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PREFACE

This book is based on Superconducting Magnets, a graduate course I started teach-
ing in the Department of Mechanical Engineering at the Massachusetts Institute of
Technology, in 1989, shortly after the discovery of high-temperature superconduc-
tors. The book, intended for graduate students and professional engineers, covers
the basic concepts of superconducting magnet technology, focusing on design and
operational issues.

My course consists of ten 3-hour lectures and eight homework sets, each set con-
taining three to four “tutorial” problems to review lecture materials, to discuss
topics in more depth than covered in the lecture, or to teach subjects not presented
in the lecture at all. My colleague Emanuel Bobrov has helped me with the course,
offering lectures on field computation and stress analysis. He has also created a
few problems related to his lecture topics.

Because the use of tutorial problems accompanied, a week later, by solutions has
been successful in the course, I have decided to use the same format for this
book. Most problems require many steps in their solution and through these
steps it is hoped that the reader will gain deeper insight. About 75% of the
problems are based on those specifically created for the course’s homework or quiz
problems; the remainder are based on lecture materials. Because the principal
magnet projects at the Francis Bitter National Magnet Laboratory (FBNML) have
been high-field solenoidal magnets, problems directly related to other applications
are not represented. However, important topics covered in this book, particularly
on field distribution, magnets, force, thermal stability, dissipation, and protection,
are sufficiently basic and generic in concept that solenoidal magnets are suitable
examples.

In creating problems I have relied heavily on the magnet projects at FBNML and
I am indebted to my colleagues in the Magnet Technology Division, specifically
John Williams, Mat Leupold, Bob Weggel, and Emanuel Bobrov, with whom I
have had the good fortune of working on these projects over a long period. Ma-
terials contributed by the other members of the Division, Alex Zhukovsky, Vlad
Stejskal, Andy Szczepanowski, Dave Johnson, and Mel Vestal are also included
and their contributions are acknowledged. I have also benefitted much through
participation in the Technology Division of the Plasma Fusion Center (PFC) of
MIT; I would particularly like to thank Bruce Montgomery from whom I have
learned a great deal since my graduate student days. I would also like to thank
Joe Minervini and Makoto Takayasu of the PFC, Dr. Larry Dresner of Oak Ridge
National Laboratory, and Dr. Luca Bottura of Max-Planck Institut für Plasma-
physik, Garching, Germany, for advice on the creation of problems related to
cable-in-conduit (CIC) conductors, and Dr. Ted Collings of the Battelle Memorial
Institute, Ohio, for discussion on enabling technology vs replacing technology. In
addition, I would like to thank many visiting scientists to FBNML, mostly from
Japan—really too many to cite individually here—with whom I have collaborated
with fruitful results, particularly in the areas of mechanical dissipation, magnet
monitoring, and protection.
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I would like to thank Don Stevenson, the retired Assistant Director of the FBNML,
who read several versions of the manuscript and offered helpful suggestions, and
Albe Dawson of PFC for suggestions on early chapters. Many of my former and
present students helped me on this project and I express my deepest gratitude to
them. Philip Michael combed through the three last editions and offered many
insightful suggestions. Rick Nelson painstakingly read early drafts, checked and
corrected solutions, and offered many suggestions on the phrasing of the questions,
writing, and equation style; he also assisted me in the preparation of early edi-
tions of the Glossary. Mamoon Yunus created beautiful field plots and graphs;
Hunwook Lim produced most of the figures and prepared the Index; Jun Beom
Kim rechecked several derivations, collected much of the data presented in the
Appendices, and produced most of the graphs; Abraham Udobot also prepared
many figures and laid out all the figures.

I am also indebted to Dr. Hiroyasu Ogiwara of Toshiba Corporation for first sug-
gesting a book based on my course materials, particularly on the problem sets. He
has also arranged for me to offer lectures based on the course to magnet engineers
at the Kanagawa Academy of Science and Technology, Kawasaki, Japan.

Thanks are also due to the National Science Foundation (FBNML’s sponsor); the
Department of Mechanical Engineering; the Department of Energy Office of Fusion
Energy; the Department of Energy Office of Renewable Energy; the Department
of Energy Office of Basic Sciences; and Daikin Industries, Ltd. for their support
of this book project. I have used D.E. Knuth’s indispensable TEX in typesetting
the entire text, equations, tables, and even some figures.

Finally, I would express a word of appreciation to Kimiko who has made it possible
for me to continue working on this project in the relaxed atmosphere of our home
and thus to carry it forward to completion.

Yukikazu Iwasa

Weston, Massachusetts
August, 1994

“You know nothing till you prove it! FLY!” —Jonathan Livingston Seagull
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CHAPTER 1
SUPERCONDUCTING MAGNET TECHNOLOGY

1.1 Introductory Remarks

Superconducting magnet technology comprises engineering aspects associated with
the design, manufacture, and operation of superconducting magnets. In its bare
essence, a superconducting magnet is a highly stressed device: it requires the best
that engineering has to offer to ensure that it operates successfully, is reliable, and
at the same time is economically viable. A typical 10-tesla magnet is subjected to
an equivalent magnetic pressure of 40 MPa (400 atm), whether it is superconduct-
ing and operating at 4.2K (liquid helium cooled) or 77K (liquid nitrogen cooled),
or resistive and operating at room temperature (water cooled). Superconducting
magnet technology is interdisciplinary in that it requires knowledge and train-
ing in many fields of engineering, including mechanical, electrical, cryogenic, and
materials.

Table 1.1 lists “first” events relevant to superconducting magnet technology. Par-
ticularly noteworthy events since the discovery of superconductivity in 1911 by
Kamerlingh Onnes, who was also first to liquefy helium in 1908, are:

1 .

2 .

3 .

4 .

5 .

Development of water-cooled 10-T magnets by Francis Bitter in the 1930s;

Marketing of helium liquefiers, developed by Collins, in 1946;

Development in 1961 by Kunzler and others of magnet-grade superconduc-
tors;

Formulation, chiefly by Stekly, of design principles for cryostable magnets in
the mid 1960s; and

Discovery of high-temperature superconductivity (HTS) in perovskite oxides
by Müller and Bednorz in 1986.

