodes. The entry Cej of the nodal connectivity matrix is the global node number
corresponding to node j , 1 ≤ j ≤ 9, of element e.

As an example, the global node numbers for a four-element mesh are shown in
Fig. 5.22. Each element in the mesh has the local node numbers shown in Fig. 5.23.
The nodal connectivity matrix for this four-element mesh will have four rows and,
since each element has nine local nodes, nine columns. The entries of the nodal
connectivity matrix are determined from a comparison of these two figures:

C =


C11 C12 · · · C19
C21 C22 · · · C29
C31 C32 · · · C39
C41 C42 · · · C49

 =


1 2 3 6 7 8 11 12 13
3 4 5 8 9 10 13 14 15

11 12 13 16 17 18 21 22 23
13 14 15 18 19 20 23 24 25


(5.126)
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24

23
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9         14          19

8         13          18

7         12          17

6         11          16

Element 2

Element 1 Element 3

Element 4

Figure 5.22 Global node and element numbers for a four-element mesh.

Each row corresponds to a particular element and each entry corresponds to a global
node number arranged according to the local node numbers of Fig. 5.23.

In this formulation, element domain integrals are added together to calculate the
total domain integral in Eq. (5.112). Since the algebraic equations for an element
are a discretized form of the integral formulation for that element, the corresponding
discretized total domain integrals are obtained by summing the element equations.
Then the equilibrium conditions at the nodes are satisfied and the finite element for-
mulation of the problem is complete, because, as mentioned earlier, the fundamental
formulation here already ensures that the equilibrium conditions are met in the inte-
rior of each element.

3                         6                         9

2                         5                         8

1                         4                         7

Figure 5.23 Local node numbers of a nine-node element.
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The superposition of the element equations is most easily described by imagining
that the 9 × 9 element stiffness matrices are expanded into q × q matrices and that
the element load vectors are expanded to have q elements, where q is the total num-
ber of degrees of freedom for the entire mesh, or the total number of nodes when
each node has a single variable assigned to it, as is the case of the torsion problem
with the warping function ω as the single variable. For a torsion problem with the
four-element system of Fig. 5.22, q = 25. Each expanded element stiffness matrix
k′e has zero entries corresponding to the nodal values in � that do not occur in the
nodes of element e, and each expanded element force vector p′e has zero entries cor-
responding to the nodes that do not belong to element e. In other words, row e of the
nodal connectivity matrix C gives the indices of the nonzero rows and columns of
the expanded k′e matrix and the indices of the nonzero components of the expanded
load vector p′e. The purpose of the expansion is to force all element vectors and ma-
trices to have the same dimensions as the system vectors and matrices. The assembly
procedure is then described by the vector equation of Eq. (5.125) (K� = P):

P =
∑

e

p′e =
∑

e

k′e�′e = K� (5.127)

where �′e is the vector expanded from the nodal warping function vector �e for
element e. The system stiffness matrix K is the sum of the expanded element stiffness
matrices:

K =
∑

e
k′e (5.128a)

and the displacement (warping function) vector is

� =
∑

e
�′e (5.128b)

In the mesh shown in Fig. 5.22, for instance, element 2 has nonzero contributions
to its expanded stiffness matrix at the rows and columns listed in the second row of
the nodal connectivity matrix of Eq. (5.126):

C2 = [3 4 5 8 9 10 13 14 15] (5.129)

These contributions are shown in Table 5.1, in which k jk denotes the row j , column
k of the 9×9 element stiffness matrix for the nine-node element of Fig. 5.23. As this
example shows, the expansion of ke into k′e is accomplished by setting

k′e
mn = ke

jk m = Cej n = Cek 1 ≤ j, k ≤ 9 (5.130)

with all other entries of the expanded matrix set equal to zero. Here Cej from
Eq. (5.126) is the element e global node number corresponding to node j , 1 ≤ j ≤ 9.
By expanding Table 5.1, the expanded stiffness matrix for element 2 becomes
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TABLE 5.1 Nonzero Entries of the Expanded Stiffness Matrix for Element 2

3 4 5 8 9 10 13 14 15

3 k11 k12 k13 k14 k15 k16 k17 k18 k19
4 k21 k22 k23 k24 k25 k26 k27 k28 k29
5 k31 k32 k33 k34 k35 k36 k37 k38 k39
8 k41 k42 k43 k44 k45 k46 k47 k48 k49
9 k51 k52 k53 k54 k55 k56 k57 k58 k59

10 k61 k62 k63 k64 k65 k66 k67 k68 k69
13 k71 k72 k73 k74 k75 k76 k77 k78 k79
14 k81 k82 k83 k84 k85 k86 k87 k88 k89
15 k91 k92 k93 k94 k95 k96 k97 k98 k99

k′2 =



0 0 0 0 0 0 0 0 0 0 · · ·
0 0 0 0 0 0 0 0 0 0 · · ·
0 0 k11 k12 k13 0 0 k14 k15 k16 · · ·
0 0 k21 k22 k23 0 0 k24 k25 k26 · · ·
0 0 k31 k32 k33 0 0 k34 k35 k36 · · ·
0 0 0 0 0 0 0 0 0 0 · · ·
0 0 0 0 0 0 0 0 0 0 · · ·
0 0 k41 k42 k43 0 0 k44 k45 k46 · · ·
0 0 k51 k52 k53 0 0 k54 k55 k56 · · ·
0 0 k61 k62 k63 0 0 k64 k65 k66 · · ·
...

...
...

...
...

...
...

...
...

...
...



(5.131)

Thus, the system stiffness matrix for the four-element mesh of Fig. 5.22 is (Eq.
5.128a)

K =
4∑

e=1

k′e = k′1 + k′2 + k′3 + k′4

where, for example, k′2 is given by Eq. (5.131).
The expansion of pe into p′e is given by

p′e
n = pe

j n = Cej 1 ≤ j ≤ 9 (5.132)

with all other entries of p′e set equal to zero. For the four-element mesh of Fig. 5.22,
the expanded loading vector of element 2 is found by inserting the values of C given
in Eq. (5.126) into Eq. (5.132):

p′2 = [0 0 p1 p2 p3 0 0 p4 p5 p6 · · · ]T (5.133)

For the four-element mesh of Fig. 5.22, the load vector is (Eq. 5.127)
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P =
4∑

e=1

p′e = p′1 + p′2 + p′3 + p′4

where p′2 is given by Eq. (5.133).
The computational algorithm for the assembly procedure is:

1. Set the system stiffness matrix K and the system load vector P equal to zero.
2. Add the contributions of the stiffness matrix of each element e to the system

stiffness matrix:

Kmn = Kmn + ke
jk m = Cej , n = Cek, 1 ≤ j, k ≤ 9 (5.134a)

In practice, the assembly of the stiffness matrix is not performed as stated
because K, a banded symmetric matrix, is not normally stored as a full square
matrix. The storage scheme defines a mapping between square matrix stor-
age locations and the banded storage locations m → m

′
, n → n

′
so that the

assembly formula is modified to

Km′ n′ = Km′ n′ + ke
jk (5.134b)

3. Assemble the load vector P from the element load vectors:

Pn = pe
j n = Cej , 1 ≤ j ≤ 9 (5.134c)

Assembly of System Matrices for Beam Systems The assembly of the
beam elements of Chapter 2 into the system matrices of Chapter 3 can be placed
in the same notation as developed in this chapter for the cross-sectional character-
istics of a bar undergoing Saint-Venant torsion. That is, if distributed loads are ig-
nored, the element matrices keve = pe are to be assembled into system matrices
KV = P. In contrast to the planar problem of this chapter for cross-sectional prop-
erties which involves a two-dimensional mesh, a planar beam problem is modeled
with one-dimensional elements. A nine-node element with a single unknown vari-
able (DOF) per node was employed for the cross-sectional problem, whereas the
beams in bending elements of Chapter 2 have a node at each end with two DOF
per node. The beam degrees of freedom are end deflections and slopes. As shown in
Fig. 3.6, the beam elements are numbered sequentially starting with element 1 at the
left end and proceeding toward the right end. The degrees of freedom (deflection and
slope) are numbered as 1 and 2 for the left end of the first element and 3 and 4 for the
right end. The nodal connectivity matrix for the beam mesh is particularly simple.
For a mesh of 4 elements, it is

C =


1 2 3 4
3 4 5 6
5 6 7 8
7 8 9 10

 (5.135a)
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and if there are M elements the M×4 connectivity matrix is generated by continuing
the pattern. In other words, for the kth beam element the row

Ck = [2k − 1 2k 2k + 1 2(k + 1)] (5.135b)

is appended to the connectivity matrix C. Thus, the global node numbers that make
up the kth row Ck of the connectivity matrix corresponds to wa , θa , wb, and θb for
beam element k, where a is the left end and b is the right end of the beam ele-
ment. The assembly of the element load vectors pe into the system load vector P
is identical to the process utilized for the cross-sectional problem. In summary, the
computational algorithm for the assembly procedure is

1. Set the system stiffness matrix K and the system load vector P equal to zero:

2. Add the contributions of the stiffness matrix of each element e to the system
stiffness matrix:

Kmn = Kmn + ke
i j m = Cej n = Cej 1 ≤ j, k ≤ 4 (5.136a)

3. Assemble the load vector P from the element load vectors:

Pn = pe
j n = Cej 1 ≤ j ≤ 4 (5.136b)

5.6 CALCULATION OF THE TORSIONAL CONSTANT AND STRESSES

The global equations K� = P, with the assembled matrices K and P, can be solved
for the nodal values � of the warping function. The various response parameters,
such as stresses, can now be calculated. Unlike the stiffness matrix for the transverse
motion of beams (Eq. 3.19), for which the displacement vector V contains nodal
translations and rotations, the stiffness matrix for cross-sectional torsional proper-
ties (Eq. 5.125), for which the displacement vector � contains nodal values of the
warping function, is not, in general, singular.

The torsional constant J is given by Eq. (5.19):

J =
∫ [(

∂ω

∂z
+ y

)
y −

(
∂ω

∂y
− z

)
z

]
dA

=
∫ [

z2 + y2 −
(

z
∂ω

∂y
− y

∂ω

∂z

)]
dA

= Iy + Iz −
∫ (

z
∂ω

∂y
− y

∂ω

∂z

)
dA

=
∫

g · (g − �ω) dA = Iy + Iz −
∫

g · �ω dA
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= Iy + Iz −
∫

[z − y]


∂ω

∂y

∂ω

∂z

 dA (5.137)

with

g = zj − yk and �ω = ∂ω

∂y
j + ∂ω

∂z
k

In terms of the isoparametric element, with Eqs. (4.11), (4.23), and (5.95),

J = Iy + Iz −
∑

e

∫ 1

−1

∫ 1

−1
[Nz − Ny] B�e | Je | dη dζ

= Iy + Iz −
∑

e

∫ 1

−1

∫ 1

−1
[Nz − Ny] B | Je | dη dζ�e (5.138)

If Eq. (5.123) is introduced,

J = Iy + Iz −
∑

e
peT�e = Iy + Iz − PT�

= Iy + Iz − �TP = Iy + Iz − �TK� (5.139)

where P is given in Eq. (5.127).
To compute the shear stresses for a given torque Mx , begin with Eqs. (5.4) and

(5.18):

τxy = Gθ

(
∂ω

∂y
− z

)
= Mx

J

(
∂ω

∂y
− z

)
τxz = Gθ

(
∂ω

∂z
+ y

)
= Mx

J

(
∂ω

∂z
+ y

) (5.140)

or

[
τxy

τxz

]
= Mx

J


∂ω

∂y
− z

∂ω

∂z
+ y

 = Mx

J




∂ω

∂y

∂ω

∂z

 −
[

z
−y

] (5.141)

The shear stresses at any point of element e are given by

�e =
[
τxy

τxz

]e

= Mx

J

(
B�e − he) (5.142)
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where, from Eq. (4.11),

he =
[

z
−y

]
=

[
Nze

−Nye

]
(5.143)

and, from Eqs. (5.119), (4.15), and (4.17),

B�e = J−1
e


∂N
∂η

∂N
∂ζ

�e = 1
| Je |


∂N
∂ζ

ze −∂N
∂η

ze

−∂N
∂ζ

ye
∂N
∂η

ye




∂N
∂η

�e

∂N
∂ζ

�e

 (5.144)

Extrapolation of Stress from the Gauss Points When calculating the
stresses at the nodes of the element, stresses are first computed at the Gaussian
integration points, which are often the optimal sampling locations for stress (Cook
et al., 1989). The stresses at the Gauss points are multiplied by a smoothing matrix to
obtain the nodal stresses. Smoothed values from adjacent elements are then averaged
at the element nodes. Stress smoothing is discussed in journal articles by Hinton and
Campbell (1974) and Hinton et al. (1975).

Equation (4.28) provides a formula for bidirectional integration by Gaussian
quadrature. For the case of m1 = m2 = 3, the integration (Gauss) points and weight-
ing factors are given in Table 5.2 and the Gauss points are illustrated in Fig. 5.24.
Equation (4.28) appears as

∫ 1

−1

∫ 1

−1
φ(η, ζ ) dη dζ =

m1=3∑
i=1

m2=3∑
j=1

Wi (m1)W j (m2)φ(ηi , ζ j ) (5.145)

The total number of integration points in the domain is m1 × m2 = 3 × 3 = 9. Thus,
when 3×3-order Gaussian quadrature is used for a nine-node element, the number of
stresses computed at the Gauss points and the number of nodal stresses are both nine.
The smoothed stresses may therefore be assumed to be given by the set of equations

σ̃ (η, ζ ) = N(η, ζ )c (5.146)

where N is the row vector of Eq. (4.10) and σ̃ represents either the stress component
τxy or the component τxz . Treat each component separately. The unknown coefficient
vector c is found by assuming that the smoothed stress components at the Gauss
points are the same as the stress components computed at these points by Eq. (5.142).
This gives nine equations:

σ̃ (ηk, ζk) = N(ηk, ζk)c 1 ≤ k ≤ 9 (5.147)

where (ηk, ζk) is the kth Gauss point. These equations determine c to be

c = H−1�G (5.148)
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TABLE 5.2 Gaussian Integration Points and Weights

i ηi ζi Weight

1 −
√

3

5
−
√

3

5

25

81

2 −
√

3

5
0

40

81

3 −
√

3

5

√
3

5

25

81

4 0 −
√

3

5

40

81

5 0 0
64

81

6 0

√
3

5

40

81

7

√
3

5
−
√

3

5

25

81

8

√
3

5
0

40

81

9

√
3

5

√
3

5

25

81

(-1,1)

-1

(1,1) 1

(1,-1)(-1,-1) -1

 1

ζ

η

Figure 5.24 Gaussian integration points for square region with m1 = m2 = 3.
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where the column vector �G contains the nine stresses at the Gauss points obtained
from Eq. (5.142):

�G = [̃σ(η1, ζ1) σ̃ (η2, ζ2) σ̃ (η3, ζ3) σ̃ (η4, ζ4) σ̃ (η5, ζ5)

σ̃ (η6, ζ6) σ̃ (η7, ζ7) σ̃ (η8, ζ8) σ̃ (η9, ζ9)]T (5.149)

and H is the 9 × 9 matrix

H =



N (η1, ζ1)

N (η2, ζ2)

N (η3, ζ3)

N (η4, ζ4)

N (η5, ζ5)

N (η6, ζ6)

N (η7, ζ7)

N (η8, ζ8)

N (η9, ζ9)


(5.150)

The smoothed stresses are given by (Eq. 5.146)

σ̃ (η, ζ ) = N(η, ζ )H−1�G (5.151)

Since the kth shape function is 1 at node k, with all other shape functions zero, the
smoothed stresses at the nodes are given by

�̃ = H−1�G (5.152)

where �̃ is a column vector of the stresses at the nine nodes shown in Fig. 4.1.
The matrix H−1 can be written in the form

H−1 =



q d b d c p b p e
0 r 0 0 a 0 0 f 0
b d q p c d e p b
0 0 0 r a f 0 0 0
0 0 0 0 1 0 0 0 0
0 0 0 f a r 0 0 0
b p e d c p q d b
0 f 0 0 a 0 0 r 0
e p b p c d b d q


(5.153)

The Gaussian integration points and corresponding weighting factors can be iden-
tified in Table 5.2. For our 3 × 3 Gaussian integration, these constants are listed in
Table 5.2 for the nodes ordered as shown in Fig. 4.1.



220 SAINT-VENANT TORSION

For the Gaussian points shown in Table 5.2, the values of the entries in the matrix
H−1 are calculated to be

a = −2

3
, b = 5

18
, c = 4

9
, d = −5 + √

15

9
, e = 5(4 − √

15)

18

f = 5 − √
15

6
, p = −5 + √

15

9
, q = 5(4 + √

15)

18
, r = 5 + √

15

6

(5.154)

Example 5.13 Rectangular Cross Section. Figure 5.25 shows a nonhomogeneous
rectangular cross section, with the left half made of aluminum and the right half
copper. The input data file is discussed in Appendix B.

The calculated cross-section area is 83.36 in2. This is modulus weighted. The
geometric area of the section is, however, 60 in2. The reference elastic modulus Er

is chosen to be equal to the modulus of elasticity Ea of aluminum, so that the area is
calculated as

A = Aa + Ac
Ec

Ea
= 30 + 30

(
18.5

10.4

)
= 83.36 in2 (1)

where Ec denotes the modulus of elasticity of copper.
The torsional constant for this section is found to be J = 106.22 in4. An ana-

lytical formula for the torsional constant of a rectangular strip of two materials is
derived in Muskhelishvili (1953). This formula, normalized by dividing through by
the shear modulus Ga , is

J = 1

3
(La + µLc)t

3 − 3.361
t4

16

1 + µ2

1 + µ
(2)

where t is the thickness, La and Lc are the widths of the aluminum and copper parts,
and µ is the ratio of the shear moduli:

µ = Gc

Ga
= Ec

Ea
= 18.5

10.4
(3)

The second equality holds because Poisson’s ratio has been taken to be identical for
the two materials. The formula gives J = 106.12 in4, in close agreement with the
numerically determined value.

Aluminum

15 in. 15 in.

2 in.Copper

Figure 5.25 Rectangular strip made of two materials.
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1.05 in.

1.95 in.

0.1 in.

(a) Angle section

y'

(0, 0)

(0, -2)

z

y

z'

(1, 0)

0.1

0.1

(Corresponds to
minimum moment
of inertia)

y

Initial
coordinate
system

z

Centroidal
coordinate system

Principal axes

(b) Mesh

(Corresponds to
maximum moment
of inertia)

Figure 5.26 Thin-walled L section.

Example 5.14 Properties of an L Section. Return again to the L section of Ex-
amples 1.1, 1.2, and 4.1 (Fig. 5.26). The thin-walled beam program of Appendix A
can be used to find both cross-sectional properties as well as the stress distribution
over the cross section. As in Example 4.1, let a and t of Example 1.1 be 1.0 in. and
0.1 in., respectively. For the results given in this example and in Table 1.1, the mesh
of Fig. 5.26b was employed. The input data for a similar L section is discussed in
Appendix B.

If we consider the cross section to be made up of two segments, one of length
1.95 in. and thickness 0.1 in. and the other of length 1.05 in. and thickness 0.1 in.
(Fig. 5.26), the torsional constant J can be calculated using Eq. (5.43):

J = 1
3

2∑
i=1

bi t
3
i = 1

3 [1.95(0.1)3 + 1.05(0.1)3] = 0.001 in4 (1)

The torsional constant, J , is calculated by the computer program as J = 0.00099 in4,
a 1% difference.
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Suppose that a torque of 1000 in.-lb, Mx , is placed on the beam. The maxi-
mum torsional stress for the multisegment thin-walled beam can be calculated using
Eq. (5.44):

τmax = tmax Mx

J
= 0.1(1000)

0.001
= 100,000 psi (2)

Using the thin-walled beam computer program, the maximum shear stress is approx-
imately 98,000 psi, a 2% difference. Thus, the thin-walled open section formulas of
Section 5.2.1 are in close agreement with the finite element code in this case.

Example 5.15 Comparison of a Thin-Walled Cylinder with and without a Slit. Use
the thin-walled beam computer program of Appendix A to compare the torsional
constants of the two thin-walled cylinders of Example 5.7 (Fig. 5.13). Both of the
cylinders have a circular cross section with a 4-in. outside radius and 1

4 in. thick-
ness. However, one of the tubes has a longitudinal slit. The input data for a similar
example is discussed in Appendix B.

SOLUTION. For the cylinder with no slit, the torsional constant J is the polar mo-
ment of inertia and was calculated in Example 5.7 as

J = π

2
(r4

o − r4
i ) = π

2
(44 − 3.754) = 91.49 in4 (1)

Using the finite element computer program with a closed section, J = 91.49 in4.
For the cylinder with a longitudinal slit, the torsional constant J can be found

using the open-section formula of Eq. (5.43) and was calculated in Example 5.7 to
be

J = 1
3

m∑
i=1

bi t
3
i = 1

3 (24.35)
(

1
4

)3 = 0.13 in4 (2)

Using the thin-walled beam computer program, the torsional constant of the open
section was found to be J = 0.13 in4. Thus, for both the tube with a slit and the tube
without a slit, the finite element program gives the results obtained in Example 5.7.

5.7 ALTERNATIVE COMPUTATIONAL METHODS

The finite element method is the computational technique of choice in this book.
However, other techniques, in particular boundary solution methods, are available to
solve efficiently the shear stress–related problems. The boundary element and bound-
ary integration methods are outlined in this section. These methods are more suitable
for solid sections than for thin-walled members. Liu (1993) and Schramm and Pilkey
(1994) discuss these methods in depth.
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The boundary solution methods involve the solution of integral equations obtained
from variational formulations or from governing differential equations. Initially, inte-
gral equations with unknowns on the boundary are developed. Then, various numer-
ical methods can be utilized to solve the integral equations. Two numerical methods
are introduced here: the boundary element method and the direct integration method.

Boundary integral equations are developed for the displacement formulation of
the torsion problem. Similar boundary integral equations can be derived for the force
formulation of Saint-Venant’s torsion problem. The other shear stress–related prob-
lems in this book can also be represented in terms of boundary integral equations.

Blended Interpolation Function Elements Before considering boundary so-
lution methods, it is of interest to consider how to couple the elements of a cross
section that possesses both thin-walled and solid components. It is convenient to
have transition elements to couple the different components. In contrast to standard
isoparametric elements, the transition elements can have different numbers of in-
termediate nodes on the element edges. They are appropriate for the coupling of
solid and thin-walled components as well as for use in local mesh refinements. Since
these elements use blended interpolation for the generation of shape functions, they
are often referred to as blended interpolation function (BIF) elements. A typical
BIF element and its use in coupling solid and thin-walled cross sections are shown
in Fig. 5.27. The development of BIF elements is discussed in such references as
Cavendish et al. (1977) and Röhr (1985).

5.7.1 Boundary Integral Equations

This formulation of an integral equation begins with a weighted residual expression
in which the governing differential equation and the boundary conditions are multi-
plied by a weighting function and integrated over the cross section and the boundary.
The integrals are then transformed so that the unknowns appear only on the bound-
ary. A thorough discussion of this procedure is provided in Pilkey and Wunderlich
(1994).

This displacement form for the governing differential equations for Saint-Venant
torsion are given by (Eq. 5.8)

∇2ω = 0 (5.155)

within the boundary and the condition (Eq. 5.11)

∂ω

∂n
= zny − ynz = q (5.156)

on the boundary, where q = ∂ω/∂n and the bar over q indicates a prescribed con-
dition. An integral equation formulation can be obtained using a weighted residual
method. If v and v are set equal to the weighting function ω∗, the integral formulation
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(a) Eleven-node BIF element

(b) Coupling of solid and thin-walled cross sections

Figure 5.27 BIF element and its use.

of Eq. (5.105) can be expressed as∫
A

ω∗ (
∇2ω

)
dA −

∫
S
ω∗ (q − q) dS = 0 (5.157)

where A is the area of the cross section and S is the boundary. This corresponds to
an extended Galerkin’s formula.

Apply Gauss’s integral theorem to Eq. (5.157) to obtain∫
A

ω
(
∇2ω∗) dA +

∫
S

(
qω∗ − ωq∗) dS = 0 (5.158)

where q∗ = ∂ω∗/∂n. The quantity ω∗, which will be a singular function, is referred
to as a fundamental solution. Introduce

∇2ω∗ = −2πδ (ξ, x) (5.159)
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where δ is a Dirac delta function and ξ, x are two points in the cross section. The
solution to Eq. (5.159) is

ω∗ = ln
1

r
(5.160)

with r = r (ξ, x) as the distance from ξ , where the delta function is applied to x a
point under consideration. The derivative ∂ω∗/∂n can be shown to be

∂ω∗

∂n
= − 1

r2

(
ryny + rznz

)
(5.161)

where ry and rz are the components of r in the y and z directions, respectively,
and ny and nz are the direction cosines of the normal with respect to the y and z
axes, respectively. Substitute Eqs. (5.159), (5.160), and (5.161) into Eq. (5.158) and
introduce ln(1/r) = − ln r

2πω (ξ) +
∫

S
q ln r dS −

∫
S
ω

ryny + rznz

r2
dS = 0 (5.162)

where the point ξ is inside the boundary and integrands of the line integrals are
referred to point x on the boundary.

The intention for boundary integral equation formulations is to establish an inte-
gral with unknowns occurring on the boundary only. This can be accomplished by
moving point ξ to the boundary. Then, since r is the distance between ξ and x , r
is zero and the integrands of the boundary integral of Eq. (5.162) become singular.
These singularities can be investigated by letting the boundary S be represented as

S = (S − Sε) + Sε (5.163)

for which Sε is a semicircle of radius ε and going to the limit of the integrals as
ε → 0. Equation (5.162) becomes

cω (ξ) +
∫

S
q ln r dS −

∫
S
ω

ryny + rznz

r2
dS = 0 (5.164)

with

c =
2π when ξ is inside the boundary of the cross section

π when ξ is on the boundary that is smooth at ξ

constant when ξ is on the boundary that is not smooth at ξ

This boundary integral equation, which contains the unknown variable ω (ξ) both
inside and outside the integral and is referred to as Fredholm’s integral of the second
kind, can be solved for ω (ξ).

An analytical solution of the integral equation of Eq. (5.164) is difficult to obtain;
hence, numerical solutions are sought. The most common approach is the bound-
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ary element method. Alternatively, the direct boundary integration method can be
employed.

5.7.2 Boundary Element Method

The boundary element method is similar to the finite element in the sense that ap-
proximate trial solutions are employed for a region that is discretized into elements.
The basic steps involved in the boundary element method are:

1. Discretize the boundary S into elements.

2. Assign approximate shape functions for the unknowns for each element.

3. Introduce the elements with shape functions into Eq. (5.164), leading to a sys-
tem of linear equations in the unknowns at the nodes on the boundary.

4. Impose the boundary conditions and solve the equations for the unknowns on
the boundary.

5. Find the unknowns as desired inside the boundary and calculate the cross-
sectional properties and stresses.

The boundary (perimeter) S of the cross section is discretized into elements; typi-
cally, the elements are straight lines (constant or linear elements) or curves (quadratic
or higher order), as shown in Fig. 5.28. The trial function for element e can be ex-
pressed as

ω = N�e (5.165)

which is similar to the finite element expression. The element shape functions are
contained in N. In the case of a constant element with one node at the centroid, the
unknown warping function ω along the element is assumed to be equal to the warping
function at the nodal point. This then is a single-degree-of-freedom element.

The discrete version of Eq. (5.164) appears as

cω
(
ξ j

) −
M∑

e=1

(∫
Se

ryny + rznz

r2
Ne dS

)
ωe =

M∑
e=1

(∫
Se

ln r Ne dS

)
qe (5.166)

where c is defined in Eq. (5.164), ω
(
ξ j

)
is the value of the warping function at ξ j ,

ξ j is the point where node j is located, Se is the length of the eth element, r is the
distance from point ξ j to a point on Se, and M is the number of boundary elements.
These equations can be assembled into a system of linear equations, which are then
solved for the warping function at the nodes.

Finally, other variables of interest, such as the torsional constant and stresses, can
be computed.
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Figure 5.28 Boundary element discretization for two-dimensional cross-sectional problems.
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5.7.3 Direct Integration of the Integral Equations

Direct integration of the boundary integral equations provides an alternative, es-
pecially for two-dimensional problems such as the cross-sectional calculations for
beams, to the finite element and boundary element methods. Basically, with the di-
rect integration method, the boundary of the domain is divided into m segments,
and then a numerical integration scheme such as Gauss quadrature (Section 4.3) is
applied to each segment. The integral for the complete boundary is obtained by sum-
ming the integrals for the segments. Define ξi to be a Gauss integration point on
the boundary and S� to be the length of the �th segment. Then Eq. (5.164) can be
expressed as

cω (ξi ) −
m∑

�=1

∫
S�

ω
ryny + rznz

r2
dS = −

m∑
�=1

∫
S�

q ln r dS (5.167)

where the unknowns are the warping function values at the Gauss integration points.
Equation (5.167) leads to a set of linear equations that can be solved to find the distri-
bution of the warping function. These results can be utilized to compute other char-
acteristics, such as the torsional constant and stresses. Numerical experimentation
shows (Pilkey and Wunderlich, 1994) that, typically, an accurate torsional constant
is calculated with significantly fewer integration points for direct integration than
nodes for the boundary element method.
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CHAPTER 6

BEAMS UNDER TRANSVERSE
SHEAR LOADS

This chapter deals with the shear stresses in a beam with transverse applied loading.
Initially, approximate engineering beam theory formulas are developed. Then, more
accurate shear stresses due to transverse loading are obtained by using the theory of
elasticity. In particular, for a cantilevered, prismatic beam a relationship between the
cross-sectional shear force and shear stress is derived. It is assumed that this cross-
sectional relationship applies for any loading, any cross-sectional shape, and any
beam boundary conditions. A finite element analysis is used to compute the shear
stresses.

The location of the shear center is discussed in this chapter. Also, shear deforma-
tion coefficients, which are useful in computing shear deformation effects on deflec-
tions, are determined here. Finally, the deflection of beams, using stiffness matrices,
including the influence of shear deformation, is studied.

6.1 TRANSVERSE SHEAR STRESSES IN A PRISMATIC BEAM

6.1.1 Approximate Shear Stress Formulas Based on Engineering
Beam Theory

In this section we deal with a beam theory approximation for the shear stresses due to
transverse loading of a beam. To find the shear stress corresponding to the transverse
shear force, consider the element and slice of Fig. 6.1. The cross-sectional area in
the yz plane of the slice (Fig. 6.1b) is A′ and the width is b. If τ is the average shear
stress on the area b dx , the total horizontal force developed is τb dx . From Fig. 6.1d
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Figure 6.1 Forces on a slice of an element of a beam.
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the axial equilibrium requirement is

τb dx = ∂F

∂x
dx (6.1)

or

τ = 1

b

∂F

∂x
= 1

b

∫
A′

∂σx

∂x
dA (6.2)

Substitution of σx of Eq. (1.57) into this expression gives

τ = 1

b

(
− Iyz(∂My/∂x) + Iy(∂Mz/∂x)

Iy Iz− I 2
yz

Q′
z + Iz(∂My/∂x) + Iyz(∂Mz/∂x)

Iy Iz− I 2
yz

Q′
y

)
(6.3)

where

Q′
y =

∫
A′

z dA and Q′
z =

∫
A′

y dA (6.4)

are the first moments of the cross-sectional area of the slice about the centroidal axes.
That is, Q′

y and Q′
z are the moments of the area beyond b about the centroidal axes.

From Eq. (2.31),

∂My

∂x
= Vz and

∂Mz

∂x
= −Vy (6.5)

so that Eq. (6.3) can be written as

τ = Q′
z Iy − Q′

y Iyz

b(Iy Iz− I 2
yz)

Vy + Q′
y Iz − Q′

z Iyz

b(Iy Iz− I 2
yz)

Vz (6.6)

This expression, with an appropriate selection of b, provides the average shearing
stress on a particular cut of width b. If the width b is parallel to the y axis, Eq. (6.6)
gives τxz , which is equal to τzx . Similarly, if b is parallel to the z axis, τ of Eq. (6.6)
represents τyx = τxy .

The familiar formula from elementary mechanics is obtained from Eq. (6.6) by
considering the net forces Mz and Vy in the xz plane to be zero and y, z to be the
principal axes of bending, so that Iyz is zero. Then

τxz = Vz Q′
y

Iyb
(6.7)

In all of the formulas above it is important to remember that the shear stress is as-
sumed to be constant along the dimension b. This assumption is not made for the
theory of elasticity solution of the next section. For thin cross sections, it is cus-
tomary to use the product τb rather than τ . This product is q, the shear flow due to
transverse shear or bending.
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Figure 6.2 Shear flow in an angle section.

Example 6.1 Shear Stress in an Angle Section. Consider the angle section of
Fig. 6.2a with a concentrated force P that acts in the negative z direction. From
statics the shear force Vz in any section is −P and Vy is zero. The moments and
product of inertia about the centroid for this cross section were found in Example 1.1
(Fig. 1.9) to be

Iy = 4
3 a3t Iz = 1

4 a3t Iyz = 1
3 a3t (1)

Inserting these values into Eq. (6.6) and multiplying by b = t , the thickness of the
thin-walled section, gives an equation for the shear flow along the section:
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τ t = q = −
9
8 Q′

y − 3
2 Q′

z

a3t
P (2)

To complete the problem, we must find expressions for the first moments of cross-
sectional area, Q′

y and Q′
z , on the section. Recall that Q′

y is defined as the moment
of the area beyond a particular point of interest about the y axis. To facilitate this
process it should also be noted that since the coordinate axes are located at the cen-
troid, the first moment of the area from a point, p, to one end of the cross section
is the same in magnitude as the first moment from p to the other end of the section.
However, the two moments will differ in sign. Thus, we can define the areas with
respect to either the end at point A or the end at point F , keeping in mind that the
moments that are defined with respect to the end at point F must be negated before
they can be substituted into (2). The calculation of Q′

y and Q′
z , especially the de-

termination of their signs, can appear to be rather complicated. This calculation is
discussed in-depth in Example 7.2.

We will calculate the moments of areas along the four segments B A, B D, E D,
and E F . On B A we define the area A′ as the area from the point that is distance y
from the centroid to the end of segment B A at point A. The quantity QzB A is equal
to y A′, where y is the distance in the y direction from the z axis to the centroid of
area A′. Since the length of segment B A is 5a/6, A′ is equal to (5a/6 − y)t and y is
equal to y + (5a/6 − y)/2 = (5a/6 + y)/2. Thus,

Q′
zB A

= y A′ =
(

5a

6
− y

)
t

(
5a

6
+ y

)
1

2
= 25a2t

72
− t

2
y2 (3)

Similar reasoning gives

Q′
yB A

= z A′ =
(

5a

6
− y

)
t

(
2a

3

)
= 5a2t

9
− 2at

3
y

For section B D, first consider the moment of the area about the z axis, Q′
zB D

. In this
case we define the area A′ to be the area from points between B and D to the end at
point F . Note, however, that since we are defining the area with respect to point F
instead of A, the quantity must be negated in order to follow our sign convention.

Q′
zB D

= −
[
− t

2

(a

6
+ y

)(a

6
− y

)
+ 2at

(
−a

6

)]
= 25a2t

72
− t

2
y2 (4)

For Q′
yB D

the area will again be defined with respect to the end at point A. Thus, it
is not necessary to negate the quantity

Q′
yB D

= −yt
2a

3
+

(
5a

6

)
t

(
2a

3

)
= −2at

3
y + 5a2t

9
(5)
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Using the same approach, the moments of the cross-sectional areas along segments
E D and E F are

Q′
zE D

= at

6
z + 2a2t

9

Q′
yE D

= 8a2t

9
− t

2
z2

Q′
zE F

= 2a2t

9
+ at

6
z

Q′
yE F

= 8a2t

9
− t

2
z2

(6)

Substituting these quantities into (2) leads to expressions for the shear flow on the
four segments:

qB A = qB D = P

a3t

(
−3t

4
y2 + 3at

4
y − 5a2t

48

)

qE D = qE F = P

a3t

(
9t

16
z2 + at

4
z − 2a2t

3

) (7)

The final distribution is shown in Fig. 6.2c. The stress on section DF is negative
since it results in a downward shearing force on beam sections.

This engineering beam theory can be extended to calculate the normal stress σz ,
which is usually negligible (see, e.g., Oden and Ripperger, 1981).

6.1.2 Theory of Elasticity Solution

In this section we present Saint-Venant’s elasticity solution for a homogeneous pris-
matic beam subjected to transverse shear loads. A relationship between the cross-
sectional shear force and shear stress is to be derived for a particular set of boundary
conditions. Since analytical solutions are available in the literature for a cantilevered
beam (see, e.g., Sokolnikoff, 1956), the beam shown in Fig. 6.3 is chosen for study.
It is to be assumed that the cross-sectional relationships derived for a cantilevered
beam subjected to a transverse shear load applies for a beam with any loading, any
cross-sectional shape, and any beam boundary conditions. Finally, a finite element
solution is used to compute the shear stresses.

Shear Stresses due to a Transverse Load in the z Direction Suppose that
a transverse shear force Vz is applied at the shear center S1 (see Section 6.2), so that
no twisting moment is exerted by it. The total length of the beam is L, and it may
be assumed that the end with the centroid at point O is fixed. The beam axis x is the
line joining the centroids of the cross sections. At the cross section with centroid C ,
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Figure 6.3 Beam subjected to a shear force.

at a distance x from the fixed end, the internal forces are the shear force Vz and the
bending moment My :

My = −Vz(L − x) (6.8)

Saint-Venant assumed that the stresses σy , σz , and τyz are negligibly small, leaving
σx , τxy , and τxz as unknown stresses. In addition, he assumed that the distribution of
the normal stress σx is given by Eq. (1.57) for a beam in pure bending:

σx = Iz Myz

Iy Iz − I 2
yz

− Iyz My y

Iy Iz − I 2
yz

= B(L − x)
(
Iyz y − Izz

)
(6.9)

where for convenience the superscript bars over the coordinates have been dropped
and the constant B is defined as

B = Vz

Iy Iz − I 2
yz

(6.10)

The state of stress is to be determined by solving for the two stresses τxy and τxz ,
called transverse or direct shear stresses, over the cross section.

With the assumption that the body forces are zero, the equations of equilibrium
(Eq. 1.25) for this problem become



TRANSVERSE SHEAR STRESSES IN A PRISMATIC BEAM 237

∂σx

∂x
+ ∂τxy

∂y
+ ∂τxz

∂z
= 0

∂τxy

∂x
= 0 (6.11)

∂τxz

∂x
= 0

Substitution of Eq. (6.9) into the first relationship of Eq. (6.11) leads to

∂τxy

∂y
+ ∂τxz

∂z
= B

(
Iyz y − Izz

)
(6.12)

The last two relationships of Eq. (6.11) show that the shear stresses are independent
of x , which means that the shear stress distributions, functions of y and z, are the
same over any cross section.

The strains are given by Hooke’s stress–strain equations (Eq. 1.12) as

εx = σx

E
εy = − ν

E
σx εz = − ν

E
σx

γxy = 2(1 + ν)

E
τxy γxz = 2(1 + ν)

E
τxz γyz = 0

(6.13)

These strains satisfy four of the compatibility conditions of Eq. (1.9) identically. The
remaining two conditions are

2
∂2εy

∂x∂z
= ∂

∂y

(
−∂γxz

∂y
+ ∂γxy

∂z
+ ∂γyz

∂x

)
2

∂2εz

∂x∂y
= ∂

∂z

(
−∂γxy

∂z
+ ∂γyz

∂x
+ ∂γxz

∂y

) (6.14)

Substitution of the strains of Eq. (6.13) and then the stress σx of Eq. (6.9) into
Eq. (6.14) yields

∂

∂y

(
∂τxz

∂y
− ∂τxy

∂z

)
= ν

1 + ν
Iz B

∂

∂z

(
∂τxz

∂y
− ∂τxy

∂z

)
= ν

1 + ν
Iyz B

(6.15)

The stresses τxy and τxz are next expressed in terms of a function �(y, z), which
is assumed to have continuous partial derivatives of third order and is chosen such
that the two compatibility conditions of Eq. (6.15) are satisfied identically:
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τxy = B

2(1 + ν)

[
∂�

∂y
+ ν

(
Iyz

y2 − z2

2
− Iz yz

)]

τxz = B

2(1 + ν)

[
∂�

∂z
+ ν

(
Iyz yz + Iz

y2 − z2

2

)] (6.16)

These expressions for the shear stresses can be written in the form

τxy = Vz

�

(
∂�

∂y
− hy

)
τxz = Vz

�

(
∂�

∂z
− hz

) (6.17)

where � depends on Poisson’s ratio and the cross-sectional geometry

� = 2(1 + ν)
(

Iy Iz − I 2
yz

)
(6.18)

and

hy = ν

(
Iz yz − Iyz

y2 − z2

2

)

hz = −ν

(
Iyz yz + Iz

y2 − z2

2

) (6.19)

When the expressions of Eq. (6.17) are substituted into Eq. (6.12 ), the partial differ-
ential equation governing the function � is obtained:

∇2� = 2
(
Iyz y − Izz

)
(6.20)

where

∇2 = ∂2

∂y2
+ ∂2

∂z2

A condition to be satisfied is that the cylindrical surface of the beam be free of
surface forces. On the cylindrical surface the x component of the outward unit normal
vector n is zero. The stress normal to the boundary curve must be zero:

τxyny + τxznz = 0 (6.21)

where ny , nz are the y, z components of n. Note that Eq. (6.21) is the same as
Eq. (5.11) if the stress–strain relationships of Eq. (5.4) are introduced. Substitute
Eq. (6.16) into Eq. (6.21):
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∂�

∂y
+ ν

(
Iyz

y2 − z2

2
− Iz yz

)]
ny +

[
∂�

∂z
+ ν

(
Iyz yz + Iz

y2 − z2

2

)]
nz = 0

(6.22)

or

n · �� + n ·
[
ν

(
Iyz

y2 − z2

2
− Iz yz

)
j + ν

(
Iyz yz + Iz

y2 − z2

2

)
k

]
= 0

(6.23)

where

� = j
∂

∂y
+ k

∂

∂z
and n = nyj + nzk

Equation (6.23) can be expressed as

n · �� − n · h = 0 (6.24)

where

h = hyj + hzk = ν

(
Iz yz − Iyz

y2 − z2

2

)
j − ν

(
Iyz yz + Iz

y2 − z2

2

)
k (6.25)

Since the directional derivative of a point of a surface along the normal is

∂�

∂n
= ny

∂�

∂y
+ nz

∂�

∂z
= n · ��

the boundary condition of Eq. (6.21) can be represented as

∂�

∂n
= n · �� = n · h (6.26)

This boundary value problem of solving Eq. (6.20), ∇2� = 2
(
Iyz y − Izz

)
, sub-

ject to the boundary condition of Eq. (6.26), n · �� = n · h, provides a relationship
between the shear force Vz and the cross-sectional shear stresses τxy and τxz . Al-
though this relationship was derived for a particular beam (a cantilevered beam with
end loading Vz), it is assumed to apply to a beam of any boundary condition and any
loading.

Shear Stresses due to a Transverse Load in the y Direction Consider the
cantilevered beam of Fig. 6.3 with the addition of a shear force Vy at x = L. Also,
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set Vz = 0. In this case, the bending moment is

Mz = Vy(L − x) (6.27)

and the normal stress distribution is given by

σx = Iyz Mz z − Iy Mz y

Iy Iz − I 2
yz

= H(L − x)
(
Iyzz − Iy y

)
(6.28)

where

H = Vy

Iy Iz − I 2
yz

(6.29)

Substitute Eq. (6.28) into the first equilibrium equation of Eq. (6.11). This gives
the equilibrium relation

∂τxy

∂y
+ ∂τxz

∂z
= H

(
Iyzz − Iy y

)
(6.30)

Substitute the strains of Eq. (6.13) and then the stress σx of Eq. (6.28) into Eq. (6.14),
giving the two compatibility conditions

∂

∂y

(
∂τxz

∂y
− ∂τxy

∂z

)
= − ν

1 + ν
Iyz H

∂

∂z

(
∂τxz

∂y
− ∂τxy

∂z

)
= − ν

1 + ν
Iy H

(6.31)

The stresses are expressed in terms of a function �(y, z), which is assumed to have
continuous partial derivatives of third order and such that the two compatibility con-
ditions of Eq. (6.31) are identically satisfied:

τxy = Vy

�

(
∂�

∂y
− dy

)
τxz = Vy

�

(
∂�

∂z
− dz

) (6.32)

where dy , dz are the y, z components of the vector d defined by

d = dyj + dzk = ν

(
Iy

y2 − z2

2
− Iyz yz

)
j + ν

(
Iy yz + Iyz

y2 − z2

2

)
k (6.33)

The partial differential equation for � is obtained by substituting Eq. (6.32) into
the equilibrium equation (Eq. 6.30)

∇2� = 2
(
Iyzz − Iy y

)
(6.34)
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The boundary condition for the cylindrical surface of the beam to be free of surface
forces requires that

∂�

∂n
= n · �� = n · d (6.35)

6.1.3 Composite Cross Section

For nonhomogeneous cross sections the elastic modulus E is a function of position
[i.e., E = E(y, z)]. Let the reference modulus be given by Er . For the analysis
of shear stresses due to transverse shear loads, it will be assumed that the different
materials making up the section all have the same Poisson’s ratio ν. The boundary
value problems for transverse shear have a strong dependence on ν, and a formulation
that allows different materials to have different Poisson’s ratios is considerably more
complicated than the analysis given below for a nonhomogeneous section with a
single ν. As discussed in Chapter 5, for two materials with very different moduli of
elasticity, it is not uncommon for the difference in Poisson’s ratios to be very small.

To derive stress formulas for transverse shear loads for a composite cross section
with the elastic modulus function E(y, z), the development in Section 6.1.2 for a
transverse shear force Vz applied at the shear center of a homogeneous section will be
retraced, with the assumption of homogeneity dropped at each step. Saint-Venant’s
assumption that the distribution of the normal stress σx is given by Eq. (1.57) or (6.9)
for a beam in pure bending is replaced by

σx = E

Er

 Ĩz My z

Ĩy Ĩz − Ĩ 2
yz

− Ĩyz My y

Ĩy Ĩz − Ĩ 2
yz

 = B̃
E

Er
(L − x)

(
Ĩyz y − Ĩz z

)
(6.36)

for a composite cross section where the constant B̃ is

B̃ = Vz

Ĩy Ĩz − Ĩ 2
yz

(6.37)

The equations of equilibrium retain the same form as those of Eq. (6.11) for a
homogeneous section. The first equilibrium equation becomes (Eq. 6.12)

∂τxy

∂y
+ ∂τxz

∂z
= B̃

E

Er

(
Ĩyz y − Ĩz z

)
(6.38)

The strains satisfy Hooke’s stress–strain equations (Eq. 6.13). As in the case of ho-
mogeneous cross sections, these strains satisfy four of the compatibility conditions
identically, and the remaining two conditions are given by Eq. (6.14). Since E is
a function of y and z, it will be convenient to rewrite these Hooke’s stress–strain
equations in the form

εx = σ x εy = −νσ x εz = −νσ x

γxy = 2(1 + ν)τ xy γxz = 2(1 + ν)τ xz γyz = 0
(6.39)
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where a bar over a symbol indicates that the stress corresponding to that symbol is
divided by E . The substitution of these stress–strain relations into the two compati-
bility conditions of Eq. (6.14) gives

∂

∂y

(
∂τ xz

∂y
− ∂τ xy

∂z

)
= ν

Er (1 + ν)
Ĩz B̃

∂

∂z

(
∂τ xz

∂y
− ∂τ xy

∂z

)
= ν

Er (1 + ν)
Ĩyz B̃

(6.40)

The cross section is assumed to be made up of a finite number of regions of
different materials. Over each of these regions, the elastic modulus E has a constant
value, so that the equilibrium relationship of Eq. (6.38) rewritten in the form

∂τ xy

∂y
+ ∂τ xz

∂z
= B̃

Er

(
Ĩyz y − Ĩz z

)
(6.41)

is valid over each homogeneous region. The stresses are next expressed in terms of
a function �(y, z), which is assumed to have continuous partial derivatives of third
order, and such that the two compatibility conditions of Eq. (6.40) are identically
satisfied:

τ xy = B̃

2Er (1 + ν)

[
∂�

∂y
+ ν

(
Ĩyz

y2 − z2

2
− Ĩz yz

)]

τ xz = B̃

2Er (1 + ν)

[
∂�

∂z
+ ν

(
Ĩyz yz + Ĩz

y2 − z2

2

)] (6.42)

When these expressions are substituted into the equilibrium equation of Eq. (6.41),
the partial differential equation governing � is obtained:

∇2� = 2
(
Ĩyz y − Ĩz z

)
(6.43)

The boundary condition that the cylindrical surface of the beam be free of surface
forces is expressed in terms of the function � by (Eq. 6.26)

∂�

∂n
= n · �� = n · h̃ (6.44)

where the vector h̃ is defined as (Eq. 6.19)

h̃ = h̃ yj + h̃zk = ν

(
Ĩz yz − Ĩyz

y2 − z2

2

)
j − ν

(
Ĩz

y2 − z2

2
+ Ĩyz yz

)
k (6.45)

The expressions for the shear stresses become

τxy = E

Er

Vz

�̃

(
∂�

∂y
− h̃ y

)
τxz = E

Er

Vz

�̃

(
∂�

∂z
− h̃z

)
(6.46)
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where �̃ depends on Poisson’s ratio and the cross-sectional geometry

�̃ = 2(1 + ν)
(

Ĩy Ĩz − Ĩ 2
yz

)
(6.47)

The preceding paragraph shows that the shear stresses due to transverse shear
loads for a nonhomogeneous cross section are obtained by using modulus-weighted
cross-sectional properties. The stresses due to the forces Vy and Vz are given by the
formulas

τxy = E

Er

[
Vy

�̃

(
∂�

∂y
− d̃y

)
+ Vz

�̃

(
∂�

∂y
− h̃ y

)]
τxz = E

Er

[
Vy

�̃

(
∂�

∂z
− d̃z

)
+ Vz

�̃

(
∂�

∂z
− h̃z

)] (6.48)

where

d̃ = d̃yj + d̃zk = ν

(
Ĩy

y2 − z2

2
− Ĩyz yz

)
j + ν

(
Ĩy yz + Ĩyz

y2 − z2

2

)
k (6.49)

and � is the shear function for Vy , which satisfies the partial differential equation

∇2� = 2
(
Ĩyzz − Ĩy y

)
(6.50)

and the boundary condition

∂�

∂n
= n · �� = n · d̃ (6.51)

The analysis of stresses given in this section is not completely rigorous because
the boundary conditions at the interfaces between different material regions have not
been considered.