We may safely state that Bitter initiated modern magnet technology. Although
Bitter magnets are water cooled and resistive, resistive and superconducting mag-
nets share many engineering requirements.

Soon after the availability of Collins liquefiers, liquid helium—until then a highly
prized research commodity available only in a few research centers—became widely
available and helped to propel the rapidly growing field of low temperature physics.
Many important superconductors were discovered in the 1950s, leading to the
development of magnet-grade superconductors.

The formulation of design principles for cryostable magnets by Stekly and others
by the mid 1960s demonstrated the feasibility of building large superconducting
magnets that operated reliably.

The discovery of HTS lifted superconducting magnet technology from the depth
of a liquid helium well and ushered it into a new era with expanded options. It is
estimated that the number of people involved in superconductivity jumped by an
order of magnitude overnight after the discovery of HTS.

1



2 CHAPTER 1

Table 1.1: “First” Events Relevant To Superconducting Magnet Technology

Decade Event*

1930s Meissner effect.

Type II superconductors identified.

Phenomenological theories of superconductivity.

Bitter magnets generating fields up to 10 tesla.

1940s Marketing of Collins helium liquefier.

1950s Many more Type-II superconductors identified.

GLAG and BCS theories of superconductivity.

Small superconducting magnets (SCM).

1960s Magnet-grade superconductors developed.

International conference on high magnetic fields.

National laboratory for magnetism and magnet technology.

Bitter magnets generating fields up to 25 T.

Flux jumps in SCM.

Composite superconductors.

Formulation of cryostability criteria.

Large cryostable SCM (MHD and bubble chambers).

Superconducting generators.

Magnets wound with internally-cooled conductors.

Multifilamentary  Nb-Ti superconductors.

1970s Multifilamentary Nb3Sn superconductors.

Maglev test vehicles.

Superconducting dipoles for accelerators.

Cable-in-conduit (CIC) conductors.

Hybrid magnets generating 30 T.

Commercial NMR systems using SCM.

1980s Commercial MRI systems using SCM.

Multinational experiments for fusion magnets.

Submicron superconductors for 60-Hz applications.

Superconducting accelerators.

Discovery of HTS.

* Entries in each decade did not necessarily take place sequentially as listed. Acronyms
are described in the Glossary (Appendix VI).
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1.2 Superconductivity

The complete absence of electrical resistivity for the passage of direct current be-
low a certain “critical” temperature (usually designated with the symbol Tc ) is
the basic premise of superconductivity. In addition to Tc , the critical field Hc  and
critical current density Jc  are two other parameters that define a critical surface
below which the superconducting phase can exist. Tc  and H c  are thermodynamic
properties that for a given superconducting material are invariant to metallurgical
processing; Jc  is not. Indeed the key contribution of Kunzler and others in 1961
was to demonstrate that for certain superconductors it is possible to enhance J c

dramatically by means of metallurgy alone. No formal theories of superconduc-
tivity, phenomenological or microscopic, will be presented in this book to explain
relationships among Tc , Hc , or Jc ; however, the magnetic behavior of superconduc-
tivity, which plays a key role in superconducting magnets, will be briefly reviewed
by means of simple theoretical pictures.

Figure 1.1 shows the critical surface for a typical magnet-grade superconductor.
On this critical surface, the following three important functions are used by the
magnet engineer: ƒ1 (H,T,J = 0); ƒ2 (J,T,H o=constant); ƒ3 (J,H,To =constant).
ƒ1  is the Hc  vs  Tc  plot; for “ideal” superconductors it is quite straightforward to
derive a parabolic function of H c  on Tc  from thermodynamics [1.1] :

(1.1)

(1.2)

Ho  is given by:

where γe  is the electronic heat capacity constant in the normal state.

Fig. 1.1 Critical surface of a typical magnet-grade superconductor.



4 CHAPTER  1

ƒ2 gives the Jc  vs T plot, and for all superconductors of interest, Jc is a decreasing
function of temperature. As we shall study in more detail in Chapter 5, this is the
source of inherent instability in superconductors. We shall defer discussion of ƒ3

until after Sec. 1.2.3, where Type I and Type II superconductors are discussed.

1.2.1 Meissner Effect

Discovered by Meissner and Ochsenfeld in 1934, the Meissner effect describes the
absence of magnetic field within the bulk of a superconductor. This complete
diamagnetism of a superconductor is in fact more fundamental than the complete
absence of electrical resistivity to the extent that a material’s perfect diamag-
netism automatically requires it to be a perfect electrical conductor. Unlike the
complete absence of electrical resistivity, however, we do not benefit from perfect
diamagnetism. The Meissner effect was in fact responsible for the single most
important source of magnet failures in the early 1960s: flux jumping. Even today
when flux jumping is no longer an issue due to an important innovation introduced
in conductor design in the late 1960s, the Meissner effect is the basis for another
important source of losses in the magnets—AC losses—that restricts the use of
superconducting magnets primarily to DC applications.

1.2.2 London’s Theory of Superconductivity

Although a microscopic theory of superconductivity by Bardeen, Cooper, and
Schrieffer—known as the BCS theory—was not completed until 1957, development
of phenomenological theories of superconductivity began in the 1930s. Among
these is the electromagnetic theory of London (1935), in which the concept of pen-
etration depth was introduced to account for the Meissner effect. Simply stated,
a bulk superconductor is shielded completely from an external magnetic field by a
supercurrent that flows within the penetration depth (λ) at the surface. According
to London’s theory, λ is given by:

(1.3)

where m, e, and n e  are, respectively, the electron’s mass, charge, and concentra-
tion. µ o is the permeability of free space. ne  in turn is given by:

(1.4)

where is the conductor’s mass density, NA is Avogadro’s number, and WA is
its atomic weight. The factor 2 in Eq. 1.4, not in the original London theory,
was inserted later because there are two “superelectrons” (a Cooper pair) for each
atom. Values of λ and the superconductor’s Jc , given by ene v where v is the speed
of sound, have been confirmed by experiment.

1.2.3 Type I and Type II Superconductors

Kamerlingh Onnes discovered superconductivity in pure mercury; subsequently
other metals such as lead and indium were found to be superconductors. These
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materials, now called Type I (also known as “soft”) superconductors, are un-
suitable as magnet conductor materials because of their low Hc values: less than
10 5 A/m (corresponding to ~0.1 T). Magnet-grade superconductors trace their ori-
gin to the first Type II (also known as “hard”) superconductor discovered by de
Haas and Voogd in 1930 in an alloy of lead and bismuth [1.2].

A Type II superconductor may be modeled as a finely divided mixture of a Type I
superconductor and normal conducting material. Indeed, in the early 1960s there
were two physical models for this mixture: lamina and island (vortex). In the
lamina model, proposed by Goodman, the hard superconductor consists of super-
conducting laminae separated by normal laminae. In the vortex model, proposed
by Abrikosov at about the same time, and later experimentally verified by Ess-
mann and Träuble [1.3], the superconductor consists of many hexagonally-arranged
normal-state islands in a superconducting sea. For the hard superconductor to
retain its bulk superconductivity well beyond 0.1 T, the width of each supercon-
ducting lamina or the radius of each normal island must be smaller than λ. The
lamina’s half width or the island’s radius is the coherence length (ξ ), an impor-
tant spatial parameter, introduced by Pippard in 1953. ξ defines a distance over
which the superconducting-normal transition takes place. According to the GLAG
theory of superconductivity (after Ginsburg, Landau, Abrikosov, and Gorkov), for-
mulated about the same time as Pippard’s to account for the magnetic behavior
of Type II superconductors, a superconductor is Type II if ξ < λ ; it is Type I
if ξ > λ. ξ decreases with alloying, which shortens the mean free path of the
normal electrons; ξ is thus inversely proportional to the material’s normal-state
electrical resistivity. It is noted that the two magnet-grade superconductors—
alloys of niobium titanium (Nb-Ti) and an intermetallic compound of niobium
and tin (Nb3Sn)—both have normal-state resistivities that are at least one order
of magnitude greater than that of copper at room temperature. Incidentally, it
has been noted that the HTS also have ξ much much shorter than λ .

1.2.4 Critical Current Density of Type II Superconductors

As mentioned earlier, Jc  may be enhanced dramatically by means of metallurgical
processing. The function ƒ3 (J, H, To ) gives Jc  vs H plots at a given temperature To

for conductors having enhanced Jc performance. This enhanced Jc performance is
generally attributed to a “pinning” force that counteracts the Lorentz force
acting on the vortices. The pinning force is provided by “pinning” centers that are
created in crystal structures by material impurities, metallurgical processes such
as cold working in the form of dislocation cells, or heat treatment in the form of
precipitations and grain boundaries. Kim and others, through their investigation
of the magnetic behavior of Type II superconductors, obtained the basic Jc  vs H
equation by equating the Lorentz force to the pinning force [1.4]:

(1.5)

where α c  and Ho  are constants. Note that α c  essentially represents an asymptotic
force density that balances the Lorentz force density for H >> Ho . That is, Eq. 1.5
is really a simple force balance equation.
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1.3 Magnet-Grade Superconductors

Although completely specifying a conductor for a given superconducting magnet
is an important task in the design phase, issues directly related to magnet-grade
superconductors are not specifically treated in this book. Magnet-grade supercon-
ductors are those conductors that meet rigorous specifications required for use in a
magnet, and are readily available commercially. What follows is a brief comment
to point out important differences between superconducting materials and magnet-
grade superconductors, and that it is a laborious task to develop a magnet-grade
superconductor from a material discovered in the laboratory.

1.3.1 Materials vs Magnet-Grade Superconductors

Table 1.2 lists the number of materials meeting certain criteria on superconduc-
tivity and illustrates that as the criteria move towards those required of a magnet-
grade superconductor, the number of materials meeting the criteria decreases log-
arithmically. Hc 2  is the “upper” critical field, relevant only to Type II supercon-
ductors. Indeed, of nearly 10,000 superconducting materials discovered to date,
at present (1994) there are basically only two magnet-grade superconductors, Nb-
Ti alloys and an intermetallic compound, Nb3 Sn. A drop of nearly four orders
of magnitude attests to the excruciatingly difficult task material scientists and
metallurgists face in transforming a material into a magnet-grade superconductor.

1.3.2 A Long Journey

It is a long journey to transform a superconducting material, discovered in the lab-
oratory, into a magnet-grade superconductor. The journey consists of six stages,
given in Table 1.3: 1) the discovery of a superconducting material; 2) improvement
in Jc  performance; 3) co-processing with matrix metal; 4) development of a multi-
filamentary conductor having Ic of at least ~100 A; 5) production of a conductor
in length from ~10mm, typical in the material stage, to ~1 km; and 6) meeting
other specifications of a magnet. The table also lists an approximate period for
the beginning of each stage with Nb3 Sn used as an example.

Despite more than a decade of intense research and development activity beginning
immediately after the development of Nb3 Sn conductors in 1961, Nb3 Sn must still
be custom-designed for each magnet application. Because of its extreme brittleness
and intolerance to a minute strain (~0.3%), the material is inherently difficult to
process and must be handled with great care.

Table 1.2: Superconducting Materials vs Conductors

Criterion Number

1. Superconducting? ~10,000

2 . T c >10K (µ o H c 2 > 1 0 T ) ? ~100

3 . J c > 1 GA/m 2 (@ B > 5T)? ~ 1 0

4. A magnet-grade superconductor?  ~1
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Table 1.3: Material-to-Conductor Development Stages for Nb3Sn

Stage Event Period

1 Discovery of superconducting material. Early 1950s.

2 Improvement in Jc . Early 1960s.

3 Co-processing with matrix metal. Mid 1960s.

4 Multifilamentary conductor with Ic >  1 0 0  A . Early 1970s.

5 Long length, typically ~1 km. Mid 1970s.

6 Other specifications for magnets. Late 1970s.

1 . 4 Magnet Design

In this section, important magnet design issues appropriate to the subject matter
of the remainder of this book are briefly discussed.

1.4.1 Requirements and Key Issues

A magnet, whether it is experimental or a system component, must satisfy basic
requirements on magnetic field, (x, y , z,  t), which include spatial distribution and
temporal variation. Important parameters often given in the field specifications
are: 1) Ho , the field at the magnet origin (x = 0, y = 0, z = 0); 2) Vo , the volume
within which (x, y, z) is specified; and 3) H(t), the field time variation. Chapters
2 and 3 discuss Ho and (x, y, z) in some detail.