6.1.4 Finite Element Solution Formulation

Vy Problem In Section 6.1.2, two boundary value problems have been formu-
lated, one involving a transverse shear force Vy and the other the force Vz . The first
problem is to solve (Eq. 6.34)

∇2� = 2
(
Iyzz − Iy y

)
(6.52)

for the function � subject to the boundary condition (Eq. 6.35)

n · �� = n · d (6.53)

The second problem is to solve for � (Eq. 6.20):

∇2� = 2
(
Iyz y − Izz

)
(6.54)
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with (Eq. 6.26)

n · �� = n · h (6.55)

The definitions of the vectors h and d are (Eqs. 6.25 and 6.33)

h = ν

(
Iz yz − Iyz

y2 − z2

2

)
j − ν

(
Iz

y2 − z2

2
+ Iyz yz

)
k

d = ν

(
Iy

y2 − z2

2
− Iyz yz

)
j + ν

(
Iy yz + Iyz

y2 − z2

2

)
k

(6.56)

As in Chapter 5, Galerkin’s method will be used to arrive at a finite element for-
mulation of the boundary value problems. Applied to the first problem, the integral
formulation is∫

v
[
∇2� − 2

(
Iyzz − Iy y

)]
dA +

∫
v (n · d − n · ��) ds = 0 (6.57)

This equation is transformed by choosing the functions v and v to be identical, and
using Green’s first identity (Rubinstein and Rubinstein, 1993)∫

v∇2� dA =
∫

vn · �� ds −
∫

�v · �� dA (6.58)

This transformation gives∫ [−�v · �� − 2v
(
Iyzz − Iy y

)]
dA +

∫
v d · n ds = 0 (6.59)

The path integral in this equation is written as an area integral using the following
form of the divergence theorem in two dimensions:∫

v d · n ds =
∫ [

v� · d + d · �v
]

dA (6.60)

The integral formulation of the problem for � then becomes∫
�v · �� dA +

∫
2v

(
Iyzz − Iy y

)
dA −

∫
v� · d dA −

∫
d · �v dA = 0

(6.61)

The first integral of Eq. (6.61) will lead to the element stiffness matrix. The func-
tion � is approximated over each element e, as in Chapter 5, by

�(η, ζ ) = N(η, ζ )	e (6.62)
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where 	e are the values of � at the nodes of element e and N is the row vector of
shape functions for the nine-node element as defined in Chapter 4. In the Galerkin
formulation, the trial functions v in the integral form are replaced by the shape func-
tions in arriving at the discretized approximation of Eq. (6.61). Follow the procedure
used in Chapter 5 for the Saint-Venant torsion problem. This leads to an expression
of the form (Eq. 5.116) veT(ke	e − pe) = 0, so that the element domain equations
are given by

ke	e = pe 1 ≤ e ≤ M (6.63)

The number of elements is M. The element stiffness matrix is the one developed in
Chapter 5 (Eq. 5.122) and is given by

ke =
∫ 1

−1

∫ 1

−1
BTB | Je | dη dζ (6.64)

where B is the 2 × 9 matrix (Eq. 5.119)

B = Be = J−1
e


∂N
∂η

∂N
∂ζ


To define the element load vector pe for this problem, it is necessary to transform

the last three integrals in Eq. (6.61) to their discrete nodal form for each element e.
Since

� · d = ν
(
Iy y − Iyzz

) + ν
(
Iy y − Iyzz

) = 2ν
(
Iy y − Iyzz

)
(6.65)

we find that

2(Iyzz − Iy y) − � · d = 2(1 + ν)
(
Iyzz − Iy y

)
(6.66)

Then the middle two integrals in Eq. (6.61) combine, giving with Eqs. (4.11) and
(5.115),

2(1 + ν)

∫ 1

−1

∫ 1

−1
NT (

IyzNz − IyNy
) | Je | dη dζ (6.67)

for element e. The term veT has been factored out of Eq. ( 6.67) and ignored since we
are dealing with the components of ke	e − pe = 0 and not δveT (ke	e − pe) = 0.
Using Eq. (5.115), the quantity de · �v = d · �v can be written as

d · �v = veT
[
∂NT

∂y

∂NT

∂z

] [
dy

dz

]
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Thus, the contribution of the last integral in Eq. (6.61) to element e is (Eq. 5.120)

ν

2

∫ 1

−1

∫ 1

−1
BT

[
d1
d2

]
| Je | dη dζ (6.68)

where, with the abbreviations,

re = r = (Nye)
2 − (Nze)

2 = (Ny)2 − (Nz)2 qe = q = 2NyeNze = 2NyNz

(6.69)

the quantities d1, d2 are expressed as

d1 = Iyr − Iyzq d2 = Iyzr + Iyq (6.70)

Again the term veT has been factored out of Eq. (6.68) and ignored. The load vector
is the sum of Eqs. (6.67) and (6.68):

pe =
∫ 1

−1

∫ 1

−1

[
ν

2
BT

[
d1
d2

]
+ 2(1 + ν)NT (

IyNy − IyzNz
)] | Je | dη dζ (6.71)

The assembly of the system stiffness matrix K from the element stiffness matrices
ke and the assembly of the system load vector P from the element load vectors pe are
performed as described in Chapter 5. The system stiffness matrix K is the one derived
in Chapter 5 for the torsion problem. The final global stiffness equation appears as

K	 = Py (6.72)

which can be solved for the nodal values 	 of the function �. The subscript y
indicates the problem corresponds to the transverse shear load Vy .

Vz Problem The integral formulation of the boundary value problem for � is
obtained from Eq. (6.61) by substituting h for d and changing the second integrand
to the expression on the right side of the Poisson equation (Eq. 6.20) for �. Then∫

�v · �� dA +
∫

2v
(
Iyz y − Izz

)
dA −

∫
v� · h dA −

∫
h · �v dA = 0

(6.73)

is the z-direction equivalent of Eq. (6.61). The element stiffness matrices and the
system stiffness matrix for this problem are the same as those for �. The element
load vector is computed by noting that

2(Iyz y − Izz) − � · h = 2(1 + ν)
(
Iyz y − Izz

)
(6.74)

and defining

h1 = −Iyzr + Izq h2 = −Izr − Iyzq (6.75)
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The element load vector for � is

pe =
∫ 1

−1

∫ 1

−1

[
ν

2
BT

[
h1
h2

]
+ 2(1 + ν)NT (

IzNz − IyzNy
)] | Je | dη dζ (6.76)

The assembled stiffness equations appear as

K� = Pz (6.77)

where the subscript z is included to indicate that Eq. (6.77) corresponds to shear
force Vz .

Shear Stresses It was shown above that the discretized forms of the boundary
value problems for � and � are written as

K	 = Py K� = Pz (6.78)

The total transverse shear stresses in element e are given by (Eqs. 6.32 and 6.17)

�e =
[
τxy

τxz

]e

= Vy

�

(
��e − de) + Vz

�

(
��e − he) (6.79)

where

� = 2(1 + ν)
(

Iy Iz − I 2
yz

)
de =

[
d1
d2

]e

he =
[

h1
h2

]e

��e =


∂�

∂y

∂�

∂z


e

��e =


∂�

∂y

∂�

∂z


e

(6.80)

Approximate the functions �e and �e over each element e as

�e(η, ζ ) = N(η, ζ )	e �e(η, ζ ) = N(η, ζ )�e (6.81)

so that with Eq. (5.119) the gradients of the shear functions �e, �e are

��e = B	e ��e = B�e (6.82)

The finite element expression for the shear stresses becomes[
τxy

τxz

]e

= Vy

�

(
B	e − ν

2

[
d1
d2

]e)
+ Vz

�

(
B�e − ν

2

[
h1
h2

]e)
(6.83)
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6.2 SHEAR CENTER

If the resultant shear force on a cross section passes through a particular point no
torsion will occur. This point is called the shear center. Various definitions of the
shear center are discussed in Fung (1969). Initially, theory of elasticity based formu-
las for the location of the shear center that depend on the material properties will be
derived. Later, other formulas will be obtained that are purely geometric properties
of the cross section.

6.2.1 y Coordinate of the Shear Center

Suppose that the internal shear force Vz at the cross section with centroid C is applied
at the shear center S of the cross section. The bending axis or flexural axis of a beam
can now be clarified. The centroidal axis of a beam is defined as a line that passes
through the centroids of the cross sections along the beam. The bending axis, which
is parallel to the centroidal axis, passes through the shear centers of the cross sections.
Thus, the axis through which the resultants of the reactions and transverse loading
act leads to “pure bending.” As used in Chapter 1, pure bending corresponds to zero
torsion, which contrasts with a frequently used definition of a beam with zero internal
shear forces.

The force–couple equivalent of the force Vz at the centroid C is the force Vz and
the torsional couple whose moment is equal to the moment of Vz about C . Since
the shear stress distribution is statically equivalent to this force–couple system, the
moment of Vz about C can be calculated from the shear stresses (Fig. 6.4)

Mx = ySVz =
∫

(τxz y − τxyz) dA (6.84)

This equation determines the y coordinate (yS) of the shear center S.
Substitute Eq. (6.17) into Eq. (6.84) and observe that the coordinate yS is given

by

yS = 1

�

∫ (
y
∂�

∂z
− yhz − z

∂�

∂y
+ zhy

)
dA (6.85)

or, from Eq. (6.19),

yS = 1

�

[
ν

2

∫
(Iz y + Iyzz)(y2 + z2) dA −

∫
g · �� dA

]
(6.86)

where

� = 2(1 + ν)(Iy Iz − I 2
yz), g = zj − yk, and � = j

∂

∂y
+ k

∂

∂z

Note that Eq. (6.86) depends on Poisson’s ratio, a material constant.
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Figure 6.4 Centroid C and shear center S.

6.2.2 Axis of Symmetry

If the cross section is symmetric about the z axis, Iyz = 0 (Fig. 6.5). As a conse-
quence, the differential equation for � of Eq. (6.20) reduces to

∇2� = −2Izz (6.87)

Consider any point (y1, z1) on the cross section. At (y1, z1), ∇2�(y1, z1) = −2Izz1.
Next consider the mirror-image point (−y1, z1). Then ∇2�(−y1, z1) = −2Izz1.
It follows that ∇2�(−y1, z1) = ∇2�(y1, z1), showing that ∇2� is an even func-
tion of y. Since ∇2�(−y, z) = ∇2�(y, z) = −2Iz z, the differential equation of
Eq. (6.87) exhibits symmetry about the z axis.

Consider now the boundary condition of Eq. (6.26) for this cross section, which
is symmetric about the z axis:

∂�

∂n
= n · h = nyν Iz yz − nzν Iz

y2 − z2

2
(6.88)

On the boundary at (y0, z0),

∂�

∂n
(y0, z0) = ν Iz

(
ny0 y0z0 − nz0

y2
0 − z2

0

2

)
(6.89)
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z0
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Figure 6.5 Cross section symmetric with respect to the z axis.

For the mirror-image point (−y0, z0),

∂�

∂n
(−y0, z0) = ν Iz

[
n−y0(−y0)z0 − nz0

y2
0 − z2

0

2

]
(6.90)

From Fig. 6.5, n−y0 = −ny0 , so that at any boundary point,

∂�

∂n
(−y0, z0) = ν Iz

(
ny0 y0z0 − nz0

y2
0 − z2

0

2

)
= ∂�

∂n
(y0, z0) (6.91)

Thus, it is seen that the boundary condition exhibits symmetry with respect to the z
axis.

It has been shown that the functions �(y, z) and �(−y, z) satisfy the same dif-
ferential equation and the same boundary condition. It follows that

�(y, z) = �(−y, z) (6.92)

and that � is an even function of y.
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Turn now to the shear center formula of Eq. (6.86) for this cross section (Fig. 6.5),
which is symmetric about the z axis.

yS = 1

�

ν

2

∫
Iz y(y2 + z2) dA − 1

�

∫
g · �� dA (6.93)

The function y(y2 + z2) is odd in y, so that the integral∫
y(y2 + z2) dA (6.94)

is zero. Next, consider the term in the second integral on the right side of Eq. (6.93)

g · �� = z
∂�

∂y
− y

∂�

∂z
(6.95)

Because � is even in y, ∂�/∂y is odd in y. Hence z∂�/∂y of Eq. (6.95) is odd in
y. Since � is even in y, ∂�/∂z is also even in y. Since y is odd in y, the product
y∂�/∂z of Eq. (6.95) is odd in y. It can be concluded that g · �� is odd in y and
that the integral ∫

g · �� dA (6.96)

is zero.
Finally, it is apparent from Eq. (6.93) that yS = 0. That is, the shear center of a

cross section that is symmetric with respect to z is on the z axis.

6.2.3 Location of Shear Centers for Common Cross Sections

There are several characteristics of shear centers that are easily verified (see Fig. 6.6).

(b) Two axes of symmetry (c) Angle section(a) One axis of symmetry

CS y

z

CS

C

S

Figure 6.6 Examples of the location of shear centers. The centroid and shear center are
denoted by C and S, respectively.
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1. For a cross section with two axes of symmetry, the shear center is at the cen-
troid of the section.

2. For a cross section with one axis of symmetry, the shear center falls on this
axis.

3. For a cross section with two intersecting flat flanges, the shear center is at the
location of the intersection of the flanges.

6.2.4 z Coordinate of the Shear Center

The z coordinate of the shear center is found by setting the torsional couple due to
the shear stress distribution equal to the torsional moment of Vy (Fig. 6.4):

Mx = −zSVy =
∫

(τxz y − τxyz) dA (6.97)

The z coordinate of the shear center S is given in terms of the function � by

zS = 1

�

[
ν

2

∫
(Iyz + Iyz y)(y2 + z2) dA +

∫
g · �� dA

]
(6.98)

6.2.5 Finite Element Solution Formulation

The coordinates of the shear center S are given by Eqs. (6.86) and (6.98) as

yS = 1

�

[
ν

2

∫ (
Iz y + Iyzz

) (
y2 + z2

)
dA −

∫
g · �� dA

]
zS = 1

�

[
ν

2

∫ (
Iyz + Iyz y

) (
y2 + z2

)
dA +

∫
g · �	 dA

] (6.99)

The first integral in each of these equations is evaluated by quadrature. The second
integrals are evaluated as in the calculation of the torsional constant J in Chapter 5,
Eq. (5.138)∫

g · �� dA =
∑

e

∫ 1

−1

∫ 1

−1

[
Nz −Ny

]
B�e | Je | dη dζ

= PT�e∫
g · �� dA =

∑
e

∫ 1

−1

∫ 1

−1

[
Nz −Ny

]
B	e | Je | dη dζ

= PT	e

(6.100)

where P is the global load vector for the torsion problem of Chapter 5.
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Figure 6.7 Channel section. Classical location of shear center is shown.

Example 6.2 Shear Center of a Channel Section. Consider the channel section
of Fig. 6.7 with c = 1.0. Part of the output file for section properties as calculated
by the computer program of the appendices is shown in Table 6.1. The shear center
coordinates with respect to the centroid show that the shear center lies to the left
(0.62056) of the cross section on the y axis. Recall from Section 6.2.3 that when a
cross section has one axis of symmetry, the shear center lies on that axis.

TABLE 6.1 Part of an Output File for a Channel
Section for ν = 0.3

Y Centroid 0.24937
Z Centroid 1.00000
Y Shear Center wrt Centroid −0.62056
Z Shear Center wrt Centroid 0.00000

Y Shear Coefficient 3.09621
Z Shear Coefficient 2.34102
Y Z Shear Coefficient 0.00000

Torsional Constant 0.00133
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6.2.6 Trefftz’s Definition of the Shear Center

The shear center equations derived thus far, Eqs. (6.86) and (6.98) which are based
on the theory of elasticity, show that the location of S is dependent on Poisson’s
ratio. Consequently, the shear center defined in this way is not a purely geometric
property of the cross section. A second definition, given by Trefftz (1936), removes
this dependence on Poisson’s ratio. In discussing the cross-sectional properties that
are dependent on the warping function ω, it will be more convenient to adopt Trefftz’s
definition. Shear center equations based on Trefftz’s definition are viable for thin-
walled beams and could have been introduced in Chapter 7 where sectorial properties
are considered.

If a cantilever beam of length L is subjected to a twisting moment at its free end,
the elastic strain energy stored in the beam due to pure torsion is

Ut = L

2G

∫ (
t2
xy + t2

xz

)
dA (6.101)

where txy and txz are torsional shear stresses. If the same beam is subjected to trans-
verse loads Vy , Vz , the strain energy in the beam due to these loads is the flexural
energy

U f = 1

2E

∫
σ 2

x dx dA + L

2G

∫ (
τ 2

xy + τ 2
xz

)
dA (6.102)

where τxy , τxz are the transverse shear stresses. If the beam is subjected to pure
torsion and then to transverse loads without removing the twisting torque, the total
strain energy stored in it is given by

U = 1

2E

∫
σ 2

x dx dA + L

2G

∫ [(
txy + τxy

)2 + (txz + τxz)
2
]

dA (6.103)

When the transverse loading is not torsion-free, the pure twisting moment does addi-
tional work on the beam because of the rotation caused by the transverse loads. When
the transverse loads are applied at the shear center, they do not, by definition, cause
any additional twisting of the beam. This means that the twisting moment performs
no additional work, and the total strain energy may be obtained simply by adding the
flexural and torsional energies of Eqs. (6.101) and (6.102):

U = Ut + U f (6.104)

Substitution of Eqs. (6.101), (6.102), and (6.103) into Eq. (6.104) shows that this
condition requires that the coupling term between the transverse and torsional shear
stresses be zero: ∫ (

txyτxy + txzτxz
)

dA = 0 (6.105)

This equation is the definition of torsion-free flexure according to Trefftz.
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The shear stresses due to pure torsion were found in Chapter 5 to be (Eq. 5.4)

txy = Gθ

(
∂ω

∂y
− z

)
txz = Gθ

(
∂ω

∂z
+ y

)
(6.106)

With these stresses, Trefftz’s condition of Eq. (6.105) for torsion-free flexure be-
comes ∫ [(

∂ω

∂y
− z

)
τxy +

(
∂ω

∂z
+ y

)
τxz

]
dA = 0 (6.107)

Suppose that Vz is the transverse load applied. Then, if yS is the distance in the
y-coordinate direction from the centroid to the shear center to Vz and if y and z are
measured from the centroid, a condition of equilibrium gives

ySVz =
∫ (

τxz y − τxyz
)

dA (6.108)

Equation (6.107) can be rewritten as∫ (
τxz y − τxyz

)
dA = −

∫ (
∂ω

∂y
τxy + ∂ω

∂z
τxz

)
dA (6.109)

The integral on the right can be expressed as∫ (
∂ω

∂y
τxy + ∂ω

∂z
τxz

)
dA =

∫ (
∂ωτxy

∂y
+ ∂ωτxz

∂z

)
dA

−
∫

ω

(
∂τxy

∂y
+ ∂τxz

∂y

)
dA

(6.110)

The first integral on the right of Eq. (6.110) is transformed by an application of
Green’s theorem of Eq. (5.107) into∫ (

∂ωτxy

∂y
+ ∂ωτxz

∂z

)
dA =

∫
ω
(−τxz dy + τxy dz

)
(6.111)

The boundary condition of Eq. (5.11) for the cylindrical surface of the beam to be
free of surface forces can be written as

τxyny + τxznz = 0 (6.112)

or, with � = τxyj + τxzk, � · n = 0, which expresses that the total shear stress at any
point on the boundary is tangent to the boundary. Since (Eq. 1.36) ny = dz/ds and
nz = −dy/ds, this boundary condition takes the form
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τxz

τxy
= dz

dy
(6.113)

Equation (6.113) shows that the integral on the right of Eq. (6.111) is zero.
The second integral on the right of Eq. (6.110) may be rewritten using the equi-

librium equation in the x direction of Eq. (6.11):∫
ω

(
∂τxy

∂y
+ ∂τxz

∂z

)
dA = −

∫
ω

∂σx

∂x
dA =

∫
ω

Vz

Iy Iz − I 2
yz

(
Iyz y − Izz

)
dA

(6.114)

where Eq. (6.9) has been introduced. It follows that Eq. (6.108 ) can be expressed as

ySVz =
∫ (

τxz y − τxyz
)

dA =
∫

ω
Vz

Iy Iz − I 2
yz

(
Iyz y − Izz

)
dA (6.115)

Similarly, with only Vy applied at the free end of the beam, the same calculations
lead to the condition

−zSVy =
∫ (

τxz y − τxyz
)

dA =
∫

ω
Vy

Iy Iz − I 2
yz

(
Iyzz − Iy y

)
dA (6.116)

The warping-dependent section properties defined by

Iyω =
∫

yω(y, z) dA Izω =
∫

zω(y, z) dA (6.117)

are called sectorial products of area. Substitution of these sectorial products into
Eqs. (6.115) and (6.116) shows that the shear center coordinates according to Tre-
fftz’s definition are given by

yS = Iyz Iyω − Iz Izω

Iy Iz − I 2
yz

(6.118)

zS = Iy Iyω − Iyz Izω

Iy Iz − I 2
yz

(6.119)

Since the warping function ω depends only on the cross-sectional shape, so do the
sectorial products, and the coordinates of the shear center S are determined solely by
the geometry of the cross section.

Example 6.3 Shear Center of a Channel Section. Consider again the channel sec-
tion of Fig. 6.7 with c = 1. Table 6.2 gives part of the output file for section properties
as calculated by the computer program of the appendixes. The program calculates the
shear centers using both the Trefftz method and the theory of elasticity based method
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TABLE 6.2 Shear Centers for Channel Sections of Different Poisson’s Ratios

ν

0.0 0.333 0.5

Y shear center with respect to centroid −0.62055 −0.62056 −0.62057
Z Shear center with respect to centroid 0.00000 0.00000 0.00000
Y Shear center with respect to centroid (Trefftz) −0.62055 −0.62055 −0.62055
Z Shear center with respect to centroid (Trefftz) 0.00000 0.00000 0.00000

discussed in Section 6.2.5. The shear centers have been calculated for several differ-
ent values of Poisson’s ratio ν. Note that the shear center calculated using the Trefftz
method does not depend on ν and thus remains the same for all three cases. The
shear center locations from the more accurate theory of elasticity based approach do,
however, change slightly for different Poisson’s ratios. Both the theory of elasticity
method and the Trefftz method are implemented with finite elements in the computer
program of the appendixes.

Traditional formulas for the location of shear centers for common cross sections
are provided in Table 6.3. A much more extensive collection of formulas is available
in Pilkey (1994).

6.3 SHEAR DEFORMATION COEFFICIENTS

Standard Bernoulli–Euler engineering beam theory with Timoshenko’s (1921) shear
deformation supplement was discussed in Chapter 2. If the effects of shear defor-
mation, and rotary inertia are included, this is referred to as the Timoshenko beam
theory. Various shear deformation or shear stiffness coefficients are reviewed in
Kaneko (1975), Renton (1991), and Hutchinson (2001). Timoshenko’s shear coef-
ficients were defined as the ratio of the maximum shear stress to the average shear
stress on cross sections. To improve this theory, Cowper (1966) suggested the use
of an elasticity solution, based on the geometric assumption that the average cross-
sectional transverse displacements of a particular cross section of a beam can be
interpreted as the deflection of the longitudinal axis of the beam. The shear coef-
ficients obtained by Cowper are only for symmetric cross sections, oriented along
the principal bending axes for which Iyz is zero. This led to two shear coefficients,
αyy and αzz . Mason and Herrmann (1968) attempted to expand Cowper’s method
for arbitrarily shaped cross sections and in an arbitrarily oriented coordinate system.
This led to the additional coefficients αyz and αzy , which were not equal. The use of
asymmetrical shear coefficients leads to asymmetrical structural matrices.

A different formulation for shear deformation coefficients (Schramm et al., 1994)
is to assume that the strain energy for a beam as represented by the theory of elasticity
is equal to the strain energy for a one-dimensional beam based on technical beam
theory. This approach is utilized here. The shear deformation coefficients αi j , i, j =
y, z, derived using this energy method form a symmetric tensor. The principal axes
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TABLE 6.3 Classical Shear Center Locations

Shape Location of Shear Center (S) yS or zS

Sector of thin circle

2r

(π − θ) + sin θ cos θ
[(π − θ) cos θ + sin θ ]

For split tube (θ = 0), use yS = 2r.

Semicircular solid section

8

15π

3 + 4ν

1 + ν
r

Channel

3tf b2

6btf + htw

I-beam

t1b3
1h

t1b3
1 + t2b3

2

If b1 = b2 and t1 = t2, then zS = 1
2 h

Thin-walled U section

4r2 + 2b2 + 2πbr

4b + πr
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of this tensor are different, in general, from the principal axes of the tensor for the
moments of inertia.

6.3.1 Derivation

From the theory of elasticity, the shear strain energy per unit length of the beam is

U0 =
∫

τ 2
xy + τ 2

xz

2G
dA (6.120)

In engineering beam theory, an approximate formula for the strain energy per unit
length due to shear deformation is used by introducing shear factors

Ubeam = 1

2

(
αyyV 2

y

G A
+ αzz V 2

z

G A
+ αyz Vy Vz

G A
+ αzy Vz Vy

G A

)
(6.121)

These factors will be determined by assuming that the shear strain energies given
by the elasticity formula and the approximate beam theory formula are equal. The
coefficient αz = αzz is used in the calculation of the shear deformation in the z
direction due to a shear force in the same direction. The shear form factor ks of
Eq. (2.12) and the shear deformation coefficient αz are related as αz = 1/ks . The
coefficient αy = αyy is defined similarly. The shear deformation in the y direc-
tion due to a shear force in the z direction is denoted by αyz . The coefficient αzy

is, of course, related to the shear deformation in the z direction due to the y shear
force.

To determine αyy , for example, let Vz be zero, and set U0 equal to Ubeam. Intro-
duce the stresses τxy and τxz from Eq. (6.32).

V 2
y

�2

∫ [(
∂�

∂y
− dy

)2

+
(

∂�

∂z
− dz

)2
]

dA = αyy V 2
y

A
(6.122)

This gives

αyy = A

�2

∫ [(
∂�

∂y
− dy

)2

+
(

∂�

∂z
− dz

)2
]

dA (6.123)

The coefficient αzz is determined in a similar fashion, setting Vy equal to zero. To
determine αyz , both Vy and Vz are applied. In this case, utilize the total shear stresses
τxy and τxz , which are obtained by superposition of the stress formulas of Eqs. (6.17)
and (6.32)
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τxy = Vy

�

(
∂�

∂y
− dy

)
+ Vz

�

(
∂�

∂y
− hy

)
τxz = Vy

�

(
∂�

∂z
− dz

)
+ Vz

�

(
∂�

∂y
− hz

) (6.124)

It is readily observed that αyz = αzy .
The four shear deformation coefficients are given by

αyy = A

�2

∫ [(
∂�

∂y
− dy

)2

+
(

∂�

∂z
− dz

)2
]

dA

αzz = A

�2

∫ [(
∂�

∂y
− hy

)2

+
(

∂�

∂z
− hz

)2
]

dA (6.125)

αyz = αzy = A

�2

∫ [(
∂�

∂y
− dy

)(
∂�

∂y
− hy

)
+

(
∂�

∂z
− dz

)(
∂�

∂z
− hz

)]
dA

or, in vector notation,

αyy = A

�2

∫
(�� − d) · (�� − d) dA

αzz = A

�2

∫
(�� − h) · (�� − h) dA (6.126)

αyz = αzy = A

�2

∫
(�� − h) · (�� − d) dA

with � = j(∂/∂y) + k(∂/∂z).
Schramm et al. (1997) presented a more comprehensive theory including the ef-

fect of torsion of the bar. In this case, the strain energy per unit length of Eq. (6.121)
is replaced by

Ubeam = 1

2

(
αxx M2

x

G J
+ αyyV 2

y

G A
+ αzz V 2

z

G A
+ αxy Mx Vy

G J
+ αyx Vy Mx

G J

+ αxz Mx Vz

G J
+ αzx Vz Mx

G J
+ αyz Vy Vz

G A
+ αzy Vz Vy

G A

) (6.127)

where αxx is a torsional coefficient and αxy , αyx , αxz , and αzx are torsion-shear
coefficients.

6.3.2 Principal Shear Axes

These shear deformation coefficients can be expressed in matrix form as

A =
[
αyy αyz

αzy αzz

]
= A

�2

∫
BTB dA (6.128)
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where

B = [
�� − d �� − h

]
(6.129)

The matrix A is a symmetric tensor. The principal values of the tensor can be de-
termined from an eigenvalue problem (Schramm et al., 1997). The angle ϕs of the
principal axes, which are the principal shear axes, of this tensor are obtained from

tan 2ϕs = 2αyz

αyy − αzz
(6.130)

In general, the angle ϕs differs from ϕ of Eq. (1.82) for the principal bending axes.
For a symmetrical cross section, both angles are the same. That is, the principal bend-
ing and principal shear axes are the same for symmetrical cross sections. It is readily
shown (Schramm et al., 1997) that the principal values of the shear deformation co-
efficients are always greater than or equal to 1.

6.3.3 Finite Element Solution Formulation

For the shear coefficient αyy = αy , define

κy = αyy�
2

A
(6.131)

where A is the cross-sectional area and � = 2(1 + ν)(Iy Iz − I 2
yz). Introduce the

formula of Eq. (6.126) for αyy:

κy =
∫

(�� − d) · (�� − d) dA (6.132)

which in discretized form becomes

κy =
∑

e

∫ 1

−1

∫ 1

−1
(	eTBT − dT)(B	e − d) | Je | dη dζ (6.133)

where 	e is the vector of nodal values in element e of the shear function � for
transverse shear loading Vy in the y direction.

The expression for κy may be rewritten as

κy =
∑

e

∫ 1

−1

∫ 1

−1
(	eTBTB	e − 2	eTBTd + dTd) | Je | dη dζ

=
∑

e

	eTke	e +
∑

e

∫ 1

−1

∫ 1

−1
(−2	eTBTd + dTd) | Je | dη dζ
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= 	TK	 +
∑

e

∫ 1

−1

∫ 1

−1
(−2	eTBTd + dTd) | Je | dη dζ (6.134)

= 	TPy − 2
∑

e

∫ 1

−1

∫ 1

−1
	eTBTd | Je | dη dζ

+ 1

4
ν2(I 2

y + I 2
yz)

∫
(y2 + z2)2 dA

where

ke =
∫ 1

−1

∫ 1

−1
BTB | Je | dη dζ

The element matrix ke is assembled to form K. Also, with

pe =
∫ 1

−1

∫ 1

−1
BTd | Je | dη dζ (6.135)

κy can be expressed as

κy = 	T(Py − 2Py2) +
∑

e

∫ 1

−1

∫ 1

−1
dT d | Je | dη dζ

where K	 = Py and
∑

e 	eTpe = 	TPy2.
For the shear coefficient αzz = αz , let κz be defined by

κz = αzz�
2

A
(6.136)

From Eq. (6.126) for αzz ,

κz =
∑

e

∫ 1

−1

∫ 1

−1
(�eTBT − hT)(B�e − h) | Je | dη dζ (6.137)

where �e is the vector of nodal values in element e of the shear function � for
transverse shear loading Vz in the z direction. This expression may be evaluated as

κz = �TPz − 2
∑

e

∫ 1

−1

∫ 1

−1
�eTBTh | Je | dη dζ

+ 1

4
ν2(I 2

z + I 2
yz)

∫
(y2 + z2)2 dA

(6.138)
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In the case of the shear coefficient αyz , define κyz as

κyz = αyz�
2

A
(6.139)

The formula for αyz in Eq. (6.126) gives

κyz =
∑

e

∫ 1

−1

∫ 1

−1
(	eTBT − dT)(B�e − h) | Je | dη dζ (6.140)

This is evaluated as follows:

κyz = PT
y � −

∑
e

∫ 1

−1

∫ 1

−1
(	eTBTh + �eTBTd − dTh) | Je | dη dζ

= PT
y � −

∑
e

∫ 1

−1

∫ 1

−1
(	eTBTh + �eTBTd) | Je | dη dζ (6.141)

− 1

4
ν2 Iyz(Iy + Iz)

∫
(y2 + z2)2 dA

It is important to recognize that the subscripts chosen here to represent shear
deformation coefficients differ from those for moments of inertia. In some of the
solid mechanics literature the moments of inertia are defined as Iyy = Iy = ∫

y2 dA
and Izz = Iz = ∫

z2 dA. More common definitions are Iyy = Iy = ∫
z2 dA and

Izz = Iz = ∫
y2 dA. Although the latter definitions for the subscripts of the moments

of inertia are employed in this book, the shear coefficient subscripts used here for
αzz and αyy correspond to the former definition for the subscripts of the moments of
inertia.

Example 6.4 Bar of Open Circular Cross Section. Figure 6.8 shows an open cir-
cular cross section with an inner radius of 8 in. and a thickness of 1.25 in. Part of
the output file for section properties as calculated by the program of the appendixes

z

yC

Coordinate system for
defining the problem

Figure 6.8 Open circular cross section.
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TABLE 6.4 Part of an Output File for an Open
Circular Cross Section

Y Centroid 0.00000
Z Centroid 8.00000
Y Shear Center with regard to Centroid 0.00000
Z Shear Center with regard to Centroid 15.90306

Y Shear Coefficient 5.93977
Z Shear Coefficient 1.98015
Y Z Shear Coefficient 0.00000

Torsional Constant 32.23967

is shown in Table 6.4. More complete output is given in Table B.8. The shear center
is approximately one diameter away from the centroid on the z axis, or one and a
half diameters away from the slit. This result is often included in handbooks with
structural mechanics formulas.

Example 6.5 Shear Deformation Coefficients for a Rectangular Cross Sec-
tion. Consider the rectangular cross section shown in Fig. 6.9 with height (thick-

2

1

y

z

β

Figure 6.9 Rectangle.
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TABLE 6.5 Shear Deformation Coefficients for a
Rectangular Cross Section

ν

0 0.3 0.5

αclassical 1.2 1.1769 1.1667

Principal α1 1.2 1.27479 1.35605

α2 1.2 1.20056 1.20118

β = 30◦ αyy 1.2 1.21912 1.23990
αyz 0.0 −0.32142 −0.67062
αzz 1.2 1.25624 1.31733

β = 60◦ αyy 1.2 1.23768 1.27861
αyz 0.0 −0.03711 −0.07744
αzz 1.2 1.23768 1.27861

β = 90◦ αyy 1.2 1.27479 1.35605
αyz 0.0 0.00000 0.00000
αzz 1.2 1.20056 1.20118

ness) h and width b. The shear deformation coefficients are calculated for three
different values of Poisson’s ratio and for three angles. For this doubly symmetric
section, the shear center coincides with the centroid. Some of the results are shown
in Table 6.5. The principal shear coefficients are denoted by α1 and α2. Also shown
in the Table are the “classical” values of the shear deformation coefficient calculated
using

αclassical = 12 + 11ν

10(1 + ν)
. (1)

This rectangular cross section is useful in studying the concept of shear locking
(Pilkey and Wunderlich, 1994). Traditionally, for rectangular cross sections of any
aspect ratio (b/h in Fig. 6.10), a shear deformation coefficient of αyy = αzz = 1.2 is
employed. This corresponds to (1) with ν = 0. Often shear locking is explained by
noting that quantities similar to

k = 1

αzz

G A

E Iy
= 6

αzz(1 + ν)h2
(2)

for beams and

ζ = 6ks(1 − ν)

h2
= 6(1 − ν)

αzzh2
ks = 1

αzz
(3)
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h

z

y

b

Figure 6.10 Rectangular cross section with thickness h and width b.

for rectangular plates, which are constants in the response expressions, become in-
ordinately large as the cross section becomes very thin. Table 6.6 illustrates this
behavior in these constasnts for αzz = 1.2. This leads to unrealistic results of trans-
verse displacements approaching infinity. In addition, Table 6.6 shows for increas-
ing aspect ratios b/h and ν = 0.3, values of αzz , calculated using the theory of
this chapter. Also shown are the corresponding values of k = G A/αzz E Iy and
ζ = 6ks(1 − ν)/h2. Note that as the cross section becomes thinner and the as-
pect ratios b/h become larger, αzz increases as do k and ζ . However, the increase in
k and ζ are not as great as for the case with αzz = 1.2. Of course, for ζ to be appli-
cable to thin plates it is necessary that b/h be quite large. It appears that if the shear
deformation coefficients presented here are employed, the shear deformation of the
member is described more accurately than with the traditional coefficients, and shear

TABLE 6.6 Shear Deformation Coefficients for a Rectangular Cross Section, with
ν = 0.3, for Various b/h Ratios

αzz of Eq. (6.136) αzz = 1.2

b/h αzz k ζ b/h k ζ

1 1.2074 3.86 3.51 1 3.85 3.5
2 1.2748 14.59 13.28 2 15.38 14.0
5 2.0920 55.25 50.28 5 96.15 87.5

10 5.5908 82.53 75.11 10 384.62 350.0
50 131.64 89.11 81.09 50 9615.38 8750.0

100 530.78 88.05 80.12 100 38461.54 35000.0

The calculations are made for a fixed b (width) and a progressively smaller h (height).
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locking might be avoided. Also, as the cross section becomes thinner, 1/αzz and ks

approach zero, and the shear deformation effects disappear as expected.
The shear deformation coefficients computed here using finite elements are based

on a theory of elasticity formulation. These coefficients can be obtained for cross
sections of any shape. For a rectangular cross section it can be shown that the shear
coefficients calculated with the finite element formulation of this chapter for a rect-
angular cross section coincide with coefficients found using a formula developed by
Renton (1991, 1997) and an exact theory of elasticity approach by Sanchez (2001).
The latter case corresponds to the exact beam theory proposed by Ladevèze and Sim-
monds (1996).

Example 6.6 Shear Deformation Coefficients for a Trapezoidal Cross Sec-
tion. As an example of a cross section with no axis of symmetry, consider the
trapezoid shown in Fig. 6.11. The results, as given in Table 6.7, show that the shear
deformation coefficients αyz = αzy are not zero when calculated for the principal
bending axes. This implies that the inclusion of shear due to transverse loads leads, in

3

2

z

y

1

C

S

Principal bending axes (at C)

Principal shear axes (at S)

Figure 6.11 Principal axes of a trapezoid. The shear axes are centered at the shear center
and correspond to ν = 0.
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TABLE 6.7 Shear Deformation Coefficients for a Trapezoid

ν

0 0.3 0.5

y, z axes αyy 1.313417 1.465389 1.630496
corresponding to αyz −0.063785 −0.076064 −0.089406
the figure αzz 1.169516 1.170704 1.171995

Shear center yS −0.069460 −0.071690 −0.072681
zS −0.072013 −0.090135 −0.098190

Principal shear α1 1.337619 1.483865 1.647313
axes at shear α2 1.114531 1.152229 1.164731
center αyz max 0.111574 0.165818 0.241291

ϕs −20.77868◦ −13.65235◦ −10.65227◦

Principal bending ϕ −4.860108◦ −4.860108◦ −4.860108◦
axes at centroid αyy 1.323148 1.476062 1.642190

αyz −0.057145 −0.050085 −0.049400
αzz 1.159780 1.159977 1.160191

general, to coupled system equations. From Table 6.7 and Fig. 6.11 observe that the
angles to the principal bending axes ϕ and the principal shear axes ϕs are different.

Example 6.7 Shear Deformation Coefficients for L Sections. Consider two L-
shaped cross sections, the first with legs of equal length (Fig. 6.12) so that the line

10.5

10.5

C

S

1

y

z

1 Principal bending axes (at C)

Principal shear axes (at S)

Figure 6.12 Symmetric L section, principal axes, ν = 0.5.
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10.5

15.5

C

S

1

y

z

1

Principal bending axes (at C)

Principal shear axes (at S)

Figure 6.13 Unsymmetric L section, principal axes, ν = 0.5.

evenly between the legs is an axis of symmetry, and the second with one leg shorter
than the other (Fig. 6.13). The shear deformation coefficients are calculated for co-
ordinate axes parallel to the legs of the L sections and for the principal bending axes
and are given in Tables 6.8 and 6.9. It can be observed that for the asymmetric case
of Fig. 6.13, the principal shear and principal bending axes are different, although
this is not the case for the symmetric cross section of Fig. 6.12. The cross terms
αyz = αzy vanish for the principal bending axes of the symmetric cross section and
are nonzero for the asymmetric case.

6.3.4 Traditional Analytical Formulas

Formulas for approximate shear deformation coefficients can be obtained by using
the approximate shear stress formulas of Section 6.1.1. Equation (6.120) provides an
expression for the shear strain energy per unit length of beam:

U0 =
∫

A

τ 2
xy + τ 2

xz

2G
dA (6.142)
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TABLE 6.8 Symmetric L-Section

ν

0 0.3 0.5

Torsional constant J 6.539189 6.539189 6.539189

Centroidal y, z αyy 2.301059 2.302935 2.304973
axes corresponding αyz 0.014969 0.016782 0.018753
to the figure αzz 2.301059 2.302935 2.304973

Shear center yS −2.464750 −2.464971 −2.465070
zS −2.464750 −2.464971 −2.465070

Principal shear α1 2.316028 2.319718 2.323726
axes at shear α2 2.286090 2.286153 2.286220
center αyz max 0.014969 0.016782 0.018753

ϕs 0.785398 0.785398 0.785398

Principal bending ϕ 0.785398 0.785398 0.785398
axes at centroid

TABLE 6.9 Unsymmetric L-Section

ν

0 0.3 0.5

Torsional constant J 8.211705 8.211705 8.211705

Centroidal y, z αyy 3.058207 3.061764 3.065628
axes corresponding αyz 0.039510 0.041123 0.042876
to the figure αzz 1.898375 1.899138 1.899967

Shear center yS −1.997641 −1.997605 −1.997589
zS −4.423925 −4.424391 −4.424592

Principal shear α1 3.059551 3.063217 3.067203
axes at shear α2 1.897031 1.897685 1.898392
center αyz max 0.581260 0.582766 0.584405

ϕs 0.034013 0.035312 0.036717

Principal bending ϕ 0.430248 0.430248 0.430248
axes at centroid
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Substitute in Eq. (6.142) the engineering beam theory stress τxz in Eq. (6.7) and the
equivalent expression for τxy:

U0 =
∫

A

 V 2
y

2G

(
Q′

z

Izb

)2

+ V 2
z

2G

(
Q′

y

Iyb

)2
 dA

= V 2
y

2G
αyy + V 2

z

2G
αzz

(6.143)

where we have chosen to define the shear deformation coefficients αzz and αyy as

αzz = A

I 2
y

∫
A

(
Q′

y

b

)2

dA αyy = A

I 2
z

∫
A

(
Q′

z

b

)2

dA (6.144)

Example 6.8 Rectangular Cross Section. Calculate approximate shear deforma-
tion factors for the rectangular cross section of Fig. 6.14.

SOLUTION. For the rectangular cross section of Fig. 6.14, the shaded area is A′ =
(h/2 − z)b and

Q′
y =

∫
A′ z dA = z A′ =

(
(h/2 − z)

2
+ z

)(
h

2
− z

)
b = 1

2
b

(
1

4
h2 − z2

)
(1)

b

h

z
z

z

y

A

Figure 6.14 Rectangular cross section.
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With Iy = 1
12 bh3, Eq. (6.144) becomes

αzz = A

I 2
y

∫
A

(
Q′

y

b

)2

dA

= bh

( 1
12 bh3)2

∫ h/2

−h/2

[
1

2

(
1

4
h2 − z2

)]2

b dz = 6

5
(2)

The same reasoning leads to the shear deformation coefficient αyy = 6/5.
The traditional formula (Cowper, 1966) of Eq. (1) of Example 6.5, which depends

on the material properties, is

αzz = 12 + 11ν

10(1 + ν)
(3)

which reduces to the value 6
5 of (2) for ν = 0. As indicated by the more accurate

figures in Table 6.6, for ν = 0.3, the shear deformation coefficient of 6
5 applies when

b and h are of similar magnitudes. The approach which is highlighted in this chapter
leads to coefficients that depend on the material properties and the dimensions of the
cross section.

6.4 DEFLECTION RESPONSE OF BEAMS
WITH SHEAR DEFORMATION

The displacements and forces along a beam with shear deformation taken into ac-
count are readily obtained by following the procedures outlined in Chapter 2. Princi-
pal shear axes, which for asymmetrical cross sections are different from the princi-
pal bending axes, were defined in Section 6.3. Because of this difference, deflection
components in the y and z directions are, in general, coupled even if the coordinate
system for y and z is chosen to correspond to the principal bending axes. If the shape
of the cross section is symmetrical about some axis, the principal shear axes coincide
with the principal bending axes. If the y, z axes for the symmetrical cross section are
chosen to coincide with these principal axes, αyz = 0 and Iyz = 0, and the y and z
components of the deflection (v and w) will not be coupled.

The coupled structural matrices for beam elements with arbitrary cross-section
shapes will be derived in this section. In the case of the static response of a beam
with shear deformation taken into account, an exact solution can be obtained.

6.4.1 Governing Equations

The equations of motion of Chapter 2 can be modified to take into account shear
deformation using the shear coefficients αyy, αzz, αyz . We choose for the moment to
ignore the inertia terms and the terms involving the axial force N . Begin with the
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first-order differential equations for a beam in an arbitrarily oriented y, z coordinate
system, with the x axis along the beam. The familiar beam notation is employed. The
material is linearly elastic with Young’s modulus E , Poisson’s ratio ν, shear modulus
G (G = E/ [2(1 + ν)]), area A, radii of gyration ry and rz , volume density ρ∗, and
mass per unit length ρ. Loading for the beam includes distributed transverse forces
py(x, t) and pz(x, t), temperature change �T (x, y, z), and axial compression force
N . The transverse loads pass through the shear center so that no torsion occurs.

∂v

∂x
= θz + αyy

Vy

G A
+ αyz

Vz

G A

∂θz

∂x
= (Mz + MT z)Iy

E(Iy Iz − I 2
yz)

+ (My + MT y)Iyz

E(Iy Iz − I 2
yz)

∂Vy

∂x
= ρ

∂2v

∂t2
− py(x, t)

∂Mz

∂x
= −Vy − Nθz + ρr2

y
∂2θz

∂t2

∂w

∂x
= −θy + αzy

Vy

G A
+ αzz

Vz

G A

∂θy

∂x
= (My + MT y)Iz

E(Iy Iz − I 2
yz)

+ (Mz + MT z)Iyz

E(Iy Iz − I 2
yz)

∂Vz

∂x
= ρ

∂2w

∂t2
− pz(x, t)

∂My

∂x
= Vz − Nθy + ρr2

z
∂2θy

∂t2

(6.145)

These equations are written in a y, z coordinate system corresponding to the principal
bending axes if Iyz is set equal to zero and the principal shear axes if αyz is set equal
to zero.

In these equations the terms with the radii of gyration ry and rz in the y and z
directions can be expressed as ρr2

y = ρ∗ Iz and ρr2
z = ρ∗ Iy . The quantities MT y and

MT z are thermal moments given by

MT y =
∫

A
Eα �T (x, y, z)z dA

MT z = −
∫

A
Eα �T (x, y, z)y dA

(6.146)

where α is the linear coefficient of thermal expansion, a material property.
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In matrix form these equations appear as

d

dx



v

θz
Vy
Mz
w

θy
Vz
My


=



0 1 ayy 0 0 0 ayz 0
0 0 0 byy 0 0 0 byz
0 0 0 0 0 0 0 0
0 0 −1 0 0 0 0 0
0 0 ayz 0 0 −1 azz 0
0 0 0 byz 0 0 0 bzz
0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0





v

θz
Vy
Mz
w

θy
Vz
My


+



0
byy MT z + byz MT y

−py(x)

0
0

byz MT z + bzz MT y
−pz(x)

0


d

dx
z = A z + P

(6.147)

or

d

dx
z = Az + P (6.148)

where

ai j = αi j

G A
and bi j = Ii j

E(Iyy Izz − I 2
yz)

i, j = y, z (6.149)

Recall that Iyy = Iy and Izz = Iz .

z
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vb

q
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Figure 6.15 Positive displacements and forces for Sign Convention 1 for the transfer matrix
solution for element e.
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6.4.2 Transfer Matrix

The transfer matrix is determined in this work primarily so that it is available for
conversion to a stiffness matrix. Integration of Eq. (6.147) leads to Eq. (2.51), that
is,

z(x) = eAx za + eAx
∫ x

x=a
e−Aτ P(τ ) dτ (6.150)

and for element e of length � extending from x = a to x = b (Eq. 2.52),

zb = Ue
[

za +
∫ b

a

(
Ue)−1 P dτ

]
= Ueza + ze (6.151)

The transfer matrix Ue for the eth element is obtained using Eq. (2.55), where As

is zero for any s greater than 3. Sign convention 1 as shown in Fig. 6.15 applies for
the displacements and forces at the ends of element e, which is of length �. Equation
(2.55) gives the transfer matrix

Ue =



1 �
−byy�

3 + 6ayy�

6

byy�
2

2
0 0

byz�
3 + 6ayz�

6

byz�
2

2

0 1 −byy�
2

2
byy� 0 0

byz�
2

2
byz�

0 0 1 0 0 0 0 0
0 0 −� 1 0 0 0 0

0 0
byz�

3 + 6ayz�

6
−byz�

2

2
1 −�

−bzz�
3 − 6azz�

6
−bzz�

2

2

0 0 −byz�
2

2
byz� 0 1

bzz�
2

2
bzz�

0 0 0 0 0 0 1 0
0 0 0 0 0 0 � 1


(6.152)

The loading vector is given by Eq. (2.53) with Eq. (2.56). The matrix Ue(−x)

is obtained from Ue of Eq. (6.152) by replacing � with −x . If the applied in-span
loading is constant or linearly distributed, let

pi (x) = pia + x

�
(pib − pia)

MT i (x) = MT ia + x

�
(MT ib − MT ia) (6.153)

i = y, z

where the subscripts a and b indicate that pi or MT i is evaluated at x = a and
x = b. The load vector ze is given by
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ze =



8byy�
4 − 80ayy�

2

30byy�
3

−120�

80�2

−8byz�
4 − 80ayz�

2

30byz�
3

0
0


pya

240
+



2byy�
4 − 40ayy�

2

10byy�
3

−120�

40�2

−2byz�
4 − 40ayz�

2

10byz�
3

0
0


pyb

240

+



−8byz�
4 − 80ayz�

2

−30byz�
3

0
0

8bzz�
4 − 80azz�

2

−30bzz�
3

−120�

−80�2


pza

240
+



−2byz�
4 − 40ayz�

2

−10byz�
3

0
0

2bzz�
4 − 40azz�

2

−10bzz�
3

−120�

−40�2


pzb

240

+



2byy�
2

3byy�

0
0

−2byz�
2

3byz�

0
0


MT za

6
+



byy�
2

3byy�

0
0

−byz�
2

3byz�

0
0


MT zb

6

+



2byz�
2

3byz�

0
0

−2bzz�
2

3bzz�

0
0


MT ya

6
+



byz�
2

3byy�

0
0

−bzz�
2

3bzz�

0
0


MT yb

6
(6.154)

6.4.3 Stiffness Matrix

Although most stiffness or mass matrices are derived based on approximate polyno-
mial shape functions, beams present a special case since often it is possible to derive
exact stiffness and mass matrices because the governing differential equations can
be solved exactly. This approach is followed here for beams including the effects of
shear deformation.
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Figure 6.16 Positive displacements and forces for Sign Convention 2 for the stiffness matrix
solution for element e.

The stiffness matrix for the beam element will conform to Sign Convention 2, as
shown in Fig. 6.16. This convention differs from the sign convention of Fig. 6.15
in that the forces on end a are in the opposite direction. The stiffness matrix of
Eq. (2.60), that is,

pe = keve (6.155)

is obtained by reorganizing the transfer matrix of Eq. (6.152). The resulting stiffness
matrix will be exact in the sense that Eq. (6.147) is solved without approximations.
Follow the procedure detailed in Chapter 2. Define the force vector

pe = [
pya pza pyb pzb

]T

= [
Vya Mza Vza Mya Vyb Mzb Vzb Mzb

]T
(6.156)

and the displacement vector

ve = [
vya vza vyb vzb

]T

= [
va θza wa θya vb θzb wb θyb

]T
(6.157)

The stiffness matrix for this beam element with an arbitrarily shaped cross section
and in an arbitrarily oriented coordinate system is
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ke = 1

D



k11

�

2
k11 k22

k31
�

2
k31 k33 symmetric

−�

2
k31 k42 −�

2
k33 k44

−k11 −�

2
k11 −k31

�

2
k31 k11

�

2
k11 k62

�

2
k31 k82 −�

2
k11 k22

−k31 −�

2
k31 −k33

�

2
k33 k31 −�

2
k31 k33

−�

2
k31 k82 −�

2
k33 k84

�

2
k31 k42

�

2
k33 k44


(6.158)

where

D = �
[(

bzzbyy − b2
yz

)
�4 + 12

(
ayybzz + 2ayzbyz + azzbyy

)
�2

+ 144
(

ayyazz − a2
yz

)]
ai j = αi j

G A
and bi j = Ii j

E
(

Iyy Izz − I 2
yz

) i, j = y, z.

The entries of this matrix are

k11 = 12
(

bzz�
2 + 12azz

)
k31 = 12

(
byz�

2 − 12ayz

)
k33 = 12

(
byy�

2 + 12ayy

)
k22 = 4

[
bzz

(
byybzz − b2

yz

)
�4

+ 3
(

4azzbyybzz − 3azzb2
yz + 2ayzbzzbyz + ayyb2

zz

)
�2

+ 36bzz

(
ayyazz − a2

yz

)]/(
byybzz − b2

yz

)



DEFLECTION RESPONSE OF BEAMS WITH SHEAR DEFORMATION 279

k42 = −4
[
byz

(
byybzz − b2

yz

)
�4

− 3
(

3ayzbyybzz − 5ayzb2
yz − ayybzzbyz − azzbyzbyy

)
�2

+ 36byz

(
ayyazz − a2

yz

)]/(
byybzz − b2

yz

)
k44 = 4

[
byy

(
byybzz − b2

yz

)
�4

+ 3
(

4ayybyybzz − 3ayyb2
yz + 3ayzbyybyz + azzb2

yy

)
�2 (6.159)

+ 36byy

(
ayyazz − a2

yz

)]/(
byybzz − b2

yz

)
k62 = 2

[
byy

(
byybzz − b2

yz

)
�4

+ 3
(

4azzbyybzz − 6azzb2
yz − 4ayzbzzbyz − 2ayyb2

zz

)
�2

− 72bzz

(
ayyazz − a2

yz

)]/(
byybzz − b2

yz

)
k82 = −2

[
byz

(
byybzz − b2

yz

)
�4

− 6
(

3ayzbyybzz − ayzb2
yz + ayybzzbyz + azzbyzbyy

)
�2

− 72byz

(
ayyazz − a2

yz

)]/(
byybzz − b2

yz

)
k84 = 2

[
byy

(
byybzz − b2

yz

)
�4

+ 6
(

2ayybyybzz − 3ayyb2
yz − 2ayzbyybyz − azzb2

yy

)
�2

− 72byy

(
ayyazz − a2

yz

)]/(
byybzz − b2

yz

)
Example 6.9 A Cantilever Beam with a Trapezoidal Cross Section. Consider a
beam with a trapezoidal cross section, as shown in Fig. 6.17. This trapezoid, which
does not have an axis of symmetry, is oriented 5.8◦ from a horizontal axis. The beam
is cantilevered and has a force at the free end. The length of the beam is 10 in. The
area of the cross section is 2.5 in2.

The principal bending axes are found (Table 6.7) to be oriented at an angle of 4.9◦,
as shown in Fig. 6.17. The x, y coordinate system is chosen to be aligned with the
principal bending axes. The moments of inertia for these principal axes are found to
be Iz = 0.19688956, Iy = 1.4144668, Iyz = 0. For ν = 0.3, the shear deformation
coefficients relative to the principal bending axes are found using the formulas of
Eq. (6.126) to be αzz = 1.159977, αyy = 1.476062, and αyz = −0.050085. As
explained in Section 6.3.2, the principal shear axes differ from the principal bending
axes, so that αyz is, as expected, not equal to zero for this asymmetric cross section.
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Figure 6.17 Cantilever beam with a trapezoidal cross section.

The load P is applied along the z axis. The deflection of the beam is readily
computed using the methods of Chapters 2 and 3. Table 6.10 portrays the beam
displacements for various shear deformation coefficient scenarios. This table lists
the nondimensional displacements v = vx=L\L and w = wx=L\L and the ro-
tations θy|x=L and θz |x=L under the tip loading, which is chosen to be P =
0.3E Iy/L2.

The first column in Table 6.10, with all shear deformation coefficients being set
equal to zero, corresponds to Bernoulli–Euler beam theory. In this case, familiar
formulas are used for the displacements:
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TABLE 6.10 Free End Displacements of a Cantilever Beam with Various Sets of Shear
Deformation Coefficients

Frequently Used Utilize Proper Values Use the Correct
Bernoulli–Euler Default Values for αyy and αzz , Values for

Theory of αyy and αzz but Set αyz = 0 αyy , αzz , and αyz

αyy 0 1 1.476062 1.476062
αzz 0 1 1.159977 1.159977
αyz 0 0 0 −0.050085
w 0.1 0.1044131 0.1051191 0.1051191
v 0 0 0 −0.000221
θy 0.15 0.15 0.15 0.15
θz 0 0 0 0

w = wx=L

L
= P L2

3E Iy
θy

∣∣∣
x=L

= P L2

2E Iy
(1)

The displacements v and θz are zero since y and z are chosen to be the principal
bending axes and P is applied along the z coordinate.

Some general-purpose structural analysis programs recommend that the user in-
put the two shear coefficients αyy and αzz as being equal to one. The cross coefficient
αyz is usually not utilized in these programs. The values in the second column in
Table 6.10 correspond to these coefficients. Note that the deflection w increases
somewhat.

Often, the users of general-purpose structural analysis programs are asked to input
values of αzz and αyy , but αyz is not taken into account. This is equivalent to the
assumption that shear deformations are uncoupled in the principal bending planes.
This is shown in the third column of Table 6.10, where αyy and αzz are calculated
by using Eq. (6.126) and αyz is set equal to zero. The deflection w continues to
increase.

The final column shown in Table 6.10 corresponds to the solution for the displace-
ments being based on the transfer matrix of Eq. (6.152) or the stiffness matrix of
Eq. (6.158), in which the three shear coefficients are given their proper values. Note
that a nonzero deflection occurs in the y direction even though the load is applied
along z, a principal bending axis. Of course, this y-direction deflection is due to the
cross coefficient αyz . Also, note that this theory of shear deformation does not affect
the rotations θy and θz .

6.4.4 Exact Geometric Stiffness Matrix for Beams with Axial Loading

Begin with the governing equations of Eq. (6.145) with the dynamic response terms
and the transverse loading terms ignored. Also, consider the equations in a coordi-
nate system corresponding to the principal bending axes for which Iyz = 0. These
relations then appear as
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dv

dx
= θz + αyy

Vy

G A
+ αyz

Vz

G A

dθz

dx
= Mz

E Iz

dVy

dx
= 0

d Mz

dx
= −Vy − Nθz

dw

dx
= −θy + αyz

Vy

G A
+ αzz

Vz

G A

dθy

dx
= My

E Iy

dVz

dx
= 0

d My

dx
= Vz − Nθy

(6.160)

The axial load N is compressive. In matrix form, with

ai j = αi j

G A
i, j = y, z and bzz = 1

E Iy
byy = 1

E Iz
(6.161)

these relations appear as

d

dx



v

θz

Vy
Mz

w

θy

Vz

My


=



0 1 ayy 0 0 0 ayz 0
0 0 0 byy 0 0 0 0
0 0 0 0 0 0 0 0
0 −N −1 0 0 0 0 0
0 0 ayz 0 0 −1 azz 0
0 0 0 0 0 0 0 bzz

0 0 0 0 0 0 0 0
0 0 0 0 0 −N 1 0





v

θz

Vy
Mz

w

θy

Vz

My


d

dx
z = A z

(6.162)

First find the transfer matrix, which can be used as a vehicle for determining
the stiffness matrix. The transfer matrix Ue for element e of length � is expressed
as (Eq. 2.52) zb = Ueza , with (Eq. 2.54) Ue = eA�. For a n × n matrix, A, a
function f (A) can be replaced by a polynomial P(A) in A of order n − 1 (Pilkey
and Wunderlich, 1994):

Ue = eA� = coI + c1(A�) + c2(A�)2 + c3(A�)3

+ c4(A�)4 + c5(A�)5 + c6(A�)6 + c7(A�)7
(6.163)
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where ci , i = 0, 1, . . . , 7, are constants. From the Cayley–Hamilton theorem (a
matrix satisfies its own characteristic equation),

eλi � = co + c1(λi�) + c2(λi�)
2 + c3(λi�)

3

+ c4(λi�)
4 + c5(λi�)

5 + c6(λi�)
6 + c7(λi�)

7
(6.164)

where λi are the eigenvalues of the matrix A. For the case that λ j is a multiple
eigenvalue (i.e., λ j = λ j+1 = · · · = λ j+m, m ≤ 8), m equations of the type of
Eq. (6.164) are missing. These equations are obtained by recognizing that eλi � and
the polynomial on the right-hand side of Eq. (6.164) have the same first m derivatives
for the eigenvalue λ j .

The eigenvalues of matrix A are the roots of the characteristic equation of A:

| λI − A |= 0 (6.165)

or

λ4
[
λ4 + (bzz + byy)Nλ2 + bzzbyy N 2

]
= 0 (6.166)

The roots of Eq. (6.166) are found to be

λ1 = λ2 = λ3 = λ4 = 0

λ5 = −λ6 = ξ1i i = √−1 (6.167)

λ7 = −λ8 = ξ2i

where ξ1 = √
N/E Iy and ξ2 = √

N/E Iz . Substitute these roots into Eq. (6.164),
taking into consideration the multiple eigenvalues λ1 = λ2 = λ3 = λ4 = 0:

1 = co 1 = c1 1 = 2c2 1 = 6c3

eξ1�i = co + c1(ξ1�i) + c2(ξ1�i)2 + c3(ξ1�i)3 + c4(ξ1�i)4

+ c5(ξ1�i)5 + c6(ξ1�i)6 + c7(ξ1�i)7

e−ξ1�i = co − c1(ξ1�i) + c2(ξ1�i)2 − c3(ξ1�i)3 + c4(ξ1�i)4

− c5(ξ1�i)5 + c6(ξ1�i)6 − c7(ξ1�i)7

eξ2�i = co + c1(ξ2�i) + c2(ξ2�i)2 + c3(ξ2�i)3 + c4(ξ2�i)4

+ c5(ξ2�i)5 + c6(ξ2�i)6 + c7(ξ2�i)7

e−ξ2�i = co − c1(ξ2�i) + c2(ξ2�i)2 − c3(ξ2�i)3 + c4(ξ2�i)4

− c5(ξ2�i)5 + c6(ξ2�i)6 − c7(ξ2�i)7

(6.168)
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Solve Eq. (6.168) for ci , i = 0, 1, . . . , 7.

co = 1 c1 = 1 c2 = 1
2 c3 = 1

6

c4 =
cos(ξ1�) + (ξ1�)

2/2 − 1

(ξ1�)4
(ξ2�)

2 − cos(ξ2�) + (ξ2�)
2/2 − 1

(ξ2�)4
(ξ1�)

2

(ξ2�)2 − (ξ1�)2

c5 =
sin(ξ1�)/(ξ1�) + (ξ1�)

2/6 − 1

(ξ1�)4
(ξ2�)

2 − sin(ξ2�)/(ξ2�) + (ξ2�)
2/6 − 1

(ξ2�)4
(ξ1�)

2

(ξ2�)2 − (ξ1�)2

c6 =
cos(ξ1�) + (ξ1�)

2/2 − 1

(ξ1�)4
− cos(ξ2�) + (ξ2�)

2/2 − 1

(ξ2�)4

(ξ2�)2 − (ξ1�)2

c7 =
sin(ξ1�)/(ξ1�) + (ξ1�)

2/6 − 1

(ξ1�)4
− sin(ξ2�)/(ξ2�) + (ξ2�)

2/6 − 1

(ξ2�)4

(ξ2�)2 − (ξ1�)2

(6.169)

For ξ1 = ξ2 = ξ , which implies that Iy = Iz = I ,

co = 1 c1 = 1 c2 = 1
2 c3 = 1

6

c4 = ξ� sin(ξ�) + 6 cos(ξ�) + 2(ξ�)2 + 6

2(ξ�)4

c5 = 21 sin(ξ�) − 3ξ� cos(ξ�) + 2(ξ�)3 − 18ξ�

6(ξ�)5

c6 = ξ� sin(ξ�) + 4 cos(ξ�) + (ξ�)2 − 4

2(ξ�)6

c7 = 15 sin(ξ�) − 3ξ� cos(ξ�) + (ξ�)3 − 12ξ�

6(ξ�)7

(6.170)

If N = 0, the values of ci are simply

co = 1 c1 = 1 c2 = 1
2 c3 = 1

6

c4 = 1
24 c5 = 1

120 c6 = 1
720 c7 = 1

5040

(6.171)

Note that in all cases, c0, c1, c2, and c3 remain the same. The transfer matrix of
Eq. (6.163) becomes
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Ue =



1 u12 u13 −u23 0 0 u53 0
0 u22 u23 u12byy 0 0 0 0
0 0 1 0 0 0 0 0
0 −u12 N −u12 u22 0 0 0 0
0 0 u53 0 1 u56 u57 −u67
0 0 0 0 0 u66 u67 −u56bzz

0 0 0 0 0 0 1 0
0 0 0 0 0 u56 N −u56 u66


(6.172)

where

u12 = (−λ1z�
2 N + 1)� u22 = −λ2z�

2 N + 1 u13 = (−λ1z�
2 + ayy)�

u23 = −λ2z�
2 u53 = ayz� u56 = (λ1y�

2 N − 1)�

u66 = −λ2y�
2 N + 1 u57 = (−λ1y�

2 + azz)� u67 = λ2y�
2

and

λ1z = b3
yyc7�

4 N 2 − b2
yyc5�

2 N + 1
6 byy λ2z = b3

yyc6�
4 N 2 − b2

yyc4�
2 N + 1

2 byy

λ1y = b3
zzc7�

4 N 2 − b2
zzc5�

2 N + 1
6 bzz λ2y = b3

zzc6�
4 N 2 − b2

zzc4�
2 N + 1

2 bzz

This transfer matrix is rearranged into the stiffness matrix ke of pe = keve with
pe and ve, defined by Eqs. (6.156 and 6.157), respectively. This stiffness matrix is
exact, that is,

pe = ke
exactv

e

where, for this straight beam with arbitrarily shaped cross section with the coordinate
systems aligned with the principal bending axes:

ke
exact = 1

D



k11
k21 k22
k31 k32 k33 symmetric
k41 k42 k43 k44

−k11 −k21 −k31 −k41 k11
k21 k62 k32 k82 −k21 k22

−k31 −k32 −k33 −k43 k31 −k32 k33
k41 k82 k43 k84 −k41 k42 −k43 k44


(6.173)

where

D = �(−a2
yzbzzbyy + ayyazzbzzbyy − ayybzzbyy�

2λ1y + a2
yzbzzbyy�

2 Nλ1y

− ayyazzbzzbyy�
2 Nλ1y + ayybzzbyy�

4 Nλ2
1y − azzbzzbyy�

2λ1z
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+ a2
yzbzzbyy�

2 Nλ1z − ayyazzbzzbyy�
2 Nλ1z + bzzbyy�

4λ1yλ1z

+ ayybzzbyy�
4 Nλ1yλ1z + azzbzzbyy�

4 Nλ1yλ1z − a2
yzbzzbyy�

4 N 2λ1yλ1z

+ ayyazzbzzbyy�
4 N 2λ1yλ1z − bzzbyy�

6 Nλ2
1yλ1z − ayybzzbyy�

6 N 2λ2
1yλ1z

+ azzbzzbyy�
4 Nλ2

1z − bzzbyy�
6 Nλ1yλ

2
1z − azzbzzbyy�

6 N 2λ1yλ
2
1z

+ bzzbyy�
8 N 2λ2

1yλ
2
1z + ayybyy�

2λ2
2y − byy�

4λ2
2yλ1z − ayybyy�

4 Nλ2
2yλ1z

+ byy�
6 Nλ2

2yλ
2
1z + azzbzz�

2λ2
2z − bzz�

4λ1yλ
2
2z − azzbzz�

4 Nλ1yλ
2
2z

+ bzz�
6 Nλ2

1yλ
2
2z + �4λ2

2yλ
2
2z)

ai j = αi j

G A
and bi j = Ii j

E
(

Iyy Izz − I 2
yz

) i, y = y, z (6.174)

The stiffness coefficients of ke are given by

k11 = byy(−1 + �2 Nλ1z)(−azzbzz + bzz�
2λ1y + azzbzz�

2 Nλ1y

− bzz�
4 Nλ2

1y − �2λ2
2y)

k21 = �(azzbzz − bzz�
2λ1y − azzbzz�

2 Nλ1y + bzz�
4 Nλ2

1y + �2λ2
2y)λ2z

k31 = ayzbyybzz(−1 + �2 Nλ1y)(1 − �2 Nλ1z)

k41 = ayzbyy�(1 − �2 Nλ1z)λ2y

k22 = −a2
yzbzz + ayyazzbzz − ayybzz�

2λ1y + a2
yzbzz�

2 Nλ1y − ayyazzbzz�
2 Nλ1y

+ ayybzz�
4 Nλ2

1y − azzbzz�
2λ1z + bzz�

4λ1zλ1y + azzbzz�
4 Nλ1yλ1z

− bzz�
6 Nλ2

1yλ1z + ayy�
2λ2

2y − �4λ1zλ
2
2y + azzbzz�

2λ2z + a2
yzbzz�

2 Nλ2z

− ayyazzbzz�
2 Nλ2z − bzz�

4λ1yλ2z + ayybzz�
4 Nλ1yλ2z − azzbzz�

4 Nλ1yλ2z

− a2
yzbzz�

4 N 2λ1yλ2z + ayyazzbzz�
4 N 2λ1yλ2z + bzz�

6 Nλ2
1yλ2z

− ayybzz�
6 N 2λ2

1yλ2z + �4λ2
2yλ2z − ayy�

4 Nλ2
2yλ2z

k32 = ayzbzz�(−1 + �2 Nλ1y)λ2z

k42 = ayz�
2λ2y(byy − 2byy�

2 Nλ1z + byy�
4 N 2λ2

1z − λ2z + �2 Nλ2
2z)

k62 = a2
yzbzz − ayyazzbzz + ayybzz�

2λ1y − a2
yzbzz�

2 Nλ1y + ayyazzbzz�
2 Nλ1y

− ayybzz�
4 Nλ2

1y + azzbzz�
2λ1z − bzz�

4λ1yλ1z − azzbzz�
4 Nλ1yλ1z

+ bzz�
6 Nλ2

1yλ1z − ayy�
2λ2

2y + �4λ1zλ
2
2y

k82 = ayz�
2λ2yλ2z (6.175)



DEFLECTION RESPONSE OF BEAMS WITH SHEAR DEFORMATION 287

k33 = bzz

(
−1 + �2 Nλ1y

) (
−ayybyy + byy�

2λ1z + ayybyy�
2 Nλ1z

−byy�
4 Nλ2

1z − �2λ2
2z

)
k43 = �λ2y

(
−ayybyy + byy�

2λ1z + ayybyy�
2 Nλ1z − byy�

4 Nλ2
1z − �2λ2

2z

)
k44 = −a2

yzbyy + ayyazzbyy − ayybyy�
2λ1y − azzbyy�

2λ1z + a2
yzbyy�

2 Nλ1z

− ayyazzbyy�
2 Nλ1z + byy�

4λ1yλ1z + ayybyy�
4 Nλ1yλ1z + azzbyy�

4 Nλ2
1z

− byy�
6 Nλ1yλ

2
1z + ayybyy�

2λ2y + a2
yzbyy�

2 Nλ2y − ayyazzbyy�
2 Nλ2y

− byy�
4λ1zλ2y − ayybyy�

4 Nλ1zλ2y + azzbyy�
4 Nλ1zλ2y

− a2
yzbyy�

4 N 2λ1zλ2y + azzayybyy�
4 N 2λ1zλ2y + byy�

6 Nλ2
1zλ2y

− azzbyy�
6 N 2λ2

1zλ2y + azz�
2 N 2λ2

2z − �4λ2
2zλ1y + �4λ2

2zλ2y

− azz�
4 Nλ2

2zλ2y

k84 = a2
yzbyy − ayyazzbyy + ayybyy�

2λ1y + azzbyy�
2λ1z − a2

yzbyy�
2 Nλ1z

+ azzayybyy�
2 Nλ1z − byy�

4λ1zλ1y − ayybyy�
4 Nλ1zλ1y − azzbyy�

4 Nλ2
1z

+ byy�
6 Nλ1yλ

2
1z − azz�

2λ2
2z + �4λ1yλ

2
2z

Example 6.10 Critical Loads for Beams with Different Cross Sections. The ef-
fects of shear deformation on the buckling loads of beams of different end restraints
can be studied by imposing the appropriate boundary conditions to the transfer ma-
trix of Eq. (6.172) or the stiffness matrix of Eq. (6.173).

Hinged–Hinged The boundary conditions of a column hinged at both ends (x =
a, x = b) are

va = Mza = wa = Mya = vb = Mzb = wb = Myb = 0 (1)

Apply these to either the column transfer matrix or stiffness matrix. In the case of
the transfer matrix

vb = 0
θzb
Vyb

Mzb = 0
wb = 0

θyb
Vzb

Myb = 0


=



1 u12 u13 −u23 0 0 u53 0
0 u22 u23 u12byy 0 0 0 0
0 0 1 0 0 0 0 0
0 −u12 N −u12 u22 0 0 0 0
0 0 u53 0 1 u56 u57 −u67
0 0 0 0 0 u66 u67 −u56bzz
0 0 0 0 0 0 1 0
0 0 0 0 0 u56 N −u56 u66





va = 0
θza
Vya

Mza = 0
wa = 0

θya
Vza

Mya = 0


(2)
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or 
0
0
0
0

 =


u12 u13 0 u53

−u12 N −u12 0 0
0 u53 u56 u57
0 0 u56 N −u56




θza

Vya

θya

Vza

 (3)

To find the buckling load, set the determinant of the homogeneous equations of
(3) equal to zero.[

(ayyazz − a2
yz)N 2 − (ayy + azz)N + 1

]
(λ1y�

2 N − 1)(λ1z�
2 N − 1) = 0 (4)

Note from the definition of ai j , i , j = (y, z) that two of the factors of (4) can be
expressed as

ayyazz − a2
yz = αyyαzz − α2

yz

(G A)2
ayy + azz = αyy + αzz

G A
(5)

Recall that the shear deformation coefficients αi j , i, j = y, z, form a tensor. The first
and second invariants of this tensor are

αyy + αzz = αyy + αzz and αyyαzz − α2
yz = αyyαzz (6)

where αyy and αzz are the shear deformation coefficients about coordinates along the
principal shear axes y and z. For this orientation, αyz = 0.

Substitute (5) and (6) into (4) and solve for the roots. Two roots are found to be

N1 = G A

αyy
N2 = G A

αzz
(7)

Equation (4) also yields the roots

N3 = n2π2 E Iz

�2
N4 = n2π2 E Iy

�2
n = 1, 2, 3, . . . (8)

Note that (8) are the Euler formulas for the critical loads of a pinned–pinned column.
Since the buckling would occur at the lowest values, set n = 1.

Normally, the shear-related roots of N1 and N2 of (7) are higher than the Euler
formulas (8). Note that shear deformation has no effect on the Euler formulas of
(8). It is apparent from (7) that shear deformation does induce a pure shear buckling
mode.

Free-Fixed For a beam free at x = a and fixed at x = b, the boundary conditions
are

Vya = Mza = Vza = Mya = vb = θzb = wb = θyb = 0 (9)
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The characteristic equation is found to be

(λ2y�
2 N − 1)(λ2z�

2 N − 1) = 0 (10)

which gives the critical loads

N1 = π2 E Iz

4�2
N2 = π2 E Iy

4�2
(11)

Shear deformation does not affect these critical loads, which, again, are the Euler
buckling loads.

Guided–Fixed The buckling conditions for a guided–fixed beam are

Vya = θza = Vza = θya = vb = θzb = wb = θyb = 0 (12)

These lead to the characteristic equation

(λ1y�
2 N − 1)(λ1z�

2 N − 1) = 0 (13)

from which it is evident that shear deformation does not influence the critical loads,
which are the same as those of (8).

Hinged-Fixed In the case of a hinged–fixed beam the boundary conditions are

va = Mza = wa = Mya = vb = θzb = wb = θyb = 0 (14)

The characteristic equation is found to be(
ayyazz − a2

yz

)
λ2yλ2z�

4 N 2 +
[
ayy

(
λ1y − λ2y

)
λ2z�

4 + azz (λ1z − λ2z) λ2y�
4

−
(

ayyazz − a2
yz

) (
λ2y + λ2z

)
�2

]
N + (

λ1y − λ2y
)
(λ1z − λ2z) �4 (15)

− [
ayy

(
λ1y − λ2y

) + azz (λ1z − λ2z)
]
�2 +

(
ayyazz − a2

yz

)
= 0

In this case, shear deformation and bending are coupled. A numerical example of
this column follows.

Example 6.11 Buckling Load of a Fixed–Hinged Beam with Shear Deforma-
tion. Consider a beam subject to an axial compressive force N with a L-shaped
cross section as shown in Fig. 6.18. One end is fixed and the other hinged.

The orientation of the principal bending axes is readily found and shown in the
figure. For the principal bending axes, which are designated as y, z, the moments
of inertia are Iy = 7 235 926.0 mm4, Iz = 1 321 977.7 mm4, and Iyz = 0. The cross-
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sectional area is 2500.0 mm2. For ν = 0.3, Eq. (6.126) gives αyy = 2.8886346,
αzz = 2.0676036, αyz = −0.4115954 relative to the principal bending axes. The
column can be modeled with a single element since the transfer and stiffness matrices
are exact. The boundary conditions for this fixed–hinged bar reduce the stiffness
matrix to [

k22 k42
k42 k44

] [
θza

θya

]
=

[
0
0

]
(1)

A determinant search of (1) can be used to find the critical or buckling load.
The Bernoulli–Euler beam buckling load for a fixed–hinged beam is given by

Ncr = 20.190729
E Iz

L2
(2)

Table 6.11 shows the critical axial loads for various sets of shear deformation
coefficients. These loads are expressed in terms of λ, defined as

Ncr = λ(Ncr)Bernoulli–Euler beam (3)

The meaning of the columns of Table 6.11 were discussed in Example 6.11. Note
that for this case, the more precise the incorporation of shear deformation, the lower
the buckling load.

6.4.5 Shape Function–Based Geometric Stiffness and Mass Matrices

The exact stiffness matrix for the static response of a beam with shear deforma-
tion was readily obtained in Section 6.4.3 by reorganizing a transfer matrix into the
stiffness matrix format. The same procedure was used in Section 6.4.4 to obtain the
exact geometric stiffness matrix. In theory the procedure should also lead to an ex-
act mass matrix. Alternatively, the exact geometric stiffness and mass matrices can
be derived using Eqs. (3.68) and (3.67) if the element dynamic stiffness matrix is
available. In practice, however, even with computational symbolic manipulators, the

TABLE 6.11 Buckling Loads for a Fixed-Hinged Column with Various Sets of Shear
Deformation Coefficients

Frequently Used Utilize Proper Values Use the Correct
Bernoulli–Euler Default Values for αyy and αzz , Values for

Theory of αyy and αzz but Set αyz = 0 αyy , αzz , and αyz

αyy 0 1 2.8886350 2.8886350
αzz 0 1 2.0676040 2.0676040
αyz 0 0 0.0000000 −0.4115954
λ 1.0000000 0.9971820 0.9914641 0.9914580
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operations required are inefficient. Hence, it is useful to develop approximate con-
sistent geometric stiffness and mass matrices using familiar trial function technology
that involves the development of shape functions. The eigenvalue problems for the
buckling load or natural frequencies using consistent matrices leads to a much sim-
pler computational problem than if exact matrices are employed since the matrices
are not functions of the eigenvalues, and hence the cumbersome iterative procedures
described in Section 3.6 are avoided. The development of the mass matrix requires
at the outset that the differential equations of Eq. (6.145) be made time independent
by assuming that

v (x, t) = v(x)eiωt

θx (x, t) = θx (x)eiωt

Vy (x, t) = Vy(x)eiωt

Mz (x, t) = Mz(x)eiωt

w (x, t) = w(x)eiωt

θy (x, t) = θy(x)eiωt

Vz (x, t) = Vz(x)eiωt

My (x, t) = My(x)eiωt

(6.176)

The interpolation polynomials necessary to develop the consistent matrices are
readily obtained from the exact transfer and stiffness matrices for a massless beam
element without axial load. Begin by expressing the state vector at any point x be-
tween the ends of a beam element in the form



v(x)

θz(x)

Vy(x)

Mz(x)

w(x)

θy(x)

Vz(x)

My(x)


= Ue(x)



va

θza

Vya

Mza

wa

θya
Vza

Mya


(6.177)

The transfer matrix Ue(x) relates the state variables at x in terms of the state vari-
ables at a. This transfer matrix, which should be expressed using Sign Convention
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2, can be obtained from the transfer matrix of Eq. (6.152) by substituting x for � and
changing from Sign Convention 1 to Sign Convention 2. From the stiffness matrix of
Eq. (6.158), write


Vya

Mza

Vza

Mya

 = k
e



va

θza
wa

θya

vb

θzb

wb

θyb


(6.178)

The 4 × 8 matrix ke is the upper half of the 8 × 8 matrix k
e
. Substitute Eq. ( 6.178)

into Eq. (6.177), giving


v(x)

θz(x)

w(x)

θy(x)

 =


Nv

Nθz

Nw

Nθy





va

θza

wa

θya

vb

θzb

wb
θyb


= N(x)ve (6.179)

where N(x) contains the shape functions. The expressions for Vy(x), Mz(x), Vz(x),
and My(x) of Eq. (6.177) are intentionally not shown in Eq. (6.178). These interpo-
lation polynomials are exact for a massless beam element without axial force since
the transfer and stiffness matrices for the static response are exact.

Geometric Stiffness Matrix The geometric stiffness matrix is given by
(Eq. 2.127)

ke
σ =

∫
�

d

dx

[
Nv

Nw

]T d

dx

[
Nv

Nw

]
dx (6.180)

Substitution of Nv and Nw of Eq. (6.179) into this expression and integration, with
the assistance of a symbolic manipulator, leads to the consistent geometric stiffness
matrix (Pilkey et al., 1995) for a straight beam element of an arbitrarily shaped cross
section with an arbitrarily oriented coordinate system.
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ke
σ = 1

30D2



kσ11
kσ21 kσ22

kσ31
�

2
kσ31 kσ33 symmetric

− �
2 kσ31 − �2

4 kσ31 kσ43 kσ44

−kσ11 −kσ21 −kσ31
�

2
kσ31 kσ11

kσ21 kσ62
�

2
kσ31 −�2

4
kσ31 −kσ21 kσ22

−kσ31 − �

2
kσ31 −kσ33 −kσ43 kσ31 − �

2
kσ31 kσ33

− �

2
kσ31 −�2

4
kσ31 kσ43 kσ84

�

2
kσ31 −�2

4
kσ31 −kσ43 kσ44


(6.181)

where

D = �
[(

bzzbyy − b2
yz

)
�4 + 12

(
ayybzz + 2ayzbyz + azzbyy

)
�2

+ 144
(

ayyazz − a2
yz

)]
ai j = αi j

G A
and bi j = Ii j

E
(

Iyy Izz − I 2
yz

) i, j = y, z

(6.182)

with Iyy = Iy , Izz = Iz . The entries of this matrix are

kσ11 = 36
[(

bzzbyy − b2
yz

)2
�8

+ 4
(

6azzbyy + 11ayzbyz + 5ayybzz

)(
bzzbyy − b2

yz

)
�6

+ 24
(

5a2
yyb2

zz + 20ayyazzbzzbyy + 20ayyayzbzzbyz − 10a2
yzbzzbyy

− 10ayyazzb2
yz + 31a2

yzb2
yz + 22ayzazzbyzbyy + 6a2

zzb2
yy

)
�4

+ 24
(

azzbyz + ayzbzz

)2
�4

+ 2800
(

azzbyy + 2ayzbyz + ayybzz

)(
ayyazz − a2

yz

)
�2

+ 17,280
(

ayyazz − a2
yz

)2]
�
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kσ21 = 3
[(

bzzbyy − b2
yz

)
�4 + 24

(
azzbyy + ayzbyz

)(
bzzbyy − b2

yz

)
�2

+ 144
(

azzbyy + ayzbyz

)2

+ 144
(

azzbyz + ayzbzz

)2]
�6

kσ31 = −72
[(

ayzbyy + azzbyz + ayybyz + ayzbzz

)(
bzzbyy − b2

yz

)
�2

+ 12
(

azzbyz + ayzbzz

)(
ayzbyz + ayybzz

)
+ 12

(
azzbyy + ayzbyz

)(
ayzbyy + ayybyz

)]
�5

kσ22 = 4
[(

bzzbyy − b2
yz

)2
�8

+ 3
(

8azzbyy + 13ayzbyz + 5ayybzz

)(
bzzbyy − b2

yz

)
�6

+ 18
(

5a2
yyb2

zz + 20ayyayzbzzbyz + 20ayyazzbzzbyy

− 10a2
yzbzzbyy − 10ayyazzb2

yz

+ 33a2
yzb2

yz + 26ayzazzbyzbyy + 8a2
zzb2

yy

)
�4

+ 54
(

azzbyz + ayzbzz

)2
�4

+ 2160
(

azzbyy + 2ayzbyz + ayybzz

)(
ayyazz − a2

yz

)
�2

+ 12,960
(

ayyazz − a2
yz

)2]
�3

kσ62 = −
[(

bzzbyy − b2
yz

)2
�8

+ 12
(

2azzbyy + 7ayzbyz + 5ayybzz

)(
bzzbyy − b2

yz

)
�6

+ 72
(

2a2
zzb2

yy + 14ayzazzbyzbyy + 20ayyazzbzzbyy

− 10a2
yzbzzbyy − 10ayyazzb2

yz

+ 27a2
yzb2

yz + 20ayyayzbzzbyz + 5a2
yyb2

zz

)
�4

− 216
(

azzbyz + ayzbzz

)2
�4

+ 8640
(

azzbyy + 2ayzbyz + ayybzz

)(
ayyazz − a2

yz

)
�2

+ 51,840
(

ayyazz − a2
yz

)2]
�3
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kσ33 = 36
[(

bzzbyy − b2
yz

)2
�8

+ 4
(

5azzbyy + 11ayzbyz + 6ayybzz

)(
bzzbyy − b2

yz

)
�6

+ 24
(

5a2
zzb2

yy + 20ayzazzbyzbyy + 20ayyazzbzzbyy

− 10a2
yzbzzbyy − 10ayyazzb2

yz

+ 31a2
yzb2

yz + 22ayyayzbzzbyz + 6a2
yyb2

zz

)
�4

+ 24
(

ayzbyy + ayybyz

)2
�4

+ 2880
(

azzbyy + 2ayzbyz + ayybzz

)(
ayyazz − a2

yz

)
�2

+ 17,280
(

ayyazz − a2
yz

)2]
�

kσ43 = −3
[(

bzzbyy − b2
yz

)
�4

+ 24
(

ayzbyz + ayybzz

)(
bzzbyy − b2

yz

)
�2

+ 144
(

ayzbyy + ayybyz

)2

+ 144
(

ayzbyz + ayybzz

)2]
�6

kσ44 = 4
[(

bzzbyy − b2
yz

)2
�8

+ 3
(

5azzbyy + 13ayzbyz + 8ayybzz

)(
bzzbyy − b2

yz

)
�6

+ 18
(

5a2
zzb2

yy + 20ayzazzbyzbyy

+ 20ayyazzbzzbyy − 10a2
yzbzzbyy − 10ayyazzb2

yz

+ 33a2
yzb2

yz + 26ayyayzbzzbyz + 8a2
yyb2

zz

)
�4

+ 54
(

ayzbyy + ayybyz

)2
�4

+ 2160
(

azzbyy + 2ayzbyz + ayybzz

)(
ayyazz − a2

yz

)
�2

+ 12,960
(

ayyazz − a2
yz

)2]
�3
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kσ84 = −
[(

bzzbyy − b2
yz

)2
�8 + 12

(
5azzbyy

+ 7ayzbyz + 2ayybzz

)(
bzzbyy − b2

yz

)
�6

+ 72�4
(

2a2
yyb2

zz + 14ayyayzbzzbyz + 20ayyazzbzzbyy

− 10a2
yzbzzbyy − 10ayyazzb2

yz

+ 27a2
yzb2

yz + 20ayzazzbyzbyy

+ 5a2
zzb2

yy

)
− 216�4

(
ayzbyy + ayybyz

)2

+ 8640
(

azzbyy + 2ayzbyz + ayybzz

)(
ayyazz − a2

yz

)
�2

+ 51,840
(

ayyazz − a2
yz

)2]
�3 (6.183)

The total element stiffness matrix is given by

ke
total = ke − Nke

σ (6.184)

Assembly of the element matrices gives the system matrices in the eigenvalue prob-
lem form

K − NKσ = 0 (6.185)

which can be placed in standard eigenvalue form and solved for the critical value of
N , the buckling load. Note that in contrast to Eq. (3.69), K and Kσ are not functions
of N so that the solution of the eigenvalue problem of Eq. (6.185) does not entail an
iterative process, other than that used, perhaps, to solve this as a standard eigenvalue
problem.

Mass Matrix It is convenient to separate the mass matrix into a contribution me
u

from the transverse inertia and a contribution me
θ from the rotary inertia. Thus,

me = me
u + me

θ (6.186)

From Section 2.3, the two mass matrices are given by

me
u =

∫
�

[
Nv

Nw

]T [
ρ 0
0 ρ

] [
Nv

Nw

]
dx

me
θ =

∫
�

[
Nθz

Nθy

]T [
ρr2

z 0
0 ρr2

y

] [
Nθz

Nθy

]
dx

(6.187)
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with ρ = ρ∗ A, ρr2
z = ρ∗ Iz , and ρr2

y = ρ∗ Iy , where ρ is the mass per unit length
and ρ∗ is the mass density (mass per unit volume). Substitute Nv , Nw, Nθz , and Nθy

from Eq. (6.179) into Eq. (6.187) and integrate. This provides the consistent mass
matrices (Pilkey et al., 1995) for a straight beam element of arbitrarily shaped cross
section and in an arbitrarily oriented coordinate system.