In addition to satisfying these basic field requirements, the magnet design must
address the following key issues:

•

•

•

•

•

Mechanical integrity. The magnet must be structurally strong to withstand
large magnetic stresses, both under operating and fault conditions. Chapter
3 deals with magnetic forces and stresses.

Operational reliability. The magnet must be stable in order to reach and stay
at its operating point reliably. Chapters 5, 6, and 7 deal with this issue.

Protection. In the event the magnet is driven into the normal state, it must
remain undamaged and be capable of being energized to its operating point
repeatedly. Chapter 8 is devoted to this subject.

Conductor specification. For “small” magnets and those produced in a large
quantity, the overall cost of a superconducting magnet system can be influ-
enced to a large extent by the cost of the superconductor. For these magnets,
it is important to improve “field efficiency” so that the field requirements can
be met with the minimum amount of conductor.

Cryogenics. Because it requires power to create and maintain the cryogenic
environment for the operation of superconducting magnets, cryogenics also
becomes an important issue for “small” and mass-produced magnets. When a
superconducting magnet system is considered alone, cryogenics clearly plays
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a dominant role. It is for this reason that Chapter 4 is devoted to this sub-
ject; it is also for this reason that cryogenics is sometimes overemphasized
relative to its importance to the overall system. It is worthwhile noting that
in many important applications where superconducting magnets are to play
critical roles, the magnets are but one component among many in the overall
system and consequently, the cryogenics is a subcomponent. Indeed the power
requirement for the cryogenic system is generally a fraction of the total power
associated with the overall system.

Since the beginning of the HTS era, efforts to improve Tc have continued un-
abated. Indeed, it has recently been suggested that it may be possible to improve
the critical temperature of a certain HTS from a nominal value of ~100 K to the
extraordinary value of ~250 K by means of an intricate manufacturing process.
Aside from its obvious importance in terms of understanding the physics of su-
perconductivity, it is extremely doubtful that such a material would be used as
magnet conductor. The overall cost of building a magnet made of such a 250-K Tc

conductor and operating it at 200 K would most likely be substantially more than
that of the same magnet made of a nominal 100-K Tc conductor operating at 80 K.
To draw a parallel: diamond is the best electrical insulator, but it is rarely used for
that purpose. Above a certain temperature that is still below room temperature,
the savings in cryogenics becomes absolutely insignificant. The most important
requirements for cryogenics are ease and reliability of operation rather than re-
duced capital and operating cost; kitchen refrigerators have already achieved an
acceptable level of ease and reliability of operation.

1.4.2 Effect of Operating Temperature

Operation at temperatures substantially higher than 4.2K—the base line temper-
ature for superconducting magnets to date—has one of the following impacts on
each of the key magnet issues: 1) virtually none; 2) makes it more difficult or
costly; or 3) makes it less difficult or less costly. Figure 1.2 shows qualitative plots
of “difficulty or cost” vs operating temperature for the five key issues—mechanical
integrity, stability, protection, conductor, and cryogenics—over the temperature
range likely in the near future.

Figure 1.2 indicates that difficulty in meeting mechanical integrity requirements is
essentially independent of operating temperature. This statement is true for oper-
ating temperatures up to ~ 100 K over which differential thermal expansions among
most magnet materials are negligible. For a magnet of given field requirements,
the necessary ampere-turns are independent of operating temperature. Because
critical current density decreases with temperature universally among known su-
perconductors, the conductor cost always increases with operating temperature;
the expected benefit of a decrease in the cost of cryogenics with temperature must
be compared with this expected increase in conductor cost. Operating temper-
ature has profound impacts on stability and protection as will be discussed in
Chapters 6 and 8. These chapters, through problems, illuminate the positive and
negative impacts of increasing operating temperature over a wide span, feasible
only with the use of high-Tc superconductors.
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Fig. 1.2 Effects of temperature on five key magnet issues.

1 .5 Class 1 and Class 2 Superconducting Magnets

Broadly speaking, superconducting magnets may be divided into two classes—
Class 1 and Class 2. Generally, Class 1 magnets are physically large. Class 1
magnets most actively pursued presently are those required for magnetic con-
finement of plasma in fusion reactors. Superconducting magnet energy storage
(SMES), presently not as actively pursued as fusion programs, also uses Class 1
magnets. Because their sheer sizes result in huge forces, the most pressing design
issue in Class 1 magnets is mechanical integrity, which impacts other design issues,
e.g. conductor. Based on the projections of Fig. 1.2, we may conclude that the
impact of increased operating temperature is minimal in Class 1 magnets.

Class 2 magnets are small or densely constructed. Important Class 2 magnets
include those for nuclear magnetic resonance (NMR) spectroscopy, magnetic reso-
nance imaging (MRI) systems, superconducting generators, superconducting mo-
tors, dipole and quadrupole magnets for particle accelerators, maglev high-speed
trains, and research requiring high magnetic fields. The first generation HTS mag-
nets will most likely be of Class 2. The common feature of Class 2 is operation at
high current densities, making the stability, protection, conductor, and cryogenics
critical design issues. The impact of increased operating temperature on these
issues, from Fig. 1.2, is mixed.

1.6 The Format of the Book

As stated in the Preface, the format adopted for this book is the use of tutorial
problems accompanied by solutions. Each problem requires many steps in its
solution, and through these steps it is hoped that the reader will gain deeper
insight. Because most of the problems are solvable analytically in closed form,
they deal chiefly with ideal cases; nevertheless, solutions to these problems are
quite useful for real world problems with all the usual complexities. One needs the
engineer’s essential talent: the ability to transform a complex problem into an ideal
case without losing vital points. Each problem is intended to develop the reader’s
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ability to quickly grasp the zeroth or first order solution to a real world situation of
a similar nature, thus enabling him to keep his bearing even after he enters into a
numerical-analysis maze. In discussing design and operational issues, particularly
field distribution, magnets, forces, thermal stability, dissipation, and protection,
we focus primarily on solenoidal magnets. These issues are sufficiently basic and
generic in concept that solenoidal magnets are suitable examples. Included also in
selected problems are short presentations on topics relevant to the specific issues
under discussion; these headings are typeset with a slanted bold font.