Transverse Inertia

me
u = ρ

420D2

×



mu11
mu21 mu22
mu31 mu32 mu33 symmetric
mu41 mu42 mu43 mu44
mu51 −mu61 −mu31 −mu41 mu11
mu61 mu62 mu32 mu42 −mu21 mu22

−mu31 −mu32 mu73 mu83 mu31 −mu32 mu33
mu41 mu42 mu83 mu84 −mu41 mu42 −mu43 mu44


(6.188)

where

D = �
[(

bzzbyy − b2
yz

)
�4 + 12

(
ayybzz + 2ayzbyz + azzbyy

)
�2

+ 144
(

ayyazz − a2
yz

)]
ai j = αi j

G A
and bi j = Ii j

E
(

Iyy Izz − I 2
yz

) i, j = y, z

(6.189)

The entries of this matrix are

mu11 = 12
[
13

(
bzzbyy − b2

yz

)2
�8

+ 6
(

52azzbyy + 101ayzbyz + 49ayybzz

)(
bzzbyy − b2

yz

)
�6

+ 24
(

78a2
zzb2

yy + 303azzayzbyybyz + 294azzayybzzbyy

− 147a2
yzbzzbyy − 147ayyazzb2

yz

+ 442a2
yzb2

yz + 70a2
yyb2

zz + 287ayyayzbzzbyz

)
�4

+ 24
(

azzbyz + ayzbzz

)2
�4
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+ 2016
(

21azzbyy + 41ayzbyz + 20ayybzz

)(
ayyazz − a2

yz

)
�2

+ 241,920
(

ayyazz − a2
yz

)2]
�3

mu21 = 2
[
11

(
bzzbyy − b2

yz

)2
�8

+ 33
(

8azzbyy + 15ayzbyz + 7ayybzz

)(
bzzbyy − b2

yz

)
�6

+ 36
(

44a2
zzb2

yy + 165ayzazzbyzbyy + 154ayyazzbzzbyy

− 77a2
yzbzzbyy − 77ayyazzb2

yz

+ 233a2
yzb2

yz + 35a2
yyb2

zz + 147ayyayzbzzbyz

)
�4

+ 72
(

ayzbzz + azzbyz

)2

+ 3024
(

11azzbyy + 21ayzbyz + 10ayybzz

)(
ayyazz − a2

yz

)
�2

+ 181,440
(

ayyazz − a2
yz

)2]
�4

mu31 = −36
[
3
(

ayzbyy + azzbyz + ayybyz + ayzbzz

)(
bzzbyy − b2

yz

)
�4

+ 4
(

9azzayzb2
yy + 7a2

zzbyzbyy + 9ayyazzbyzbyy + 16a2
yzbyzbyy

+ 7ayzazzbzzbyy + 7ayyayzbzzbyy + 16ayzazzb2
yz + 16ayyayzb2

yz

+ 16a2
yzbzzbyz + 9ayyazzbzzbyz + 7a2

yybzzbyz + 9ayyayzb2
zz

)
�2

+ 336
(

ayzbyy + azzbyz + ayybyz + ayzbzz

)(
ayyazz − a2

yz

)]
�5

mu41 = 6
[(

9ayzbyy + 9ayybyz + 2azzbyz + 2ayzbzz

)(
bzzbyy − b2

yz

)
�4

+ 12
(

9ayzazzb2
yy + 9ayyazzbyzbyy + 16a2

yzbyzbyy + 16ayyayzb2
yz

+ 2ayzazzb2
yz + 2a2

yzbzzbyz + 2ayyazzbzzbyz + 2ayyayzb2
zz

+ 7ayyayzbzzbyy + 7a2
yybzzbyz

)
�2

+ 1008
(

ayzbyy + ayybyz

)(
ayyazz − a2

yz

)]
�6

mu51 = 18
[
3
(

bzzbyy − b2
yz

)2
�8

+ 12
(

6azzbyy + 13ayzbyz + 7ayybzz

)(
bzzbyy − b2

yz

)
�6
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+ 16
(

27a2
zzb2

yy + 117ayzazzbyzbyy + 126ayyazzbzzbyy

− 63a2
yzbzzbyy − 63ayyazzb2

yz

+ 188a2
yzb2

yz + 35a2
yyb2

zz + 133ayyayzbzzbyz

)
�4

− 16
(

azzbyz + ayzbzz

)2
�4

+ 1344
(

9azzbyy + 19ayzbyz + 10ayybzz

)(
ayyazz − a2

yz

)
�2

+ 80,640
(

ayyazz − a2
yz

)2]
�3

mu61 = −
[
13

(
bzzbyy − b2

yz

)2
�8

+ 6
(

52azzbyy + 115ayzbyz + 63ayybzz

)(
bzzbyy − b2

yz

)
�6

+ 72
(

26a2
zzb2

yy + 115azzayzbyzbyy

+ 126ayyazzbzzbyy − 63a2
yzbzzbyy − 63ayyazzb2

yz

+ 187a2
yzb2

yz + 35a2
yyb2

zz + 133ayyayzbzzbyz

)
�4 − 144

(
azzbyz + ayzbzz

)2
�4

+ 6048
(

9azzbyy + 19ayzbyz + 10ayybzz

)(
ayyazz − a2

yz

)
�2

− 362,880
(

ayyazz − a2
yz

)2]
�4

mu22 = 4
[(

bzzbyy − b2
yz

)2
�8

+ 3
(

8azzbyy + 15ayzbyz + 7ayybzz

)(
bzzbyy

− b2
yz

)
�6 + 18

(
8a2

zzb2
yy + 30ayzazzbyzbyy

+ 28ayyazzbzzbyy − 14a2
yzbzzbyy − 14ayyazzb2

yz

+ 43a2
yzb2

yz + 28ayyayzbyzbzz + 7a2
yyb2

zz

)
�4

+ 18
(

azzbyz + ayzbzz

)2
�4

+ 3024
(

azzbyy + 2ayzbyz

)(
ayyazz − a2

yz

)
�2

+ 18,144
(

ayyazz − a2
yz

)2]
�5
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mu32 = −6
[(

2ayzbyy + 9azzbyz + 2ayybyz + 9ayzbzz

)(
bzzbyy − b2

yz

)
�4

+ 12
(

2ayzazzb2
yy + 2ayyazzbyzbyy + 7a2

zzbyzbyy

+ 7ayzazzbzzbyy + 2a2
yzbyzbyy + 2ayyayzb2

yz + 16ayzazzb2
yz

+ 16a2
yzbzzbyz + 9ayyazzbzzbyz + 9ayyayzb2

zz

)
�2

+ 1008
(

azzbyz + ayzbzz

)(
azzazz − a2

yz

)]
�6

mu42 = 6
[(

ayzbyy + azzbyz + ayybyz + ayzbzz

)(
bzzbyy − b2

yz

)
�2

+ 12
(

ayzbyy + ayybyz

)(
ayzbyz + azzbyy

)
+ 12

(
ayybzz + ayzbyz

)(
azzbyz + ayzbzz

)]
�9

mu62 = −3
[(

bzzbyy − b2
yz

)2
�8

+ 4
(

6azzbyy + 13ayzbyz + 7ayybzz

)(
bzzbyy − b2

yz

)
�6

+ 24
(

6a2
zzb2

yy + 26ayzazzbyzbyy + 28ayyazzbzzbyy

+ 7a2
yyb2

zz − 14a2
yzbzzbyy

+ 41a2
yzb2

yz − 14ayyazzb2
yz + 28ayyayzbzzbyz

)
�4

− 24
(

azzbyz + ayzbzz

)2
�4

+ 4032
(

azzbyy + 2ayzbyz + ayybzz

)(
ayyazz − a2

yz

)
�2

+ 24,192
(

ayyazz − a2
yz

)2]
�5

mu33 = 12
[
13

(
bzzbyy − b2

yz

)2
�8

+ 6
(

49azzbyy + 101ayzbyz + 52ayybzz

)(
bzzbyy − b2

yz

)
�6

+ 24
(

70a2
zzb2

yy + 287ayzazzbyzbyy + 294ayyazzbzzbyy

+ 78a2
yyb2

zz − 147a2
yzbzzbyy

+ 442a2
yzb2

yz − 147ayyazzb2
yz + 287ayyayzbzzbyz

)
�4

+ 24
(

ayzbyy + ayybyz

)2
�4
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+ 2016
(

20azzbyy + 41ayzbyz + 21ayybzz

)(
ayyazz − a2

yz

)
�2

− 241,920
(

ayyazz − a2
yz

)2]
�3

mu43 = −2
[
11

(
bzzbyy − b2

yz

)2
�8

+ 33
(

7azzbyy + 15ayzbyz + 8ayybzz

)(
bzzbyy − b2

yz

)
�6

+ 36
(

35a2
zzb2

yy + 147ayzazzbyzbyy + 154ayyazzbzzbyy

+ 44a2
yyb2

zz − 77a2
yzbzzbyy + 233a2

yzb2
yz − 77ayyazzb2

yz

+ 165ayyayzbzzbyz

)
�4 + 72

(
ayzbyy + ayybyz

)2
�4

+ 3024
(

10azzbyy + 21ayzbyz + 11ayybzz

)(
ayyazz − a2

yz

)
�2

+ 181,440
(

ayyazz − a2
yz

)2]
�4

mu73 = 18
[
3
(

bzzbyy − b2
yz

)2
�8

+ 4
(

21azzbyy + 39ayzbyz + 18ayybzz

)(
bzzbyy − b2

yz

)
�6

+ 16
(

35a2
zzb2

yy + 133ayzazzbyzbyy + 126ayyazzbzzbyy

+ 27a2
yyb2

zz − 63a2
yzbzzbyy

+ 188a2
yzb2

yz − 63ayyazzb2
yz + 117ayyayzbzzbyz�

)
�4

− 16
(

ayzbyy + ayybyz

)2
�4

+ 1344
(

10azzbyy + 19ayzbyz + 9ayybzz

)(
ayyazz − a2

yz

)
�2

+ 80,640
(

ayyazz − a2
yz

)2]
�3

mu83 =
[
13

(
bzzbyy − b2

yz

)2
�8

+ 6
(

63azzbyy + 115ayzbyz + 52ayybzz

)(
bzzbyy − b2

yz

)
�6

+ 72
(

35a2
zzb2

yy + 133ayzazzbyzbyy + 126ayyazzbzzbyy
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+ 26a2
yyb2

zz − 63a2
yzbzzbyy

+ 187a2
yzb2

yz − 63ayyazzb2
yz + 115ayyayzbzzbyz

)
�4

− 144
(

ayzbyy + ayybyz

)2
�4

+ 6048
(

10azzbyy + 19ayzbyz + 9ayybzz

)(
ayyazz − a2

yz

)
�2

+ 362,880
(

ayyazz − a2
yz

)2]
�4

mu44 = 4
[(

bzzbyy − b2
yz

)2
�8

+ 3
(

7azzbyy + 15ayzbyz + 8ayybzz

)(
bzzbyy − b2

yz

)
�6

+ 18
(

7a2
zzb2

yy + 28ayzazzbyzbyy

+ 28ayyazzbzzbyy − 14a2
yzbzzbyy − 14ayyazzb2

yz

+ 43a2
yzb2

yz + 30ayyayzbzzbyz + 8a2
yyb2

zz

)
�4

+ 18
(

ayzbyy + ayybyz

)2
�4

+ 3024
(

azzbyy + 2ayzbyz + ayybzz

)(
ayyazz − a2

yz

)
�2

+ 18,144
(

ayyazz − a2
yz

)2]
�5

mu84 = −3
[(

bzzbyy − b2
yz

)2
�8

+ 4
(

7azzbyy + 13ayzbyz + 6ayybzz

)(
bzzbyy

− b2
yz

)
�6 + 24

(
7a2

zzb2
yy + 28ayzazzbyzbyy

+ 28ayyazzbzzbyy − 14a2
yzbzzbyy − 14ayyazzb2

yz

+ 41a2
yzb2

yz + 26ayyayzbzzbyz + 6a2
yyb2

zz

)
�4

− 24
(

ayzbyy + ayybyz

)2
�4

+ 4032
(

azzbyy + 2ayzbyz + ayybzz

)(
ayyazz − a2

yz

)
�2

+ 24,192
(

ayyazz − a2
yz

)2]
�5 (6.190)
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Rotary Inertia

me
θ = ρ∗

30D2

×



mθ11
mθ21 mθ22
mθ31 mθ32 mθ33 symmetric
mθ41 mθ42 mθ43 mθ44

−mθ11 −mθ21 −mθ31 −mθ41 mθ11
mθ21 mθ62 mθ32 mθ42 −mθ21 mθ22

−mθ31 −mθ32 −mθ33 −mθ43 mθ31 −mθ32 mθ33
mθ41 mθ42 mθ43 mθ84 −mθ41 mθ42 −mθ43 mθ44


(6.191)

The entries of this matrix are

mθ11 = 36
[

Iz

(
bzzbyy − b2

yz

)2
�4

+ 24Iz

(
azzbyy + ayzbyz

)(
bzzbyy − b2

yz

)
�2

+ 144Iy

(
azzbyz + ayzbzz

)2 + 144Iz

(
azzbyy + ayzbyz

)2]
�5

mθ21 = 3
[

Iz

(
bzzbyy − b2

yz

)2
�6

+ 12Iz

(
2azzbyy − 3ayzbyz − 5ayybzz

)(
bzzbyy − b2

yz

)
�4

+ 144Iz

(
a2

zzb2
yy − 3ayzazzbyzbyy − 10ayyazzbzzbyy + 5a2

yzbzzbyy

+ 5ayyazzb2
yz − 9a2

yzb2
yz − 5ayyayzbzzbyz

)
�2

+ 864Iy

(
azzbyz + ayzbzz

)
�2

−8640Iz

(
azzbyy + ayzbyz

)(
ayyazz − a2

yz

)]
�4

mθ31 = −432
[

Iy

(
azzbyz + ayzbzz

)(
bzzbyy − b2

yz

)
�2

+ Iz

(
ayzbyy + ayybyz

)(
bzzbyy − b2

yz

)
�2

+ 12Iy

(
ayzbyz + ayybzz

)(
azzbyz + ayzbzz

)
+ 12Iz

(
ayzbyy + ayybyz

)(
azzbyy + ayzbyz

)]
�5



DEFLECTION RESPONSE OF BEAMS WITH SHEAR DEFORMATION 305

mθ41 = 36
[

Iy

(
azzbyz + ayzbzz

)(
bzzbyy − b2

yz

)
�4

+ 6Iz

(
ayzbyy + ayybyz

)(
bzzbyy − b2

yz

)
�4

+ 12Iy

(
ayybzz − 4ayzbyz − 5azzbyy

)(
azzbyz + ayzbzz

)
�2

+ 72Iz

(
ayzbyy + ayybyz

)(
azzbyy + ayzbyz

)
�2

− 720Iy

(
azzbyz + ayzbzz

)(
ayyazz − a2

yz

)]
�4

mθ22 = 4
[

Iz

(
bzzbyy − b2

yz

)2
�8

+ 3Iz

(
8azzbyy + 13ayzbyz + 5ayybzz

)(
bzzbyy − b2

yz

)
�6

+ 36Iz

(
4a2

zzb2
yy + 13ayzazzbyzbyy + 10ayyazzbzzbyy

− 5a2
yzbzzbyy − 5ayyazzb2

yz

+ 24a2
yzb2

yz + 25ayyayzbzzbyz + 10a2
yyb2

zz

)
�4

+ 324Iy

(
azzbyz + ayzbzz

)2
�4

+ 2160Iz

(
azzbyy + 5ayzbyz + 4ayybzz

)(
ayyazz − a2

yz

)
�2

+ 51,840Iz

(
ayyazz − a2

yz

)2]
�3

mθ32 = −36
[
6Iy

(
azzbyz + ayzbzz

)(
bzzbyy − b2

yz

)
�4

+ Iz

(
ayzbyy + ayybyz

)(
bzzbyy − b2

yz

)
�4

+ 72Iy

(
ayzbyz + ayybzz

)(
azzbyz + ayzbzz

)
�2

+ 12Iz

(
azzbyy − 4ayzbyz − 5ayybzz

)(
ayzbyy + ayybyz

)
�2

− 720Iz

(
ayzbyy + ayybyz

)(
ayyazz − a2

yz

)]
�4

mθ42 = 18
[

Iy

(
azzbyz + ayzbzz

)(
bzzbyy − b2

yz

)
�4

+ Iz

(
ayzbyy + ayybyz

)(
bzzbyy − b2

yz

)
�4

− 12Iz

(
5ayybzz + 4ayzbyz − azzbyy

)(
ayzbyy + ayybyz

)
�2
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− 12Iy

(
5azzbyy + 4ayzbyz − ayybzz

)(
azzbyz + ayzbzz

)
�2

− 720Iy

(
azzbyz + ayzbzz

)(
ayyazz − a2

yz

)
− 720Iz

(
ayzbyy + ayybyz

)(
ayyazz − a2

yz

)]
�5

mθ62 = −
[

Iz

(
bzzbyy − b2

yz

)2
�8

+ 12Iz

(
2azzbyy + 7ayzbyz + 5ayybzz

)(
bzzbyy − b2

yz

)
�6

+ 144Iz

(
a2

zzb2
yy + 7ayzazzbyzbyy + 10ayyazzbzzbyy − 5a2

yzbzzbyy

− 5ayyazzb2
yz + 6a2

yzb2
yz − 5ayyayzbzzbyz − 5a2

yyb2
zz

)
�4

− 1296Iy

(
azzbyz + ayzbzz

)2
�4

+ 8640Iz

(
azzbyy − 2ayybzz − ayzbyz

)(
ayyazz − a2

yz

)
�2

− 103,680Iz

(
ayyazz − a2

yz

)2]
�3

mθ33 = 36
[

Iy

(
bzzbyy − b2

yz

)
�4

+ 24Iy

(
ayzbyz + ayybzz

)(
bzzbyy − b2

yz

)
�2

+ 144Iy

(
ayzbyz + ayybzz

)2 + 144Iz

(
ayzbyy + ayybyz

)2]
�5

mθ43 = −3
[

Iy

(
bzzbyy − b2

yz

)2
�6

+ 12Iy

(
2ayybzz − 3ayzbyz − 5azzbyy

)(
bzzbyy − b2

yz

)
�4

+ 144Iy

(
5a2

yzbzzbyy + 5ayyazzb2
yz − 5ayzazzbyzbyy

− 10ayyazzbzzbyy + a2
yyb2

zz − 3ayyayzbzzbyz − 9a2
yzb2

yz

)
�2

+ 864Iz

(
ayzbyy + ayybyz

)2
�2

− 8640Iy

(
ayzbyz + ayybzz

)(
ayyazz − a2

yz

)]
�4

mθ44 = 4
[

Iy

(
bzzbyy − b2

yz

)2
�8

+ 3Iy

(
5azzbyy + 13ayzbyz + 8ayybzz

)(
bzzbyy − b2

yz

)
�6
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+ 36Iy

(
10a2

zzb2
yy + 25ayzazzbyzbyy + 10ayyazzbzzbyy

− 5a2
yzbzzbyy − 5ayyazzb2

yz

+ 24a2
yzb2

yz + 13ayyayzbzzbyz + 4a2
yyb2

zz

)
�4

+ 324Iz

(
ayzbyy + ayybyz

)2
�4

+ 2160Iy

(
4azzbyy + 5ayzbyz + ayybzz

)(
ayyazz − a2

yz

)
�2

+ 51,840Iy

(
ayyazz − a2

yz

)2]
�3

mθ84 = −
[

Iy

(
bzzbyy − b2

yz

)2
�8

+ 12Iy

(
5azzbyy + 7ayzbyz + 2ayybzz

)(
bzzbyy − b2

yz

)
�6

− 720Iy

(
a2

zzb2
yy + ayzazzbyzbyy − 2ayyazzbzzbyy

− a2
yzbzzbyy + ayyazzb2

yz

)
�4

+ 144Iy

(
6a2

yzb2
yz + 7ayyayzbzzbyz + a2

yyb2
zz

)
�4

− 1296Iz

(
ayzbyy + ayybyz

)2
�4

+ 8640Iy

(
ayybzz − ayzbyz − 2azzbyy

)(
ayyazz − a2

yz

)
�2

− 103,680Iy

(
ayyazz − a2

yz

)2]
�3 (6.192)

Example 6.12 Influence of Shear Deformation on the Natural Frequencies of a
Beam. Consider again the cantilever beam with a trapezoidal cross section of Ex-
ample 6.9 and Fig. 6.17 to ascertain the effect of shear deformation on the natural
frequencies.

Express the natural frequencies (hertz) of this cantilever beam as

fyi = λ2
yi

2π L2

(
E Iz

ρ

)1/2

fzi = λ2
zi

2π L2

(
E Iy

ρ

)1/2

i = 1, 2, 3, . . . (1)

where fyi and fzi correspond to the y and z principal bending axes, respectively.
The coefficients λyi and λzi are listed in Table 6.12 as λ0

yi and λ0
zi for the

Bernoulli–Euler beam theory, when no shear deformation effects are considered.
The ratios of λyi/λ

0
yi and λzi/λ

0
zi for various sets of shear deformation coefficients

are shown in Table 6.13. Detailed explanations of the meaning of the columns of this
Table are provided in Example 6.9. It can be observed in moving from the first to the
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TABLE 6.12 Coefficients λyi = λ0
yi, λzi = λ0

zi for
Natural Frequencies of a Cantilever Beam Based on
Bernoulli–Euler Beam Theory

i λyi = λ0
yi λzi = λ0

zi

1 1.873392 1.862955
2 4.664652 4.499925
3 7.740505 7.177770
4 10.711110 9.499564
5 13.581400 11.539000
6 16.343046
7 18.997060

fourth columns that there is a change (presumably, to a higher degree of accuracy) in
the natural frequencies, especially for the higher modes.

A comparison of the third and fourth columns of Table 6.13 demonstrates the ef-
fect of coupling between the motions in the y and z directions. For this trapezoidal
cross section, the introduction of the shear deformation cross coefficient αyz does

TABLE 6.13 Ratios of Natural Frequencies of the Cantilever Beam with Various Sets
of Shear Deformation Coefficients

Frequently Used Utilize Proper Values Use the Correct
Bernoulli–Euler Default Values for αyy and αzz , Values for
Beam Theory of αyy and αzz but Set αyz = 0 αyy , αzz , and αyz

αyy 0 1 1.159977 1.159977

αzz 0 1 1.476062 1.476062

αyz 0 0 0 −0.050085

λy1/λ
0
y1 1 0.9953167 0.9931080 0.9931078

λy2/λ
0
y2 1 0.9696793 0.9561353 0.9561319

λy3/λ
0
y3 1 0.9370653 0.9109106 0.9109165

λy4/λ
0
y4 1 0.9023160 0.8644692 0.8642957

λy5/λ
0
y5 1 0.8744223 0.8275235 0.8274083

λy6/λ
0
y6 1 0.8493372 0.7959447 0.7958172

λy7/λ
0
y7 1 0.8333934 0.7748016 0.7746413

λz1/λ0
z1 1 0.9689476 0.9642118 0.9642123

λz2/λ0
z2 1 0.8485505 0.8298480 0.8298514

λz3/λ0
z3 1 0.7729115 0.7488483 0.7490240

λz4/λ0
z4 1 0.7224356 0.6949695 0.6951051

λz5/λ0
z5 1 0.6961900 0.6662446 0.6663878
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(a) First mode (y direction)

(b) Second mode (z direction)
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Figure 6.19 Mode shapes of a cantilever beam with an asymmetrical cross section.

not significantly affect the natural frequencies, although the difference tends to in-
crease with an increase in the order of the mode. Note, for example, that λyz/λ

0
yz

is 0.7748016 when αyz is zero and 0.7746413 when αyz is given its proper value.
There is, however, a difference that is evident by studying the mode shapes. Fig-
ure 6.19 illustrates that the mode shapes are spatial curves, not just planar curves,
when αyz is not taken to be zero. The mode shapes for the Bernoulli–Euler theory,
with no shear deformation effects, will lie completely in the y direction for the first
mode and in the z direction for the second mode. These results demonstrate that the
transverse motion cannot be uncoupled into two planes if shear deformation effects
are included.

6.4.6 Loading Vectors

The stiffness matrix obtained by a rearrangement of the transfer matrix can be ac-
companied by a loading vector such as Eq. (2.65). The loading vector peo corre-
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sponding to the stiffness matrix of Eq. (6.158) is provided in Pilkey et al. (1995).
Using this loading vector permits thermal loading and in-span distributed applied
forces to be taken into account.

6.4.7 Elasticity-Based Beam Theory

A general beam theory stiffness matrix that considers bending, torsion, and shear
deformation is derived from the theory of elasticity in Schramm et al. (1997). As
discussed in Section 6.3.1, the shear deformation coefficients are supplemented with
torsional deformation coefficients. The stiffness matrix can be applied to arbitrary
cross-sectional shapes.

An exact theory for linearly elastic beams of arbitrary cross section and loading
by Ladavèze (1983) and Ladevèze and Simmonds (1996) was mentioned in Sec-
tion 6.3. In this theory a conjugate generalized displacement is defined, which com-
prises displacementlike and rotationlike quantities. The generalized displacements
are not cross-sectional averages of three-dimensional displacements, but rather are
defined as cross-sectional integrals involving three-dimensional displacements and
three-dimensional stresses. The beam problem is decomposed into an interior por-
tion, explicitly computable from the solutions of associated one-dimensional exact
beam equations and a decaying, edge-effect portion.

6.5 CURVED BARS

Although this book deals primarily with the computational analysis and design of
straight beams, curved beams can be handled with similar methods. Deformation
analyses are available in numerous sources, including formula books such as Pilkey
(1994). The same books typically tabulate analytical formulas for normal and shear
stresses. Computational methods for the stress analysis of circularly curved bars are
developed in Thasanatorn and Pilkey (1979, 1981).
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CHAPTER 7

RESTRAINED WARPING OF BEAMS

Most of this book deals with computational methods for the theory of elasticity based
analysis of beams, especially for cross-sectional properties and stresses. The compu-
tational solutions here are, in general, applicable to thick (solid) and open and closed
thin-walled cross sections. In this chapter, some of the formulations and solutions
developed could be classified as belonging to the traditional analytical methods for
studying thin-walled beams. In particular, this material is related to the Vlasov (1961)
theory of thin-walled beams. The treatment here is somewhat restricted in that the
reference coordinate system is always located at the centroid of the cross section. A
systematic, thorough development of analytical thin-walled beam theory, including
open and closed sections, is on the author’s website. Also, rigorous accounts of the
engineering theory of thin-walled structures can be found in many sources, including
Murray (1984).

Saint-Venant torsion of Chapter 5 applies to bars for which there are no restraints
on warping. If the warping of the bar is restrained, warping stresses are generated.
In this chapter we define the cross-sectional properties for the restrained warping of
beams and discuss warping stresses.

7.1 RESTRAINED WARPING

With the exception of bars with solid and hollow circular cross sections, bars subject
to torsion tend to warp. The fundamental assumption in Saint-Venant’s pure torsion
analysis, described in Chapter 5, is that cross sections are free to warp without re-
straint. This assumption is not satisfied if the beam has external supports, or if the
beam is not prismatic, or when the torsional moment varies along the length of the

312
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beam. Even in these cases, Saint-Venant’s hypothesis of free warping gives good ap-
proximate results for beams with solid or closed thin-walled cross sections. For open
thin-walled cross sections, however, this is no longer true. The twisting resistance of
such sections is so small and the axial displacements are so large that the axial stress
σx caused by restrained warping cannot be neglected.

In pure torsion, the location of the axis of twist is of no consequence when cal-
culating torsional stresses. This means that in Fig. 7.1, the reference point O can
be arbitrarily chosen. The torsional shear stresses are independent of this choice. In
restrained warping, this is no longer the case, and the point about which the rotations
are calculated are shown in this section to be uniquely determined. Define Cyz to
be the coordinate system shown in Fig. 7.1 with its origin at the centroid C of the
cross section. Let Oy∗z∗ be the coordinate system obtained by translating the origin
to another point O. Suppose that the position vector of O with respect to C is written
as

rOC = bj + ck (7.1)

where j, k are the unit vectors parallel to the y, z axes. The coordinates y∗, z∗ of a
point in the coordinate system Oy∗z∗ are related to the coordinates y, z of the point
in Cyz by

y∗ = y − b z∗ = z − c (7.2)

rOC

y

z

y*

z*

b

c

O

C

Figure 7.1 Translation of coordinates.
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Let u∗
z (y∗, z∗) be the warping function calculated in the coordinate system Oy∗z∗.

Suppose that Saint-Venant’s problem is solved in the coordinate systems Oy∗z∗ and
Cyz, assuming in the first case that the section rotates about O and in the second
case that it rotates about C . The assumed displacement field in the latter case, as
described in Chapter 5, Eqs. (5.1) and (5.2), is

uy = −zxθ uz = yxθ ux = θω(y, z) (7.3)

where θ is the angle of twist per unit length. In the former case, the assumed dis-
placement fields are

u∗
y = −z∗xθ = −xθ(z − c)

u∗
z = y∗xθ = xθ(y − b) (7.4)

u∗
x = θω∗(y∗, z∗)

The stresses corresponding to the displacements u∗
x , u∗

y , u∗
z are given by Hooke’s

law and the strain–displacement relations (Eq. 5.4)

τxy = Gθ

(
∂ω∗

∂y∗ − z∗
)

= Gθ

(
∂ω∗

∂y
− z + c

)
τxz = Gθ

(
∂ω∗

∂z∗ + y∗
)

= Gθ

(
∂ω∗

∂z
+ y − b

) (7.5)

The equilibrium equation would again be Laplace’s equation (Eq. 5.8) with the ex-
pressions above for the stresses

∇2ω∗ = 0 (7.6)

The boundary condition for the cylindrical surface of the beam to be free of traction,
which requires that (Eq. 6.112)

τxyny + τxznz = 0 (7.7)

becomes, with Eq. (7.5),(
∂ω∗

∂y
+ c

)
ny +

(
∂ω∗

∂z
− b

)
nz = zny − ynz (7.8)

In vector notation this can be expressed as

n · ∇ (
ω∗ + cy − bz

) = n · g (7.9)

where
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n = nyj + nzk

g = zj − yk

∇ = j
∂

∂y
+ k

∂

∂z

Since the directional derivative of a point of a surface along a normal is defined as

n · ∇ = ∂

∂n
= ny

∂

∂y
+ nz

∂

∂z
(7.10)

An alternative form for Eq. (7.9) is

∂

∂n

(
ω∗ + cy − bz

) = n · g (7.11)

Since ω∗ satisfies Laplace’s equation (Eq. 7.6), so does the function ω∗ + cy −
bz, which also satisfies the same boundary condition as ω. The uniqueness of the
Neumann problem therefore implies that ω and ω∗ can differ at most by a constant.
Hence

ω∗ + cy − bz = ω(y, z) + C

or

ω∗ = ω(y, z) − cy + bz + C (7.12)

The stresses computed from ω∗ are the same as those computed from ω:

τxy = Gθ

(
∂ω∗

∂y
− z + c

)
= Gθ

(
∂ω

∂y
− z

)
τxz = Gθ

(
∂ω∗

∂z
+ y − b

)
= Gθ

(
∂ω

∂z
+ y

) (7.13)

The displacements differ in the two cases (uy, uz, ux and u∗
y, u∗

z , u∗
x ) by at most a

rigid-body displacement. Since the stresses for the two cases are the same, the choice
of the axis of twist is immaterial in Saint-Venant’s pure torsion problem.

Next, to account for restrained warping in an approximate way, the assumed axial
displacement is taken as

ux(x, y, z) = θ(x)ω∗(y, z) (7.14)

This contrasts with the axial (warping) displacement of Eq. (5.2), which is not a
function of x , the axial coordinate. Equation (7.14) allows the angle of twist θ per
unit length to vary with x , and the use of ω∗, with the yet-undetermined reference
point O, leaves undetermined the point through which the axis of twist passes. The
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effect of allowing the axial displacement to be a function of x is to allow axial stresses
σx to develop:

σx = Eεx = E
∂ux

∂x
= Eω∗ ∂θ

∂x
(7.15)

It is assumed that the only significant normal stress in the constitutive relations of
Eq. (1.18) is σx . Since no axial forces or bending moments are applied at the section,
this normal stress must be equivalent to a zero force–couple system, which means
that the conditions (Eqs. 1.45 and 1.46)∫

σx dA = 0 Mz = −
∫

yσx dA = 0 My =
∫

zσx dA = 0 (7.16)

must be satisfied. Substitute σx of Eq. (7.15) into Eq. (7.16) and the integrals of
Eq. (7.16), in terms of the warping function, become∫

ω∗ dA = 0
∫

yω∗ dA = 0
∫

zω∗ dA = 0 (7.17)

The first condition in Eq. (7.17), with ω∗ of Eq. (7.12), is∫
ω∗ dA =

∫
ω dA − c

∫
y dA + b

∫
z dA + C A = Qω + C A = 0 (7.18)

where the middle two terms are zero because y, z are centroidal axes and the first
moment of warping, defined by

Qω =
∫

ω dA (7.19)

is a geometric property of the cross section. From Eq. (7.18), the constant C is de-
termined to be

C = − Qω

A
(7.20)

The second and third conditions in Eq. (7.17) require that∫
yω∗ dA =

∫
yω dA − c

∫
y2 dA + b

∫
yz dA = Iyω − cIz + bIyz = 0∫

zω∗ dA =
∫

zω dA − c
∫

yz dA + b
∫

z2 dA = Izω − cIyz + bIy = 0

where Iyω and Izω are defined as

Iyω =
∫

yω dA
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Izω =
∫

zω dA (7.21)

The solution of these equations for b and c yields

b = Iyz Iyω − Iz Izω

Iy Iz − I 2
yz

c = Iy Iyω − Iyz Izω

Iy Iz − I 2
yz

(7.22)

These are the Trefftz shear center coordinates yS and zS given in Eqs. (6.118) and
(6.119). Thus, the axis of twist, the choice of which is arbitrary in Saint-Venant
torsion, passes through the shear center in a restrained torsion analysis.

7.2 THIN-WALLED BEAMS

Figure 7.2 shows an open thin-walled beam cross section. The arc length s is mea-
sured along the median line of the cross section in the counterclockwise direction
starting from one end of the section, where s is assigned a zero value. The thickness
t (s) may vary along the median line of the cross section; it is assumed to be constant
along the beam axis x . The cross section is subjected to transverse shear forces.

On two perpendicular planes, the shear stresses acting on the line of intersection
in the direction perpendicular to that line are equal in magnitude and are either both
directed away from or both directed toward the line of intersection (Fig. 7.3a). Since
the cylindrical surface of the beam is free of traction, the shear stresses at the in-
side and outside edges of the section must act in the direction tangent to the edges
(Fig. 7.3b). The variation of the shear stresses across the thickness is assumed to be
negligible, because the wall thickness is small. At any s, the constant shear stress τxs

r
y

z

C

t
n

s1s2

s3

Figure 7.2 Open thin-walled cross section.
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(b)(a)

Figure 7.3 Shear stress patterns for thin-walled cross section.

multiplied by the thickness t (s) represents a shear force per unit length and is called
shear flow (Fig. 5.14):

q(s) = τxs(s)t (s) (7.23)

Assume that the bending stress σx is the only stress acting on the section in addition
to the shear flow at the median line of the section. Consider an element as shown in
Fig 7.4b that is taken from the beam wall (Fig. 7.4a). The equilibrium of forces on
this wall element gives

t (s)
∂σx

∂x
+ ∂q

∂s
= 0 (7.24)

For restrained warping in a thin-walled section, the axial stress is (Eq. 7.15)

σx (x, s) = Eω∗(s)θ ′(x) (7.25)

which is a simplification of the elasticity definition because the warping function ω∗
is being considered as a function of s only. Substitution of the normal stress σx of
Eq. (7.25) into Eq. (7.24) shows that the shear flow due to restrained warping satisfies
the equation

t (s)Eω∗(s)θ ′′(x) + ∂q

∂s
= 0 (7.26)

Hence

q(x, s) = −Eθ ′′(x)

∫ s

0
ω∗(s)t (s) ds (7.27)
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(b)

ds
dx

q dx

σx t ds σx + dx t ds)(
σx6
6x

 q + ds  dx
q6
6s( )

(a)

y

z

x

sdx
ds

Figure 7.4 Forces on a wall element.

7.2.1 Saint-Venant Torsion

In Saint-Venant torsion, with unrestrained warping, a reasonable approximation to
the torsional shear stresses in an open thin-walled section is obtained by assuming
a linear distribution across the thickness, as shown for a narrow rectangular strip in
Fig. 7.5 (Section 5.2.1 and Fig. 5.10). The shear stress is then zero at the median line,
which in the case of the rectangle of Fig. 7.5 is the vertical dashed line in the center
of the cross section. The shear strain along the median line is

∂ux

∂s
+ ∂us

∂x
= γxs = τxs

G
= 0 (7.28)

where us is the displacement along the tangent to the median line. For Saint-Venant
torsion the displacement field assumptions are (Eqs. 5.1 and 5.2)

ux = θω uy = −zxθ uz = yxθ (7.29)

At the point whose position vector is r in Fig. 7.2, the unit tangent t and the unit
outward normal n are related by (Eq. 1.34)
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h

x

s

u

us

t
Median line

x

Figure 7.5 Shear stress distribution for a bar subjected to pure torsion with a narrow rectan-
gular strip cross section.

n = t × i = tzj − tyk (7.30)

where t = tyj + tzk and n = nyj + nzk. From Eq. (7.30) it follows that (Eq. 1.33)
ny = tz and nz = −ty . The tangential displacement is calculated as follows:

us = (uyj + uzk) · t = (−zty + ytz)xθ = xθr · n (7.31)

where Eq. (7.29) has been introduced and r = yj+zk. The shear strain at the median
line of Eq. (7.28) is expressed in terms of the warping function as

γxs = ∂ux

∂s
+ ∂us

∂x
= θ

dω

ds
+ θr · n = 0

so that

ω(s) = ω0 −
∫ s

0
r · n ds (7.32)

where ω0 is a constant. The integral in this expression is twice the area swept by
the position vector r as its tip traces the median line from s = 0 to any value of s.
Note that the warping function, which was introduced in Chapter 5 as the solution
of Laplace’s equation ∇2ω = 0 along with certain boundary conditions, can be
calculated for thin-walled sections in terms of purely geometric quantities, referred
to as sectorial characteristics. A few sectorial properties were introduced briefly in
Chapter 6.
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Some Analytical Sectorial Properties of Thin-Walled Cross Sections
The warping function ω(s) defined by Eq. (7.32) can serve as the basis for finding
warping-related properties and stresses, without the use of finite elements. This in-
volves the use of sectorial properties. We begin with some basic definitions. The
vector r in Eq. (7.32) is the position vector of a point of the median line of the
thin-walled section measured from the centroid C (Fig. 7.2). Also, set the origin for
the integration to be s0 so that ω0 is the value of ω(s) at s = s0.

The sign of r(s) · n(s) is positive if the projection of r(s) onto the unit normal
vector n(s) is positive. This sign is more conveniently identified from the sense of
rotation of r(s) as it sweeps through the area in the direction of increasing s. If
this rotation is clockwise, the contribution to the integral is negative, and if it is
counterclockwise, the contribution is positive. This can be verified for any point of
the median line by writing the projection of the positive vector r onto the unit normal
in the form

r · n = r · (t × i) = (r × t) · i

where n, the unit vector normal to the median line; t, the unit vector tangent to the
median line in the direction of increasing s; and i, the unit vector in the direction of
the positive x axis (longitudinal axis of the bar), are defined so as to make a right-
handed set of orthogonal vectors i = n × t and n = t × i. It follows that when the
rotation of the vector r is counterclockwise as its tip moves in the direction of t, the
cross product r × t is in the same direction as i, making r · n positive.

The warping function, which is utilized in the first sectorial moment and in the
sectorial products of area of Eq. (7.21), is defined for a particular pole and origin,
both of which in our case are at the centroid. A pole for which the sectorial products
of area are both zero is called a principal pole. If, for a given pole, the first secto-
rial moment of Eq. (7.19) is zero, there is a sectional origin such that the point is
termed a principal origin. For a given cross section, it is possible to find a pole and
an origin such that Qω, Iyω, and Izω are zero. A warping function satisfying these
conditions is termed a principal warping function. The restrained warping function
of the following section is a principal warping function. It is readily shown that the
shear center and the principal pole are the same point.

For practical calculations it is useful to recognize that r · n is equal to the scalar
rn that is the perpendicular distance from a tangent of any point on the median line
curve to point C (Fig. 7.6). With this definition

ω = ω0 −
∫

rn ds (7.33)

The magnitude of this integral is equal to twice the shaded area of Fig. 7.7. The
integration is taken over the segment of the curve corresponding to the shaded area
beginning at an origin s0. The integration is in the same direction as the direction
of s.
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Figure 7.6 Definition of rn .
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|
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Figure 7.7 Notation for the sectorial area.

7.2.2 Restrained Warping

For restrained warping, the warping function is ω∗ as given in Eqs. (7.12) and (7.20),
with b = yS and c = zS ,

ω∗ = ω − zS y + yS z − Qω

A
(7.34)

Since zS , yS, and Qω/A are not functions of s, the derivative dω∗/ds is simple to
express. Introduce Eq. (1.36) and find that

dω∗

ds
= dω

ds
− zS

dy

ds
+ yS

dz

ds
= dω

ds
− zSty + yStz

= dω

ds
+ zSnz + ySny = dω

ds
+ rS · n

(7.35)

where rS = ySj + zSk is the position vector of the shear center measured from the
centroid. From Eq. (7.33), dω/ds = −r · n. Then it is observed that the derivative of
the restrained warping function with respect to the arc length may be rewritten as
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dω∗

ds
= −(r − rS) · n (7.36)

The vector in parentheses in Eq. (7.36) is the position vector of a point of the median
line measured from the shear center. Integrate Eq. (7.36) to find that the warping
function is

ω∗(s) = ω∗
0 −

∫ s

0
(r − rS) · n ds (7.37)

The integral in this expression is twice the area swept by the position vector r − rS

measured from the shear center as its tip moves along the median line of the thin-
walled section from s = 0 to any value of s.

When shear forces act at any point of the cross section, it is normally necessary
to replace them with their force–couple equivalent at the shear center. The moment
of the couple is then added to any pure torques that may already be present at the
section. The moment Tω of the couple due to shear forces can be computed by

Tω =
∫ S

0
q(r − rS) · n ds = −

∫ S

0
q dω∗ (7.38)

where S is the length of the median line and Eq. (7.36) has been introduced. The mo-
ment Tω is referred to as the warping torque or the warping shear. Upon substitution
of the shear flow q from Eq. (7.27),

Tω = Eθ ′′(x)

∫ S

0

∫ s

0
ω∗t ds dω∗ (7.39)

To simplify, apply integration by parts:∫ S

0

∫ s

0
ω∗t ds dω∗ = ω∗

∫ s

0
ω∗t ds

∣∣S
0 −

∫
(ω∗)2t ds (7.40)

The first integral on the right is zero because (Eq. 7.17)∫ S

0
ω∗t ds =

∫
ω∗ dA = 0 (7.41)

so that the torsional moment due to shear forces is

Tω = −Eθ ′′
∫

(ω∗)2 dA (7.42)

The warping constant � with respect to the shear center is defined as the warping
moment of inertia:

� =
∫

(ω∗)2 dA (7.43)
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Then

Tω = −E�θ ′′ (7.44)

The total torque T at the section is expressed as the sum of the Saint-Venant torque
Mx = Tt and the torque Tω due to the shear forces. From Eq. (5.18)

Tt = Mx = G Jθ (7.45)

Continue to use the notation of Chapter 5, where φ is the angle of twist. Since θ is
the angle of twist per unit length

θ = dφ

dx
(7.46)

From Eqs. (7.44) and (7.45),

T = Tω + Tt = −E�θ ′′ + G Jθ (7.47)

Introduce Eq. (7.46):

T = −E�φ′′′ + G Jφ′ (7.48)

If mx is the applied torque per unit length of beam (Fig. 7.8), the condition of equi-
librium for the moments about the x axis shows that

dT

dx
= −mx (7.49)

This is Eq. (5.22), except now the total torque T is involved, where T = Tω + Mx .
It follows from Eqs. (7.48) and (7.49) that for constant E , �, G, and J the equation
for the angle of twist is

E�
d4φ

dx4
− G J

d2φ

dx2
= mx (x) (7.50)

T +         dx

dx

T

x

dT
dx

mx

Figure 7.8 Element subject to distributed torque mx .
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7.3 CALCULATION OF THE ANGLE OF TWIST

When restrained warping is to be taken into account, the angle of twist should be
computed using the fourth-order differential equation of Eq. (7.50) rather than the
second-order equation for Saint-Venant torsion. Equation (7.50) is relatively simple
to solve, especially since the differential equations of motion for the bending of a
beam are also fourth order, and with a change of constants the solutions are inter-
changeable.

7.3.1 Governing Equations

Define a bimoment Mω in a fashion similar to the moment definitions of Eq. (1.45),

Mω =
∫

ω∗σx dA (7.51)

Substitute σx = Eω∗ d2φ/dx2 from Eq. (7.15) into Eq. (7.51) and find that

Mω = Eφ′′� (7.52)

or

d2φ

dx2
= Mω

E�
(7.53)

The governing equations can now be assembled as:

Angle of twist:

φ (7.54a)

Rate of angle of twist:

θ = dφ

dx
(7.54b)

Bimoment:

Mω = E�
d2φ

dx2
(7.54c)

Warping torque:

Tω = −E�
d3φ

dx3
(7.54d)

Saint-Venant torque:
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Tt = G J
dφ

dx
(7.54e)

Total torque:

T = −E�
d3φ

dx3
+ G J

dφ

dx
(7.54f)

Differential equation for the angle of twist:

E�
d4φ

dx4
− G J

d2φ

dx2
= mx(x) (7.54g)

7.3.2 Boundary Conditions

The most common boundary conditions are fixed, simply supported, and free. At a
fixed support, no twisting or warping occurs. The second condition is satisfied by
setting the warping component ux of the displacement equal to zero, which as seen
in Eq. (7.29) is proportional to dφ/dx . Thus, the kinematical conditions at a fixed
end are expressed by

φ = 0
dφ

dx
= 0 (7.55)

A simply supported end does not allow twisting and is free of normal stress. The
normal stress due to restrained warping is (Eq. 7.15) σx = Eω∗d2φ/dx2, which is
proportional to the bimoment Mω. The boundary conditions at a simply supported
end are then

φ = 0
d2φ

dx2
= 0 (7.56)

where the second condition expresses that the bimoment Mω is zero.
At a free support there are two statical conditions, one expressing that there is no

normal stress and the other that the total torque is zero. The first of these conditions
corresponds to the bimoment Mω being zero. The second of these conditions is

T = Tω + Tt = −E�
d3φ

dx3
+ G J

dφ

dx
= 0 (7.57)

Thus, for a free support, the boundary conditions are

d2φ

dx2
= 0 − E�

d3φ

dx3
+ G J

dφ

dx
= 0 (7.58)
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7.3.3 Response Expressions

The general solution of Eq. (7.54g) is

φ(x) = C1 + C2x + C3 cosh cx + C4 sinh cx

− 1

cG J

∫ x

0
[c(x − ξ) − sinh c(x − ξ)] mx(ξ) dξ (7.59a)

where

c2 = G J

E�

and Ck, k = 1, 2, 3, 4, are the constants of integration, and one end of the beam is
assumed to be at x = 0.

The bimoment of Eq. (7.54c) is taken from Eq. (7.59a) by two differentiations:

Mω(x) = J G(C3 cosh cx + C4 sinh cx)

+ 1

c

∫ x

0
mx (ξ) sinh c(x − ξ) dξ

(7.59b)

The warping torque of Eq. (7.54d) requires a derivative of Mω(x):

Tω(x) = −cG J (C3 sinh cx + C4 cosh cx)

−
∫ x

0
mx(ξ) cosh c(x − ξ) dξ

(7.59c)

The Saint-Venant (pure torsion) torque of Eq. (7.54e) is proportional to the first
derivative of φ:

Tt (x) = G J (C2 + cC3 sinh cx + cC4 cosh cx)

−
∫ x

0
mx(ξ) [1 − cosh c(x − ξ)] dξ

(7.59d)

and the total torque T = Tt + Tω of Eq. (7.54f) is given by Eqs. (7.59c and d) as

T (x) = G JC2 −
∫ x

0
mx (ξ) dξ (7.59e)

Example 7.1 Cantilever Beam with Concentrated Torques. A concentrated torque
is applied at the unsupported end of the cantilever beam shown in Fig. 7.9a. For this
loading condition, the distributed torque mx(x) is zero, because there is no applied
torque for the cross sections that lie between the two end sections. The applied
torque is set equal to the total torque at x = L:
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(b)
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x

L

Ta

(a)

x

L

TL

Figure 7.9 Cantilever beam with concentrated applied torque.

T (L) = G JC2 = T L (1)

where the total torque is given in Eq. (7.59e). The other boundary condition at x = L
is that the cross section is free of normal stress. From Eq. (7.59b):

Mω(L) = G J (C3 cosh cL + C4 sinh cL) = 0 (2)

From Eqs. (7.55) and (7.59a), the boundary conditions at the fixed end are

φ(0) = C1 + C3 = 0

dφ

dx
(0) = C2 + cC4 = 0

(3)

These four boundary conditions suffice to identify the four integration constants of
the angle of twist of Eq. (7.59a):

φ(x) = T L

cG J
[cx − sinh cx − tanh cL(1 − cosh cx)] (4)

Apply a torque at a point x = a < L as shown in Fig. 7.9b. The concentrated
torque of magnitude T a can be expressed as a distributed torque in terms of the
Dirac delta function:

mx(x) = T a 〈x − a〉−1 (5)
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The angle of twist is calculated from Eq. (7.59a) as

φ(x) = C1 + C2x + C3 cosh cx + C4 sinh cx

− T a

cG J
[c(x − a) − sinh c(x − a)] 〈x − a〉0

(6)

where 〈x − a〉0 denotes the unit step function. The boundary conditions are

φ(0) = C1 + C3 = 0

φ′(0) = C2 + cC4 = 0

T (L) = G JC2 − T a = 0

Mω(L) = J G(C3 cosh cL + C4 sinh cL) + T a

c
sinh c(L − a) = 0

(7)

The four integration constants can be evaluated by solving the four equations of
(7). Then, from (6) the angle of twist becomes

φ(x) = T a

cG J

[
cx − sinh cx + (1 − cosh cx)

(
sinh c(L − a)

cosh cL
− tanh cL

)]
− T a

cG J
[c(x − a) − sinh c(x − a)] 〈x − a〉0 (8)

7.3.4 First-Order Governing Equations and General Solution

The governing relations of Eq. (7.54) can be expressed in first-order form as

dφ

dx
= θ (7.60a)

dθ

dx
= Mω

E�
(7.60b)

dT

dx
= −mx (7.60c)

d Mω

dx
= G Jθ − T (7.60d)

where the warping torque is found using

Tω = −d Mω

dx
(7.60e)

With a change in constants the beam solution of Chapter 2 applies to this fourth-
order restrained warping torsion problem. To use Table 2.2 define
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Beam of Chapter 2 Restrained Warping of This Chapter

1

ksG A
0

k 0
k∗ 0
N G J
px −mx

(7.61a)

Then the transfer matrix Ue and the stiffness matrix ke are obtained from Table 2.2
with

ζ = −G J

E�
η = 0 λ = 0 (7.61b)

This leads to the definitions of ei ,

e0 = −ζ B e1 = A e2=B e3 = 1

ζ
(1 − A)

e4 = 1

ζ
(� − B) e5 = 1

ζ

(
�2

2
− e3

)
e6= 1

ζ

(
�3

6
− e4

)
(7.61c)

where A = cosh α� and B = (sinh α�)/α with α2 = −ζ .
Finally, the results are interpreted using

Solution of Table 2.2 Restrained Warping of This Chapter

w φ

θ −θ

V −T
M Mω

(7.61d)

If dynamics, an axial force, and an elastic foundation are included, Eq. (7.60)
becomes

∂φ

∂x
= θ (7.62a)

∂θ

∂x
= Mω

E�
(7.62b)

∂T

∂x
= ktφ + ρr2

p
∂2φ

∂t2
− mx(x, t) (7.62c)

∂Mω

∂x
= (G J − Cp N )θ − T (7.62d)
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where N is a compressive axial force, kt is a torsional elastic foundation modulus, ρ

is the mass per unit length, rp is the polar radius of gyration, and Cp is a factor that
depends on whether or not the shear center and centroid coincide (Pilkey, 1994).

The beam equations of Chapter 2 or Chapter 6 can be expanded to include torsion,
either Saint-Venant or restrained warping. In the latter case, if the restrained warping
torsion of Eq. (7.60) is to be introduced into the bending with shear deformation
equations of Eq. (6.157), the static vector would be

z = [
v w θx θ θy θz T My Mz Mω Vy Vz

]T (7.63)

and the A and P matrices of dz/dx = Az + P are

A =



0 0 0 0 0 1 0 0 0 0 ayy ayz

0 0 0 0 −1 0 0 0 0 0 ayz azz

0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0
1

E�
0 0

0 0 0 0 0 0 0 bzz byz 0 0 0
0 0 0 0 0 0 0 byz byy 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 −1 0
0 0 0 G J 0 0 −1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0



(7.64a)

P =



0
0
0
0

byz MT z+bzz MT y

byy MT z + byz MT y

−mx

0
0
0

− p̄y(x)

− p̄z(x)



(7.64b)

where

ai j = αi j

G A
bi j = Ii j

E(Iyy Izz − I 2
yz)

i, j = y, z
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After these equations are solved for z, the warping torque Tω is obtained from

Tω = −d Mω

dx
(7.65)

7.4 WARPING CONSTANT

The warping constant � is essential in calculations for restrained warping analy-
ses. Formulas for � are derived in this section in terms of integrals involving the
unrestrained warping function ω, because ω is the function calculated by solving
Saint-Venant’s boundary value problem for pure torsion. Substitute ω∗ of Eq. (7.34)
into the warping constant definition of Eq. (7.43):

� =
∫

(ω∗)2 dA =
∫ (

ω − zS y + yS z − Qω

A

)2

dA (7.66)

or

� = Iω − Q2
ω

A
− 2zS Iyω + 2yS Izω + z2

S Iz − 2ySzS Iyz + y2
S Iy (7.67)

where

Iω =
∫

ω2 dA Iyω =
∫

yω dA Izω =
∫

zω dA (7.68)

are warping-dependent cross-sectional properties calculated in the centroidal coordi-
nate system. The warping constant � is defined above with respect to the shear center.
The quantities yS and zS are the coordinates of the shear center measured from the
centroid. The first moment of warping Qω is computed using Qω = ∫

ω(y, z) dA,
where y and z are measured from the centroid.

Since, from Eq. (7.21),∫
yω∗ dA = Iyω − zS Iz + yS Iyz = 0∫
zω∗ dA = Izω − zS Iyz + yS Iy = 0

(7.69)

the formula for � of Eq. (7.67) simplifies to

� = Iω − Q2
ω

A
− zS Iyω + yS Izω (7.70)

which may also be written as

� = Iω − Q2
ω

A
− Iz I 2

zω + Iy I 2
yω − 2Iyz Iyω Izω

Iy Iz − I 2
yz

(7.71)
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or as

� = Iω − Q2
ω

A
− y2

S Iy + 2ySzS Iyz − z2
S Iz (7.72)

7.5 NORMAL STRESS DUE TO RESTRAINED WARPING

The normal stress due to restrained warping is (Eqs. 7.15 and 7.53)

σx = Eω∗ d2φ

dx2
= Mωω∗

�
= σω (7.73)

where � is the warping constant with respect to the shear center. In terms of the Saint-
Venant warping function ω, the formula for the warping normal stress becomes

σω = Mω

�

(
ω − zS y + yS z − Qω

A

)
(7.74)

where the coordinates yS and zS of the shear center S of the cross section are mea-
sured from the centroid, as are the coordinates y and z of the point where the stress
is being determined.