Chapters 2, 4, and 9 and the Appendices are briefly described here.

Chapter 2 is on static and quasi-static electromagnetic fields; the chapter starts
with a presentation of Maxwell’s equations. The problems cover useful field solu-
tions, including some for magnetic shielding and induction heating.

Chapter 4 presents cryogenics. Its coverage is strictly for magnet designers and
not for cryogenic engineers. The problems selected are thus intended to be useful
for magnet applications.

Chapter 9 gives concluding remarks and looks at the prospect of superconducting
magnets in the 21st century.

Many useful data are presented in Appendices. These include thermodynamic
properties of helium and other cryogens. The properties are not extensive for
cryogenic engineers but sufficient for magnet engineers to make quick, quantitative
estimates. Other properties included in the Appendices are thermal and electrical
properties of structural materials and conductive metals; critical properties of Nb-
Ti and Nb3Sn and BiPbSrCaCuO (2223); and selected properties of a few HTS

in superconducting magnet technology and its areas of application but that are
discussed only briefly or not at all in the main text of this book.
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“Why sir, there is a very good chance that you will soon be able to tax it. ”
—Michael Faraday’s reputed reply to William Gladstone, the Prime

Minister, who after being shown by Faraday a demonstration of
the first dynamo, asked “But, after all, what use is it?”



CH A P T E R 2
ELECTROMAGNETI C FIELDS

2.1 Introduction

In this chapter we review electromagnetic theory by presenting Maxwell’s equa-
tions. This review is necessary to bring the reader’s understanding of electro-
magnetic theory to a basic level to allow the main subject matter of this book—
superconducting magnets—to be approached in as quantitative a manner as pos-
sible. After a presentation of Maxwell’s equations and simple solutions that are
not only tractable analytically but also useful in most magnet applications, several
specific cases familiar to most magnet engineers will be presented and studied.

2.2 Maxwell’s Equations

There are four basic Maxwell’s equations: 1) Gauss’s law; 2) Ampere’s law; 3)
Faraday’s law; and 4) the law of magnetic induction continuity. In addition to
these, we will make frequent use of the equations of charge conservation and other
constituent relations. Each equation is briefly discussed below.

In this book SI units are used almost exclusively. Electromagnetic quantities used
in this book are summarized in Table 2.1. There is a widespread practice in the
magnet community of interchanging magnetic field H and magnetic induction (or
magnetic flux density) B, expressing, for example, a magnetic field in the unit of
tesla [T]. Although the practice is usually harmless and causes no confusion, care
must be exercised, for example, when computing energy from an M vs H plot.

In SI units, the magnetic permeability of free space (µo ) is by definition 4 π ×
10 –7 H/m; the electric permittivity of free space, ∈o , is approximately 8.85 ×
10–12 C/m. Appendix I presents other important physical constants and selected
conversion factors from “common” non-SI units to SI units.

Current density is by far the dominant source of the fields associated with super-
conducting magnets. Thus, the relatively small time-varying field contribution
to the field is not included in our presentation of Maxwell’s equations.

Table 2.1: Electromagnetic Quantities

Symbol Name SI Units

E Electric field volt/meter [ V / m ]

H Magnetic field ampere/meter [A/m]

B Magnetic induction tesla [T]
(or magnetic flux density)

Jƒ Current density

ρc Charge density

ρe Electrical resistivity

ampere/(meter)² [A/m²]

coulomb/(meter)³ [C /m³ ]

ohm meter [Ω  m]

11
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2.2.1 Gauss’s Law

In integral form, Gauss’s law in free space is given by:

(2.1)

The surface integral of  field is equal to the total electric charge within the
volume enclosed by surface S. In differential form, Eq. 2.1 is given by:

(2.2)

Boundary Condition: At a surface with charge density σc [C/m 2], the disconti-
nuity in the normal component of electric field, from region 1  to region 2

 is given by σ c/εo:

(2.3)

The unit vector is normal to the surface and points from region 1 to region 2.

2.2.2 Ampere’s Law

In integral form, Ampere’s law is given by:

(2.4)

The equation states that the line integral of field is equal to the total “free”
electric current, i.e. not including magnetization currents, within the surface S
enclosed by contour C. In differential form, Eq. 2.4 is given by:

(2.5)

Note that Eqs. 2.4 and 2.5 do not include as a source of

Boundary Condition: In the presence of a surface with surface current density
[A/m], there will be a discontinuity in the tangential component of magnetic

field in passing through the surface from region 1 to region 2 given by:

(2.6)

2.2.3 Farady’s Law

In integral form, Faraday’s law is given by:

(2.7)

The equation states that the line integral of field is equal to the time rate
of change of the total magnetic flux over surface S enclosed by contour C. I n
differential form, Eq. 2.7 is given by:

(2.8)

Boundary Condition: The tangential component of field is always continuous
in passing through a surface from region 1 to region 2  Namely:

(2.9)
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2.2.4 Magnetic Induction Continuity

In integral form, magnetic induction continuity is given by:

(2.10)

-
or that there are no point sources of magnetic induction. In differential form,
Eq. 2.10 is given by:

(2.11)

The equation states that the surface integral of field enclosing a volume is zero,

(2.12)

Boundary Condition: The normal component of field is always continuous in
passing through a surface from region 1 to region 2 Namely:

2.2.5 Charge Conservation

The current density is related to the time rate of change of electric charge
density. In integral form, the relation is given by:

In differential form, Eq. 2.13 is given by:

(2.13)

(2.14)

2.2.6 Magnetization and Constituent Relation

In homogeneous, isotropic, time invariant media, magnetic induction  magnetic
field and magnetization by: are related

(2.15)

Note that is also given in units of A/m. Note also that in homogeneous,
isotropic, linear, time-invariant, “unsaturated” media, which we will always as-
sume in this book unless otherwise indicated,

In conductive materials such as metals, the presence of field induces a current
density in the metal. The constituent relation between  and is:

(2.16)

where ρ e  is the metal’s electrical resistivity. Equation 2.16 may be expressed as
which is one form of Ohm’s law.
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2.3 Quasi-Static Case

The electric field and magnetic induction are coupled through Faraday’s law
(Eq. 2.7 or 2.8). In metals in which is induced by according to Eq. 2.16,
a time-varying magnetic induction imposed on a conducting object can induce a
current in the object, which in turn can generate a magnetic field. In general, the
following complete set of field equations must be solved:

(2.17a)

(2.17b)

(2.17c)

The problem of solving
fied if a n d

the above equations for and can be greatly simpli-
coupled through Eqs. 2.17b and 2.17c, can be decoupled. Such

“quasi-static” cases exist in many important practical applications in which cou-
pled Maxwell’s equations can be solved in terms of sets of static equations. In
physical terms, if an induced magnetic field is negligible compared with the origi-
nal magnetic field, then the quasi-static approximation may be used. Thus, in the
zeroth-order approximation, we have:

(2.18c)

(2.18b)

(2.18a)

Note that here the zeroth-order E -field, can be solved independently of H-field
and once is determined, may be determined. (In the nonconducting case,

can also be solved independent of E-field.) In the 1st-order approximation, we
have:

(2.19a)

(2.19b)

(2.19c)

(2.19d)

The 1st-order E -field can still be determined independent of 1st-order H-field. In
the absence of the lst-order charge density, the zeroth-order B-field, which is
already known, becomes the sole source of

The approximation process can continue indefinitely, but for the “low-frequency”
cases of interest discussed in the Problem Section of this Chapter, we need to solve
for only the zeroth and 1st order fields.
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2.4 Poynting Vector

Poynting’s theorem may be expressed as:

(2.24)

15

(2.20)

where is the Poynting vector given by: p is the power dissipation
density and w is the energy density stored magnetically and electrically.

Equation 2.20 states that the negative of the divergence of the S-vector is equal
to p plus the rate of change of energy storage. In practice p is always positive.
If  is zero, then the stored electromagnetic energy within the volume decreases
to make up for dissipation taking place within it; if w is zero, then must flow
inward, i.e. into the volume, to sustain the power dissipation.

2.4.1 Sinusoidal Case

When dealing with a sinusoidally time-varying electric field of complex amplitude
 and a corresponding current density of complex amplitude  the time-

average dissipation power density <p> is expressed by:

(2.21)

where is the complex conjugate of 

In the sinusoidal case, the S-vector is given by:

(2.22a)

(2.22b)

where < P >, < W m >, and < W e > are, respectively, the total time-averaged
power dissipated, total time-averaged magnetic energy, and total time-averaged
electric energy, each computed over the system volume.

(2.23a)

(2.23b)

(2.23c)

The complex Poynting vector, expanded up to the 1st-order fields, is given by:
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2.5 Field Solutions from the Scalar Potentials

The static electric field, because its curl is zero (∇ × = 0 is a conservative field
and thus can always be given as the gradient of a scalar potential φ:

(2.25)

Thus ∇ · may be given by:

(2.26)

In the absence of charge density (ρc = 0), Eq. 2.2 reduces to:

(2.27)

Combining Eqs. 2.26 and 2.27, we obtain:

(2.28)

Equation 2.28, known as Laplace’s equation, expresses scalar potentials from which
physically realizable fields can be derived. Similarly, the magnetic field i n
the absence of free current (∇ × = 0 in linear media in which  is
derivable from the scalar potentials satisfying the Laplace’s equation. Selected so-
lutions of Laplace’s equation in two-dimensional cylindrical coordinates and three-
dimensional spherical coordinates are presented below.

2.5.1 Two-Dimensional Cylindrical Coordinates

For a two-dimensional potential in cylindrical coordinates, ∇2 φ is given by:

(2.29)

The standard technique to solve Eq. 2.29 is to express φ as the product of two
functions, each a function of only one of the two coordinates:

(2.30)

The solutions to Eq. 2.30 have the following general forms:

(2.31a )

(2.31b)
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Special Cases

n = 0: The simplest form of field derivable from f under this condition is one
whose spatial dependence is 1/r. Examples are the electric field due to a line
charge (λ  = 2π∈ o) and the magnetic field associated with a current filament
( I = 2π ). Thus with a potential we have: with
a potential we have:

n = 1: Both φ 1 = sin θ /r and φ 1 = cos θ/r are potentials associated with
two-dimensional electric or magnetic dipoles. Note that either form has a
singularity at the origin (r = 0); they are usually associated with dipole fields
that do not include the origin. The choice of sin θ or cos θ depends on field
orientation in the coordinate system. Also, the potentials and

are associated with uniform vector fields.

n = 2: The potentials and are associated with
two-dimensional quadrupole fields. The potential because of
the singularity at the origin, is valid for space outside the origin; the potential

is valid for space that includes the origin.

2.5.2 Spherical Coordinates

The solutions in spherical coordinates can also be expressed as the product of three
functions each involving only one of the three coordinates:

(2.32)

Functions R(r), Θ(θ), and Φ(ϕ) have the following solutions:

(2.33a)

(2.33b)

(2.33c)

known as the Legendre and Associated Legendre functions, are useful
for analyzing fields in the central zone of uniform-field solenoidal magnets. They
are tabulated in Tables 2.2 and 2.3.

Special Cases

n = m = 0: This case gives rise to the the simplest solution φ 0 = 1/r, which
results in, for example, the field of a point charge of magnitude 1/4π∈ o.

n = 1, m = 0: There are two solutions, φ 1 = cos θ /r ² and
results in a dipole field away from the origin, while results in a corresponding
dipole field near the origin.

In the Problem Section of this chapter we deal almost exclusively with two-
dimensional cylindrical dipole and quadrupole fields and spherical dipole fields.
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2.5.3 Del Operators

∇ operators in Cartesian, cylindrical, and spherical coordinates are given below:

(2.34)

(2.35)

(2.36)

(Cartesian)

(Cylindrical)

(Spherical)

Table 2.2: Legendre Functions

Table 2.3: Associated Legendre Functions

“It was absolutely marvelous working for Pauli. You could ask him any-
thing. There was no worry that he would think a particular question was
stupid, since he thought all questions were stupid.” —Victor F. Weisskopf
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Problem 2.1: Magnetized sphere in a uniform field

This problem deals with a magnetic sphere (µ > µ o ) exposed to a uniform external
magnetic field. Although there is no net force acting on the sphere (because the
background field is uniform) a field expression inside the sphere for the case
is still useful in estimating the force on a ferromagnetic object placed in the fringing
field generated by a magnet nearby. This force on an iron object due to the fringing
field of a magnet will be discussed in more detail in Problem 3.13, Chapter 3.