For a nonhomogeneous cross section, if the area element of Eq. (7.51) is re-
placed with the modulus-weighted differential area d Ã, and modulus-weighted sec-
tion properties are used in the stress formula, the normal stress may be written as

σω = E

Er

Mω

�̃

(
ω − zS y + yS z − Q̃ω

Ã

)
(7.75)

As in the bending normal stress formula of Eq. (1.71) for a nonhomogeneous beam,
the reference elastic modulus Er is chosen arbitrarily, and the value of the elastic
modulus E is determined by the material of the element at a node of which σω is
being calculated.

The normal stress of Eq. (1.57) covers bending in two planes. A tensile axial force
N adds σx = N/A to Eq. (1.57). If the normal stress due to warping of Eq. (7.73) is
included, Eq. (1.57) becomes

σx = N

A
− Iy z My + Iy Mz

Iy Iz − I 2
y z

y + Iz My + Iy z Mz

Iy Iz − I 2
y z

z + Mωω∗

�
(7.76)

Thermal effects are readily incorporated in Eq. (7.76). If the material law σx =
Eεx of Eq. (1.49) is extended to cover a change of temperature �T , then

σx = E(εx − α �T ) (7.77)
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where α is the coefficient of linear thermal expansion. Define

N̂ = N + NT NT = ∫
A Eα �T dA

M̂y = My + MT y MT y = ∫
A Eα �T z dA

M̂z = Mz + MT z MT z = − ∫
A Eα �T y dA

M̂ω = Mω + MT ω MT ω = ∫
A Eα �T ω dA

(7.78)

Then the normal stress of Eq. (7.36) is found to be

σx = N̂

A
− Iy z M̂y + Iy M̂z

Iy Iz − I 2
yz

y + I z M̂y + Iy z M̂z

Iy Iz − I 2
y z

z + M̂ωω∗

�
− Eα �T (7.79)

7.6 SHEAR STRESS IN OPEN-SECTION BEAMS DUE TO
RESTRAINED WARPING

Consider the forces on a small wall element of a thin-walled beam, as shown in
Fig. 7.10a. The shear stress is determined from the x component of the force equi-
librium equation for the wall element. If it is assumed that there is no longitudinal
axial force on the surface

∂q

∂s
+ t (s)

∂σx

∂x
= 0 (7.80)

where t is the thickness of the wall, and the shear flow q is defined by

q(x, s) = τxs(x, s)t (s) (7.81)

The shear flow is found by integrating the equilibrium equation with respect to s:

q(x, s) = q0(x) −
∫ s

0

∂σx

∂x
t (s) ds (7.82)

where q0(x) is the shear flow at s = 0. If a free edge of a cross section is chosen
as the origin of the coordinate s, q0(x) is zero. Substitution of σx of Eq. (7.76) with
N = 0 gives the shear flow:

q(x, s) = Iy z
∂ My
∂x Iy

∂ Mz
∂x

Iy Iz − I 2
yz

Q′
z(s) − Iz

∂ My
∂x + Iyz

∂ Mz
∂x

Iy Iz − I 2
y z

Q′
y(s) −

∂ Mω

∂x Q′
ω(s)

�

(7.83)

The quantities Q′
y and Q′

z , are defined in Eq. (6.4), and Q′
ω is defined similarly:

Q′
y(s) =

∫
A′

z dA Q′
z(s) =

∫
A′

y dA Q′
ω(s) =

∫
A′

ω∗ dA (7.84)
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(b) Segment area A

ds
σx t ds

dx
q dx

(a) Forces on a wall element

A

Shear stress is to be
calculated here

s

(σx + dx t ds∂σx
∂x )

∂s( )q + ds dx
∂q

Figure 7.10 Shear flow and shear stress calculations.

with A′ = ∫
A′ dA, where A′ is the area of the segment of the cross section between

the free edge and the coordinate s (Fig.7.10b). From Eqs. (6.157) and (7.65),

∂Mz

∂x
= −Vy

∂My

∂x
= Vz

∂Mω

∂x
= −Tω (7.85)

These expressions permit Eq. (7.83) to be written as

q(x, s) = Iy z Vz − Iy Vy

Iy Iz − I 2
y z

Q′
z(s) − Iz Vz − Iy z Vy

Iy Iz − I 2
y z

Q′
y(s) + Tω Q′

ω(s)

�
(7.86)
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This can be reorganized in the form

q(x, s) = − Q′
z Iy − Q′

y Iy z

Iy Iz − I 2
y z

Vy − Q′
y Iz − Q′

z Iy z

Iy Iz − I 2
y z

Vz + Tω Q′
ω

�
(7.87)

Note that the resemblance of the shear flow of Eq. (7.87) for thin-walled cross
sections of width (thickness) t to the shear stress of Eq. (6.6) for cross sections of
any width b. Whereas the finite element solution provides the distribution of shear
stress along the width (b), Eq. (6.6) can be used to calculate an average shear stress
on a cut of width b. With width b replacing width t , Eq. (7.87) can be used to find an
average shear stress τ for a “thick” section on a cut of width b. Then

τ = − Q′
z Iy − Q′

y Iy z

b(Iy Iz − I 2
y z)

Vy − Q′
y Iz − Q′

z Iy z

b(Iy Iz − I 2
yz)

Vz + Tω Q′
ω

b�
(7.88)

Equation (7.87) can be extended to include the axial force and the effect of a
temperature change �T .

q(x, s) = A′

A

∂ N̂

∂x
− Q′

z Iy − Q′
y Iyz

Iy Iz − I 2
y z

V̂y − Q′
y Iz − Q′

z Iy z

Iy Iz − I 2
yz

V̂z

+ T̂ω Q′
ω

�
−

∫ s

0
E

∂

∂x
(α�T )t ds (7.89)

where

V̂y = −∂ M̂z

∂x
V̂z = ∂ M̂y

∂x
T̂ω = −∂ M̂ω

∂x

The total shear stress is obtained by adding the pure torsion (Saint-Venant)
stresses of Chapter 5, which vary linearly through the thickness, to the expressions
above.

Example 7.2 Stresses in a Cantilever Beam with I-Beam Cross Section. Stresses
in a cantilever beam of length L, with its fixed end at x = 0 and its free end at x = L,
will be analyzed. Place the y, z coordinates at the centroid. The cross section of the
beam, shown in Fig. 7.11, is symmetric with respect to the y axis and is of constant
thickness t . The load is a single vertical force of magnitude P applied at the free end
of the beam. The point of application of P on the cross section is the lower end of
the left flange.

The centroid is located by the dimension a from P

a = h(2b2 + h)

2(h + b1 + b2)
(1)
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P

y

z

C S

h

a

b1

b2

P

(a)

(b)

Figure 7.11 Cantilever beam with I-beam cross section.

The area moments of inertia are

Iy ≈

t

12

(
b3

1 + b3
2

)
Iz ≈ tb1a2 + tb2(h − a)2 + t

3

[
a3 + (h − a)3

]
(2)

Iyz = 0

The warping function is calculated relative to the centroid C using Eq. (7.32) or,
equivalently, Eq. (7.33).
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ω(s1) = −(h − a)s1

ω(s2) = (h − a)s2

ω(s3) = 0

ω(s4) = 0

ω(s5) = as5

ω(s6) = −as6

(3)

Note that in all cases ω0 of Eq. (7.33) is zero. The quantity ω0 is the value of ω(s) at
the origin of integration for a segment of the thin-walled cross section. For the cross
section of this example, the pole is at the centroid. The warping functions ω(s3) and
ω(s4) are zero since rn , the perpendicular distance from a tangent of a point on the
median line curve to point C , is zero for both cases. The initial warping function
ω0 is zero at the origin (C) for ω(s3) and ω(s4). The initial warping functions ω0
for the integration along s1 or s2 are both ω0 = ω(s3)s3=h−a = 0. Similarly, for
the integration along s5 and s6, ω0 = ω(s4)s4=a = 0. The determination of the
warping functions for poles other than the centroid are discussed in the treatment of
the analysis of thin-walled beam theory on the author’s website.

The shear center coordinates will be zS = 0 and, since Iyz = 0, from Eq. (6.118)

yS = − Izω

Iy
(4)

The sectorial product of area Izω is calculated as Eq. (6.117)

Izω =
∫

z(s)ω(s) dA =
∫ −b2/2

0
s1(−(h − a)s1)t ds1 +

∫ −b2/2

0
s2(h − a)s2t ds2

+
∫ −b1/2

0
s5(as5)t ds5 +

∫ b1/2

0
s6(−as6)t ds6 = t

12

[
(h − a)b3

2 − ab3
1

]
(5)

From (4)

yS = − (h − a)b3
2 − ab3

1

(b3
1 + b3

2)
= −h2(b3

2 − b3
1) + 2hb1b2(b2

2 − b2
1)

2(b1 + b2 + h)(b3
1 + b3

2)
(6)

which shows that S is to the right of the centroid for b2 > b1.
The warping constant � is found from Eq. (7.72):

� = Iω − Q2
ω

A
− y2

S Iy + 2ySzS Iyz − z2
S Iz

= Iω − y2
S Iy

(7)
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where it has been recognized that Iyz = 0 and zS = 0. Also, Qω is zero since

Qω =
∫

ωt ds =
∫ −b2/2

0
−(h − a)s1t ds1 +

∫ b2/2

0
(h − a)s2t ds2

+
∫ −b1/2

0
as5t ds5 +

∫ b1/2

0
−as6t ds6 = 0

(8)

Then

� =
∫

ω2dA − y2
S Iy =

∫ −b2/2

0
(h − a)2s2

1 t ds1

+
∫ b2/2

0
(h − a)2s2

2 t ds2 +
∫ −b1/2

0
a2s2

5 t ds5 (9)

+
∫ b1/2

0
a2s2

6 t ds6 − y2
S Iy = th2

12

b3
1b3

2

b3
1 + b3

2

The restrained principal warping function is found by transforming ω according
to Eq. (7.34)

ω∗(s) = ω(s) − zS y + ySz − Qω

A
= ω(s) + ySz (10)

In terms of the branch coordinates sk, k = 1, 2, 3, 4, 5, 6, defined in Fig. 7.12a, the
restrained warping function is

ω∗(s1) = −(h − a)s1 − ySs1 = [−(h − a) − yS] s1 = − hb3
1

b3
1 + b3

2

s1

ω∗(s2) = (h − a)s2 − ySs2 = [(h − a) + yS] s2 = hb3
1

b3
1 + b3

2

s2

ω∗(s3) = 0

ω∗(s4) = 0

ω∗(s5) = as5 − ySs5 = (a − yS)s5 = hb3
2

b3
1 + b3

2

s5

ω∗(s6) = −as6 + ySs6 = (−a + yS)s6 = − hb3
2

b3
1 + b3

2

s6

(11)

The applied force P at the free end of the beam does not pass through the shear
center. The force–couple equivalent of P at the shear center S is the force P and the
torsional moment T0 of P about S
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s2

ξ2

s1

ξ1

2
b2

(d)  ω*, principal warping function

+

− s6

s5

s2

s1

−

+

C S

(c)  Coordinate for integration to a cut

y b2
b1

C S

z

(b)  Section cuts

s6

s5
s3

s2

s1

(a)

s4 C

y
C

z

S
b2

2
b2

ξ1

2
b2

(g)  Sign of Q′ω

+

ξ1

s1

s2

−

ξ2

Q′ω

(f )  Definition of ξ2(e)  Definition of ξ1

Figure 7.12 Configurations for I-beam solution.
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T0 = (a + | yS |) P = Phb3
2

b3
1 + b3

2

(12)

The angle of twist of the beam is, therefore (Eq. 4 of Example 7.1),

φ(x) = T0

cG J
[cx − sinh cx − tanh cL(1 − cosh cx)] (13)

For the torsional constant J , Saint-Venant’s approximation can be used (Eq. 5.43):

J = t3

3
(h + b1 + b2) (14)

The constant c depends on material constants and cross-sectional dimensions

c2 = G J

E Iω
= Gt3(h + b1 + b2)

3Eh

(
1 + b3

2

b3
1

)
(15)

The internal forces at the clamped end are

Vz = P My = −P L T = T0 (16)

The torsional shear stress, which is proportional to dφ/dx , is zero at the clamped
end. The shear stress distribution over the cross section at the fixed end x = 0 is
given by Eq. (7.87) as

τxs(s) = − P Q′
y(s)

t Iy
+ Tω Q′

ω(s)

t�
= τV + τω (17)

In (17), the first moment area Q′
y(s) is calculated using section cuts such as those

indicated in Fig. 7.12b. For instance, with the section cut on the right flange, the
integration for Q′

y is taken from the free edge at z = −b2/2 to the cut. Then

Q′
y =

∫
A′

z dA (18)

where the overbar on z of Eq. (7.84) has been ignored. If the integration is to be
performed from the top of the flange (z = −b2/2) to the cut, it is convenient to
define a new coordinate ξ1, 0 ≤ ξ1 ≤ b2, as shown in Fig. 7.12c. Then, with z =
−(b2/2 − ξ1)

Q′
y =

∫ ξ1

0
zt dξ1 =

∫ ξ1

0
t

(
ξ1 − b2

2

)
dξ1 = t

2
ξ1(ξ1 − b2) (19)

Upon substitution of ξ1 = z + b2/2 into (9),
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Q′
y(z) = t

2

(
z2 − b2

2

4

)
(20)

The corresponding shear stress distribution given by (17) is

τV (z) = P

2Iy

(
b2

2

4
− z2

)
(21)

Similarly, the shear stress in the left flange is given by

τV (z) = P

2Iy

(
b2

1

4
− z2

)
(22)

the first moment Qy is zero for the web since the flanges have equal areas above and
below the y axis and the shear stress τV in the web is zero.

The second contribution to the shear stress in (17) is the warping shear stress

τω(s) = Tω Q′
ω(s)

t�
(23)

where Tω is equal to the entire torque T0, since the pure torsion torque Tt is zero
at the clamped end (Eq. 7.47). The first sectorial area moment Q′

ω(s) = ∫
A′ ω∗ dA

(Eq. 7.84) of the principal warping function is calculated using (11) for the part of
the cross section cut off at s, remembering that the integration starts at a free edge.
The principal warping function is shown in Fig. 7.12d. Since the integration to find
Q′

ω starts at a free edge, where τω = 0, it is convenient to define another variable ξ1
(Fig. 7.12e), 0 ≤ ξ1 ≤ b2/2. Note that ξ1 = b2/2 − s1 and s1 = b2/2 − ξ1. This
differs somewhat from the ξ1 defined to calculate Q′

y where 0 ≤ ξ1 ≤ b2. Then the
integration is performed from the free edge with ξ1 = 0 to ξ1, where ξ1 ≤ b2/2.

Q′
ω(s1) =

∫ ξ1

0
ω∗(ξ1)t dξ1 = − hb3

1t

b3
1 + b3

2

∫ ξ1

0

(
b2

2
− ξ1

)
dξ1

= − b3
1th

2
(
b3

1 + b3
2

) (b2 − ξ1)ξ1 = − b3
1th

2
(
b3

1 + b3
2

) (
b2

2

4
− s2

1

) (24)

For the bottom flange, define ξ2 from the free edge as shown in Fig. 7.12f. Then,
s2 = b2/2 − ξ2 and

Q′
ω(s2) =

∫ ξ2

0
ω∗(ξ2)t dξ2 = b3

1th

2
(
b3

1 + b3
2

) (b2 − ξ2) ξ2

= b3
1th

2
(
b3

1 + b3
2

) (
b2

2

4
− s2

2

) (25)
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Since the warping shear stress is given by τω(s) = Tω Q′
ω(s)/(t�) (Eq. 23), the

sign of the stress depends on the sign of Q′
ω(s) (Fig. 7.12a). For the right-hand flange

s Sign of Q′
ω(s) Sign of τω for Tω > 0

s1 − Same as direction of s1, up
s2 + Opposite direction of s2, up

The other first sectorial area moments are calculated in a similar fashion.
In summary,

Q′
ω(s1) = − b3

1th

2
(
b3

1 + b3
2

) (
b2

2

4
− s2

1

)

Q′
ω(s2) = b3

1th

2
(
b3

1 + b3
2

) (
b2

2

4
− s2

1

)
Q′

ω(s3) = 0

Q′
ω(s4) = 0

Q′
ω(s5) = − b3

2th

2
(
b3

1 + b3
2

) (
b2

1

4
− s2

5

)

Q′
ω(s6) = b3

2th

2
(
b3

1 + b3
2

) (
b2

2

4
− s2

6

)

(26)

The shear stresses are expressed by (23) as

τω(s1) = 6T0

thb3
2

(
b2

2

4
− s2

1

)

τω(s2) = − 6T0

thb3
2

(
b2

2

4
− s2

2

)
τω(s3) = 0

τω(s4) = 0

τω(s5) = − 6T0

thb3
1

(
b2

1

4
− s2

5

)

τω(s6) = 6T0

thb3
1

(
b2

1

4
− s2

6

)

(27)

The sign of τω(s1) is positive, which means that the shear flow is in the direction of
increasing s1, hence upward. Similarly, the sign of τω(s2) is negative, so the shear
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flow is in the direction of decreasing s2, hence upward. Thus, warping shear stresses
on the right flange are directed upward, but the signs of τω(s5) and τω(s6) show that
the warping shear stresses on the left flange are directed downward.

The normal stress at the fixed end due to bending is (Eq. 1.59)

σx(z) = My z

Iy
= − P Lz

Iy
(28)

The normal warping stress is (Eq. 7.73)

σω(s) = Mωω∗(s)
�

(29)

where Mω is the bimoment at the fixed end

Mω = −E�
d2φ

dx2
(0) = −T0

c
tanh cL (30)

with d2φ/dx2 taken from (13).
Sometimes the material constant of (30) is made more accurate. If the kinematic

assumption that the median line of the cross section is inextensible is introduced,
then the strain εs is zero, εs = (σs − νσx)/E = 0 or σs = νσx . The longitudinal
strain is then εx = (σx − νσs)/E = (1 − ν2)σx/E . It follows that an improved
modulus of elasticity can be defined as

E = E

1 − ν2
(31)

Then (30) becomes

Mω = −E�
d2φ

dx2
(0) = −T0

c
tanh cL (32)

where c2 = G J/E�. This modified constant, E , can be used to replace E throughout
this chapter.

To calculate the stresses numerically, the following dimensions will be assumed

b1 = b h = b2 = 2b L = 20b t = b

10
(33)

Poisson’s ratio will be taken to be ν = 0.25. The modulus of elasticity E and the
shear modulus G are then

E = E

1 − ν2
= 16E

15
G = E

2(1 + ν)
= 2E

5
(34)
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Figure 7.13 Transverse and warping shear stresses at the fixed end.

The transverse and warping shear stress distributions at the clamped end of the beam
are sketched in Fig. 7.13. The force–couple equivalent of the transverse shear stress
τV at the shear center S is a single force of magnitude Vz = P . The warping shear
stress τω is statically equivalent to a couple. The total shear stress on the right flange
is zero, so that, at the fixed end of the beam, all shear stresses are carried by the left
flange.

The bending and warping normal stresses are shown in Fig. 7.14. The maximum
normal warping stress exceeds the maximum bending stress. The bending stresses
are statically equivalent to the bending moment My = −P L. The warping stresses
are statically equivalent to zero force and zero couple. When considered separately
for the two flanges, these stresses are equivalent to two equal and opposite bending
moments. The maximum stresses are shown in Table 7.1. The reference stress σ0 is
defined as

σ0 = P

b2
(35)
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Figure 7.14 Bending and warping normal stresses at the fixed end.

TABLE 7.1 Maximum Stresses at the Clamped End

Maximum Stress Right Flange Left Flange

τV /σ0 (Transverse) 6.7 1.7
τω/σ0 (Warping) 6.7 13.3
σx/σ0 (Bending) 266.7 133.3
σω/σ0 (Warping) 91.3 365.0

Example 7.3 Stresses in a Simply Supported Beam. The stress distribution in the
simply supported beam shown in Fig. 7.15a will be determined. The load is a ver-
tical force of magnitude P at midspan. For the cross section of Fig. 7.15b it can be
shown that the shear center coincides with the centroid. This can be accomplished
analytically using Eq. (6.118) or reasoned physically (Gere and Timoshenko, 1997;
Kollbrunner and Hajdin, 1972). The y, z axes are centroidal axes. The wall thickness
t is the same for the flanges and the web.
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Figure 7.15 Simply supported beam with midspan load.
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The area moments of inertia and the area product of inertia for this cross section
are

Iy ≈

2tb3

3
Iz ≈

th3

12
+ tbh2

2
Iyz ≈

thb2

2
(1)

The torsional constant, calculated from Saint-Venant’s approximation, is (Eq. 5.43)

J = ht3

3
+ 2bt3

3
= t3(h + 2b)

3
(2)

The warping function with the pole and origin both at the centroid C is

ω(s1) = −h

2
s1 ω(s2) = 0 ω(s3) = 0 ω(s4) = −h

2
s4 (3)

The principal warping function is given by Eq. (7.34) as

ω∗(s) = ω(s) − zS y + yS z − Qω

A
= ω(s) − Qω

A
(4)

since yS = 0 and zS = 0. The first moment of warping is found to be

Qω =
∫ b

0

(
−h

2
s1

)
t ds1 +

∫ b

0

(
−h

2
s4

)
t ds4 = − thb2

2
(5)

and

A = t (h + 2b) (6)

so that the principal warping function of (4) for the right-hand flange is

ω∗(s1) = −hs1

2
+ hb2

2(h + 2b)
(7)

Also

ω∗(s2) = hb2

2(h + 2b)

ω∗(s3) = hb2

2(h + 2b)

ω∗(s4) = ω∗(s1)

The warping constant is found from Eq. (7.70):

� = Iω − Q2
ω

A
− zS Iyω + yS Izω = th2b3(b + 2h)

12(h + 2b)
(8)
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The applied load at x = L/2 is equivalent to a torsional couple T0 and a transverse
force P at the shear center:

T0 = Ph

2
(9)

The applied torque per unit length can be written in terms of the Dirac delta function

m(x) = T0 δ

(
x − L

2

)
(10)

The angle of twist is calculated from Eq. (7.59) as

φ(x) = C1 + C2x + C3 cosh cx + C4 sinh cx (11)

for 0 � x � L/2 and

φ(x) = C1 + C2x + C3 cosh cx + C4 sinh cx

− T0

cG J

[
c

(
x − L

2

)
− sinh c

(
x − L

2

)] (12)

for L/2 � x � L.
The boundary conditions at the two simple supports

φ(0) = φ(L) = 0
d2φ

dx2
(0) = d2φ

dx2
(L) = 0 (13)

are solved for the integration constants

C1 = 0 C2 = T0

2G J
C3 = 0 C4 = −T0 sinh cL/2

cG J sinh cL
(14)

For the left half of the beam

φ(x) = T0

2cG J

(
cx − 2

sinh cL/2

sinh cL
sinh cx

)
Mω(x) = T0

c sinh cL
sinh

cL

2
sinh cx

Tt (x) = T0

2
− T0 sinh cL/2

sinh cL
cosh cx

Tω(x) = T0
sinh cL/2

sinh cL
cosh cx

(15)

The qualitative behavior of these functions over the entire span of the beam can be
seen in Figs. 7.16, 7.17, and 7.18. In Fig. 7.18, the torques Tt and Tω are shown as
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Figure 7.16 Angle of twist for the simply supported beam.
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Figure 7.17 Bimoment for the simply supported beam.
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Figure 7.18 Pure torsion and warping torques for the simply supported beam.

fractions of the applied torque T0. The total torque is the sum of Tt and Tω

T (x) =


T0

2
if x <

L

2

−T0

2
if x >

L

2

(16)

The stresses at x = L/2 at the section just to the left of the applied torque will be
calculated. The transverse shear stress τV at this section is (Eq. 7.87)

τV (s) = − Q′
y(s)Iz − Q′

z(s)Iyz

t
(

Iy Iz − I 2
yz

) Vz (17)

where the reference y, z coordinate system remains at the centroid.
To aid in finding Q′

y and Q′
z for the right flange, define a new coordinate ξ1 from

the free edge as shown in Fig. 7.15d. Then, with z(ξ1) = −(b − ξ1),

Q′
y(ξ1) =

∫ ξ1

0
z(ξ1)t dξ1 =

∫ ξ1

0
t (ξ1 − b) dξ1 = tξ1

(
ξ1

2
− b

)
(18)

Since s1(ξ1) = b − ξ1,

Q′
y = − t

2

(
b2 − s2

1

)
(19)
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Similarly,

Q′
z = − th

2
(b − s1) (20)

The shear stress of (17) becomes

τV (s1) = 3P(b − s1)(bh + hs1 + 6bs1)

4tb3(2h + 3b)
(21)

The value of τV (s1) for s1 < b is positive, which means that the stress is in the
direction of increasing ξ1, hence downward.

For the web, the first moment of area Q′
y is not zero, in spite of the thickness t

being relatively small, because the integration begins at a free edge. Thus

Q′
y(s2) = Q′

y(s1 = 0) +
∫ s2

0
zt ds2 = Q′

y(s1 = 0) = − tb2

2
(22)

Also, where the coordinate ξ2 of Fig. 7.15d is introduced with ξ2 = h/2 − s2

Q′
z(s2) = Q′

z(s1 = 0) +
∫ ξ2

0

(
ξ2 − h

2

)
t dξ2 = − thb

2
+ t

2
ξ2(ξ2 − h)

= t

2

(
ξ2

2 − hξ2 − hb
)

= t

2

(
s2

2 − hb − h2

4

) (23)

From (17)

τV (s2) = 3P

4

(
12s2

2 − h2
)

tbh(3b + 2h)
(24)

A similar expression is obtained for the web to the left of C . This web stress is plotted
in Fig. 7.15e. The integration to find τV for the web started at point A and ξ2 may
be considered as flowing from the free edge A so τV has the same direction as ξ2 for
τV > 0 and opposes the flow direction of ξ2 for τV < 0.

On the left flange, it is found that

τV (s4) = −3P(b − s4)(bh + 6bs4 + hs4)

4tb3(2h + 3b)
(25)

The warping shear stress τω of Eq. (7.87) at x = L/2 is

τω(s) = Q′
ω(s)

t�
Tω (26)

where the warping torque Tω is T0/2, because the pure torsion torque Tt is zero at
midspan. The integration to compute Q′

ω begins at a free end. With ξ1 = b − s1,
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Q′
ω =

∫ ξ1

0

[
−h

2
(b − ξ1) + hb2

2(h + 2b)

]
t dξ1 = − th(b − s1)(hs1 + 2bs1 + bh)

4(2b + h)

(27)

The Q′
ω for the other segments are computed in a similar fashion. The expressions

for the warping shear stresses are found to be

τω(s1) = T0h(b − s1)(bh + hs1 + 2bs1)

8�(h + 2b)

τω(ξ2) = −T0hb2(h − 2ξ2)

8�(h + 2b)
(28)

τω(s4) = T0h(b − s4)(bh + hs4 + 2bs4)

8�(h + 2b)

+
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+ +

+τV

+
−

+
−

τω

Figure 7.19 Shear stresses for the simply supported beam.
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The normal stress distribution at x = L/2 due to bending is (Eq. 1.57)

σx = − Iyz My

Iy Iz − I 2
yz

y + Iz My

Iy Iz − I 2
yz

z (29)

where My = P L/4. The normal stress due to warping is (Eq. 7.73)

σω = Mωω∗

�
(30)

where � is given by (9) and

Mω = T0

2c
tanh

cL

2
(31)

The shear stress distribution at x = L/2 is sketched in Fig. 7.19. The force resul-
tant of the transverse shear stress τV over the two flanges is equal to the total shear
force P/2. The transverse shear stresses over the web are statically equivalent to a

σω

+

+

-

--

σx

+

- +

+
-

-

Figure 7.20 Normal stresses for the simply supported beam.
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zero force couple. The warping shear stress τω is equivalent to a torsional moment.
The transverse shear stress adds to the warping shear stress over the left flange, but
subtracts from it over the right flange.

The normal stress distribution at x = L/2 is sketched in Fig. 7.20. The normal
stress σx due to bending is statically equivalent to a bending moment about the y axis.
The warping stress σω is statically equivalent to a zero force couple. The bending and
warping stresses are additive over the left flange.

7.7 BEAMS FORMED OF MULTIPLE PARALLEL MEMBERS
ATTACHED AT THE BOUNDARIES

Multimember cross-section problems are treated in this section. Of interest are beams
formed of two or more members with unconnected (open) and attached (welded,
closed) cross sections. Figure 7.21 shows an example with two members. The welded
cross section, which occurs at particular locations along the beam, binds together the
cross sections and restrains the warping of the unconnected sections. In Fig. 7.21,
the welded sections are shown at x = 0 and x = L, so that the weld spacing in this
beam is L. A substitute model for the beam, which is subjected to a constant torsional
moment T , is to be found such that the Saint-Venant equation for the twisting of the
beam can be used while the effects of restrained warping are approximately included.
The formulation here leads to an approximate torsional constant J , which will be
referred to as the effective torsional constant.

The modeling problem is solved by introducing this effective torsional constant
Jeff as a cross-sectional property that includes both torsional and warping effects. The
analysis starts with the differential equation for the angle of twist φ of a thin-walled
beam (Eq. 7.54f):

G J0φ
′ − E�0 φ′′′ = T (7.90)

where J0 is the torsional constant and �0 the warping constant for the open sections.
The calculation of J0 and �0 is considered later in this section. It is assumed that the
Saint-Venant equation for the rate of twist is applicable at the welded sections. This
gives the boundary conditions

φ′(0) = T (0)

G Jc
φ′(L) = T (L)

G Jc
(7.91)

L

1

2

T

x

Figure 7.21 Beam with two cross-sectional members welded at x = 0 and x = L.
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where Jc is the torsional constant of the closed end or welded sections. With the
definition

λ =
√

G J0

E�0
(7.92)

the governing equation for the rate of twist of Eq. (7.90) is rewritten as

φ′ − φ′′′

λ2
= T

G J0
(7.93)

The general solution of this equation is

φ′(x) = T

G J0
(C1 cosh λx + C2 sinh λx + 1) (7.94)

where C1, C2 are constants to be determined from the boundary conditions.
The assumed boundary conditions of Eq. (7.91) give

φ′(0) = T

G J0
(C1 + 1) = T

G Jc

φ′(L) = T

G J0
(C1 cosh λL + C2 sinh λL + 1) = T

G Jc

(7.95)

from which the constants C1 and C2 are found to be

C1 = J0

Jc
− 1

C2 = C1
1 − cosh λL

sinh λL
= −C1 tanh

λL

2
=

(
1 − J0

Jc

)
tanh

λL

2

(7.96)

If the rate of twist φ′(x) of Eq. (7.94) is integrated from x = 0 to x = L, the
relative angle of twist between two welded sections is found:

�φ = φ(L) − φ(0) = T L

G J0

[
C1

λL
sinh λL + C2

λL
(cosh λL − 1) + 1

]
(7.97)

Saint-Venant’s formula expresses �φ in terms of the effective torsional constant Jeff:

�φ = T L

G Jeff
(7.98)

Equate the two expressions for �φ of Eqs. (7.97) and (7.98):

J0

Jeff
= 1 + C1

λL
sinh λL + C2

λL
(cosh λL − 1)
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= 1 + C1

λL
tanh

λL

2
(cosh λL + 1) + C2

λL
(cosh λL − 1)

= 1 + C1

λL

[
tanh

λL

2
(cosh λL + 1) − tanh

λL

2
(cosh λL − 1)

]
(7.99)

= 1 + 2C1

λL
tanh

λL

2

= 1 + 2

λL

(
J0

Jc
− 1

)
tanh

λL

2

This gives a formula for the effective torsional constant Jeff:

Jeff = J0

1 − 2/λL(1 − J0/Jc) tanh(λL/2)
(7.100)

The limiting values of Jeff obtained from Eq. (7.100) as the weld spacing ap-
proaches zero or infinity are

lim
λL→0

Jeff = Jc lim
λL→∞ Jeff = J0 (7.101)

Figure 7.22 shows the variation of Jeff with λL for four values of the ratio Jc/J0.
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Figure 7.22 Effective torsional constant according to Eq. (7.100).
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An energy method in which the strain energy of the substitute beam in Saint-
Venant torsion and the strain energy of the actual multimember beam in nonuniform
torsion are assumed to be equal may also be used to arrive at an effective torsional
constant. The strain energy of the substitute beam in Saint-Venant torsion is

U0 = G J0

2

∫ L

0
φ′2(x) dx = G J0

2

(
T

G Jeff

)2

L = T 2L

2G

J0

J 2
eff

(7.102)

For the actual beam, the rate of twist, which is calculated with the assumptions in-
troduced in the derivation of Eq. (7.100), will be written as (Eq. 7.94)

φ′(x) = T

G J0
f (x) (7.103)

where

f (x) = C1 cosh λx + C2 sinh λx + 1 (7.104)

The second derivative of the angle of twist, which will be needed in the strain energy
calculation, is

φ′′(x) = T

G J0
λg(x) (7.105)

where

g(x) = f ′(x)

λ
= C1 sinh λx + C2 cosh λx (7.106)

The strain energy of the beam in nonuniform torsion is

U1 = G J0

2

∫ L

0
φ′2(x) dx + E�0

2

∫ L

0
φ′′2(x) dx

= G J0

2

[∫ L

0
φ′2(x) dx + 1

λ2

∫ L

0
φ′′2(x) dx

]
(7.107)

= T 2

2G J0

[∫ L

0
f 2(x) dx +

∫ L

0
g2(x) dx

]
The condition for the energy U0 of Eq. (7.102) to be equal to U1 of Eq. (7.107):

J 2
eff

J 2
0

= L∫ L
0

[
f 2(x) + g2(x)

]
dx

(7.108)

gives a formula for the effective torsional constant Jeff

Jeff = J0√
1 − (2/λL)(1 − J 2

0 /J 2
c ) tanh(λL/2)

(7.109)
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Figure 7.23 Effective torsional constant according to the strain energy criterion.

Figure 7.23 shows this torsional constant as a function of λL for four values of Jc/J0.
A comparison of Figs. 7.22 and 7.23 indicates that the strain energy criterion pre-
dicts smaller values for the effective torsional constant than those calculated from
Eq. (7.100). This is also seen in Table 7.2, which lists the ratio of Jeff computed from
Eq. (7.100) to that given by Eq. (7.109) at five values of λL for four values of Jc/J0.
It is apparent that the difference between the two effective torsional constants may
become significant for large values of Jc/J0.

TABLE 7.2 The Ratio of Jeff from Eq. (7.100) to Jeff from Eq. (7.109)

J (7.100)
eff /J (7.109)

eff

λL Jc/Jo = 5 Jc/Jo = 10 Jc/Jo = 20 Jc/Jo = 50

0.2 1.03 1.12 1.43 2.62
0.4 1.09 1.36 2.00 3.54
0.6 1.17 1.56 2.29 3.54
0.8 1.24 1.68 2.35 3.25
1.0 1.29 1.73 2.29 2.93
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Figure 7.24 Coordinate systems for open-section analysis.

7.7.1 Calculation of Open-Section Properties

Figure 7.24 shows the coordinate systems to be used for open-section analysis. The
user’s coordinate system has origin O and axes y , z. The coordinate system having
its origin at the centroid C of the entire cross section has its y axis parallel to y and
its z axis parallel to z. The origin Ci of the third coordinate system is the centroid of
the i th cross-sectional member. The axes yi and zi are parallel to the y and z axes.
The cross section is assumed to be made up of n unconnected members.

Suppose first that the following cross-sectional properties defined in Eq. (1.52) of
the i th member have been calculated in the user’s coordinate system:

Qi
y =

∫
z dAi

Qi
z =

∫
y dAi

I i
y =

∫
z2 dAi (7.110)
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I i
z =

∫
y2 dAi

I i
y z =

∫
y z dAi

The cross-sectional area of member i is denoted by Ai . The area integrals Qi
y , Qi

z are

the first moments of the area of member i about the y, z axes. The area integrals I i
y ,

I i
z are the area moments of inertia, and I i

y z is the area product of inertia of member
i . The corresponding quantities for the entire cross section are given, in the user’s
coordinate system, by the sums

Qy =
n∑

i=1

Qi
y

Qz =
n∑

i=1

Qi
z

Iy =
n∑

i=1

I i
y

Iz =
n∑

i=1

I i
z

Iy z =
n∑

i=1

I i
y z

(7.111)

where n is the number of individual members of the open section.
The coordinates of the centroid C are given, in the user’s coordinate system, by

(Eq. 1.56):

yC = Qz

A
zC = Qy

A
(7.112)

where the total cross-sectional area A is found by summing the individual areas:

A =
n∑

i=1

Ai (7.113)

If the coordinates of a point are y, z in the centroidal coordinate system Cyz of
the section, the coordinates y, z of the same point in the user’s system are

y = yC + y z = zC + z (7.114)
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The area moment inertia Iz of the section about its centroidal axis z may be calculated
as follows:

Iz =
∫

y2 dA =
∫

(y − yC )2 dA =
∫ (

y2 − 2y yC + y2
C

)
dA = Iz − Ay2

C

(7.115)

The product of inertia Iyz of the section is given by

Iyz =
∫

yz dA =
∫

(y − yC )(z − zC ) dA = Iy z − AyC zC (7.116)

The complete set of transformation equations from the user’s coordinate system to
the centroidal coordinate system are

Iy = Iy − Az2
C

Iz = Iz − Ay2
C (7.117)

Iyz = Iy z − AyC zC

These equations represent the parallel axis theorem of Eq. (1.60).
It is also possible to calculate the moments and products of inertia of the section

in the centroidal coordinate system Cyz starting from the moments and product of
inertia of member i in its own centroidal coordinate system Ci yi zi . The required
transformation equations for member i are

I i
y = I i

yi
+ Ai z

2
Ci

I i
z = I i

zi
+ Ai y2

Ci
(7.118)

I i
yz = I i

yi zi
+ Ai yCi zCi

The coordinates of the centroid Ci in these equations are measured in the coordinate
system Cyz

yCi = yCi
− yC = Qi

z̄

Ai
− yC

zCi = zCi − zC = Qi
y

Ai
− zC

(7.119)

The section properties are given by

Iy =
n∑

i=1

I i
y
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Iz =
n∑

i=1

I i
z (7.120)

Iyz =
n∑

i=1

I i
yz

7.7.2 Warping and Torsional Constants of an Open Section

The calculation of the warping constant of an open section relies on two assumptions.
First, it is assumed that the shape of each member cross section remains unchanged
during rotation, with each element undergoing the same twist as the entire cross
section, so that

φi = φ (7.121)

Second, it is assumed that the shear center of the welded section is the common shear
center of each cross-sectional member of the unwelded section. This means that the
warping constant �0 of the unwelded section is calculated with respect to the shear
center S of the welded section.

Let Ci be the centroid of the i th unconnected cross section, and let the coordinates
of S measured in a centroidal coordinate system Cyi zi be denoted by ySi and zSi as
shown in Fig. 7.25. Let ωi be the warping function of the i th section, calculated in

ySi

zi

S

zSi

Ci
yi

Figure 7.25 Centroidal coordinate system of cross-sectional member i and the shear center
S of the closed section.
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the coordinates of the centroid Ci . To transform from Ci to the shear center S of the
closed section, use Eq. (7.34):

ωSi = ωi − zSi yi + ySi zi − Qωi

Ai
(7.122)

where

Qωi =
∫

ωi dAi (7.123)

The warping constant �Si of the unwelded section member i with respect to the
shear center S of the welded section is defined as

�Si =
∫

ω2
Si

dAi (7.124)

Substitution of Eq. (7.122) into this integral leads to

�Si = Iωi − Q2
ωi

A
− 2zSi Iyiωi + 2ySi Izi ωi + z2

Si
Izi + y2

Si
Iyi − 2ySi zSi Iyi zi (7.125)

In this equation, the cross-sectional properties that are independent of warping are
the area moments and products of inertia, which are defined by

Izi =
∫

y2
i dAi

Iyi =
∫

z2
i dAi (7.126)

Iyi zi =
∫

yi zi dAi

The cross-sectional properties that depend on the warping function are the warping
constant and the sectorial products of area:

Iωi =
∫

ω2
i dAi

Iyi ωi =
∫

yiωi dAi (7.127)

Izi ωi =
∫

ziωi dAi

The equation for the angle of twist of each cross-sectional member i may be
written as

G Jiφ
′ − E�Si φ

′′′ = Ti 1 ≤ i ≤ n (7.128)
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In these equations, Ti is the torsional moment acting on the member i , whose tor-
sional constant is Ji and whose warping constant with respect to the assumed com-
mon shear center S is �Si . The equilibrium condition for the torsional moments is

n∑
i=1

Ti = T (7.129)

where T is the torsional moment acting on the whole cross section.
The equation for the angle of twist of the whole section is

G J0φ
′ − E�0φ

′′′ = T (7.130)

The sum of the equations of twist for the individual members gives

G
n∑

i=1

Jiφ
′ − E

n∑
i=1

�Si φ
′′′ =

n∑
i=1

Ti = T (7.131)

These two equations allow the identifications

J0 =
n∑

i=1

Ji (7.132)

�0 =
n∑

i=1

�Si (7.133)

Thus, for a multimember beam with n unconnected members, the torsional con-
stant J0 of the unwelded sections is the sum of the torsional constants of the in-
dividual members as given in Eq. (7.132). The torsional constant Jc of the welded
section has to be computed separately. The warping constant �0 of the unwelded sec-
tion with respect to the shear center S of the welded section is found by summing the
contributions of the unconnected section members as represented by Eq. (7.133).

7.7.3 Calculation of the Effective Torsional Constant

The computation of the effective torsional constant requires the following steps.

1. Determine the shear center S and the torsional constant Jc of the closed sec-
tion.

2. For each unconnected cross-sectional member i , determine the centroid Ci ,
the torsional constant Ji , the area moments of inertia Iyi and Izi , the product
of inertia Iyi zi , the warping constant Iωi referred to the centroid Ci , and the
sectorial products of area Iyiωi and Izi ωi .

3. For each unconnected cross-sectional member i , calculate the warping con-
stant with respect to S using Eq. (7.125).
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4. Calculate the torsional constant J0 of the open section by summing the contri-
butions of the n unconnected cross-sectional members:

J0 =
n∑

i=1

Ji (7.134)

5. Calculate the warping constant �0 of the open section by summing the contri-
butions of the n unconnected cross-sectional members

�0 =
n∑

i=1

�Si (7.135)

6. Calculate λ:

λ =
√

G J0

E�0
(7.136)

where E is the Young’s modulus and G the shear modulus of the material.

7. Calculate the effective torsional constant Jeff using Eq. (7.100):

Jeff = J0

1 − 2/λL(1 − J0/Jc) tanh(λL/2)
(7.137)

where L is the distance between the welded cross sections of the beam. Alter-
natively, use Eq. (7.109) to determine Jeff.

7.8 MORE PRECISE THEORIES

There is always concern about the relative accuracy of the various theories for finding
beam responses. In the case of torsion, we have considered simple Saint-Venant tor-
sion in Chapter 5 and restrained warping torsion here in Chapter 7. The careful use of
a general-purpose structural analysis computer program (a finite element program)
provides a means of assessing the accuracy of the theories for torsion. Other theories,
which are more complex and precise than traditional theories and less complicated
than the use of general-purpose three-dimensional structural analysis software, have
been developed. An example is the torsion solution proposed by Reagan (2002), in
which the bar deformations are represented by an exponentially decaying residual
solution superimposed on the classical Saint-Venant solution. Figure 7.26 provides
a comparison of the torsion solutions according to Saint-Venant, restrained warping,
and a more precise theory for a fixed–free bar with a torque applied at the free end.
The results are given for several cross-sectional shapes. In each case, the applied
torque Mx is 100,000 in-lb, the length of the rod is 48 in., and the material is alu-
minum with G = 384,615 lb/in2. In Fig. 7.26, θSV refers to the rate of twist for
Saint-Venant torsion, θRW is the rate of twist according to the restrained warping
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Figure 7.26 Comparison of rates of twist for Saint-Venant (SV) uniform torsion theory, the
fourth-order restrained warping (RW) theory, and a more precise theory θ(x).



368 RESTRAINED WARPING OF BEAMS

fourth-order theory of this chapter, and θ is determined from a more precise theory
(Reagan, 2002). In general, it is seen that the more precise theory (θ) approaches the
constant Saint-Venant value less rapidly than the restrained warping theory (θRW).

The exact beam theoery of Ladevèze (1983) and Ladevèze and Simmonds (1996),
which is described in Section 6.4.7, applies to a broad range of beam problems,
including those with restrained warping.
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CHAPTER 8

ANALYSIS OF STRESS

Various normal and shear stresses have been defined in previous chapters. It is use-
ful to review some of the techniques for combining these stresses. In this chapter,
principal stresses, extreme shear stresses, and yield (failure) theories are discussed.

8.1 PRINCIPAL STRESSES AND EXTREME SHEAR STRESSES

8.1.1 State of Stress

Consider the three-dimensional state of stress defined in Section 1.1.2. Define three
stress vectors

�x = σx i + τxyj + τxzk

�y = τyx i + σyj + τyzk (8.1)

�z = τzx i + τzyj + σzk

on the x , y, z coordinate planes passing through a point. The vectors �x , �y, �z

define the states of stress on the faces of a cube whose outward normals are i, j, k,
respectively (see Fig. 1.1). The stress vector �n at a point on an arbitrarily oriented
plane specified by the unit normal vector (Fig. 8.1)

n = nx i + nyj + nzk (8.2)

is given by (Pilkey and Wunderlich, 1994)

�n = nx �x + ny�y + nz�z (8.3)

369
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-σy

n
x

y

z

-σx

-σz

σn

Figure 8.1 Stress vector on arbitrarily oriented plane with normal n.

The components nx , ny, nz are the direction cosines of the unit normal n. This stress
vector can be decomposed into normal and shear components. The normal compo-
nent σ , which is parallel to the unit normal n, is found as

σ = �n · n = σx n2
x + σyn2

y + σzn2
z + 2(τxynx ny + τyznynz + τzx nznx) (8.4)

If the orientation of this plane changes, the value of the normal stress σ varies.

8.1.2 Principal Stresses

Of special interest in an analysis of stresses are the extreme (minimum and max-
imum) values of σ and the corresponding orientations of the plane. The extreme
values of σ need to be determined with the constraint that n is a unit vector

n2
x + n2

y + n2
z = 1 (8.5)

To solve this extremum problem, introduce the Lagrange multiplier λ and find the
orientation of the plane corresponding to extreme values of the function

F(nx , ny, nz) = σ − λ(n2
x + n2

y + n2
z − 1) (8.6)

The conditions for F to assume its extreme values, ∂F/∂nx = 0, ∂F/∂ny = 0,
∂F/∂nz = 0, lead to the three homogeneous linear equations for nx , ny, nz

(σx − λ)nx + τxyny + τxznz = 0

τxynx + (σy − λ)ny + τyznz = 0

τxznx + τyzny + (σz − λ)nz = 0

(8.7)
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which is a set of three homogeneous algebraic equations for four unknowns,
nx , ny, nz , and λ. A fourth equation, n2

x + n2
y + n2

z − 1 = 0, which assures that
n is a unit vector, is obtained from ∂F/∂λ = 0. Any unit vector n (i.e., the com-
ponents nx , ny , and nz) satisfying the three relations of Eq. (8.7) is an eigenvector.
From Cramer’s rule the relations of Eq. (8.7) have a nontrivial solution if and only if
the determinant of the coefficients is zero:∣∣∣∣∣∣

σx − λ τxy τxz

τxy σy − λ τyz
τxz τyz σz − λ

∣∣∣∣∣∣ = 0 (8.8)

Note that this problem of finding the extreme values of σ is algebraically the same
as the eigenvalue problem for the 3 × 3 symmetric stress matrix (tensor)

� =
σx τxy τxz

τxy σy τyz
τxz τyz σz

 (8.9)

The eigenvectors of this matrix are the normal vectors defining the planes on which
σ assumes its extreme values, and eigenvalues of the matrix are the Lagrange multi-
pliers λ.

A symmetric tensor with real elements has real eigenvalues and the eigenvec-
tors corresponding to distinct eigenvalues are mutually orthogonal (Atanackovic and
Guran, 1999). Thus, the three eigenvalues λ1, λ2, λ3 of the stress matrix � are real
numbers, and the three eigenvectors corresponding to distinct eigenvalues are per-
pendicular. If precisely two of the eigenvalues are the same, there are two mutually
perpendicular eigenvectors corresponding to these two eigenvalues. Moreover, any
two mutually perpendicular vectors situated in the plane defined by these two eigen-
vectors are also eigenvectors corresponding to the two identical eigenvalues. For
three identical eigenvalues, any three mutually perpendicular vectors are eigenvec-
tors.

The columns of the stress matrix � of Eq. (8.9) are the x , y, z stress vectors of
Eq. (8.1). For a unit normal vector n (Eq. 8.2), the stress vector �n of Eq. (8.3) on
an arbitrarily oriented plane is given by

�n = �n = [�x �y �z]n = nx �x + ny�y + nz�z (8.10)

All vectors here have coordinates with respect to the unit vectors i, j, k. From
Eq. (8.10) it can be concluded that the x , y, z coordinates of a stress vector on
the plane defined by the unit normal vector n can be calculated by multiplying the
components nx , ny, nz by the matrix �. The unit normal n multiplied by the stress
vector �n gives the expression for the normal stress σ on the plane defined by n:

σ = n · �n = n · �n (8.11)
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Suppose that the three eigenvalues of the stress tensor � are λ1, λ2, λ3 and the corre-
sponding unit eigenvectors are n1, n2, n3. It follows from Eq. (8.11) that the normal
stress σk, k = 1, 2, 3, on the planes defined by the eigenvectors nk, k = 1, 2, 3, are

σk = nk · �nk = nk · λknk = λk k = 1, 2, 3 (8.12)

where Eq. (8.5) has been utilized. It can be concluded, then, that the three values of
the Lagrange multiplier λ, which are the eigenvalues of �, are the extreme values of
the normal stress.

These eigenvalues of the stress tensor � are called the principal stresses. As in-
dicated in Eq. (8.12), these are σ1, σ2, σ3. These are the minimum and maximum
values assumed by normal stresses as a function of the orientation of the plane. The
corresponding eigenvectors n1, n2, n3 are the principal directions. They can always
be chosen to form a right-handed triad of unit vectors.

It is of interest to find the level of shear stress on the principal stress planes.
Suppose that n is a unit eigenvector of the stress tensor �, with the corresponding
eigenvalue λ, so that the stress vector �n is given by

�n = �n = λn (8.13)

This relationship shows that the stress vector �n is formed only of a component
along n. Thus, it is seen that the shear stress on the plane defined by n is zero. In
other words, the principal stress planes are free of shear stress. Conversely, if n is the
normal to a plane that is free of shear stress, the relationship for calculating n is the
eigenvalue problem for the stress matrix �

�n = �n = λn (8.14)

This establishes that a cutting plane through a point in a body is a principal stress
plane if and only if it is free of shear stress.

8.1.3 Invariants of the Stress Matrix

The eigenvalues of � are the three real roots of the cubic equation resulting from
Eq. (8.8). That is, if I is the unit diagonal matrix,

| � − λI | = −λ3 + I1λ
2 − I2λ + I3 = 0 (8.15)

where

I1 = σx + σy + σz

I2 = σxσy − τ 2
xy + σyσz − τ 2

yz + σxσz − τ 2
xz (8.16)

I3 = σxσyσz − σxτ
2
yz − σyτ

2
xz − σzτ

2
xy + 2τxyτxzτyz
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For a principal stress plane, the shear stresses are zero and the stress tensor is a
diagonal matrix with the principal stresses on the main diagonal:σ1 0 0

0 σ2 0
0 0 σ3


In this case, Eq. (8.15) would appear as

(σ1 − λ)(σ2 − λ)(σ3 − λ) = 0 (8.17)

This relationship becomes

−λ3 + (σ1 + σ2 + σ3)λ
2 − (σ1σ2 + σ2σ3 + σ1σ3)λ + σ1σ2σ3 = 0 (8.18)

Comparison of Eqs. (8.15) and (8.18) shows that

I1 = σx + σy + σz = σ1 + σ2 + σ3

I2 = σxσy − τ 2
xy + σyσz − τ 2

yz + σxσz − τ 2
xz

= σ1σ2 + σ1σ3 + σ2σ3 (8.19)

I3 = σxσyσz − σxτ
2
yz − σyτ

2
xz − σzτ

2
xy + 2τxyτxzτyz

= σ1σ2σ3

The quantities I1, I2, I3 have the same values regardless of the choice of axes x , y, z
in which the state of stress is given. Hence, I1, I2, I3 are called stress invariants.

8.1.4 Extreme Values of Shear Stress

As the cutting plane orientation varies, the shear stresses will change. The extreme
values of these stresses are calculated in this section. We choose to select the x, y, z
axes as a set of principal axes at the point in question. Label these axes 1, 2, 3,
with unit vectors e1, e2, e3. The stress vectors on the coordinate planes, on which the
principal stresses σ1, σ2, σ3 occur, are expressed as

�1 = σ1e1

�2 = σ2e2 (8.20)

�3 = σ3e3

These are the stress vectors of Eq. (8.1) written along the principal axes for which
the corresponding shear stresses are zero. Similar to Eq. (8.3), the stress vector on a
plane whose unit normal is the vector n is

�n = n1σ1e1 + n2σ2e2 + n3σ3e3 (8.21)
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Decompose the stress vector �n into two orthogonal components �n · n and a shear
stress component of magnitude τ , expressed as

τ 2 = �n · �n − (�n · n)2 (8.22)

Introduce �n of Eq. (8.21) to find that

τ 2 = n2
1σ

2
1 + n2

2σ
2
2 + n2

3σ
2
3 − (n2

1σ1 + n2
2σ2 + n2

3σ3)
2

= (σ1 − σ2)
2n2

1n2
2 + (σ2 − σ3)

2n2
2n2

3 + (σ3 − σ1)
2n2

3n2
1 (8.23)

As with Eq. (8.6) for the normal stresses, for τ to assume an extreme value, the
function

F(n1, n2, n3) = τ 2 − λ(n2
1 + n2

2 + n2
3 − 1) (8.24)

must attain its extremum. Here λ is a Lagrange multiplier. The conditions for F to
assume its extreme values,

∂F

∂n1
= 0

∂F

∂n2
= 0

∂F

∂n3
= 0

∂F

∂λ
= 0 (8.25)

lead to

(σ1 − σ2)
2n1n2

2 + (σ1 − σ3)
2n1n2

3 − λn1 = 0

(σ2 − σ3)
2n2n2

3 + (σ2 − σ1)
2n2n2

1 − λn2 = 0

(σ3 − σ1)
2n3n2

1 + (σ3 − σ2)
2n3n2

2 − λn3 = 0

n2
1 + n2

2 + n2
3 − 1 = 0

(8.26)

One solution of these equations corresponds to the trivial solution τ 2 = 0. A second
solution is

n1 = 0 n2 = n3 = 1√
2

λ = (σ2 − σ3)
2

2

n2 = 0 n3 = n1 = 1√
2

λ = (σ3 − σ1)
2

2
(8.27)

n3 = 0 n1 = n2 = 1√
2

λ = (σ1 − σ2)
2

2

To find the extreme values of the shear stresses, substitute n1, n2, n3 from Eq. (8.27)
into Eq. (8.23). For example, for n1 = n2 = 1/

√
2 and n3 = 0, Eq. (8.23) provides

τ = 1
2 | σ1 − σ2 |. In general, the extreme values of the shear stresses are
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τ = | σ2 − σ3 |
2

τ = | σ3 − σ1 |
2

τ = | σ1 − σ2 |
2

(8.28)

It follows that the maximum shear stress can be expressed as

τmax = σmax − σmin

2
(8.29)

where σmax and σmin are the maximum and minimum, respectively, of the principal
stresses σ1, σ2, and σ3. From the values of n1, n2, n3 in Eq. (8.27), which identify
the unit normal vector n, it is apparent that the planes on which shear stresses reach
their extreme values make a 45◦ angle with the principal directions. These planes
where shear stresses have extreme values are, in general, not free of normal stress.

The primary conclusion of this section can be summarized as: The maximum
shear stress is equal to one-half the difference between the maximum and minimum
normal stresses and acts on a plane that bisects the angle between the directions of
the maximum and minimum principal stresses.

8.1.5 Beam Stresses

For the beam theories presented here, including bending and torsion, the assumptions
lead to three components of the stress tensor that are zero at any point of the beam
cross section:

σy = 0 σz = 0 τyz = 0 (8.30)

The remaining three components define the state of stress, with the stress matrix
given in the form

� =
σx τxy τxz

τxy 0 0
τxz 0 0

 (8.31)

The normal stress σx is due to axial loads, bending moments, or cross-sectional
warping. The shear stresses τxy, τxz are due to unrestrained torsion, transverse shear
forces, or cross-sectional warping.

The eigenvalues of � are the principal stresses. From Eq. (8.8) these eigenvalues
are obtained by solving for λ from the equation∣∣∣∣∣∣

σx − λ τxy τxz

τxy −λ 0
τxz 0 −λ

∣∣∣∣∣∣ = 0 (8.32)

The three values of λ obtained from Eq. (8.32) are the principal stresses σ1, σ2, σ3.
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These are

σ1 = σx

2
+

√(σx

2

)2 + τ 2
xy + τ 2

xz

σ2 = 0 (8.33)

σ3 = σx

2
−

√(σx

2

)2 + τ 2
xy + τ 2

xz

A unit vector

n = nx i + nyj + nzk (8.34)

which satisfies Eq. (8.7) is an eigenvector. There will be three eigenvectors n1, n2, n3,
corresponding to the three eigenvalues λ1 = σ1, λ2 = σ2, λ3 = σ3. For beam theo-
ries, with σy = 0, σz = 0, and τyz = 0, Eq. (8.7) reduces to

(σx − λ) nx + τxyny + τxznz = 0

τxynx − λny = 0

τxznx − λnz = 0

(8.35)

The eigenvectors are constructed by substituting one at a time λ = λ1, λ2, λ3 into
Eq. (8.35) and solving for nx , ny, nz . Equations (8.35) are three linear, homogeneous
equations for nx , ny, nz . Hence, the components nx , ny, nz can only be found in
terms of each other. Typically, one of these components is arbitrarily set equal to a
constant, usually with a value of 1. The resulting nx , ny, nz are then substituted into
the unit vector of Eq. (8.34), giving the eigenvectors n1, n2, n3.

As an example, consider the eigenvector for λ2 = σ2 = 0. Then Eq. (8.35) be-
comes

σx n2x + τxyn2y + τxzn2z = 0

τxyn2x = 0

τxzn2x = 0

(8.36)

These give

n2x = 0 n2y = −n2zτxz

τxy
(8.37)

With an arbitrary selection of n2z = 1, the vector n2x i + n2yj + n2zk corresponding
to λ2 becomes

− τxz

τxy
j + k (8.38)
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This is converted to the unit eigenvector

1√
(τxz/τxy)2 + 1

(
− τxz

τxy
j + k

)
= 1√

τ 2
xz + τ 2

xy

(−τxzj + τxyk
)

(8.39)

The principal direction can be written simply as

n2 = −τxzj + τxyk (8.40)

This process leads to the three principal directions

n1 = σ1i + τxyj + τxzk

n2 = − τxzj + τxyk

n3 = σ3i + τxyj + τxzk

(8.41)

The resultant shear stress can be represented as

� = τxyj + τxzk (8.42)

Note that � · n2 = 0. It follows that direction n2 of the zero principal stress σ2
is perpendicular to the resultant shear stress. The state of stress may therefore be
considered biaxial, with σx as the only nonzero normal stress and the resultant shear
stress:

τ =
√

τ 2
xy + τ 2

xz (8.43)

as the only shear stress.
The maximum shear stress acts on the plane whose normal bisects the angle be-

tween the principal planes of the maximum and minimum principal stresses and has
a magnitude equal to one-half the difference between these two principal stresses. In
our case, if σ3 < 0, then

τmax = 1
2 | σ1 − σ3 | =

√(σx

2

)2 + τ 2
xy + τ 2

xz (8.44)

Details of Eigenvector Determination An in-depth study of the eigenvector prob-
lem leading to Eq. (8.40) is of interest. The goal is to find the eigenvectors corresponding to
the eigenvalues σ1,σ2,σ3 of Eq. (8.33).

To find the eigenvector n2 for the eigenvalue σ2 = 0, we have �n2 = σ2n2 = 0, where

n2 = n2x i + n2yj + n2zk (8.45)

Suppose first that at least one of τxy, τxz is nonzero, say τxy �= 0. From
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τxy 0 0
τxz 0 0

n2x
n2y
n2z

 = 0 (8.46)

it follows that τxyn2x = 0. Since τxy �= 0, n2x must be zero. The only remaining meaningful
condition is

τxyn2y + τxzn2z = 0 (8.47)

Arbitrarily choose n2z to be τxy [rather than equal to 1 as for Eq. (8.38)] since τxy �= 0 and
get

τxyn2y = −τxzτxy n2y = −τxz (8.48)

Hence

n2 = −τxz j + τxyk (8.49)

which corresponds to Eq. (8.41)
In case τxz �= 0, it follows again that n2x = 0. The remaining condition is

τxyn2y + τxzn2z = 0 (8.50)

so we may choose n2y = −τxz and get −τxyτxz = −τxzn2z . Then n2z = τxy and

n2 = −τxz j + τxyk (8.51)

as before. It can be concluded that if at least one shear stress is nonzero, Eq. (8.40) holds.
Next, suppose that τxy = 0 and τxz = 0 and assume that σx �= 0. The stress matrix of

Eq. (8.31) reduces to

� =
σx 0 0

0 0 0
0 0 0

 (8.52)

Then σx n2x = 0 gives n2x = 0. There are no other conditions, and n2 = n2yj + n2zk. The
quantities n2y, n2z can be chosen arbitrarily as long as n2 is not the zero vector. For this case,
eigenvectors can simply be chosen as

n1 = i for σ1 = σx

n2 = j for σ2 = 0 (8.53)

n3 = k for σ3 = 0

This special case was not mentioned in the derivation of Eq. (8.40).
Consider now the determination of the eigenvector corresponding to the eigenvalue

(Eq. 8.33)

σ1 = σx

2
+

√(σx

2

)2 + τ2
xy + τ2

xz (8.54)

The eigenvalue problem is (� − σ1I) n1 = 0, where I is the unit diagonal vector, or
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τxy −σ1 0
τxz 0 −σ1

n1x
n1y
n1z

 = 0 (8.55)

This matrix can have at most two independent rows. The condition σ1 �= 0 implies that the
last two rows of this matrix are independent, so the only conditions are

τxyn1x − σ1n1y = 0 τxzn1x − σ1n1z = 0 (8.56)

We are free to choose n1x , so choose

n1x = σ1

where we know that n1x is nonzero, as it has already been assumed that σ1 �= 0. Then

σ1τxy − σ1n1y = 0 σ1τxz − σ1n1z = 0 (8.57)

gives n1y = τxy and n1z = τxz . Then

n1 = σ1 i + τxy j + τxz k (8.58)

If σ1 = 0, then

−σx

2
=

√(σx

2

)2 + τ2
xy + τ2

xz (8.59)

or (σx

2

)2 =
(σx

2

)2 + τ2
xy + τ2

xz (8.60)

Thus 0 = τ2
xy +τ2

xz , so that τxy = 0 and τxz = 0. This becomes the problem already discussed
with Eqs. (8.52) and (8.53). We see again that if the shear stresses τxy and τxz are zero, the
eigenvectors of Eq. (8.41) are incorrect. Equation (8.41) corresponds to the case where at least
one of the shear stresses τxy , τxz is nonzero.

The derivation of n3 for eigenvalue σ3 is the same as that for σ1. Note that

n1 · n3 = 0 n1 · n2 = 0 n2 · n3 = 0. (8.61)

8.2 YIELDING AND FAILURE CRITERIA

Failure for uniaxial states of stress is rather easy to define because simple tensile
test material properties can be used directly. A structure is considered to undergo the
transition to inelastic behavior at a certain level of stress, such as a yield stress σys ,
an ultimate stress, or a fracture stress. Strains are treated similarly. For multiaxial
states of stress, failure criteria have been developed to relate these states of stress to
the behavior of a material in tension tests. A few of these failure or strength theories
are discussed here.
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8.2.1 Maximum Stress Theory

For the maximum stress theory or Rankine theory, failure is considered to occur when
the structure is loaded such that the maximum principal stress at a point reaches the
critical (yield, ultimate, or fracture) stress level. Arrange the principal stresses such
that σ1 > σ2 > σ3. Then, for example, yield occurs when

σ1 = σys (8.62)

where σys is the yield stress in tension.

8.2.2 Maximum Shear Theory

Maximum shear theory for failure is based on the hypothesis that yield or failure at
a point in a structure occurs for a complex state of stress when the maximum shear
stress as given by Eq. (8.28) reaches the value of the yield stress for shear of the
material in a tensile test, σys/2. It follows that yield or failure occurs if

max(| σ1 − σ2 | , | σ2 − σ3 | , | σ3 − σ1 |) = σys (8.63)

Sometimes this is expressed as

σmax − σmin = σys (8.64)

where σmax and σmin are the maximum and minimum principal stresses. For instance,
if σ1 > σ2 > σ3, Eq. (8.63) or (8.64) would appear as σ1 − σ3 = σys .

The maximum shear stress failure theory is known as the Tresca or Guest theory.
Sometimes the left-hand side of either Eq. (8.63) or (8.64) is referred to as the stress
intensity.

Beam Stresses It was shown in Section 8.1.5 that for the beam theories of this
book, σ2 = 0 (Eq. 8.33). If σ1 is the maximum principal stress and σ3 < 0, then
τmax = | σ1 − σ3 | /2 and the maximum shear stress yield criterion is

| σ1 − σ3 | = σys (8.65)

For σ3 ≥ 0, τmax = | σ1 | /2 and the yield criterion is

| σ1 | = σys (8.66)

8.2.3 Von Mises Criterion

The von Mises theory of material failure is based on a state of stress on an octahedral
plane, which is a plane whose normal has equal angles with the principal axes at a
particular point in a solid. There are eight such planes, one is shown in Fig. 8.2. It is
readily shown (Gould, 1994) that the normal stress on the octahedral plane is given



YIELDING AND FAILURE CRITERIA 381

σ1

σ2

σ3

0

(0,0,1)

(1,0,0)

(0,1,0)

Figure 8.2 Octahedral plane.

by

σoct = 1
3 (σ1 + σ2 + σ3) = 1

3 I1 (8.67)

which is referred to as the hydrostatic or volumetric stress. The shear stress is

τoct = 1

3

√
(σ1 − σ2)

2 + (σ2 − σ3)
2 + (σ1 − σ3)

2

= 1

3

√(
σx − σy

)2 + (
σy − σz

)2 + (σx − σz)
2 + 6

(
τ 2

xy + τ 2
xz + τ 2

yz

)
= 1

3

√
2I 2

1 − 6I2 (8.68)

In this theory, yielding of the complex state of stress occurs when the octahedral
shear stress of Eq. (8.67) is equal to the octahedral shear stress at yield in tension
(σ2 = σ3 = 0). This means that the criterion of failure by yielding is√

(σ1 − σ2)
2 + (σ2 − σ3)

2 + (σ1 − σ3)
2

2
= σys (8.69)

This theory is called the von Mises, Maxwell–Huber–Hencky, distortion energy, and
octahedral shear stress theory. Sometimes, the left-hand side of Eq. (8.69) is referred
to as the equivalent stress.

Although Eqs. (8.63) and (8.69) are expressed in terms of the yield stress σys ,
other failure modes, such as fatigue, ultimate stress, or fracture stress can be repre-
sented simply by replacing σys by the appropriate tensile stress level.
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von Mises
criterion

σys

σ 
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σ 
1

σys

-σys

-σys

Maximum shear
stress criterion

Figure 8.3 Maximum shear stress hexagon and von Mises ellipse.

Beam Stresses For beam theory with σ2 = 0, Eq. (8.69) reduces to√
σ 2

1 − σ1σ3 + σ 2
3 = σys (8.70)

In terms of the stress components,√
σ 2

x + 3(τ 2
xy + τ 2

xz) =
√

σ 2
x + 3τ 2 = σys (8.71)

A plot of Eq. (8.70) for the von Mises criterion is shown in Fig. 8.3. Also shown is
the maximum shear stress criterion of Eqs. (8.65) and (8.66). Both theories intersect
the axes at the same points and also have in common the points of intersection with
the bisectors of the first and third quadrants. Figure 8.3 shows that the maximum
shear stress criterion is more conservative than the von Mises criterion.
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CHAPTER 9

RATIONAL B-SPLINE CURVES

It is desirable to be able to express the cross-sectional shape of a bar with functions of
the coordinates y, z that contain only a few parameters. These parameters are helpful
with the generation of the finite element mesh and can be the design parameters
for an optimal cross-sectional shape design. B-spline curves are used to establish
these functions. In particular, nonuniform rational B-splines, abbreviated NURBS,
are introduced. An excellent reference on the subject of NURBS curves and surfaces
is the book by Piegl and Tiller (1997).

9.1 CONCEPT OF A NURBS CURVE

NURBS is an acronym for Non-Uniform Rational B-Spline. NURBS were developed
so that the shape of a curve could be controlled in a predictable manner by changing
a few parameters. Previously, typically, curves were defined by points through which
the curves passed. In the case of a NURBS curve the control parameters need not
be on the curve. The fundamentals underlying NURBS were developed by P. Bézier
in the 1960s and were utilized by the Renault company in the 1970s to assist in
sculpting of surfaces for automobile bodies. A unified basis for representing standard
and free-form shapes is provided by NURBS.

Some basic definitions are given in this section to provide a fundamental under-
standing of a NURBS curve. Subsequent sections contain more precise and complete
definitions.

Degree, control point, knots, weights, and a mathematical formula define a
NURBS curve. A degree p is a positive whole number. Degree 1 indicates that
the curve is formed of linear lines; degree 2 corresponds to quadratic; degree 3 cor-
responds to cubic and is often used for free-form curves; degree five is quintic and

383
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is also used for free-form curves. The order of a NURBS curve is the degree plus 1
(i.e., p + 1). The degree of a NURBS curve can be increased without changing the
shape of the curve, although a reduction in NURBS curve’s degree will change the
shape of the curve.

The control points Pi number at least p + 1. Control points are the vertices of
a characteristic polygon (see Fig. 9.1). The geometry of a NURBS curve is readily
changed by moving the control points. Associated with each control point is a weight
wi , which is usually a positive number. A rational function is a function expressed
as the quotient of two polynomials. A curve is non-rational if all control points have
the same weight; otherwise, the curve is said to be rational. Most NURBS curves are
non-rational, although some curves such as circles and ellipses are always rational.
The R in NURBS is included to indicate that there is the possibility that the curves
are rational.

Knots are integer values that describe the connections between the vertices and
order of the curve. Knots are a sequence of m + 1 numbers, where there are n + 1
control points, with n = m − p − 1. This sequence of numbers is referred to as
a knot vector, designated as U . In this use, the word vector does not have the fa-
miliar meaning of a directed line segment. To satisfy certain conditions, it is nec-
essary that the numbers in the knot vector do not decrease as you move along the

P1

P0

P2

P3

P1P0

P2
P3

Figure 9.1 Cubic curves.
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vector and that the number of duplicate values be limited to the order. As an ex-
ample, consider a NURBS curve of degree 3 with 12 control points. The numbers
0, 0, 0, 0, 1, 2, 2, 3, 5, 5, 7, 7, 7, 7 form a satisfactory knot vector. However, the num-
bers 0, 0, 0, 0, 1, 3, 3, 3, 3, 3, 7, 7, 7, 7 are not acceptable because the number of 3’s
is larger than the order.

Knots multiplicity is the number of times a knot number is duplicated. In the sat-
isfactory knot vector example, the multiplicity of the knot number 0 is four, 1 is one,
2 is two, 3 is one, 5 is two, and 7 is four. A nonperiodic knot vector occurs if the
first and last knot values are repeated a number of times equal to the order. In the
example, the knot vector is nonperiodic since the numbers 0, and 7 are repeated four
times. A knot value that occurs only once is referred to as a distinct knot. The knot
values 1 and 3 are distinct knots in the satisfactory example. A nonperiodic knot
vector is uniform if the first p + 1 knots are followed by equally spaced, distinct
interior knot values. An example of a curve with uniform knots would be a degree 3
NURBS curve with 10 control points and a knot vector 0, 0, 0, 0, 1, 2, 3, 4, 5, 5, 5, 5.
The knot vector 0, 0, 0, 0, 1, 3, 4, 5, 6, 6, 6, 6 is not uniform or nonuniform. This ex-
plains the NU in NURBS. This NU indicates that the knots in a NURBS curve can
be nonuniform.

Some characteristics of the NURBS curve depend on the knot values. For ex-
ample, the NURBS curve becomes less smooth if duplicate knot values occur in the
interior of a knot vector. A full-multiplicity knot in the interior of a knot vector means
that a sharp kink can occur somewhere along the NURBS curve.

A particular knot is not usually associated with a single control point, although it
is for degree 1 NURBS. In the case of higher-degree NURBS, a group of 2p knots
corresponds to a group of p + 1 control points. For a degree 3 NURBS curve with
seven control points and the knots 0, 0, 0, 1, 2, 4, 7, 7, 7, the first four control points
are associated with first six knots. The second through fifth control points correspond
to the knots 0, 0, 1, 2, 4, 7. The third through sixth control points are grouped with
the six knot values 0, 1, 2, 4, 7, 7. The final four control points are associated with
the final six knot values.

The mathematical formula that assigns a point on the NURBS curve is a func-
tion of B-spline basis functions, degree, knots, control points, and weights. The
BS in NURBS refers to B-splines. The shape of a NURBS curve is modified by
changing the knot vector, moving control points, and adjusting the magnitudes of the
weights.

Since it tends to be difficult to determine how a curve will be modified in response
to changes in the knot vector, most curve modifications are implemented by changing
a control point or weight. If a weight wi is increased or decreased in value, the curve
moves toward or away from, respectively, the control point Pi .

9.2 DEFINITION OF B-SPLINE BASIS FUNCTIONS

The concept of a NURBS curve was introduced in Section 9.1. A more thorough
description of a B-spline curve is provided in the present section.
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Let U be a nondecreasing sequence of m + 1 real numbers:

U = {u0, u1, . . . um} ui ≤ ui+1 i = 0, . . . , m (9.1)

The elements ui of the sequence U (the knot vector) are called knots or knot values.
The i th B-spline basis function of degree p, or order p + 1, denoted by Ni,p(u), is
defined recursively by

Ni,0(u) =
{

1 if ui ≤ u < ui+1
0 otherwise

(9.2)

Ni,p(u) = u − ui

ui+p − ui
Ni,p−1(u) + ui+p+1 − u

ui+p+1 − ui+1
Ni+1,p−1(u) (9.3)

A parametric representation of curves is chosen normally for most shapes in
geometric modeling. Thus a two-dimensional curve is not represented by a single
function such as z = f (y), but by two functions y = y(u) and z = z(u) of the
parameter u. The basis functions Ni,p(u) are piecewise polynomials defined on the
entire real line so that the curve parameter u lies in the open interval (−∞,+∞).
However, in practice, only the values of u that lie in the closed interval [u0, um] are
actually used. The half-open interval [ui , ui+1) is referred to as the i th knot span;
it can be empty since two consecutive knots may be identical. The B-spline basis
function of degree 0, Ni,0(u), is a unit step function, equal to zero except in the i th
knot span. When the i th knot span is empty, Ni,0(u) is identically zero everywhere:

Ni,0(u) = 0 for − ∞ < u < ∞ if ui = ui+1 (9.4)

It will be noticed that Eq. (9.3) may generate an indeterminate quotient with zero
numerator and zero denominator. For instance, if p = 1 and the knot span i + 1 is
empty, Ni+1,0(u) and ui+2 −ui+1 are both zero. It is part of the definition of Ni,p(u)

in Eq. (9.3) that such indeterminate forms are to be taken equal to zero.
The set of distinct knots in the knot vector U define the ranges of the curve pa-

rameter u for which the B-spline basis function is defined as a polynomial segment.
For instance, if the distinct knots, arranged in increasing order, in U are a, b, and c,
it is possible to write a polynomial in u for a ≤ u ≤ b and another polynomial for
b ≤ u ≤ c to express any of the B-spline basis functions as explicit functions of u.
Once the degree p, or the order p + 1, is fixed the knots completely determine the
B-spline basis functions. There are several kinds of knot vectors in use in the CAD

literature. In this book, only nonperiodic knot vectors, which are also called open
or clamped knot vectors, are used. The defining characteristic of a nonperiodic knot
vector is that the first and last knots are repeated p + 1 times:

U = {a, . . . , a︸ ︷︷ ︸
p+1

, u p+1, . . . , um−p−1, b, . . . , b︸ ︷︷ ︸
p+1

} (9.5)

Any knot other than the first knots a or the last knots b is referred to as an interior
knot. When the number of knots is m + 1, there are n + 1 B-spline basis functions
where
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n = m − p − 1 (9.6)

A nonperiodic knot vector is said to be uniform if all the interior knots are equally
spaced, that is, if there is a real number d such that

ui+1 = ui + d for all p ≤ i ≤ m − p − 1 (9.7)

If this condition does not hold, the knot vector is nonuniform. In particular, the re-
peated occurrence of any interior knot makes the knot vector nonuniform.

In practice, the evaluation of the basis functions at a given value of the curve
parameter u is done by a numerical algorithm designed for this purpose. It is gen-
erally not desirable or efficient to generate the piecewise polynomials defining the
basis functions symbolically first. Example 9.1 shows the piecewise polynomials in
symbolic form only to display the basis functions for understanding the definitions.

Example 9.1 Determination of Basis Functions. As an example knot vector U ,
let

U = {0, 0, 0, 1, 1, 2, 3, 3, 3} = {u0, u1, u2, u3, u4, u5, u6, u7, u8}
i = 0, 1, 2, 3, 4, 5, 6, 7, 8

(1)

For this open knot vector the degree is p = 2, or the order is p + 1 = 3. The number
of knots is m + 1 = 9. The number of basis functions is n + 1, where (Eq. 9.6)

n = m − p − 1 = 5 (2)

The B-spline basis functions are

Ni,2(u) for 0 ≤ i ≤ 5 (3)

The recursive nature of the definition of Eq. (9.3), however, does not allow these
functions to be written out immediately. The functions

Ni,1(u) for 0 ≤ i ≤ 6 (4)

and

Ni,0(u) for 0 ≤ i ≤ 7 (5)

are also needed, the order of generation being Ni,0, Ni,1, Ni,2.
The knot vector U defines eight intervals, in this case

[0, 0) [0, 0) [0, 1) [1, 1) [1, 2) [2, 3) [3, 3) [3, 3] (6)

Among these intervals, the ones with nonzero length, where the basis functions Ni,0
are not identically zero, are

[0, 1) [1, 2) [2, 3) (7)

The zeroth-degree basis functions are written from the definition of Eq. (9.2) to start
the recursive evaluation.
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For i = 0, N0,0(u) = 0 −∞ < u < ∞ (first interval of (6))

For i = 1, N1,0 (u) = 0 −∞ < u < ∞ (second interval of (6))

For i = 2, N2,0(u) =
{

1
0

if 0 ≤ u < 1
otherwise

(third interval of (6))

For i = 3, N3,0(u) = 0 −∞ < u < ∞ (fourth interval of (6))

For i = 4, N4,0(u) =
{

1
0

if 1 ≤ u < 2
otherwise

(fifth interval of (6))

For i = 5, N5,0(u) =
{

1
0

if 2 ≤ u < 3
otherwise

(sixth interval of (6))

For i = 6, N6,0(u) = 0 −∞ < u < ∞ (seventh interval of (6))

For i = 7, N7,0 (u) = 0 −∞ < u < ∞ (eighth interval of (6))

(8)

The functions Ni,1, which are piecewise polynomials of degree 1, are computed
from the recursive definition of Eq. (9.3). For instance, for i = 0 and p = 1,

N0,1(u) = u − 0

0 − 0
N0,0(u) + 0 − u

0 − 0
N1,0(u) = 0 (9)

where the indeterminate quotient, zero over zero, arises and is set equal to zero as
stipulated by the definition. The function N1,1 (i = 1, p = 1) of Eq. (9.3) is com-
puted as

N1,1(u) = u − 0

0 − 0
N1,0(u) + 1 − u

1 − 0
N2,0(u) =

{
1 − u if 0 ≤ u < 1
0 otherwise

(10)

The remaining functions Ni,1(u) are

N2,1(u) =
{

u
0

if 0 ≤ u < 1
otherwise

N3,1(u) =
{

2 − u
0

if 1 ≤ u < 2
otherwise

N4,1(u) =
{

u − 1
3 − u

if 1 ≤ u < 2
if 2 ≤ u < 3

N5,1(u) =
{

u − 2
0

if 2 ≤ u < 3
otherwise

N6,1(u) = 0 −∞ < u < ∞

(11)

The functions Ni,2 are piecewise polynomials of degree 2. In the definitions be-
low, which are obtained from Eq. (9.3), the functions are understood to be zero ev-
erywhere except on the intervals specified
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N0,2(u) = (u − 1)2 if 0 ≤ u < 1

N1,2(u) = 2u(1 − u) if 0 ≤ u < 1

N2,2(u) =
{

u2

(u − 2)2
if 0 ≤ u < 1
if 1 ≤ u < 2

N3,2(u) =


−7 + 10u − 3u2

2

(u − 3)2

2

if 1 ≤ u < 2

if 2 ≤ u < 3

N4,2(u) =


(u − 1)2

2

−15 + 14u − 3u2

2

if 1 ≤ u < 2

if 2 ≤ u < 3

N5,2(u) = (u − 2)2 if 2 ≤ u < 3

(12)

These basis functions are shown in Fig. 9.2.

We now return to the general properties of the basis functions Ni,p. The local
support property of the B-spline basis functions is

Ni,p(u) = 0 if u /∈ [ui , ui+p+1) (9.8)

0                 0.5                  1                 1.5                  2                 2.5                   3

   1

0.8

0.6

0.4

0.2

0

u

Ni,p

N0,2

N2,2

N1,2

N3,2 N4,2

N5,2

Figure 9.2 B-spline basis functions with knot vector U = {0, 0, 0, 1, 1, 2, 3, 3, 3}.
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In Example 9.1, an example of the local support property is

N5,2(u) = 0 if u /∈ [u5, u8) = [2, 3) (9.9)

which may be verified directly from the expression for N5,2(u) or from Fig. 9.2.
Another important property that is exploited when evaluating B-spline basis func-

tions is that in any knot span [u j , u j+1), at most p + 1 of the basis functions can be
nonzero. These basis functions are

Nk,p for all k such that j − p ≤ k ≤ j (9.10)

In Fig. 9.2 with p = 2, for instance, between any two distinct consecutive knots,
there are at most three nonzero basis functions. Between u4 = 1 and u5 = 2, these
functions are N2,2, N3,2, N4,2. This is verified from Fig. 9.2 or the function defini-
tions given in Eq. (12) of Example 9.1, in which the intervals on which the functions
are zero have been explicitly specified.

The nonnegativity property of the B-spline basis functions states that

Ni,p(u) ≥ 0 for all i, p, u (9.11)

All B-spline basis functions Ni,p(u) with nonzero degree p assume exactly one max-
imum value. All derivatives of Ni,p(u) with respect to u exist in the interior of a knot
span where Ni,p(u) is a polynomial in u. At a knot, the number of times that Ni,p(u)

can be differentiated depends on the multiplicity of the knot. The term multiplicity
refers here to the number of times a knot value is repeated within the knot sequence
for a particular basis function. The knot sequence for a particular basis function is
defined to be the knots over which the basis function is nonzero, as given by the local
support property.

Example 9.2 Multiplicity and Derivatives of Basis Functions. In Example 9.1,
with

U = {0, 0, 0, 1, 1, 2, 3, 3, 3} (1)

the basis functions are computed over the following knot spans and are identically
zero elsewhere:

N0,2 from u0 to u3 {0, 0, 0, 1}
N1,2 from u1 to u4 {0, 0, 1, 1}
N2,2 from u2 to u5 {0, 1, 1, 2}
N3,2 from u3 to u6 {1, 1, 2, 3}
N4,2 from u4 to u7 {1, 2, 3, 3}
N5,2 from u5 to u8 {2, 3, 3, 3}

(2)
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The multiplicity of a knot can be counted from the list of (2) for any given basis
function. Thus, the multiplicity of the knot at u = 1 for the function N2,2 which is
nonzero over the knot span {0, 1, 1, 2} is two, and the multiplicity of the knot at u = 0
for the function N0,2 which is nonzero over the knot span {0, 0, 0, 1} is three. At a
knot, Ni,p(u) is p − k times continuously differentiable, where k is the multiplicity
of the knot. For the example basis functions, this means that N2,2 is p − k = 0 times
continuously differentiable at u = 1, that is, it is continuous but not differentiable,
as suggested by Fig. 9.2. For N0,2 at the knot u = 0, p − k = −1, so this function is
discontinuous at u = 0. This discontinuity is a jump discontinuity of magnitude 1 at
u = 0, because N0,2 is identically zero outside the interval from 0 to 1. The function
N1,2 has knot multiplicity 2 for its knot at u = 0, and it is continuous at u = 0 but
not differentiable, as its derivative from the left and right sides do not have the same
value.

The first derivative of Ni,p(u) with respect to u is given by the formula

N ′
i,p = p

ui+p − ui
Ni,p−1(u) − p

ui+p+1 − ui+1
Ni+1,p−1(u) (9.12)

This formula can be proved by induction on n (Piegl and Tiller, 1997). Let N (k)
i,p (u)

denote the kth derivative of Ni,p(u). By repeated differentiation of Eq. (9.12), the
general differentiation formula is

N (k)
i,p (u) = pN (k−1)

i,p−1 (u)

ui+p − ui
− pN (k−1)

i+1,p−1(u)

ui+p+1 − ui+1
(9.13)

where k takes on integer values between 0 and p. For k > p, all derivatives are
identically zero. In the derivative calculations, the denominators given by knot dif-
ferences can become zero, in which case the quotient is defined to be zero.

9.3 B-SPLINE AND RATIONAL B-SPLINE CURVES

A curve defined by B splines, or simply a B-spline curve, of degree p is a parametric
curve defined by

r(u) =
n∑

i=0

Ni,p(u)Pi a ≤ u ≤ b (9.14)

where the Pi are the n + 1 control points, the Ni,p are the B-spline basis functions of
degree p defined on the nonperiodic, usually nonuniform, knot vector U :

U = {a, . . . , a︸ ︷︷ ︸
p+1

, u p+1, . . . , um−p−1, b, . . . , b︸ ︷︷ ︸
p+1

} (9.15)



392 RATIONAL B-SPLINE CURVES

and r(u) is the position vector, or the point of the B-spline curve, at the curve pa-
rameter value u. There are n + 1 control points and m + 1 knots. If the number of
control points is specified as well as the degree p of the B-spline curve, the number
of required knots is determined since

m = n + p + 1 (9.16)

Space curves are given by Eq. (9.14) when the Pi are specified as coordinates of
points in three-dimensional space. For the applications at hand, B-spline curves are
plane curves in the yz plane and Pi are points in this plane. The polygon formed by
the control points is referred to as the control polygon. The control points are also
sometimes referred to as vertices, meaning the vertices of the control polygon. The
first and last points, P0 and Pn , of the control polygon lie on the B-spline curve. This
endpoint interpolation property is expressed by

r(a) = P0 r(b) = Pn (9.17)

Figure 9.3 shows an example B-spline curve. The knot vector U for this curve has
been chosen to be uniform nonperiodic:

U = {0, 0, 0, 0, 1, 2, 3, 4, 4, 4, 4} (9.18)

P1
P0

P6 P5

P4

P2
P3

Figure 9.3 Example B-spline curve with knot vector U = {0, 0, 0, 0, 1, 2, 3, 4, 4, 4, 4}.
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It follows from Eq. (9.15) that the B-spline basis function is of degree p = 3. The
control point coordinates are

P = {(0, 0), (1, 0), (1, 1), (2, 1), (3, 0), (2,−1), (1,−1)} (9.19)

Since the basis functions Ni,p(u) are piecewise polynomials, the curve given para-
metrically by r(u) in Eq. (9.14) is also a piecewise polynomial curve. Thus, if uk and
uk+1 are two distinct knots in the knot vector U , the part of the curve given by all
points r(u) for u between uk and uk+1 is a polynomial segment.

The control polygon is a piecewise linear approximation to the B-spline curve.
Lowering the degree p in general causes the B-spline curve to follow the con-
trol polygon more closely. B-spline curves have the local modification property. If
the control point Pk is changed, the curve r(u) itself changes only in the interval
[uk, uk+p+1). This is a consequence of the local support property of the basis func-
tions according to which Nk,p(u), the coefficient of Pk in the formula for r(u), is
identically zero outside the interval [uk, uk+p+1).

The B-spline curve r(u) has derivatives of all orders in the interior of knot spans.
At a knot of multiplicity k, it is at least p−k times continuously differentiable. These
properties are a direct consequence of the continuity and differentiability properties
of the B-spline basis functions discussed in the preceding section. The j th derivative
of r(u) is obtained in terms of the j th derivatives of the basis functions as

d j r
du j

= r( j) =
n∑

i=0

N ( j)
i,p (u)Pi (9.20)

where a superscript in parentheses denotes the order of differentiation. At the first
and last control points, the B-spline curve is tangent to the control polygon.

The i th rational B-spline basis function Ri,p(u) of degree p is defined by

Ri,p(u) = Ni,p(u)wi∑n
j=0 N j,p(u)w j

(9.21)

where the n + 1 real numbers wi are called weights. The weights will be assumed to
be strictly positive:

w j > 0 0 ≤ j ≤ n (9.22)

but this is not an essential requirement, and is occasionally relaxed to allow zero
or negative weights. These basis functions are piecewise rational functions of u for
a ≤ u ≤ b, a and b being the first and last knots as before. The parametric equation
of a nonuniform rational B-spline (NURBS) curve of degree p, or order p + 1, is

r(u) =
n∑

i=0

Ri,p(u)Pi a ≤ u ≤ b (9.23)
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Thus, a rational B-spline curve is specified by its degree p, the knot vector U , the
control point coordinates Pi , and the weights wi . One function of the weights is to
control the shape of the resulting curve. Thus, the introduction of the weights has
provided a means of modifying the shape of the curve in addition to the effects of
changing the knot vector and moving the control points. When w j is increased, the
curve is in general pulled toward the control point P j .

The rational basis functions Ri,p inherit some of their most important characteris-
tics from the B-spline basis functions Ni,p. With positive weights the nonnegativity
property is preserved:

Ri,p(u) ≥ 0 for all i, p, and a ≤ u ≤ b (9.24)

The local support property is preserved:

Ri,p(u) = 0 if u /∈ [ui , ui+p+1) (9.25)

and in the knot span [ui , ui+1) at most p + 1 of the rational basis functions can be
nonzero, namely Ri−p,p, . . . , Ri,p . For p > 0, all rational basis functions attain
exactly one maximum on the interval a ≤ u ≤ b. All derivatives of Ri,p(u) exist in
the interior of any knot span. At a knot, Ri,p(u) can be differentiated p − k times,
where k is the multiplicity of the knot. If all weights are chosen to be identical, the
rational basis functions become identical to the B-spline basis functions. That is,
with identical weights wi = C for 0 ≤ i ≤ n, the rational B-spline curve becomes a
B-spline curve. This follows from Eq. (9.21) because

∑n
j=0 N j,p(u) = 1.

Figure 9.4 shows the rational basis functions for which the knot vector was taken
to be

U = {0, 0, 0, 0, 1, 2, 3, 4, 4, 4, 4} (9.26)

The degree of the basis functions is p = 3 and the number of knots is m + 1 = 11,
so that m = 10. There are (Eq. 9.6) n +1 = m − p = 7 basis functions and therefore
the number of weights is also 7. The weights were chosen to be

W = {1, 2, 3, 4, 3, 2, 1} (9.27)

The derivatives of the rational basis functions Ri,p(u) with respect to the curve pa-
rameter u can be computed in terms of the corresponding derivatives of the B-spline
basis functions Ni,p(u). Defining

Dp(u) =
n∑

j=0

w j N j,p(u) (9.28)

we write the i th rational basis function as

Ri,p(u) = wi Ni,p(u)

Dp(u)
(9.29)
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Figure 9.4 Cubic rational basis functions.

Apply Leibnitz’s rule for differentiating a product to calculate the kth derivative:

dk

duk

(
Dp(u)Ri,p(u)

) = (Dp(u)Ri,p(u))(k) =
k∑

j=0

(
k

j

)
D( j)

p (u)R(k− j)
i,p (u)

= Dp(u)R(k)
i,p(u) +

k∑
j=1

(
k

j

)
D( j)

p (u)R(k− j)
i,p (u)

(9.30)

where the coefficients are the binomial coefficients(
k
j

)
= k!

(k − j)! j ! (9.31)

with k! = 1 · 2 · 3 · · · k. Since, from Eq. (9.29),

(Dp(u)Ri,p(u))(k) = wi N (k)
i,p (u) (9.32)

we obtain from Eq. (9.30) the recursive formula for differentiating the rational basis
functions:

R(k)
i,p(u) = wi N (k)

i,p (u) − ∑k
j=1

(k
j

)
D( j)

p (u)R(k− j)
i,p (u)

Dp(u)
(9.33)



396 RATIONAL B-SPLINE CURVES

From the definition of Eq. (9.28), the derivatives of Dp(u) are given in terms of the
derivatives of the B-spline basis functions as

D( j)
p (u) =

n∑
r=0

wr N ( j)
r,p (u) (9.34)

The derivatives of the position vector r(u) of Eq. (9.23) of a point on the rational
B-spline curve are given in terms of the derivatives of the rational basis functions

r(k) =
n∑

i=0

R(k)
i,p(u)Pi (9.35)

9.4 USE OF RATIONAL B-SPLINE CURVES IN THIN-WALLED
BEAM ANALYSIS

The cross-sectional shape of a thin-walled beam can be specified by rational B-spline
curves. The curves define the median line of the section, and a wall thickness given
for each curve completes the specification of the cross-sectional geometry. When
more than one curve is given, the curves should connect to each other to form either
an open or a closed cross section. A rational B-spline curve is defined completely
by its degree p, or equivalently, its order p + 1, its control points, knot vectors, and
weights. If a knot vector is not given, a uniform knot vector can be introduced. If
weights are not given, all weights are often assumed to be equal to 1. To describe
complicated cross sections, it may sometimes be necessary to generate the ratio-
nal B-splines by interpolation. Several interpolation algorithms are described in full
detail in Piegl and Tiller (1997). Cross sections made of straight-line segments or
simple curves can be described directly from a knowledge of how these components
are represented as B-spline curves.

Example 9.3 B-Spline Curve for a Straight Line. A straight-line segment passing
through the points P0 and P1 is a B-spline curve of degree p = 1. Since the number
of control points is 2, n + 1 = 2 and the number of knots is (Eq. 9.6)

m + 1 = n + p + 2 = 4 (1)

Choose the knot vector

U = {0, 0, 1, 1} (2)

The B-spline basis functions for 0 ≤ u ≤ 1 are

N0,0 = 0

N1,0 = 1

N2,0 = 0 (3)
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N0,1 = 1 − u

N1,1 = u

The B-spline curve is

r(u) = N0,1P0 + N1,1P1 = (1 − u)P0 + uP1 (4)

which is the parametric equation of a line segment joining point P0 to point P1.
Thus, the specification of a straight-line segment requires only the specification of
the coordinates of the two points P0, P1 and the order p + 1 = 2 of the B-spline
curve. A uniform knot vector can be generated internally by a computer program,
and the default weights would be appropriate since a B-spline curve is constructed,
not a rational curve.

Example 9.4 Circles. A circle can be represented by rational quadratic B-splines.
The order of the NURBS curve is 3, so that the degree p is 2. The control polygon has
n + 1 = 7 control points. These points lie at the vertices and on the midpoints of the
sides of an equilateral triangle, with the last point coinciding with the first (Fig. 9.5).
The ordering of the control points is such that as the three sides of the triangle are
traced in a counterclockwise sense, the control points are encountered in sequence.
The knot vector is nonuniform:

U = {0, 0, 0, 1, 1, 2, 2, 3, 3, 3}
and the weights assigned to the control points are

W =
{

1, 1
2 , 1, 1

2 , 1, 1
2 , 1

}

P2

P1
P3

P4 P0, P7P5

Figure 9.5 Control points and equilateral triangle for the representation of a circle using
B-splines.
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P1(2,0) P2(2,2)

P3(1,2)P0(1,0), P6(1,0)

P5(0,0) P4(0,2)

Figure 9.6 Control points and square for the representation of a circle using B-splines.

It is also possible to represent a circle by a seven-point square-based NURBS

curve. In that case, the degree is p = 2 and the control points coordinates are

P = {(1, 0), (2, 0), (2, 2), (1, 2), (0, 2), (0, 0), (1, 0)}
for a circle of radius 1 (Fig. 9.6). The knot vector is

U =
{

0, 0, 0, 1
4 , 1

2 , 1
2 , 3

4 , 1, 1, 1
}

and the weights are

W =
{

1, 1
2 , 1

2 , 1, 1
2 , 1

2 , 1
}

The representation of conics and circular arcs is described in detail in Chapter 7 of
Piegl and Tiller (1997).
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CHAPTER 10

SHAPE OPTIMIZATION OF
THIN-WALLED SECTIONS

In this chapter we describe a shape design method for a thin-walled beam cross
section. The cross-sectional shape of the beam is assumed to be defined by nonuni-
form rational B-spline curves as described in Chapter 9. The optimization problem
is couched in terms of cross-sectional properties and stresses. The design variables
are the wall thicknesses and the control points and weights of the B-spline curves
that define the median line of the section. The optimized variable can be any of the
cross-sectional properties or any of the stresses calculated by the methods of previous
chapters.