Figure 2.1 shows a magnetic sphere of radius R and permeability µ in a uniform
external magnetic field given by:

(2.37)

a)

b)

Show that expressions for the magnetic inductions outside and inside
the sphere are given by:

(2.38a)

(2.38b)

Consider the following three limiting cases:
make sure that the resulting expressions for the field in the sphere agree with
the ones you would expect on physical grounds.

Make a rough sketch of fields for each case, and

Fig. 2.1 Magnetized sphere in a uniform magnetic field.
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Solution to Problem 2.1

a) This problem is most easily solved using the concept of scalar potentials dis-
cussed in the introductory section of this chapter. Namely, the magnetic potential
φ is a scalar field such that:

(S1.1)

In linear media, magnetic field and magnetic induction are related by:

(S1.2)

The problem is divided into two regions, region 1 (r ≥ R ) and region 2 (r ≤ R ).
The appropriate potential for each region is given below:

(S1.3a)

(S1.3b)

Note that φ 1 → H0r cos θ for r → ∞, as required from Eq. 2.37, and φ 2 remains
finite at r = 0.

Using the ∇ operator for spherical coordinates given by Eq. 2.36, we can derive
in each region.

(S1.4a)

(S1.4b)

Boundary Conditions

1) At r = R, the tangential component of is continuous since there is no free
current present. This is equivalent to equating the potentials at r = R (φ1 = φ 2 );
hence:

(Sl.5)

2) At r = R, the normal component of is continuous:

From Eqs. S1.5 and S1.6, we can solve for the constants C and A:

(Sl.6)

(S1.7)

(S1.8)
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(S1.10b)

Solution to Problem 2.1

 and are thus:

(2.38a)

(2.38b)

Now let us consider the three special cases of µ / µo .

Case 1: µ /µo  = 0

With µ = 0 inserted into Eqs. 2.38a and 2.38b, we obtain:

(S1.9a)

(Sl.9b)

The sphere is like a superconductor; no magnetic flux density is allowed inside the
sphere—the Meissner effect. As discussed in the next problem where a supercon-
ducting cylinder is considered, a discontinuity in the θ component of the fields
at r = R requires a surface current (confined within a thin layer). Because this
current, once set up, must flow persistently, it implies that the sphere’s electrical
conductivity, like the superconductor’s, must be infinite. As discussed in Chapter
1, a perfectly diamagnetic material must at the same time be a perfect conductor;
that is, such a material is automatically a superconductor.

Case 2: µ /µo = 1

The problem reduces to the trivial case, equivalent to the absence of the sphere.

Case 3: µ / µ o = ∞

This is a case when the sphere is of ferromagnetic material such as iron. The
magnetic field is drawn into the sphere. With µ = ∞ inserted into Eqs. 2.38a and
2.38b, we obtain:

(S1.10a)

The important point to note is that the field within the ferromagnetic sphere
is 3 times that of the external field. (Note that if the sphere’s magnetization is
saturated, µ would no longer be ∞.)
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Solution to Problem 2.1

b) Field distributions for µ/µo = 0.1 and µ/µo = 100 are sketched below.

Fig. 2.2 Field distributions inside and near the sphere for two values of µ/µo . For
the case µ/µ o = 100, the spacing between field lines inside the sphere is
times denser than that far from the sphere; the ratio would be 2 for a cylinder.
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Problem 2.2: Type I superconducting rod in a uniform field

This problem deals with a Type I superconductor exhibiting the Meissner effect.
The field solution is interpreted in terms of the classical London theory of super-
conductivity.

Figure 2.3 shows an infinitely long lead rod of circular cross section (radius R)
subjected to a uniform external magnetic field perpendicular to its axis.

(2.39)

where µ oH0 = 0.06 T. Initially the rod is at 4.2K and in the presence of this
field it is in the normal state (H 0 > H c ). That is, the field given above is valid
everywhere including inside the rod. The rod is then gradually cooled until it
becomes superconducting.

a) Show that an expression for the field outside the superconducting rod
after transient effects of the field change have subsided, is given by:

(2.40)

b) Show that an expression for the surface current density, [A/m], flowing
within a penetration depth λ << R, is given by:

(2.41)

c) Convert the magnitude of the surface current density to that of current den-
sity, J ƒ [A/m²], and confirm that its numerical value is consistent with that
for lead derivable from London’s theory of superconductivity.

Fig. 2.3 Infinitely long, circular cross section superconducting
rod in a uniform magnetic field.
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Solution to Problem 2.2

a) The problem is divided into two regions, region 1 (r ≥ R ) and region 2
(r ≤ R ). Because we are dealing with a Type I superconductor,
when it is in the superconducting state. The field in region 1 is derivable from
appropriate potentials:

(S2.1)

Note that φ 1 → H or cos θ for r → ∞, as required.

Using the ∇ operator for cylindrical coordinates (Eq. 2.35), we can derive :

(S2.2)

Rearranging Eq. S2.3, we have:

The boundary condition requires that B r1 = B r 2 = 0 at r = R :

Solving Eq. S2.5 for A, we obtain:

The field outside the superconducting rod (region 1) is thus given by:

(S2.3)

(S2.4)

(S2.5)

(S2.6)

(2.40)

Note that at r = R, θ = 90°, = 2H 0, or the field amplitude is twice the
far-field amplitude.

b) Because of a discontinuity at r = R of 2 H 0 sin θ in the tangential compo-
nent of , there must be a surface current density flowing in the rod, as given
by Eq. 2.6. We thus have:

(2.41)



ELECTROMAGNETIC FIELDS 25

Solution to Problem 2.2

c) According to the London theory of superconductivity, discussed briefly in
Chapter 1, the critical current density Jc of Type I superconductors is given by
Jc = e n ev, where e is the electronic charge (1.6 × 10 –19 C), n e is the electron
density, and v is the speed of sound. n e is given by Eq. 1.4:

(1.4)

By inserting = 11.4 × 10³ kg/m³, N A = 6.02 × 1026 particle/kg-mole, and WA =
207.2 kg/kg-mole for lead, we have:

(S2.7)