A property of matrices that is used frequently in this chapter is that the transpose
of the product of two matrices is equal to the product of the individual transposes
taken in reverse order. For the two matrices A and B, this property is expressed as

(AB)T = BTAT

Typically in this chapter, AB = α, where α is a scalar. Then α = αT = AB = BTAT.

10.1 DESIGN VELOCITY FIELD

In the shape design of a thin-walled beam cross section to be described in this chapter,
the design variables of interest are the y, z coordinates of the control points of the
NURBS curves defining the median line of the section, the weights assigned to these
control points, and the wall thicknesses. The sensitivity of a dependent variable F
with respect to a design variable β is defined as the partial derivative of F with
respect to β. When any one of the design variables undergoes a change, the finite

399
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element mesh of the cross section changes. Thus, the y, z coordinates of all the nodes
in the mesh have sensitivities with respect to the design variables. The set of all
sensitivities of the nodal point coordinates is called the design velocity field.

The design velocity field plays a fundamental role in sensitivity analysis and opti-
mization. If an analytical formula were available to compute all the nodal coordinates
in the finite element mesh of the cross section, the sensitivities of the nodal coordi-
nates would be calculable by differentiating that formula. This is normally not true of
real-world mesh generators, which usually make use of complicated algorithms and
heuristics to generate a mesh. The mesh generator of the thin-walled beam analysis
program described in Appendix A, for example, uses special algorithms to generate
the elements in the neighborhood of two intersecting NURBS curves. To calculate the
design velocity field suitable for use with any mesh generator, it is necessary to know
exactly how the mesh generator determines the nodal coordinates. In the present case
it is also important to develop special algorithms to be able to differentiate the nodal
coordinates that are shared between two NURBS curves.

Sensitivities of the Tangent and Normal Vectors In this section, formulas
for the sensitivities of the unit tangent vector and the unit normal vector to a single
NURBS curve are presented. The derivatives of these two vectors are fundamental
to the determination of the design velocity field, because most nodal coordinates of
the finite element mesh are obtained from formulas containing the normal and the
tangent. For those nodal coordinates that are obtained from special considerations,
special case-by-case formulas would be required, depending on the procedures built
into the mesh generator.

For a given nonuniform rational B-spline among the curves defining the median
line of the thin-walled section in the yz plane, let Pk, 0 ≤ k ≤ n, denote the position
vectors of the n + 1 control points and let wk be the weight assigned to the kth
control point. As in Chapter 9, let u denote the curve parameter, and let Ni,p(u) be
the i th B-spline basis function of degree p. The kth rational basis function Rk,p(u),
abbreviated by suppressing the degree p to Rk(u), is defined in Eq. (9.21) as

Rk(u) = wk Nk(u)∑n
i=0 wi Ni (u)

(10.1)

so that the position vector r(u) (Eq. 9.23) of the point at the curve parameter u may
be written as

r(u) =
n∑

k=0

Rk(u)Pk (10.2)

Together these expressions appear as

r(u) =
∑n

i=0 wi Ni (u)Pi∑n
i=0 wi Ni (u)

(10.3)
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Let t(u) be the unit tangent vector to the NURBS curve at the curve parameter u,
and let n(u) be the unit normal vector. The tangent vector is given by (Eq. 1.37)

t = r′

| r′ | (10.4)

where the prime denotes partial differentiation with respect to u

r′ = ∂r
∂u

(10.5)

The derivative of the unit tangent vector with respect to any scalar variable β is
perpendicular to t. Thus,

t · ∂t
∂β

= 1

2

∂(t · t)
∂β

= 0 (10.6)

since t · t = 1. It follows that the derivative of the unit tangent vector with respect to
any design variable can be written as

∂t
∂β

= αn (10.7)

for some scalar α. The scalar factor α can be determined by differentiating Eq. (10.4),
which defines t, r′ = | r′ |t, with respect to β:

∂r′

∂β
= ∂| r′ |

∂β
t + | r′ | ∂t

∂β
(10.8)

The component along n of the vector on the left side of this equation is

∂r′

∂β
· n = ∂| r′ |

∂β
t · n + | r′ | ∂t

∂β
· n = | r′ |αn · n = | r′ |α (10.9)

from which it is seen that the factor α is given by

α = ∂t
∂β

· n = 1

| r′ |
(

∂r′

∂β
· n

)
(10.10)

where Eq. (10.4) has been introduced. Thus, from Eq. (10.7),

∂t
∂β

= 1

| r′ |
(

∂r′

∂β
· n

)
n (10.11)

The derivative of the tangent vector with respect to the weight w j is considered
next. The derivative of the position vector r with respect to w j is found by differen-
tiating Eq. (10.3) in the form

r(u)

n∑
i=0

wi Ni (u) =
n∑

i=0

wi Ni (u)Pi (10.12)
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with respect to w j , which gives

N j (u)r(u) + ∂r
∂w j

n∑
i=0

wi Ni (u) = N j (u)P j (10.13)

Hence, using Eq. (10.1) yields

∂r
∂w j

= N j (u)[P j − r(u)]∑n
i=0 wi Ni (u)

= R j (u)

w j
[P j − r(u)] (10.14)

The first derivative of r with respect to w j is seen from this equation to be a vector
pointing from the point r of the NURBS curve to the control point at P j . An increase
in w j has the effect of pulling curve points toward the control point P j along straight
lines joining the points to the point P j . Because the NURBS curves considered here
pass through the first and last control points, as explained in Chapter 9, the sensitivity
of the curve points P0 and Pn to any weight w j is zero.

The derivative of r′(u) with respect to the weight w j is found using Eq. (10.14):

∂r′

∂w j
= ∂2r

∂w j∂u
= ∂2r

∂u∂w j
= R′

j

w j
(P j − r) − R j

w j
r′ (10.15)

Equation (10.15) together with Eq. (10.11) yields the derivative of the unit tangent
vector with respect to w j :

∂t
∂w j

= 1

| r′ |
(

∂r′

∂w j
· n

)
n = R′

j

w j | r′ |
[
(P j − r) · n

]
n (10.16)

since r′ ·n = | r′ |t ·n = 0. The derivative of the rational basis function R j appearing
in Eq. (10.16) is evaluated using Eq. (9.33) derived for the derivatives of the B-spline
basis functions:

R′
j = w j N ′

j − R j
∑n

i=0 wi N ′
i∑n

i=0 wi Ni
(10.17)

The derivatives of t with respect to the coordinates y j , z j of the control point P j

are found by first writing the derivative of r of Eq. (9.23) in the form

r′ =
n∑

i=0

R′
i Pi =

n∑
i=0

R′
i (yi j + zi k) (10.18)

where j, k are the unit vectors along the coordinate axes y and z. Since R′
i is inde-

pendent of control point coordinates:

∂r′

∂y j
= R′

j j

∂r′

∂z j
= R′

j k

(10.19)
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and an application of Eq. (10.11) yields

∂t
∂y j

= R′
j

| r′ | (j · n)n (10.20)

∂t
∂z j

= R′
j

| r′ | (k · n)n (10.21)

The unit normal vector n can be obtained from (Eq. 1.34)

n = t × i (10.22)

where i is the unit vector along the x axis. Thus, the derivatives of the unit normal n
are determined from the derivatives of the unit tangent t by the formula

∂n
∂β

= ∂t
∂β

× i (10.23)

Since the derivative of t always has the form of Eq. (10.7), the derivative of the
normal vector is

∂n
∂β

= ∂t
∂β

× i = αn × i = −αt = − 1

| r′ |
(

∂r′

∂β
· n

)
t (10.24)

Consequently, the sensitivity formulas for n are

∂n
∂w j

= − R′
j

w j | r′ |
[
(P j − r) · n

]
t (10.25)

∂n
∂y j

= − R′
j

| r′ | (j · n)t (10.26)

∂n
∂z j

= − R′
j

| r′ | (k · n)t (10.27)

where Eqs. (10.15) and (10.19) have been introduced.

10.2 DESIGN SENSITIVITY ANALYSIS

Let β denote a parameter that influences the geometry of the cross section. The partial
derivative with respect to β of any property found by integration is given by

∂

∂β

∫
f (y, z) dA = ∂

∂β

∫
f (η, ζ ) | Je | dη dζ
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= ∂

∂β

M∑
e=1

∫ 1

−1

∫ 1

−1
f (η, ζ ) | Je (η, ζ ) | dη dζ (10.28)

=
M∑

e=1

∫ 1

−1

∫ 1

−1

[
∂ f

∂β
| Je | + f (η, ζ )

∂| Je |
∂β

]
dη dζ

Equations (4.21) and (4.27) were employed in setting up Eq. (10.28). In Eq. (10.28),
e is the element number, Je is the Jacobian matrix of element e, M is the number of
elements, and η, ζ are the reference element coordinates, as shown in Figure 4.1.

The derivative of the Jacobian matrix of Eq. (4.15) is

∂Je

∂β
=


∂N
∂η

∂N
∂ζ

[
∂ye

∂β

∂ze

∂β

]
(10.29)

where N is the row vector of shape functions as in Chapter 4. Equation (10.29) shows
that the derivative of the Jacobian matrix is obtained by substituting derivatives of
the nodal coordinate vectors instead of the nodal vectors themselves in the formula
for the Jacobian matrix. The derivative of | Je | = J11 J22 − J12 J21 (Eq. 4.18) can
therefore be written as

∂| Je |
∂β

= J ′
11 J22 + J11 J ′

22 − J ′
12 J21 − J12 J ′

21 (10.30)

where the prime denotes partial differentiation with respect to β.
As the formula of Eq. (10.29) for the derivative of Je shows, the derivatives of

the nodal coordinates play a central role in the application of Eq. (10.28) to calculate

TABLE 10.1 Formulas Needed in the Integrand of Eq. (10.28)

Property
∫

f dA f (η, ζ )
∂ f

∂β
(η, ζ )

A 1 (Eq. 4.23) 0

Qy Nze (Eq. 4.36) N
∂ze

∂β

Qz Nye (Eq. 4.36) N
∂ye

∂β

Iy (Nze)
2 (Eq. 4.39) 2NzeN

∂ze

∂β

Iz
(
Nye

)2 (Eq. 4.39) 2NyeN
∂ye

∂β

Iyz NyeNze (Eq. 4.41) N
∂ye

∂β
Nze + NyeN

∂ze

∂β
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derivatives of cross-sectional properties found by quadrature. Table 10.1 shows that
the derivatives of the integrands in these calculations are also dependent on the nodal
coordinate derivatives. Thus, one essential step in design sensitivity analysis is the
computation of the design velocity field

∂ye

∂β

∂ze

∂β
(10.31)

for all elements e in the finite element mesh and all parameters β of interest.

10.2.1 Derivatives of Geometric Quantities

The coordinates of the centroid are given by Eq. (1.56) as yC = Qz/A and zC =
Qy/A. The partial derivatives of these coordinates are

∂yC

∂β
= 1

A

∂Qz

∂β
+ Qz

∂(1/A)

∂β
= 1

A

∂Qz

∂β
− Qz

A2

∂ A

∂β
= 1

A

(
∂Qz

∂β
− yC

∂ A

∂β

)
∂zC

∂β
= 1

A

∂Qy

∂β
+ Qy

∂(1/A)

∂β
= 1

A

∂Qy

∂β
− Qy

A2

∂ A

∂β
= 1

A

(
∂Qy

∂β
− zC

∂ A

∂β

)
(10.32)

The derivatives on the right side of these equations are found using Eq. (10.28)
and Table 10.1:

∂ A

∂β
=

∑
e

∫ 1

−1

∫ 1

−1

∂| Je |
∂β

dη dζ

∂Qy

∂β
=

∑
e

∫ 1

−1

∫ 1

−1

(
N

∂ze

∂β
| Je | + Nze

∂| Je |
∂β

)
dη dζ (10.33)

∂Qz

∂β
=

∑
e

∫ 1

−1

∫ 1

−1

(
N

∂ye

∂β
| Je | + Nye

∂| Je |
∂β

)
dη dζ

The moments of inertia referred to the centroidal coordinate system are given by
Eq. (1.60):

Iy = Iy − z2
C A

Iz = Iz − y2
C A (10.34)

Iyz = Iyz − yC zC A

The derivatives of these quantities are given by

∂ Iy

∂β
= ∂ Iy

∂β
− 2Qy

∂zC

∂β
− z2

C
∂ A

∂β



406 SHAPE OPTIMIZATION OF THIN-WALLED SECTIONS

∂ Iz

∂β
= ∂ Iz

∂β
− 2Qz

∂yC

∂β
− y2

C
∂ A

∂β
(10.35)

∂ Iy z

∂β
= ∂ Iyz

∂β
− Qy

∂yC

∂β
− Qz

∂zC

∂β
− yC zC

∂ A

∂β

where the definitions of Eq. (1.56) have been introduced. These expressions are read-
ily placed in the discrete form of Eq. (10.33).

10.2.2 Derivative of the Normal Stress

The normal stress of Eq. (1.101) can be expressed as

σx = E

Er

[
Nx

Ã
+ F

D

]
(10.36)

where the abbreviations

F = ( Ĩz My + Ĩyz Mz)z̄ − ( Ĩyz My + Ĩy Mz)ȳ

D = Ĩy Ĩz − Ĩ 2
yz

have been introduced. The derivative is found to be

∂σx

∂β
= E

Er

(
− Nx

Ã2

∂ Ã

∂β
+ 1

D

∂F

∂β
− F

D2

∂ D

∂β

)
(10.37)

The derivatives of D and F are

∂ D

∂β
= Ĩy

∂ Ĩz

∂β
+ Ĩz

∂ Ĩy

∂β
− 2 Ĩyz

∂ Ĩyz

∂β

∂F

∂β
=

(
∂ Ĩz

∂β
My + ∂ Ĩyz

∂β
Mz

)
z̄ + ( Ĩz My + Ĩyz Mz)

∂z

∂β
(10.38)

−
(

∂ Ĩyz

∂β
My + ∂ Ĩy

∂β
Mz

)
ȳ − ( Ĩyz My + Ĩy Mz)

∂ y

∂β

10.2.3 Derivatives of the Torsional Constant and
the Shear Stresses

Next we describe a method for calculating the derivatives of the torsional constant
J and the torsional shear stresses τxy , τxz with respect to a design parameter β.
The description is given in terms of the nine-node element shown in Fig. 4.1. The
definitions of the various matrices are given in Chapter 5.
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From Eq. (5.119),

Be = J−1
e


∂N
∂η

∂N
∂ζ

 (10.39)

or

JeBe =


∂N
∂η

∂N
∂ζ

 (10.40)

Since the right side of the expression above is independent of β, the derivative of
Eq. (10.40) is

∂Je

∂β
Be + Je

∂Be

∂β
= 0 (10.41)

so that the derivative of Be with respect to β becomes

∂Be

∂β
= −J−1

e
∂Je

∂β
Be (10.42)

The derivative of the Jacobian of Eq. (4.15) is

∂Je

∂β
=


∂N
∂η

∂N
∂ζ

[
∂ye

∂β

∂ze

∂β

]
= JeBe

[
∂ye

∂β

∂ze

∂β

]
= JeAe (10.43)

where the 2 × 2 matrix Ae is defined by

Ae = Be

[
∂ye

∂β

∂ze

∂β

]
(10.44)

Substitution of Eq. (10.43) into Eq. (10.42) shows that the derivative of Be becomes

∂Be

∂β
= −AeBe (10.45)

The element stiffness matrix of Eq. (5.122) is given as

ke =
∫ 1

−1

∫ 1

−1
BT

e Be| Je | dη dζ (10.46)
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The derivative of this matrix is

∂ke

∂β
=

∫ 1

−1

∫ 1

−1

(
∂BT

e

∂β
Be| Je | + BT

e
∂Be

∂β
| Je | + BT

e Be
∂| Je |
∂β

)
dη dζ (10.47)

which, with the introduction of Eq. (10.45), leads to an expression for the derivative
of the element stiffness matrix:

∂ke

∂β
=

∫ 1

−1

∫ 1

−1
BT

e

(
−AT

e − Ae + 1

| Je |
∂| Je |
∂β

I
)

Be| Je | dη dζ (10.48)

where I is the 2 × 2 identity matrix. The derivative of the system stiffness matrix,
∂K/∂β, is obtained by assembling the derivatives of element stiffness matrices of
Eq. (10.48).

A manipulation similar to that just employed for the derivative of the element
stiffness matrix leads to the derivative of the element load vector. From Eq. (5.123),

pe =
∫ 1

−1

∫ 1

−1
BT

e ge| Je | dη dζ (10.49)

with

ge =
[

Nze
−Nye

]
The derivative of pe of Eq. (10.49) is

∂pe

∂β
=

∫ 1

−1

∫ 1

−1

(
∂BT

e

∂β
ge| Je | + BT

e
∂ge

∂β
| Je | + BT

e ge ∂| Je |
∂β

)
dη dζ (10.50)

which, with Eq. (10.45), can be written as

∂pe

∂β
=

∫ 1

−1

∫ 1

−1
BT

e

(
−AT

e ge + ∂ge

∂β
+ 1

| Je |
∂| Je |
∂β

ge
)

| Je | dη dζ (10.51)

A necessary condition for the derivatives with respect to β of the element stiffness
matrix and the load vector to be nonzero is that the nodal coordinate derivatives

∂ye

∂β

∂ze

∂β
(10.52)

have some nonzero components. In other words, if the parameter β does not influence
the nodal coordinates of a particular element, the derivatives of the stiffness matrix
and load vector of that element with respect to β are zero.

The torsional constant J of Eq. (5.139) is

J = Iy + Iz − �TP (10.53)
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Note that the final term on the right-hand side is a scalar. The derivative of this
expression is

∂ J

∂β
= ∂ Iy

∂β
+ ∂ Iz

∂β
− �T ∂P

∂β
− ∂�T

∂β
P (10.54)

Since the final term is a scalar,

∂�T

∂β
P = PT ∂�

∂β

and

∂ J

∂β
= ∂ Iy

∂β
+ ∂ Iz

∂β
− �T ∂P

∂β
− PT ∂�

∂β
(10.55)

The terms ∂ Iy/∂β and ∂ Iz/∂β are computed as described in Chapter 4. The deriva-
tive of P is obtained by assembling the derivatives of pe of Eq. (5.123). The derivative
of � is found by solving the differentiated system equation of Eq. (5.125):

K
∂�

∂β
+ ∂K

∂β
� = ∂P

∂β

or

K
∂�

∂β
= ∂P

∂β
− ∂K

∂β
� (10.56)

The second vector on the right side of Eq. (10.56) is formed by assembling the ele-
ment vectors of Eq. (5.124):

∂ke

∂β
�e 1 ≤ e ≤ M (10.57)

into a system vector.
It is possible to calculate the derivative of J without solving Eq. (10.55). The

torsional constant J can be expressed as in Eq. (10.53) or, alternatively, from
Eq. (5.139), as

J = Iy + Iz − �TK� (10.58)

The derivative of this expression is

∂ J

∂β
= ∂ Iy

∂β
+ ∂ Iz

∂β
− �TK

∂�

∂β
− �T ∂K

∂β
� − ∂�T

∂β
K�

which, since K is symmetric (K = KT), can be expressed as

∂ J

∂β
= ∂ Iy

∂β
+ ∂ Iz

∂β
− �T

(
2K

∂�

∂β
+ ∂K

∂β
�

)
(10.59)
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The two vectors in the final parenthesized term of Eq. (10.59) can be found by as-
sembling them from the corresponding element vectors. Alternatively, the assembly
procedure can be bypassed in favor of a summation involving element vectors:

∂ J

∂β
= ∂ Iy

∂β
+ ∂ Iz

∂β
−

∑
e

�eT
(

2
∂pe

∂β
− ∂ke

∂β
�e

)
(10.60)

The shear stress vector �e is given in Eq. (5.142) as

�e =
[
τxy

τxz

]e

= Mx

J

(
Be�e − he) (10.61)

with he = [Nze − Nye]T. The design derivative is

∂�e

∂β
= Mx

J

(
Be

∂�e

∂β
− AeBe�e − ∂he

∂β

)
− 1

J

∂ J

∂β
�e (10.62)

It is necessary to solve the differentiated system equation (10.56) for ∂�/∂β in order
to evaluate the stress derivatives ∂�e/∂β. The element connectivity matrix C (Section
5.5) is used to identify the entries of the element derivative ∂�e/∂β from the system
derivative vector ∂�/∂β by

∂ωe
i

∂β
= ∂ωn

∂β
n = Cei 1 ≤ i ≤ 9 (10.63)

10.3 DESIGN SENSITIVITY OF THE SHEAR
DEFORMATION COEFFICIENTS

Formulas for differentiating the shear deformation coefficients of Chapter 6, αy , αz ,
αyz , with respect to a design parameter β are derived in this section.

The shear coefficient αy was defined in terms of a parameter κy (Eq. 6.131):

αy = κy A

�2
(10.64)

with � = 2(1 + ν)(Iy Iz − I 2
yz) and A equal to the cross-sectional area. From

Eq. (6.134)

κy =
∑

e

∫ 1

−1

∫ 1

−1

(
	eTBT

e Be	e − 2	eTBT
e de + deTde

)
| Je | dη dζ (10.65)

with (Eqs. 6.69 and 6.70)

de =
[

Iyre − Iyzqe

Iyzre + Iyqe

]
re = (

Nye
)2 − (Nze)

2 qe = 2NyeNze
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The derivative of the shear coefficient αy is determined as

∂αy

∂β
= κy

�2

∂ A

∂β
+ A

�2

∂κy

∂β
− 2

κy A

�3

∂�

∂β

= αy

A

∂ A

∂β
+ A

�2

∂κy

∂β
− 2

αy

�

∂�

∂β
(10.66)

Write κy of Eq. (10.65) as

κy =
∑

e

(
	eTke	e − 2	eTpe +

∫ 1

−1

∫ 1

−1
deTde| Je | dη dζ

)
(10.67)

where (Eqs. 6.134 and 6.135)

ke =
∫ 1

−1

∫ 1

−1
BT

e Be| Je | dη dζ pe =
∫ 1

−1

∫ 1

−1
BT

e de| Je | dη dζ

Assemble the matrices ke and pe, giving

κy = 	TK	 − 2	TPy2 +
∑

e

∫ 1

−1

∫ 1

−1
deTde| Je | dη dζ

= 	T (
Py − 2Py2

) +
∑

e

∫ 1

−1

∫ 1

−1
deTde| Je | dη dζ (10.68)

with K	 = Py (Eq. 6.72) and
∑
e

	eTpe = 	TPy2. The derivative of κy becomes

∂κy

∂β
= ∂

∂β

[
	T (

Py − 2Py2
)]

+
∑

e

∫ 1

−1

∫ 1

−1

(
∂deT

∂β
de| Je | + deT ∂de

∂β
| Je | + ∂| Je |

∂β
deTde

)
dη dζ

= ∂

∂β

[
	T (

Py − 2Py2
)]

+
∑

e

∫ 1

−1

∫ 1

−1

(
2| Je |deT ∂de

∂β
+ ∂| Je |

∂β
deTde

)
dη dζ (10.69)

With Eq. (4.11) (y(η, ζ ) = N(η, ζ )y and z(η, ζ ) = N(η, ζ )z), the load vector of
Eq. (6.71) appears as

pe =
∫ 1

−1

∫ 1

−1

[ν

2
BT

e de + 2(1 + ν)NT (
y Iy − z Iyz

)] | Je | dη dζ (10.70)
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The element load vector pe for shear in the y direction is split into two parts by
defining

pe
1 = 2(1 + ν)

∫ 1

−1

∫ 1

−1
NT(y Iy − z Iyz)| Je | dη dζ

pe
2 =

∫ 1

−1

∫ 1

−1

ν

2
BT

e de| Je | dη dζ

(10.71)

so that

pe = pe
1
+ pe

2
(10.72)

These element loading matrices can be assembled to form the global matrices

Py = Py1 + Py2 (10.73)

Return to the derivative of κy of Eq. (10.69). The derivative of the first term of
Eq. (10.69) is evaluated as follows:

∂

∂β

[
	T (

Py − 2Py2
)] = 	T

(
∂Py

∂β
− 2

∂Py2

∂β

)
+ ∂	T

∂β

(
Py − 2Py2

)
= 	T

(
∂Py

∂β
− 2

∂Py2

∂β

)
+

(
PT

y − 2PT
y2

) ∂	

∂β

= 	T
(

∂Py1

∂β
− ∂Py2

∂β

)
+

(
	TK − 2	T

2 K
) ∂	

∂β

= 	T
(

∂Py1

∂β
− ∂Py2

∂β

)
+

(
	T − 2	T

2

)(
∂Py

∂β
− ∂K

∂β
	

)
(10.74)

where Py = Py1 + Py2, and 	 and 	2, the solutions of K	 = Py and K	2 = Py2,
and

∂Py

∂β
= ∂(K	)

∂β
= K

∂	

∂β
+ ∂K

∂β
	

have been introduced. The derivatives of Py , Py1, and Py2 of Eq. (10.74) are found
by assembling the derivatives of the element vectors pe

1 and pe
2. From Eq. (10.71),

the derivative of pe
1 is given by

1

2(1 + ν)

∂pe
1

∂β
=

∫ 1

−1

∫ 1

−1

[
NT

(
Iy

∂y

∂β
+ y

∂ Iy

∂β
− Iyz

∂z

∂β
− z

∂ Iyz

∂β

)
| Je |

+ NT(y Iy − z Iyz)
∂| Je |
∂β

]
dη dζ (10.75)
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and the derivative of pe
2 is

2

ν

∂pe
2

∂β
=

∫ 1

−1

∫ 1

−1
BT

e

(
−AT

e | Je |de + | Je |∂de

∂β
+ ∂| Je |

∂β
de

)
dη dζ (10.76)

The final derivative needed to calculate ∂κy/∂β is ∂de/∂β. From Eq. (6.69),

de = ν

(
Iy

y2 − z2

2
− Iyz yz

)
j + ν

(
Iy yz + Iyz

y2 − z2

2

)
k (10.77)

The derivative of de is then

∂de

∂β
= ν

(
z
∂y

∂β
+ y

∂z

∂β

)
(Iyk − Iyzj) + νyz

(
∂ Iy

∂β
k − ∂ Iyz

∂β
j
)

+ ν

(
y
∂y

∂β
− z

∂z

∂β

)
(Iyj + Iyzk) + ν

y2 − z2

2

(
∂ Iy

∂β
j + ∂ Iyz

∂β
k
) (10.78)

The shear deformation coefficient αz was defined in Chapter 6 as (Eq. 6.136)

αz = κz A

�2
(10.79)

From Eq. (6.137), κz can be expressed as

κz =
∑

e

∫ 1

−1

∫ 1

−1

(
�eTBT

e Be�e − 2�eTBT
e h + hTh

)
| Je | dη dζ (10.80)

The derivative of the shear coefficient αz is

∂αz

∂β
= αz

A

∂ A

∂β
+ A

�2

∂κz

∂β
− 2αz

�

∂�

∂β
(10.81)

Express κz of Eq. (10.80) as

κz =
∑

e

(
�eke�e − 2�eTpe +

∫ 1

−1

∫ 1

−1
heThe| Je | dη dζ

)
(10.82)

Assemble the first two terms on the right-hand side:

κz = �T (Pz − 2Pz2) +
∑

e

∫ 1

−1

∫ 1

−1
heThe| Je | dη dζ (10.83)

where K� = Pz and
∑
e

�eTpe = �TPz2.
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The formula for ∂αz/∂β of Eq. (10.81) requires an expression for ∂κz/∂β. From
Eq. (10.83),

∂kz

∂β
= ∂

∂β

[
�T(Pz − 2Pz2)

]
+

∑
e

∫ 1

−1

∫ 1

−1

(
2| Je |heT ∂he

∂β
+ ∂| Je |

∂β
heThe

)
dη dζ

(10.84)

From Eq. (6.136), the element load vector of � appears as

pe =
∫ 1

−1

∫ 1

−1

[ν

2
BT

e he + 2(1 + ν)NT (
z Iz − y Iyz

)] | Je | dη dζ (10.85)

where y and z can be represented by Eq. (4.11). The element load vector pe for shear
in the z direction is split into two parts by defining

pe
1 = 2(1 + ν)

∫ 1

−1

∫ 1

−1
NT(z Iz − y Iyz)| Je | dη dζ

pe
2 =

∫ 1

−1

∫ 1

−1

ν

2
BT

e he| Je | dη dζ

(10.86)

so that

pe = pe
1 + pe

2 (10.87)

Assemble these element loading matrices giving the system matrices

Pz = Pz1 + Pz2 (10.88)

The derivative of κz of Eq. (10.84) can be evaluated in the same manner as the
derivative of κy was determined. The derivative of the first term of Eq. (10.84) is

∂

∂β

[
�T (Pz − 2Pz2)

]
= �T

(
∂Pz1

∂β
− ∂Pz2

∂β

)
+

(
�T − 2�T

2

)(
∂Pz

∂β
− ∂K

∂β
�

)
(10.89)

where � and �2 are solutions of K� = Pz and K�2 = Pz2, respectively.
The derivatives of Pz , Pz1, and Pz2 of Eq. (10.89) are obtained by assembling the

derivatives of the element load vectors pe
1 and pe

2. From Eq. (10.86), the derivative of
pe

1 is given by

1

2(1 + ν)

∂pe
1

∂β
=

∫ 1

−1

∫ 1

−1

[
NT

(
Iz

∂z

∂β
+ z

∂ Iz

∂β
− Iyz

∂y

∂β
− y

∂ Iyz

∂β

)
| Je |

+ NT(z Iz − y Iyz)
∂| Je |
∂β

]
dη dζ (10.90)



DESIGN SENSITIVITY OF THE SHEAR DEFORMATION COEFFICIENTS 415

and the derivative of pe
2 is

2

ν

∂pe
2

∂β
=

∫ 1

−1

∫ 1

−1
BT

e

[
−AT

e | Je |he + | Je |∂he

∂β
+ ∂| Je |

∂β
he

]
dη dζ (10.91)

Still needed to compute the derivative ∂κz/∂β of Eq. (10.84) is ∂he/∂β. From
Eq. (6.69),

he = ν

(
Iz yz − Iyz

y2 − z2

2

)
j − ν

(
Iz

y2 − z2

2
+ Iyz yz

)
k (10.92)

Then

∂he

∂β
= ν

(
z
∂y

∂β
+ y

∂z

∂β

)
(Izj − Iyzk) + νyz

(
∂ Iz

∂β
j − ∂ Iyz

∂β
k
)

− ν

(
y
∂y

∂β
− z

∂z

∂β

)
(Iyzj + Izk) − ν

y2 − z2

2

(
∂ Iyz

∂β
j + ∂ Iz

∂β
k
) (10.93)

Equation (6.139) gives the shear deformation coefficient αyz as

αyz = κyz A

�2
(10.94)

The derivative of αyz is found from

∂αyz

∂β
= αyz

A

∂ A

∂β
+ A

�2

∂κyz

∂β
− 2αyz

�

∂�

∂β
(10.95)

From Eq. (6.140),

κyz =
∑

e

∫ 1

−1

∫ 1

−1

(
	eTBT

e − deT
) (

Be�e − he) | Je | dη dζ

=
∑

e

∫ 1

−1

∫ 1

−1

(
	eBT

e Be�e − deTBe�e − 	eTBT
e he + deThe

)
| Je | dη dζ

= PT
y � − PT

y �2 − PT
z 	2 +

∑
e

∫ 1

−1

∫ 1

−1
deThe| Je | dη dζ

= PT
y �1−PT

z 	2 +
∑

e

∫ 1

−1

∫ 1

−1
deThe| Je | dη dζ (10.96)

where � = �1 + �2.
To calculate ∂αyz/∂β from Eq. (10.95), an expression for ∂κyz/∂β is needed.

From Eq. (10.96),
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∂κyz

∂β
= ∂

∂β

(
PT

y �1 − PT
z 	2

)
+

∑
e

∫ 1

−1

∫ 1

−1

(
| Je |heT ∂de

∂β
+ | Je |deT ∂he

∂β
+ deThe ∂| Je |

∂β

)
dη dζ

(10.97)

The derivative of the first two terms is

∂

∂β

(
PT

y �1 − PT
z 	2

)
= ∂

∂β

(
	TPz1 − �TPz2

)
= 	T ∂Pz1

∂β
+ ∂	T

∂β
Pz1 − �T ∂Py2

∂β
− ∂�T

∂β
Py2

= 	T ∂Pz1

∂β
+ �T

1

(
∂Py

∂β
− ∂K

∂β
	

)
− �T ∂Py2

∂β
− 	T

2

(
∂Pz

∂β
− ∂K

∂β
�

)
(10.98)

The second and fourth terms are derived similarly. Consider, for example, the second
term.

∂	T

∂β
Pz1 = ∂	T

∂β
K�1 = �T

1 K
∂	

∂β
= �T

1

(
∂Py

∂β
− ∂K

∂β
	

)
(10.99)

The sensitivity analysis of shear coefficients is considerably simpler if Poisson’s
ratio ν may be assumed to be zero. In that case, h = 0, d = 0, and the shear coeffi-
cient relations of Section 6.3.3 reduce to

κy = 	TPy = 	TPy1

κz = �TPz = �TPz1 (10.100)

κyz = �TPy = �TPy1

We need the derivatives of these variables with respect to β. In the first case,

∂κy

∂β
= ∂	T

∂β
Py1 + 	T ∂Py1

∂β
= ∂	T

∂β
K	 + 	T ∂Py1

∂β

= 	TK
∂	

∂β
+ 	T ∂Py1

∂β
= 	T

(
∂Py1

∂β
− ∂K

∂β
	

)
+ 	T ∂Py1

∂β

(10.101)

where Py1 = K	1 + K	 and

∂Py1

∂β
= ∂K

∂β
	 + K

∂	

∂β
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have been introduced. Finally,

∂κy

∂β
= 	T

(
2
∂Py1

∂β
− ∂K

∂β
	

)
(10.102)

Similarly,

∂κz

∂β
= �T

(
2
∂Pz1

∂β
− ∂K

∂β
�

)
∂κyz

∂β
= 	T

(
∂Pz1

∂β
− ∂K

∂β
�

)
+ �T ∂Py1

∂β

(10.103)

10.4 DESIGN SENSITIVITY ANALYSIS FOR WARPING PROPERTIES

The warping properties appearing in the derivations in this section are defined in
Chapter 7. It will be assumed that Saint-Venant’s torsion problem has been solved in
the form described in Chapter 5 (Eq. 5.125):

K� = P (10.104)

for the nodal vector � of warping function values. It will also be assumed that the
derivative of � with respect to each design parameter β of interest has been found
by solving the differentiated system relationship of Eq. (10.56):

K
∂�

∂β
= ∂P

∂β
− ∂K

∂β
� (10.105)

The element connectivity matrix C is used to identify the nodal values of the deriva-
tive of �e for element e from the system derivative vector by

∂ωe
i

∂β
= ∂ωn

∂β
n = Cei 1 ≤ i ≤ 9 (10.106)

The warping-related properties Qω, Iω, Iyω, and Izω are defined in Eqs. (7.19)
and (7.48). Express the derivatives of

Qω =
∫

ω dA =
∑

e

∫ 1

−1

∫ 1

−1
N�e| Je | dη dζ

Iω =
∫

ω2 dA =
∑

e

∫ 1

−1

∫ 1

−1

(
N�e)2 | Je | dη dζ

Iyω =
∫

yω dA =
∑

e

∫ 1

−1

∫ 1

−1
NyeN�e| Je | dη dζ

Izω =
∫

zω dA =
∑

e

∫ 1

−1

∫ 1

−1
NzeN�e| Je | dη dζ

(10.107)
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TABLE 10.2 Functions for Calculating Derivatives of
Warping-Related Properties

Derivative Element Function, Fe(η, ζ )

∂ Qω

∂β
N

(
∂�e

∂β
+ 1

| Je |
∂Je

∂β
�e

)
∂ Iω
∂β

N�e
(

2N
∂�e

∂β
+ 1

| Je |
∂| Je |

∂β
N�e

)
∂ Iyω

∂β
N�eN

∂ye

∂β
+ NyeN

∂�e

∂β
+ 1

| Je |
∂| Je |

∂β
NyeN�e

∂ Izω

∂β
N�eN

∂ze

∂β
+ NzeN

∂�e

∂β
+ 1

| Je |
∂| Je |

∂β
NzeN�e

in the form ∑
e

∫ 1

−1

∫ 1

−1
Fe(η, ζ )| Je | dη dζ (10.108)

The functions Fe(η, ζ ) are listed in Table 10.2.
The shear center coordinates yS and zS according to the Trefftz theory are

(Eqs. 6.118 and 6.119)

yS = Iyz Iyω − Iz Izω

D

zS = Iy Iyω − Iyz Izω

D

(10.109)

with D = Iy Iz − I 2
yz . The derivatives are given by

∂yS

∂β
= 1

D

(
Iyω

∂ Iyz

∂β
+ Iyz

∂ Iyω

∂β
− Izω

∂ Iz

∂β
− Iz

∂ Izω

∂β

)
− yS

D

∂ D

∂β

∂zS

∂β
= 1

D

(
Iyω

∂ Iy

∂β
+ Iy

∂ Iyω

∂β
− Izω

∂ Iyz

∂β
− Iyz

∂ Izω

∂β

)
− zS

D

∂ D

∂β

(10.110)

where

∂ D

∂β
= Iy

∂ Iz

∂β
+ Iz

∂ Iy

∂β
− 2Iyz

∂ Iyz

∂β
(10.111)

These derivatives determine the derivative of the warping constant � (Eq. 7.50) re-
ferred to the shear center

∂�

∂β
= ∂ Iω

∂β
− 2Qω

A

∂Qω

∂β
+ Q2

ω

A2

∂ A

∂β
− Iyω

∂zS

∂β
− zS

∂ Iyω

∂β
+ Izω

∂yS

∂β
+ yS

∂ Izω

∂β

(10.112)
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10.5 DESIGN SENSITIVITY ANALYSIS FOR EFFECTIVE
TORSIONAL CONSTANT

The computation of the derivative of the effective torsional constant of Section 7.7
with respect to β requires several steps

1. Calculate the derivative of �Si :

∂�Si

∂β
= ∂ Iωi

∂β
− 2Qωi

Ai

∂Qωi

∂β
+ Q2

ωi

A2
i

∂ Ai

∂β

− 2
∂zSi

∂β
Iyi ωi − 2zSi

∂ Iyi ωi

∂β
+ 2

∂ySi

∂β
Izi ωi + 2ySi

∂ Izi ωi

∂β

+ 2zSi

∂zSi

∂β
Izi + z2

Si

∂ Izi

∂β
+ 2ySi

∂ySi

∂β
Iyi + y2

Si

∂ Iyi

∂β

− 2
∂ySi

∂β
zSi Iyi zi − 2ySi

∂zSi

∂β
Iyi zi − 2ySi zSi

∂ Iyi zi

∂β
(10.113)

2. Calculate the torsional constant J0 of the open section by summing the contri-
butions of the n unconnected cross-sectional members:

J0 =
n∑

i=1

Ji (10.114)

Find the derivative of J0 by

∂ J0

∂β
=

n∑
i=1

∂ Ji

∂β
(10.115)

3. Calculate the warping constant �0 of the open section by summing the contri-
butions of the n unconnected cross-sectional members:

�0 =
n∑

i=1

�Si (10.116)

and find the derivative of �0 by

∂�0

∂β
=

n∑
i=1

∂�Si

∂β
(10.117)

4. Calculate λ:

λ =
√

G J0

E�0
(10.118)
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Calculate the derivative of λ:

∂λ

∂β
= λ

2

(
1

J0

∂ J0

∂β
− 1

�0

∂�0

∂β

)
(10.119)

5. Calculate the effective torsional constant Jeff using Eq. (7.90):

Jeff = J0

1 − (2/λL) (1 − (J0/Jc)) tanh(λL/2)
(10.120)

Calculate the derivative of Jeff:

∂ J0

∂β
= Jeff

J0

[
∂ J0

∂β
+ Jeff

λ

∂λ

∂β

(
1 − J0

Jc

)(
sech2 λL

2
− 2

λL
tanh

λL

2

)
+ 2Jeff

λL Jc

(
J0

Jc

∂ Jc

∂β
− ∂ J0

∂β

)
tanh

λL

2

]
(10.121)

10.6 OPTIMIZATION

The cross-sectional shape optimization of a thin-walled beam can be stated as a con-
strained optimization problem. The independent variables of this problem, denoted
by βi for 1 ≤ i ≤ n, represent the parameters that define the cross-sectional shape,
such as wall thickness, control point coordinates, and control point weights. The
independent variables are also referred to as the design variables. Let W be the ob-
jective function, a function of the n variables βi , 1 ≤ i ≤ n, which is to be mini-
mized. The constrained optimization problem is to determine the βi for which W is
minimized while the inequality and equality constraints of the problem are satisfied.
Thus, the goal is to find the βi , 1 ≤ i ≤ n, that minimize

W (β1, . . . , βn) (10.122a)

subject to the constraints

g j (β1, . . . , βn) ≤ 0 1 ≤ j ≤ m (10.122b)

hk(β1, . . . , βn) = 0 1 ≤ k ≤ l (10.122c)

βL
i ≤ βi ≤ βU

i 1 ≤ i ≤ n (10.122d)

For convenience, the constraints on the design variables βi (Eq. 10.122d) have
been separated from the other “general” constraints of Eq. (10.122b and c). That is,
the general constraints are written as inequalities or equalities for the functions g j

and hk , respectively, while the side constraints, which force the independent variables
βi to be bounded from below by βL

i and bounded from above by βU
i , are stated

separately.
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The objective function W is usually a cross-sectional property such as the area,
an area moment of inertia, or the torsional constant. The constraints g j may state
bounds on cross-sectional properties or stresses. When the independent variables
of the problem are varied while searching for a minimizing set, the cross-sectional
shape is modified, and the optimization problem is a search for the optimal cross-
sectional shape. The equality constraints hk are usually included to state the depen-
dencies among the design variables.

The shape optimization problem is nonlinear in the design variables. Many opti-
mization techniques have been developed to solve this type of problem. For example,
it is usually possible to linearize the problem about an initial estimate of the solu-
tion and then find a solution to this linear approximation by a linear programming
method. The problem can then be linearized about the approximate solution found,
and the new linear programming problem can be solved to arrive at another approxi-
mate solution. These computations are repeated until a solution to the original prob-
lem is obtained. This approach is referred to as sequential linear programming.

Let X denote the vector of design variables

X = [β1, . . . , βn]T (10.123)

and let X0 be the current approximate solution in the sequential linear programming
approach. The next approximation X, to be determined, is written as

X = X0 + δX (10.124)

The vector δX will contain the independent variables of the linearized problem,
which is obtained from the first-order Taylor series expansion of the optimization
problem. Thus, the linearized objective function is written as

W (X) = W (X0) + ∇W (X0) · δX (10.125)

and the linearized constraints are

g j (X) = g j (X0) + ∇g j (X0) · δX ≤ 0 1 ≤ j ≤ m

hk(X) = hk(X0) + ∇hk(X0) · δX = 0 1 ≤ k ≤ l (10.126)

X L
i ≤ X0

i + δXi ≤ XU
i 1 ≤ i ≤ n

The linearized problem is seen to be a linear programming problem to be solved
for δX. This method of solution usually produces a sequence of improving but in-
feasible designs. If it is desirable to approach the optimum solution from inside the
feasible region, a modification of this method, called the method of centers, can be
used (Vanderplaats, 1984).
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APPENDIX A

USING THE COMPUTER PROGRAMS

In this appendix we describe how to prepare input data files for some of the computer
programs on the web site. The programs discussed here can be used to analyze beams
with thin-walled open or closed cross sections of arbitrary shape. Most of the com-
putational formulations in the book do not distinguish between solid, thin-walled,
open, or closed cross sections.

A.1 OVERVIEW OF THE PROGRAMS

Two programs, ThinWall and PlotStress, are considered in this appendix. The
first program calculates cross-sectional properties and stresses. Calculation of the
stresses requires the specification of internal stress resultants at the cross section.
These may originate from a full structural analysis or be hypothetical design loads.
The program ThinWall has no built-in structural analysis capability. In the case
of a full structural analysis, any of the standard general-purpose programs will pro-
vide the requisite stress resultants, such as moments, torques, and shear forces. The
second program, PlotStress, reads the stress output files from ThinWall and
makes a three-dimensional plot of the stress magnitude distribution over the cross
section. As all the numerical information necessary to make these plots is contained
in the output files from ThinWall, users may also use any postprocessor of their
choice to view or print the plots.

The programs are in Fortran 90, and were written with portability in mind. The
module stdtypes.f, which contains kind type and other parameter definitions,
the platform-dependent lines of code will need adjustments. Aside from this, the only
other platform-dependent code is in the two calls to the getarg intrinsic subroutine,

422
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one in ThinWall and the other in PlotStress, for getting the input file name
from the command line.

A.2 INPUT DATA FILE FOR CROSS-SECTION ANALYSIS

The input data file is read as a sequence of blank-separated strings. Any of these
strings that are to be interpreted as numerical values are later converted by the pro-
gram to the correct type. The parser will recognize only the keywords described in
this section. Upper- and lowercase letters are treated as distinct when a keyword
is read. If the comment character # is encountered anywhere in the input file, any
remaining characters on the same line are ignored by the parser.

The optional Title: keyword may be used to assign a title to the job run by
the input file. The title specified is then printed as the first line of the output files
generated by the run. The colon is expected to be followed by a character string of
maximum length 128 on the same line as the keyword, as shown below:

Title: Test File for an Unsymmetric Channel Section

The Vertices keyword begins the definition of the control points for all the B-
spline definitions to follow. The B splines define the median line of the cross section.
An example of the Vertices keyword is

Vertices
1 0 0
2 8 0
3 8 16
4 0 16
5 -8 16
6 -8 0
7 0 0

End Vertices

The vertices are assigned global integer identifiers, which are later used to asso-
ciate them with the splines forming the median line of the section. The identifiers
in the example above are the integers 1, 2, 3, 4, 5, 6, 7. Each of these identifiers is
followed by the y and z coordinates of the vertex, or the control point. The coordi-
nates are real numbers but may be input as integers as in the example above if they
happen to have no fractional part. Vertex identifiers must be unique integers, but the
same coordinates may be assigned more than one identifier, as in the case of vertex
1 and vertex 7. One use of this multiple assignment is in defining an open curve that
is geometrically closed, as in the case of a circular tube with a slit. If the first and
last control points of the circle are both given the same identifier, the program will
generate a closed circular tube. If, on the other hand, the first and last control points
have different identifiers, the program will assign different node numbers to the edge
elements and will generate an open circular tube with a slit. In general, end-to-end
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connections of different curves in forming the median line of the section are deter-
mined by the identifiers of the vertices, not by the corresponding y, z coordinates.

The Materials keyword defines material identifiers, which must be integers,
and the corresponding modulus of elasticity and Poisson’s ratio, which are real num-
bers. For example, the following input lines define the two materials: aluminum with
E = 10.4 × 106 and ν = 0.3 and copper with E = 18.5 × 10.6 and ν = 0.3.

Materials
ID 1 Elastic 10.4e6 Poisson 0.3 #Aluminum
ID 2 Elastic 18.5e6 Poisson 0.3 #Copper

End Materials

If no Materials keyword is found in the input file, default values are assigned
and all elements in the finite-element mesh are assumed to be of the default material.
The default values are material identifier equal to 1, modulus of elasticity equal to
210 × 106, and a Poisson’s ratio of 1

3 . This modulus of elasticity corresponds to steel
in kPa. If section forces are specified in kN, section torque in kNm, lengths in m,
etc., then the stress output would be in kPa.

The Splines keyword begins the input of the B-splines that define the median
line of the section. An example with a single spline identified as Branch is shown
below.

Splines
Branch 1
Thickness 1.25 Material 1 Order 3
Nodes 1 2 3 4 5 6 7 End Nodes
Weights 1 0.5 0.5 1 0.5 0.5 1 End Weights
Knots 0 0 0 0.25 0.5 0.5 0.75 1 1 1 End Knots

End Branch
End Splines

The Branch keyword under the Splines keyword identifies a single spline
by an integer label, in this case 1. This single spline is then defined before the
End Branch keywords are encountered. The Thickness keyword under each
Branch defines the wall thickness for the spline branch being defined. The
Thickness keyword is mandatory for each branch and is followed by a real
number equal to the wall thickness in the units chosen by the user, in this case 1.25.
The Material keyword is followed by a material identifier. The modulus of elas-
ticity and Poisson’s ratio for the material identifier are defined as described earlier
under the Materials keyword. If Material is not included for the branch, the
material identifier for the branch is by default equal to 1. The Order keyword is
mandatory. The integer following it is the order of the NURBS, which is one larger
than its degree. The mandatory Nodes keyword is followed by a sequence of control
point identifiers. The coordinates corresponding to these identifiers are defined under
the Vertices keyword as described earlier. The Weights keyword is optional.
If Weights is not encountered under Branch, the weights associated with the
control points of the branch are all assumed to be unity. The rational B-spline then
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becomes an ordinary B-spline. The Knots keyword is also optional. If Knots is
not encountered under Branch, a uniform knot vector from 0 to 1 is assumed. In
that case, the nonuniform rational B-spline becomes a uniform B-spline.

Two additional keywords are possible under Branch. NormalElements and
AspectRatio, both of which are mesh density control parameters. Normal-
Elements is followed by an integer that specifies the number of elements to place
through the wall thickness. The default for this is 2, so that two layers of elements
in the direction normal to the median line of the cross section are formed. This
is usually sufficient for the computation of cross-sectional properties, but a larger
number may sometimes be desirable or necessary in stress distribution calculations.
AspectRatio is followed by a real number that defines the aspect ratio for the
mesh. The mesh aspect ratio is such that the mesh generator attempts to make the
length of an element along the direction parallel to the median line equal to L:

L = ρt

N

Figure A.1 Mesh with aspect ratio of 2. There are three elements through the thickness.
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Figure A.2 Various types of patch meshes.

where ρ denotes the aspect ratio, t is the wall thickness, and N is the number of ele-
ments through the thickness as specified by NormalElements. The default value
of ρ is set equal to the golden ratio 1.61803. Figure A.1 shows a mesh with aspect
ratio ρ = 2 and NormalElements N = 3. This generates three layers of elements
throughout the thickness, and the length L of each element is approximately twice
its height.

When two branches are assigned the same control point identifier for their first
or last control point, the branches are connected at that point and a patch mesh is
made around it. Several types of patch meshes are defined, and the program deter-
mines which type to choose from the value of the intersection angle between the two
connecting branches. Figure A.2 illustrates four types of patches that are generated
at the intersection of two straight-line segments. Figure A.3 shows patch meshes at

Figure A.3 Patch meshes at the intersection of a semicircular segment and straight line.
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TABLE A.1 Data File for Intersecting Semicircular Segment and Straight Line

#Patch mesh example semicircle and intersecting horizontal line

Vertices
1 10 0
2 10 10
3 -10 10
4 -10 0
5 -20 0
End vertices

Splines

Branch 1
Thickness 1 Order 3
Nodes 1 2 3 4 End Nodes
Knots 0 0 0 0.5 1 1 1 End Knots
Weights 1 0.5 0.5 1 End Weights
End Branch

Branch 2
Thickness 1.5 Order 2
Nodes 4 5 End Nodes
End Branch

End Splines

the intersection of a semicircular segment with a straight one at four different angles.
The data file that produces the top left mesh in Fig. A.3 is listed in Table A.1.

This version of the program does not allow more than two splines to intersect,
and the presence of three or more common end control points among the splines
describing the cross-section walls may generate undetected errors or catastrophic
crashes. Another way in which splines can connect to each other is provided, how-
ever, and this capability may sometimes be used to simulate splines intersecting at
more than two points. The keyword Weld indicates that the branch identifiers fol-
lowing it are to be connected pairwise along their edges parallel to the spline. An
example of this is shown in Fig. A.4. The middle vertical part of this cross section
where there are four elements across the wall thickness contains two vertical splines
that are joined to each other by the spline welding option. Because the welding is
restricted to the parallel edges, it is necessary to put in short splines that are not
welded near the T junctions to make the transition to the horizontal parts of the cross
section-walls properly. For the welding of two splines to be successful, the nodes of
the connected splines must have the same coordinates along the welded edge. If the
aspect ratios of the welded splines are different, for example, a mismatch will occur.
The program only checks the number of boundary points and the coordinates of one
matching point. It is, therefore, possible to have an undetected meshing error, which
may cause further undetected problems in the later parts of the computation. It goes
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Figure A.4 The middle vertical lines in this mesh are connected along their edges.

without saying that users should always inspect the mesh visually before accepting
any numerical results.

The keyword Weld is not intended to suggest that splines connected by it physi-
cally model a weld. The effect of welding is to assign the nodes along the matching
edges the same global node numbers, and to treat these points as identical. The syn-
tax of the Weld keyword is illustrated by this example:

Welds
10 18 20 30 10 17

End Welds

This welds splines 10 and 18 together along a matching edge. The other edge
of 10 is expected to match an edge of spline 17, so that 10 and 17 can also be con-
nected along an edge. Splines 20, 30 are also attached to each other along a matching
edge by the statement above. Table A.2 lists the data file that generates the mesh in
Fig. A.4.
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TABLE A.2 Data File for the Mesh in Fig. A.4

Vertices
1 0 0
2 0 10
3 5 10
4 5 8
5 5 2
6 5 0
7 5.5 10
8 5.5 8
9 5.5 2
10 5.5 0
11 10.5 10
12 10.5 0
End Vertices

Splines

Branch 1 Thickness 1 Order 2 Nodes 1 2 End Nodes End Branch
Branch 2 Thickness 1 Order 2 Nodes 2 3 End Nodes End Branch
Branch 3 Thickness 0.5 Order 2 Nodes 3 4 End Nodes End Branch
Branch 4 Thickness 0.5 Order 2 Nodes 4 5 End Nodes End Branch
Branch 5 Thickness 0.5 Order 2 Nodes 5 6 End Nodes End Branch
Branch 6 Thickness 1 Order 2 Nodes 1 6 End Nodes End Branch
Branch 7 Thickness 0.5 Order 2 Nodes 7 8 End Nodes End Branch
Branch 8 Thickness 0.5 Order 2 Nodes 8 9 End Nodes End Branch
Branch 9 Thickness 0.5 Order 2 Nodes 9 10 End Nodes End Branch
Branch 10 Thickness 1 Order 2 Nodes 10 12 End Nodes End Branch
Branch 11 Thickness 1 Order 2 Nodes 7 11 End Nodes End Branch
Branch 12 Thickness 1 Order 2 Nodes 11 12 End Nodes End Branch

End Splines

Welds 4 8 End Welds

In addition to the possibility of setting the values of NormalElements and
AspectRatio for each spline branch under the Branch keyword, it is frequently
useful to be able to set these for the whole mesh. The keyword Mesh can be used
for this purpose if the default settings are to be overridden. If, for example, four
elements are wanted through the wall thickness with an aspect ratio of 2.25, the
following Mesh statement is needed:

Mesh
NormalElements 4
AspectRatio 2.25

End Mesh

If some branches are to have different settings for these parameters, the Normal-
Elements and AspectRatio keywords must be used with the desired values
under the Branch keywords corresponding to those branches.



430 USING THE COMPUTER PROGRAMS

The appearance of the mesh can be controlled with the options provided under the
Graphics keyword.

Graphics
NodeNumbers
ElementNumbers
FullElements
PageWidth 6
LineThickness 0.25

EndGraphics

If the NodeNumbers option is included, the mesh picture will show the node
numbers. This option should normally not be used, but it may occasionally help
in debugging a data file. If the ElementNumbers option is included, the num-
bers assigned to the elements will be printed at the center of each element. The
FullElements option shows each element with all nine nodes shown at the inter-
section of straight lines, as in Fig. 4.1. If the FullElements option is not included,
each nine-node element is drawn as a quadrilateral. The keyword PageWidth may
be used to set the page width in inches, and LineThickness to set the line width
in points. The Graphics keyword is optional. If it is omitted, the page width is set
equal to 6.5 in., the line width to 0.2, no node or element numbers are shown, and
only the four edges of each element are drawn as straight lines.

The mesh generator does not check for geometric interference problems, such
as one part of the wall overlapping another, which may arise because of thickness
incompatibilities or overcrowding near a patch area. It may also happen that the
length of a patch area determined by the meshing algorithm requires more than the
length of the entire spline if the spline is very short. Since the algorithm expects to
place at least one element on the main stem of the spline outside the patch, this will
result in an untenable meshing requirement.

For stress analysis, the loads at the section are defined by the Loads keyword.
Any loads that are zero may be omitted. An example is shown below.

Loads
P 1000 Mx 8000 My -400.5 Mz 6000
Vy 10000 Vz 30000.8
Bimoment 875
yP 0.5 zP 0.975
yV 1.5 zV 1.85

End Loads

The axial load of 1000 is specified by P, the section torque of 8000 by Mx, the
bending moments of −400.5 and 6000 about the y and z axes, respectively, by My
and Mz, the shear forces of 10000 and 30000.8 by Vy and Vz, and the bimoment
of 875 by Bimoment. If there is an axial force, its point of application on the
cross section is given by yP, zP. In this example, yP = 0.5 and zP = 0.975. If
there are shear forces, their point of application is specified by yV and zV, here
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yV = 1.5 and zV = 1.85. The values assigned to these y, z coordinates are as-
sumed to be measured in the user coordinate system. The inclusion of the key-
word ShearAtShearCenter under Loads indicates that shear loads are to be
applied at the shear center. Similarly, if the shear forces are to be applied at the cen-
troid, the keyword ShearAtCentroid should appear under loads. The keyword
AxialAtCentroid specifies that the point of application of the axial load is the
centroid.

A.3 OUTPUT FILES

If the input data file described in the preceding section is named infile.dat and
the executable for ThinWall is called twb, the program is run by the command

twb infile.dat

This produces three output files if no stress analysis was requested in the input data
file, and four files otherwise. The output file infile.mesh lists the connectivity
matrix and the y, z coordinates of all the nodes. The PostScript file infile.ps
may be viewed on the screen or printed to examine the mesh generated. The file
infile.res lists the section properties calculated. The file infile.str lists
the stress distributions calculated.

The mesh file infile.mesh may be read into a postprocessing program
to draw the mesh if the PostScript file infile.ps cannot be used. The files
infile.mesh and infile.str may be postprocessed for displaying the
stress distributions. The PlotStress program writes PostScript files of three-
dimensional stress plots by reading infile.mesh and infile.str.

The PlotStress program plots the normal stress due to axial and bending
loads, the normal stress due to warping, the magnitude of the shear stress due to
torsion, and the magnitude of the shear stress due to transverse shear forces. With
the input data file named infile.dat, the stress plots are made by the command

twbplot infile.grf

where twbplot is the name of the executable file for PlotStress, and the file
infile.grf contains control commands for the plots.

The input file infile.grf for PlotStress has the keyword Plots for
choosing what stresses to plot. If all four stresses are to be plotted, the following
should appear in infile.grf:

Plots
Normal
Warping
Torsional
Shear

End Plots
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The PostScript files for the four stresses are named infilenrm.ps,
infilewrp.ps, infiletor.ps, and infileshr.ps. Stresses for which
a plot is not needed, or those that are not caused by the loads specified, must be
omitted from the list given under the Plots keywords.

The other keyword that can be included in infile.grf is the optional View,
which may be used to control the appearance of the plots. The syntax is illustrated
below.

View
BoxRatios 1 1 0.4
ViewCenter 0.5 0.5 0.2
ViewPoint 5 5 5
ViewVertical 0 0 1
PageWidth 6.5
LineThickness 0.20

End View

The values shown here are the defaults. The BoxRatios option places the three-
dimensional plot into a rectangular box whose sides are in the ratios given following
it. The ViewCenter is the central point of the perspective projection given in box
coordinates. The default is to place this point at the center of the box. ViewPoint

Figure A.5 Torsional stress plot.
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is the projection reference point in box coordinates, which must lie outside the box.
ViewVertical is the direction to be considered vertically upward. PageWidth
is the width of the page in inches for the final two-dimensional projected points, and
LineThickness is the line thickness in points. In the resulting plot, the direc-
tion marked Z is for stress and the other two box sides, labeled X and Y, define the
plane on which the mesh nodes lie. An example of a stress plot of torsional stress
magnitudes is shown in Fig. A.5.



APPENDIX B

NUMERICAL EXAMPLES

In this appendix we present numerical results for various cross sections obtained
by the computer programs described in Appendix A. Some of the examples use ap-
proximate formulas for various cross-sectional shapes as a partial rough check of the
computed results. A collection of such formulas is found in Pilkey (1994).

B.1 CLOSED ELLIPTICAL TUBE

The cross section of a closed elliptical tube is shown in Fig. B.1. The mesh of the
cross section is shown in Fig. B.2. Set t = 1 in., a = 5 in., and b = 8 in. The
input data file is given in Table B.1. An aspect ratio of unity was selected so that
the elements are approximately square in shape. The user coordinate system has its
origin at the center of the ellipse, with the z axis vertically upward and the y axis to
the right. The results file is displayed in Table B.2. For this cross section, the torsional
constant can be approximated by the formula

J = 4π2a2b2t

S
(B.1)

where t is the wall thickness, a and b are the minor and major axes of the median
line and S is the length of the median line. Since S is approximately

S = π

[
3(a + b)

2
− √

ab

]
(B.2)

434
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Figure B.1 Closed elliptical tube.

Figure B.2 Mesh for closed elliptical tube.
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TABLE B.1 Input Data File for the Closed Elliptical Tube

Title: Closed Elliptical Tube Cross Section

Mesh AspectRatio 1 End Mesh
Graphics PageWidth 5 End Graphics

Vertices
1 8 0
2 8 5
3 0 5
4 -8 5
5 -8 0
6 -8 -5
7 0 -5
8 8 -5

End Vertices

Splines

Branch 1
Thickness 1 Order 3
Nodes 1 2 3 4 5 6 7 8 1 End Nodes
Knots 0 0 0 0.25 0.25 0.5 0.5 0.75 0.75 1 1 1 End knots

Weights
1 0.707107 1 0.707107 1 0.707107 1 0.707107 1

End Weights

End Branch

End Spline

the formula for the torsional constant is

J = 8πa2b2t

3(a + b) − 2
√

ab
(B.3)

For the numerical values in Table B.1, this gives J = 1526 in4, which is to be com-
pared with the program result J = 1537 in4.

The default values for the modulus of elasticity and Poisson’s ratio, E = 210 ×
106 kN/m2 (which corresponds to steel) and ν = 1

3 , were employed by the program.
These are listed as reference values in the results file. The reference elastic modulus
plays no role in this case, because the cross section is homogeneous. The reference
Poisson’s ratio is used, however, in the shear boundary value problem solution. The
shear coefficients and the shear center depend on Poisson’s ratio, as discussed in
Chapters 6 and 7. For this symmetric cross section, the shear center calculated by
solving the shear boundary value problems is identical to the Trefftz shear center,
which has no dependence on Poisson’s ratio.
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TABLE B.2 Results File for the Closed Elliptical Tube

Closed Elliptical Tube Cross Section
Cross-Sectional Properties
Cross-Sectional Area 41.38626
Y Moment of Area -0.00002
Z Moment of Area -0.00007

Y Centroid 0.00000
Z Centroid 0.00000
Y Shear Center 0.00000
Z Shear Center 0.00000
Y Shear Center wrt Centroid 0.00000
Z Shear Center wrt Centroid 0.00000
Y Shear Center wrt Centroid (Trefftz) 0.00000
Z Shear Center wrt Centroid (Trefftz) 0.00000

Moment of Inertia Iy 580.42697
Moment of Inertia Iz 1180.33120
Product of Inertia Iyz -0.00015
Moment of Inertia IyC 580.42697
Moment of Inertia IzC 1180.33120
Product of Inertia IyzC -0.00015
Polar Moment of Inertia 1760.75817

Y Section Elastic Modulus 105.54076
Z Section Elastic Modulus 138.86247
Y Radius of Gyration 3.74495
Z Radius of Gyration 5.34040

Principal Bending Angle (rad) 1.57080
Principal Bending Angle (deg) 89.99998
Principal Moment of Inertia (max) 1180.33120
Principal Moment of Inertia (min) 580.42697

Reference Elastic Modulus 210000000.00000
Reference Poisson’s Ratio 0.33333
Y Coordinate Extent 16.99997
Z Coordinate Extent 10.99899

Y Shear Coefficient 1.51457
Z Shear Coefficient 3.05985
Y Z Shear Coefficient 0.00000

Torsional Constant 1537.38165
Warping Constant wrt Shear Center 451.90976
Warping Constant wrt Centroid 455.50816

B.2 SYMMETRIC CHANNEL SECTION

Figure B.3 shows a symmetric open- channel section, which is meshed as indicated
in Fig. B.4. Choose t = 1 in., h = 18 in., b = 8 in., where b is the length of the
flange and h is the height of the web. The input data file is listed in Table B.3. Since
no knot vector is supplied in the input, a uniform knot vector from 0 to 1 is used in
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Figure B.3 Channel section symmetric about the y axis.

TABLE B.3 Input Data File for the Symmetric Channel Section

Title: Symmetric Channel Section

Graphics PageWidth 5 End Graphics

Vertices
1 8 -9
2 0 -9
3 0 9
4 8 9
End Vertices

Splines

Branch 1
Thickness 1 Order 2 Nodes 1 2 End Nodes

End Branch

Branch 2
Thickness 1 Order 2 Nodes 2 3 End Nodes

End Branch

Branch 3
Thickness 1 Order 2 Nodes 3 4 End Nodes

End Branch

End Splines

438
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Figure B.4 Mesh for symmetric channel section.

the program. Also, the default values of the weights equal to 1 are used. The origin
of the user coordinate system is at the midpoint of the web, with the z axis vertically
upward and the y axis to the right. The results file is listed in Table B.4.

An approximate formula for the torsional constant for open sections of constant
wall thickness t is

J = St3

3
(B.4)

where S is the length of the median line. For this channel section with the dimensions
given, S = 34 in. and J = 11.33 in.4 The program result is J = 11.29 in.4
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TABLE B.4 Results File for the Open Symmetric Channel Section

Symmetric Channel Section
Cross-Sectional Properties

Cross-Sectional Area 34.00000
Y Moment of Area 0.00000
Z Moment of Area 63.75000

Y Centroid 1.87500
Z Centroid 0.00000
Y Shear Center -2.86769
Z Shear Center 0.00000
Y Shear Center wrt Centroid -4.74269
Z Shear Center wrt Centroid 0.00000
Y Shear Center wrt Centroid (Trefftz) -4.74259
Z Shear Center wrt Centroid (Trefftz) 0.00000

Moment of Inertia Iy 1781.83333
Moment of Inertia Iz 342.83333
Product of Inertia Iyz 0.00000
Moment of Inertia IyC 1787.83333
Moment of Inertia IzC 223.30208
Product of Inertia IyzC 0.00000
Polar Moment of Inertia 2011.13542

Y Section Elastic Modulus 188.19298
Z Section Elastic Modulus 36.45748
Y Radius of Gyration 7.25144
Z Radius of Gyration 2.56275

Principal Bending Angle (rad) 0.00000
Principal Bending Angle (deg) 0.00000
Principal Moment of Inertia (max) 1787.83333
Principal Moment of Inertia (min) 223.30208

Reference Elastic Modulus 210000000.00000
Reference Poisson’s Ratio 0.33333
Y Coordinate Extent 8.50000
Z Coordinate Extent 19.00000

Y Shear Coefficient 3.40789
Z Shear Coefficient 2.15337
Y Z Shear Coefficient 0.0000

Torsional Constant 11.28862
Warping Constant wrt Shear Center 12763.15184
Warping Constant wrt Centroid 283214.57041
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The area moment of inertia Iy for this section is

Iy = (6b + h)h2t

12
(B.5)

The numerical value is Iy = 1782 in.4, and the program calculates Iy = 1788 in.4

The y coordinate of the shear center may be computed as

yS = 3b2

6b + h
= 2.91 in. (B.6)

to be compared with the program result yS = 2.87 in.
Finally, an approximate formula for the warping constant of the channel section

gives the value

� = b3h2t (3b + 2h)

12(6b + h)
= 12,567 in.6 (B.7)

to be compared with the program value � = 12, 763 in.6, which should be consid-
ered the more accurate result, since the simplifying assumptions used in arriving at
the approximate formulas are not made in the finite element analysis.

B.3 L SECTION WITHOUT SYMMETRY

A standard L section
(
L8 × 6 × 3

4

)
is shown in Fig. B.5, with a coordinate system

origin on the median lines at the intersection of the horizontal and vertical legs, with

h

b

t = 0.75 in.

(5.625 in., 0)

(0, 7.625 in.)

Figure B.5 Standard L section (L8 × 6 × 3
4 ).
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TABLE B.5 Input Data File for the L Section

Title: A Standard L Section

Vertices
1 0 7.625
2 0 0
3 5.625 0
End Vertices

Splines

Branch 1
Material 1 Thickness 0.75 Order 2
Nodes 1 2 End Nodes
End Branch

Branch 2
Material 1 Thickness 0.75 Order 2
Nodes 2 3 End Nodes
End Branch

End Splines

the y, z axes in the horizontal and vertical directions, respectively. The input data for
analyzing this L section are shown in Table B.5. The finite element mesh generated
for this section is shown in Fig. B.6. This figure also shows the centroidal reference
frame and the centroidal principal bending axes. The principal bending axes y′, z′
correspond to the maximum and minimum area moments of inertia, respectively.

TABLE B.6 Part of an Output File for the L Section Example

Cross-Sectional Properties

Cross-Sectional Area 9.93750
Y Moment of Area 21.75000
Z Moment of Area 11.81250

Y Centroid 1.18868
Z Centroid 2.18868
Y Shear Center 0.00313
Z Shear Center 0.05735

Moment of Inertia IyC 63.42455
Moment of Inertia IzC 30.72142
Product of Inertia IyzC -25.85377
Principal Bending Angle (deg) 28.84407

Principal Moment of Inertia (max) 77.66369
Principal Moment of Inertia (min) 16.48228
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Figure B.6 Mesh for L section.
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Figure B.7 Open circular cross section.
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Table B.6 shows part of the output file that lists the cross-sectional properties of this
L section.

B.4 OPEN CIRCULAR CROSS SECTION

An open cross section is shown in Figs. 6.8 and B.7. In the mesh shown in Fig. B.8,
element 1 is not attached to element 99, and element 2 is not attached to element
100, although the left and right sides of these pairs of elements are geometrically
coincident. In other words, the slit occurs along the left sides of elements 1 and 2.
The input data file for the section is listed in Table B.7, and part of the output file
for section properties is shown in Table B.8. The user coordinate system origin is
at the upper left corner of element 1, with the z axis vertically upward and the y

2

1

100

99

98

97

96

95

94

93

92

91

90
89

88
87

86
85

84
83

8281

3

4
5

6
7

8 9

10 11
12 13

14 15
16

17
18

19
20

2122

2324

2526

2728

2930

3132

33
34

35
36

37
38

39
40

41
42

43

44

45

46

47

48

49

50

51

52
53

54
55

56
57

5859

6061
6263

64
65

66
67

68

69
70

71 72

73 74

75 76

77 78

79 80

Figure B.8 Open circular cross section. Elements 1, 99, and elements 2, 100 are not con-
nected.
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TABLE B.7 Input Data File for Open Circular Cross Section

Title: Open Circle Cross Section
Vertices
1 0 0
2 8 0
3 8 16
4 0 16
5 -8 16
6 -8 0
7 0 0
End Vertices

Splines

Branch 1
Thickness 1.25
Nodes 1 2 3 4 5 6 7 End Nodes
Weights 1 0.5 0.5 1 0.5 0.5 1 End Weights
Knots 0 0 0 0.25 0.5 0.5 0.75 1 1 1 End Knots
Order 3
End Branch

End Splines

axis directed right. The shear center coordinates with respect to the centroid show
that the shear center is approximately one diameter away from the centroid on the z
axis, or one and a half diameters away from the slit. This result is derivable by hand
calculation, if strength-of-materials assumptions are made.

B.5 WELDED HAT SECTION

A closed hat section is shown in Fig. B.9. Figure B.10 shows the mesh generated for
this hat section with the input file listed in Table B.9. The default uniform knot vector
from 0 to 1 is employed, so no knot vector is shown in the input. Since weights asso-
ciated with the control points are not prescribed, the weights are set equal to unity by
the program. Section properties calculated by the program are listed in Table B.10.
The origin of the user coordinate system is at the midpoint of the left vertical edge
of the mesh, with the z axis vertically upward and the y axis pointing right.

This example illustrates the welding of splines along their edges. The horizontal
section wall at the bottom is generated by three straight spline segments, branches 2,
9, and 10 in the input data. The branches 2 and 10 are welded at their upper edges
to the lower edges of branches 1 and 8. In specifying welds, it is important to keep
in mind that there is no provision for welding of patch mesh areas, so that if a weld
spline has a patch mesh area at either end, the program will attempt to connect only



TABLE B.8 Output File for the Open Circular Cross Section

Cross-Sectional Area 62.83182
Y Moment of Area 502.65457
Z Moment of Area -0.00002

Y Centroid 0.00000
Z Centroid 8.00000
Y Shear Center 0.00000
Z Shear Center 23.90306
Y Shear Center wrt Centroid 0.00000
Z Shear Center wrt Centroid 15.90306
Y Shear Center wrt Centroid (Trefftz) 0.00000
Z Shear Center wrt Centroid (Trefftz) 15.90282

Moment of Inertia Iy 6044.12555
Moment of Inertia Iz 2022.88907
Moment of Inertia Iyz 0.00004
Moment of Inertia IyC 2022.88890
Moment of Inertia IzC 2022.88907
Moment of Inertia IyzC 0.00018
Polar Moment of Inertia 4045.77796

Y Section Elastic Modulus 234.53784
Z Section Elastic Modulus 234.53789
Y Radius of Gyration 5.67409
Z Radius of Gyration 5.67409

Principal Bending Angle (rad) -1.00958
Principal Bending Angle (deg) -57.84458
Principal Moment of Inertia (max) 2022.88918
Principal Moment of Inertia (min) 2022.88878

Reference Elastic Modulus 210000000.00000
Reference Poisson’s Ratio 0.33333
Y Coordinate Extent 17.24999
Z Coordinate Extent 17.25000

Y Shear Coefficient 5.93977
Z Shear Coefficient 1.98015
Y Z Shear Coefficient 0.00000

Torsional Constant 32.23967
Warping Constant wrt Shear Center 331651.29223
Warping Constant wrt Centroid 3383583.01326

y

z

Figure B.9 Hat section.
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Figure B.10 Mesh for welded hat section.

TABLE B.9 Input Data File for the Hat Section

Title: Hat Section

Graphics PageWidth 5 End Graphics

Vertices
1 0 0.375
2 6 0.375
3 0 -0.375
4 6 -0.375
5 8 0.375
6 12 6
7 19 6
8 23 0.375
9 25 0.375
10 31 0.375
11 25 -0.375
12 31 -0.375
End Vertices

Splines

Branch 1 Thickness 0.75 Order 2 Nodes 1 2 End Nodes
End Branch
Branch 2 Thickness 0.75 Order 2 Nodes 3 4 End Nodes
End Branch
Branch 3 Thickness 0.75 Order 2 Nodes 2 5
End Branch
Branch 4 Thickness 0.75 Order 2 Nodes 5 6 End Nodes
End Branch
Branch 5 Thickness 0.75 Order 2 Nodes 6 7 End Nodes
End Branch
Branch 6 Thickness 0.75 Order 2 Nodes 7 8 End Nodes
End Branch
Branch 7 Thickness 0.75 Order 2 Nodes 8 9 End Nodes
End Branch
Branch 8 Thickness 0.75 Order 2 Nodes 9 10 End Nodes
End Branch
Branch 9 Thickness 0.75 Order 2 Nodes 4 11 End Nodes
End Branch
Branch 10 Thickness 0.75 Order 2 Nodes 11 12 End Nodes
End Branch
End Splines
Welds 1 2 8 10 End Welds
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TABLE B.10 Output File for the Section Properties of the Hat Section

Title: Hat Section
Cross-Sectional Properties

Cross-Sectional Area 50.10830
Y Moment of Area 57.90772
Z Moment of Area 776.70074

Y Centroid 15.50044
Z Centroid 1.15565
Y Shear Center 15.50097
Z Shear Center 2.29918
Y Shear Center wrt Centroid 0.00053
Z Shear Center wrt Centroid 1.14353
Y Shear Center wrt Centroid (Trefftz) 0.00063
Z Shear Center wrt Centroid (Trefftz) 1.12956

Moment of Inertia Iy 316.10331
Moment of Inertia Iz 15874.79940
Product of Inertia Iyz 897.57735
Moment of Inertia IyC 249.18219
Moment of Inertia IzC 3835.59608
Product of Inertia IyzC -0.01777
Polar Moment of Inertia 4084.77827

Y Section Elastic Modulus 47.74201
Z Section Elastic Modulus 247.45078
Y Radius of Gyration 2.22999
Z Radius of Gyration 8.74906

Principal Bending Angle (rad) 1.57079
Principal Bending Angle (deg) 89.99971
Principal Moment of Inertia (max) 3835.59608
Principal Moment of Inertia (min) 249.18219

Reference Elastic Modulus 210000000.00000
Reference Poisson’s Ratio 0.33333
Y Coordinate Extent 31.00000
Z Coordinate Extent 7.12500

Y Shear Coefficient 1.47731
Z Shear Coefficient 9.98545
Y Z Shear Coefficient 0.00008

Torsional Constant 401.99583
Warping Constant wrt Shear Center 1856.54586
Warping Constant wrt Centroid 7269.40885
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the main stem of the spline. In the hat section example, the weld splines connect to
spline 9, which has the same thickness and the same slope at the connection, so that
no patch mesh is made. The end of the welding is visible in this mesh, because at the
point where elements are no longer attached, the side lengths of the upper layer of
elements differ form those of the lower layer.

Visible inspection of the mesh is not sufficient to ensure that the welding has taken
place. If the specifications under the Welds keyword are omitted entirely in the in-
put data file, the resulting mesh will look identical to the mesh shown in Fig. B.10.
The connection of the weld nodes will not have been made, however, although these
nodes are geometrically coincident. The bandwidth minimizer will work its way
through its algorithm, since it works for disconnected graphs. The Cholesky fac-
torization, which is employed in the solution of system equations, will fail, because
the system stiffness matrix will not be positive definite, and execution will stop at
this point.

A key role is played by the bandwidth minimizer in improving the efficiency with
which the finite element system equations are solved. The mesh is initially made in
separate parts and these submeshes are later connected together to form the complete
mesh. The node numbering in this process is, in general, far from optimal, and the
bandwidth of the resulting system of equations can be quite large. For this hat sec-
tion example, the initial bandwidth is 802, which is reduced to 53 by the bandwidth
minimizer. The bandwidth algorithm used in the program is described in George and
Liu (1981).

B.6 OPEN CURVED SECTION

Figure B.11 shows an open curved section, whose median line is a fourth-order
spline. The input data file for this section is listed in Table B.11. The default uniform
knot vector is used; hence, no knot vector is specified in the input. The default weight
values of unity are employed. In meshing such sections, large or abrupt changes in
curvature may cause the mesh generator to fail. Such failures are usually visible
in the mesh drawing, because elements will overlap or become triangular. In some
cases, the Jacobian determinant of elements become negative at the Gauss quadra-
ture points, which indicates that the mesh cannot be used. This is a detected error,
but will not stop execution. In some cases, the elements around the high-curvature
area are distorted such that it is not possible to traverse the eight edge nodes in the
clockwise direction. This is also a detected error, and the program will print an error
message. Execution will continue so that, if possible, a mesh drawing is produced to
make the meshing error visible.

For very complex median line curves, a data file of points along the curve may be
available rather than the NURBS curve description. It is then necessary to construct a
NURBS curve representation of the data. This can be done by a fitting method, using
either interpolation or approximation. Several practical fitting algorithms are given
in Piegl and Tiller (1997).



Figure B.11 Open curved section.

TABLE B.11 Input Data File for the Open Curved Section

Title: Open Curve with Fourth-Order Spline

Graphics PageWidth 5 End Graphics

Vertices
1 0 0
2 5 5
3 10 -5
4 20 -5
5 25 8
6 20 12
7 10 12
8 7 6
9 10 1
10 15 4

End Vertices

Splines

Branch 1 Thickness 1 Order 4
Nodes 1 2 3 4 5 6 7 8 9 10 End Nodes End Branch

End Splines
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t = 0.5 in.

y

z

R = 16 in.

120º

�

Figure B.12 Circular arc of 120◦ and 16-in. radius.

B.7 CIRCULAR ARC

Consider a circular arc of 120◦, radius 16 in. (Fig. B.12). The user coordinate system
has its origin at the center of the circle, with the z axis vertically upward and the y
directed to the right. The section is symmetric with respect to the z axis. The input
data file is listed in Table B.12. The mesh generated for this circular arc is shown in

TABLE B.12 Input Data File for the Circular Arc

Title: 120 Degree Circular Arc Radius=16

Graphics PageWidth 5 End Graphics

Vertices
1 13.8564064605510193 8
2 9.23760430703401525 16
3 0 16
4 -9.23760430703401347 16
5 -13.8564064605510193 8

End Vertices

Splines

Branch 1
Thickness 0.50 Order 3
Nodes 1 2 3 4 5 End Nodes
Knots 0 0 0 0.5 0.5 1 1 1 End Knots
Weights 1 0.866025403784438597 1 0.866025403784438597 1 End Weights
End Branch

End Splines
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Figure B.13 Mesh for the circular arc.

Fig. B.13. An algorithm for generating a circular arc as a NURBS curve is given in
Piegl and Tiller (1997).

The cross-sectional properties calculated are shown in Table B.13. The approxi-
mate engineering theory of thin-walled beams gives the shear center of this section
at

zS = 2R
sin θ − θ cos θ

θ − sin θ cos θ
= 17.84 in. (B.8)

where R is the radius and θ is half of the subtended angle, which in this example is
60◦. In using Eq. (B.8), the angle should be in radians. The value of zS is very close
to the calculated value listed in Table B.13.

An approximate formula for the warping constant gives

� = 2

3
R5t

[
θ3 − 6(sin θ − θ cos θ)2

θ − sin θ cos θ

]
= 1014 in6

where the wall thickness t = 0.5 in. The computed value of � = 1046 in6 is about
3% larger.

2     4      6     8     10   12   14   16   18    20   22   24   26   28   30   32    34   36   38    40
1      3     5     7      9    11   13   15   17    19   21   23   25   27   29   31   33   35   37    39

15 in. 15 in.

2 in.

Aluminum

15 in. 15 in.

2 in.Copper

(a) Nonhomogenous section

(b) Mesh

Figure B.14 Rectangular strip made of two materials.
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TABLE B.13 Results File for the Circular Arc

120 Degree Circular Arc Radius =16
Cross-Sectional Properties

Cross-Sectional Area 16.75516
Y Moment of Area 221.72054
Z Moment of Area 0.00000
Y Centroid 0.00000
Z Centroid 13.23297
Y Shear Center 0.00000
Z Shear Center 17.83662
Y Shear Center wrt Centroid 0.00000
Z Shear Center wrt Centroid 4.60365
Y Shear Center wrt Centroid (Trefftz) 0.00000
Z Shear Center wrt Centroid (Trefftz) 4.60364

Moment of Inertia Iy 3032.21070
Moment of Inertia Iz 1258.15764
Product of Inertia Iyz 0.00001
Moment of Inertia IyC 98.18931
Moment of Inertia IzC 1258.15764
Product of Inertia IyzC 0.00000
Polar Moment of Inertia 1356.34695

Y Section Elastic Modulus 18.32584
Z Section Elastic Modulus 89.40279
Y Radius of Gyration 2.42079
Z Radius of Gyration 8.66549

Principal Bending Angle (rad) 1.57080
Principal Bending Angle (deg) 90.00000
Principal Moment of Inertia (max) 1258.15764
Principal Moment of Inertia (min) 98.18931

Reference Elastic Modulus 210000000.00000
Reference Poisson’s Ratio 0.33333
Y Coordinate Extent 8.14583
Z Coordinate Extent 8.37500

Y Shear Coefficient 1.50823
Z Shear Coefficient 4.60034
Y Z Shear Coefficient 0.00000

Torsional Constant 1.38355
Warping Constant wrt Shear Center 1046.49221
Warping Constant wrt Centroid 140100.77369
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TABLE B.14 Input Data File for the Example Section

Title: Two-material rectangular cross section

# Dimensions in inches

Materials
ID 1 Elastic 10.4e6 Poisson 0.3 #Aluminum
ID 2 Elastic 18.5e6 Poisson 0.3 #Copper
End Materials

Vertices
1 0 0
2 15 0
3 30 0
End vertices

Splines

Branch 1
Thickness 2 Material 1
Nodes 1 2 End Nodes
Order 2
End Branch

Branch 2
Thickness 2 Order 2 Material 2
Nodes 2 3 End Nodes
End Branch

End Splines

B.8 COMPOSITE RECTANGULAR STRIP

A nonhomogeneous rectangular cross section is shown in Fig. B.14a. The left half
of aluminum is meshed into elements 1 through 20 and the copper right half has
elements 21 through 40 as indicated in Fig. B.14b. Table B.14 gives the input data
file. The results are discussed in Example 5.13.
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Angle of twist, 325
Anisotropic material, 5
Anticlastic curvature, 37
Assembly of system matrices, 123, 214
Axis of twist, 167

Basis functions, 81, 387
Beam:

Bernoulli–Euler theory, 13
boundary conditions, 46
elastic foundation, 131
elasticity solution, 32
engineering, 40, 58
equations of equilibrium, 44
exact theory, 310
first-order equations, 59, 65
force–deformation relations, 43
fourth-order equations, 70
general solution, 71
geometry of deformation, 41
governing differential equations, 47
mass matrix, 102
mixed form, 59
neutral axis, 17
principle of virtual work, 61, 84
Rayleigh, 107
shear, 107

shear deformation effects, 58
sign conventions, 72
solution, 71
state variables, 59
stiffness matrix, 71, 76
systems, 112
theory, 58
thermoelasticity, 110
Timoshenko, 107
transfer matrix, 66, 69

Beam theory:
elasticity solution, 32
engineering, 40

Bending, 32
axis, 248
pure, 12

Bernoulli–Euler theory, 13
Bijective mapping, 98
Bimoment, 325
Blended interpolation elements,

223
Boundary conditions, 8

displacement, 9
force, 9

Boundary element method, 225
Boundary integration method, 226
Bredt’s formula, 193
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B-splines, 383
basis functions, 387
rational, 393

Buckling, Euler formula, 288

Cauchy’s formula, 9
Cayley–Hamilton theorem, 67
Center of twist, 167
Centroid, 16, 162

modulus-weighted, 23
Centroidal axis, 248
Closed cross sections, 190
Compatibility conditions, 4
Composite cross section, 199, 241
Computer programs:

documentation, 422
examples, 434
input data, 423
mesh generation, 430
numerical examples, 434
output files, 431
overview, 422
stress plots, 431
weld splines, 427

Consistent:
geometric stiffness matrix,

109
mass matrix, 103

Consistent mass matrices, 103
Constitutive relations, 4
Coordinate system:

global, 113
local, 113
local to global, 126

Coordinates:
modal, 147
natural, 147
normal, 147
principal, 147

Copper, C.D., 110
Coulomb torsion, 176
Cowper, G.R., 257
Cross-sectional properties:

area, 161
centroid, 161
computer programs, 422

examples, 434
first moments of area, 161
modulus-weighted, 166

moments of inertia, 161
product of inertia, 161

Curves:
B-spline, 383
NURBS, 383

Damping:
critically damped, 149
overdamped, 149
underdamped, 149

Deflection:
first-order equations with shear

deformation, 272
Degrees of freedom, 79
Delta function, 52
Design sensitivity analysis, 403
Design variables, 399
Design velocity field, 399
Dilatation, 6
Dirac delta function, 52
Direct integration, 228
Direct stiffness method, 118
Discontinuity functions, 52
Displacement formulation, torsion,

173
Displacement method, 112, 117

introduction of boundary conditions,
135

Distortion theory, 381
Dynamic analysis:

critically damped, 149
eigenvalues, 145
eigenvectors, 145
exact stiffness matrices, 151
forced response, 146
free vibration, 145
harmonic motion, 145
orthogonality, 145
overdamped, 149
underdamped, 149

Dynamic stiffness matrix, 106
relationship to geometric stiffness

matrix, 110
relationship to mass matrix, 107

Effective torsional constant, 355
calculation, 365

Eigenvalue problem, 145
Eigenvector, 145
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Elastic section moduli, 22
modulus-weighted, 24

Elasticity theory, 11
governing differential equations, 11

Elements:
blended, 223
interpolation, 223
isoparametric, 154, 158
Lagrangian, 153, 156
nine-node, 153

Equilibrium relations, 7
Equivalent stress, 381
Euler formula, 288
Exact mass matrix, 104
Examples:

channel section, 437
circular arc, 451
circular cross section, 444
composite rectangular strip, 454
elliptical tube, 434
L section, 441
open curved section, 449
welded hat section, 445

Extended Galerkin’s formula, 224
Extreme shear stresses, 369, 373

Failure criteria, 379
Failure theories, 369, 379

distortion energy, 380
Guest, 380
maximum shear, 380
maximum stress, 380
Maxwell–Huber–Hencky, 380
octahedral shear, 380
Rankine, 380
Tresca, 380
von Mises, 380

First moment of warping, 316
First moments of area, 162
Flexural axis, 248
Force formulation, torsion, 178
Force method, 112
Fredholm’s integral of the second kind,

225
Free vibration analysis, 144

Galerkin’s formula, extended, 224
Galerkin’s method, 208, 245
Galerkin’s weighted residual method, 202

Gauss:
integration, 217
points, 217
quadrature, 159, 217

Gaussian quadrature, 159, 217
Generalized displacements, 81
Geometric stiffness matrix, 110, 150,

293, 368
consistent, 109
exact, 110, 281

Governing differential equations, 11
Green’s first identity, 207, 244
Green’s theorem, 207
Guest theory, 380

Harmonic function, 170
Harmonic motion, 144
Hermitian polynomial, 83
Herrmann, L.R., 257, 311, 368
Hollow thin-walled shaft:

Bredt’s formula, 193
shear flow, 191

Homogeneous material, 5
Hooke’s law, 7
Huygen’s laws, 18
Hydrostatic stress, 381

Inertia:
rotary, 304
transverse, 298

Integral equations, 228
Interpolation functions, 81, 155
Invariants, 372
Isoparametric elements, 154, 158, 208
Isotropic material, 5

Jacobian matrix, 157

Kang, W., 311
Kitis, L., 311
Knot vector, 384
Knots, 384

Ladevèze, P., 267, 310, 368
Lagrangian element, 153, 156
Lamé’s constant, 6
Laplace transform, 66
Laplace’s equation, 170
Linear programming, 421
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Liu, Y., 111, 222
Load factor, 150

Macauley function, 52
Mapping from a reference element,

98
Mass, generalized, 146
Mass matrix, 102, 297

consistent, 103
diagonal, 105
exact, 104, 106
frequency-dependent, 107
high-order, 106
lumped, 105
nonconsistent, 106
quasistatic, 108
relationship to stiffness matrix, 107
rotary inertia, 304
transverse inertia, 298

Material:
anisotropic, 5
homogeneous, 5
isotropic, 5

Material law, 4
Maximum stress theory, 380
Maxwell–Huber–Hencky yield theory,

381
Membrane analogy, 185
Minimal polynomial, 67
Mixed problem, 12
Mode shapes, 144
Modulus-weighted properties, 22, 166,

199
Moments of inertia, 162

polar, 22
Multiple beams, 355

Natural frequencies, 144, 307
influence of shear deformation, 307

Neutral axis, 17, 37
Neutral plane, 37
Nodal connectivity matrix, 210
Nodes, 113
Nonuniform rational B-spline, 383
Normal stress, 17

modulus-weighted, 23
NURBS, 383

basis functions, 387
clamped knot vector, 386

control points, 384
control polygon, 392
degree, 383
distinct knot 385
endpoint interpolation, 392
interior knot, 386
knot vector, 384
knots multiplicity, 385
nonperiodic knot vector, 386
nonrational, 384
nonuniform, 385
order, 384
rational, 384
uniform, 385
vertices, 392
weight, 384

Octahedral shear stress theory, 381
Open cross sections, 187
Optimal design, 399
Optimization, 399

problem statement, 420
thin-walled beam, 420

Orthogonality, 145

Pade approximation, 66
Parallel axis theorem, 18

modulus-weighted, 23
Parallel beams, 355
Picard iteration, 67
Poisson’s equation, 180
Poisson’s ratio, 5
Polar moment of inertia, 22

modulus-weighted, 24
Prandtl:

membrane analogy, 185
stress function, 180

Prandtl stress function, 180
Principal:

bending axes, 24, 27, 29
directions, 26, 372
moments of inertia, 26
origin, 321
pole, 321
shear axes, 260
stresses, 369, 372
warping function, 321

Principle of virtual displacements,
61
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Principle of virtual work, 61, 202
beams, 84
stiffness matrix, 85

Product of inertia, 162
Programs:

documentation, 422
examples, 434
input data, 422, 423
mesh generation, 430
output files, 431
overview, 422
stress plots, 431
weld splines, 427

Pure bending, 12

Quadrature, Gaussian, 159

Radii of gyration, 22
modulus-weighted, 24

Rankine theory, 380
Rational B-spline curves, 383
Rayleigh beam, 107
Reagan, S., 368
Restrained warping, 312

deformation, 330
first-order equations, 330
normal stress, 333
shear stress, 334
warping constant, 323

Rotary inertia, 304
Rubenchik, V., 311

Saint-Venant, 312, 325
approximation, 188
torsion, 167, 319
transverse shear stresses, 235

Schramm, U., 222, 257, 261, 311
Sectorial properties, 256, 320, 321

area, 256
Sensitivity, 399

coordinates, 405
effective torsional constant, 419
first moments, 405
Jacobian matrix, 404
loading vector, 408
moments of inertia, 405
normal stress, 406
normal vector, 400
shear deformation coefficients, 410

shear stress, 406
stiffness matrix, 408
tangent vector, 400
torsional constant, 406
warping function, 410
warping properties, 417

Sequential linear programming, 421
Shape functions, 81, 98, 153, 155, 291
Shape optimization, 399
Shear:

beam, 107
center, 248
correction factor, 44
deformation, 230
form factor, 44
stiffness factor, 44
stresses, 230

Shear center, 248, 254
classical formulas, 258
formulas, 251
Trefftz’s definition, 254

Shear coefficients, principal axes, 261
Shear correction factor, 44
Shear deformation, 230

buckling, 288
deflection, 272
stiffness matrix, 276
transfer matrix, 275

Shear deformation coefficients, 44, 257
analytical formulas, 269
finite element solution, 261
shear locking, 265

Shear flow, 190
Shear form factor, 44
Shear locking, 265

reduction, 265
Shear modulus, 5
Shear stiffness coefficients, 257
Shear stiffness factor, 44
Shear stresses, 373

composite cross section, 241
direct, 236
extreme values, 373
finite element solution, 243
torsion, 167
transverse, 230, 236, 241
warping, 342

Sign Convention 1, 72
Sign Convention 2, 72
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Simmonds, J.G., 267, 310, 311, 368
Singularity functions, 52
Smoothing matrix, 217
Stability analysis, 150
Steiner’s law, 18
Stiffness, 276

closed cross section, 195
open cross section, 195

Stiffness matrix:
approximation by trial function, 81
assembled, 122
axial extension, 91
bar in space, 93
beam on elastic foundation, 94
beams, 76
bending, 91
Bernoulli–Euler beam, 78
conversion of transfer matrix, 77
definition, 76
differential, 109
direct evaluation, 80
dynamic, 106
exact, 106
general beam element, 71, 79
geometric, 109, 150, 281, 293
load factor, 150
mapping from a reference element,

98
mass, 104
principle of virtual work, 85, 101
properties, 140
relationship to mass matrix, 107
shear beam, 276
stress, 109
system, 122
torsion, 202
trial function solution, 81

Strain–displacement equations, 1
Strength theories, 379
Stress function, 180
Stress intensity, 380
Stress invariants, 373
Stress-strain equations, 4
Surface forces, 8
System equations, assembly, 126
System matrices, assembly, 210

Thasanatorn, C., 310, 311
Theory of elasticity, 11

Thin-walled beam:
computer programs, 422

examples, 434
optimization, 399, 420
shape optimization, 399, 420

Thin-walled cross sections, torsion:
closed, 186
open, 186
thick, 186
thin, 186

Timoshenko, S.P., 257, 311, 346, 368
Timoshenko beam, 107
Timoshenko beam theory, 257
Timoshenko’s shear coefficients, 257
Torque, Saint-Venant, 325
Torsion, 312

calculation:
stresses, 215
torsional constant, 215

closed cross section, 190
composite cross section, 199
Coulomb, 176
displacement formulation, 173
finite element formulation, 205
force formulation, 178
hollow section with fins, 197
hollow thin-walled shaft, 191
modulus-weighted properties, 199
multicell section, 197
open cross section, 187
Saint-Venant, 167
warping, 323
weighted residual methods, 206

Torsional:
coefficient, 260
constant, 171, 215
effective, 355
rigidity, 183
stiffness, 171, 215
stresses, 215

Torsion-shear coefficients, 260
Tractions, 9
Transition elements, 223
Transfer matrix, 65, 275

Bernoulli–Euler beam, 66
general beam element, 69
global, 143
overall, 143

Transfer matrix method, 112, 141
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Transient dynamics, 146
Transverse shear stresses, 230

finite element solution, 243
Tresca theory, 380
Trial functions, 81

Unit vectors, 9

Vlasov, V.Z., 312, 368
Volumetric stress, 381
von Mises yield theory, 381

Warping:
constant, 323, 332
displacement, 168
function, 168
principal, 321
restrained, 312
shear, 323

shear stress, 342
stresses, 173, 312
torque, 323

Weak formulation, 207
Weighted residual method, Galerkin,

202
Wunderlich, W., 1, 39, 66, 111, 153

Yield theories, 379
distortion energy, 380
Guest, 380
maximum shear, 380
maximum stress, 380
Maxwell–Huber–Hencky, 380
octahedral shear, 380
Rankine, 380
Tresca, 380
von Mises, 380

Young’s modulus, 5
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