Taking v = 1200m/s for lead, we obtain:

Jc = en ev (S2.8)

= (1.6 × 10 –19 C/electron)(6.62 × 1028 electron/m³)(1200m/s)

= 1.27 × 10 13 A/m²

The current density required in the above lead cylinder must be less than Jc . The
London theory also gives an expression (Eq. 1.3) for the penetration depth (λ) at
the superconductor’s surface within which superconducting current can flow. λ
and n e are related by:

(1.3)

With m = 9.1 × 10 –31 kg and appropriate values of e and n e inserted into Eq. 1.3,
we obtain:

(S2.9)

Because Kƒ = Jƒ λ:

(S2.10)

As required, Jƒ < Jc .
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Problem 2.3: Magnetic shielding with a spherical shell

This problem deals with the essence of passive magnetic shielding, an important
subject for MRI, maglev, and other systems where people and field-sensitive equip-
ment might be exposed to a fringing field. The U.S. Food and Drug Administration
limits the maximum fringing field in MRI systems to 5 gauss (0.5mT).

Within a spherical region of space, a uniform magnetic field, , is to be shielded:
(2.37)

For passive shielding, a spherical shell of o.d. 2R and wall thickness d/R << 1 of
highly permeable material (µ/µo >>  1) may be used, as shown in Fig. 2.4.

a) Treating the problem as one of a magnetic spherical shell in a uniform exter-
nal field, show that an expression for H ss /H0 , where H
of the magnetic field in the spherical space (r ≤ R – d ), is given by:

ss is the magnitude

(2.42)

b) Show that in the limits of µ/µo >> 1 and d/R << 1, the ratio Hss /H0 given by
Eq. 2.42 reduces to:

(2.43)

c ) Next, obtain Eq. 2.43 through a perturbation approach. First, solve the field
in the shell (R – d ≤ r ≤ R) with µ = ∞. Then use a perturbation approach
for the case µ/µo >> 1 and obtain Eq. 2.43.

d) In reality the magnetic flux in the shielding material must be kept below the
material’s saturation flux, µ oMsa . Show that an expression for d/R to keep
the shell unsaturated is given by:

(2.44)

e) Draw field lines for the case µ/µo >> 1.

Fig. 2.4 Spherical magnetic shell in uniform magnetic field.
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Solution to Problem 2.3

a) The problem is divided into three regions: region 1 (r ≥ R ), region 2 (the
shell), and region 3 (r ≤ R – d) . The appropriate potential for each region is given
below:

(S3.1a)

(S3.1b)

(S3.1c)

Note that φ1 → H0 r cos θ for r → ∞ and that φ3 remains finite as r → 0.

Using the ∇ operator in spherical coordinates, we obtain:

(S3.2a)

(S3.2b)

(S3.2c)

Boundary Conditions

1) At r = R, the tangential component of (H θ) is continuous: φ 1 = φ2 .

2) Similarly, at r = R – d, H θ is continuous: φ2 = φ3 .

3) At r = R, the normal component of ( Br) is continuous.

4) Similarly, at r = R – d, Br is continuous.

The above boundary conditions give rise to the following four equations:

(S3.3a)

(S3.3b)

Combining Eqs. S3.3a and S3.3b and eliminating C, we have:

(S3.3c)

(S3.3d)

(S3.4)



Combining Eqs. S3.4~S3.7 and expressing Hss in terms of H0, we obtain:
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Solution to Problem 2.3

From Eqs. S3.3b and S3.3d, we can obtain D in terms of H ss :

(S3.5)

Combining Eqs. S3.4 and S3.5, we have A/R3 in terms of Hss :

(S3.6)

From Eqs. S3.3c and S3.3d, we obtain:

(S3.7)

(2.42)

b) We may simplify Eq. 2.42 by dividing top and bottom by and applying
the limits µ/µo >> 1 and d/R << 1:

In the special case µd/µoR >>1, Eq. S3.9 reduces to:

(S3.8)

(S3.9)

(2.43)

c) The same result given by Eq. 2.43 for Hss /H 0 can be obtained directly by a
perturbation approach for the case µ/µo >> 1 and d/R <<  1.

We proceed by assuming that µ of the shell material is infinite. We then find
that the B lines enter and leave the shell at r = R only normally. That is,
has only a radial component at r = R because = 0 in the shell and H θ is
continuous at r = R. (This can be seen quite readily by noting that when µ = ∞ ,
C = D = E = 0.) From Eq. S 3.3a, A = – R3 H0 , and thus at r = R :

(S3.10)
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Solution to Problem 2.3

29

Fig. 2.5 Flux entering into the spherical shell over the surface bounded by ± θ.

The B lines stay inside the shell without “spilling” into region 3; that is, B inside
the shell has only a component. Let us now apply magnetic flux continuity, i.e.
∇ ⋅ = 0, and solve for when µ = ∞. Once is solved for this case, an
approximate expression for can be deduced for µ ≠ ∞ but µ/µo >>  1.

First, we calculate the total magnetic flux Φ entering into the shell over the surface
area bounded by ± θ (Fig. 2.5). This surface area, as indicated in the figure, is
given by a differential area (a ring of radius R sin θ times Rd θ ) integrated from 0
to θ. Thus, we have:

(S3.11)

This Φ must be equal to the total flux flowing in the θ-direction in the shell at θ.
Because the shell’s cross sectional area, A2, at θ is given by the shell thickness d
times the circumference of a ring of radius R sin θ, we have:

(S3.12)

We thus have:

(S3.13)
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Solution to Problem 2.3

Solving for B 2 from Eq. S3.13, we obtain:

(S3.14)

Note that is for µ = ∞; we can now deduce an approximate solution for
because the -component of must be continuous at r = R – d. Thus:

(S3.15)

Once H θ3 is known, we have a complete expression for :

(S3.16)

The ratio H ss /H 0 deduced from Eq. S3.16 agrees with that given by Eq. 2.43.
Note that in this perturbation approach the condition µd/µo R >> 1, required in
the step going from Eq. S3.9 to Eq. 2.43, is unnecessary.

d ) It is important to remember that d cannot be chosen arbitrarily small to
satisfy the condition d/R << 1. The preceeding analysis is valid, in fact, only when:

(S3.17)

In reality µ cannot be infinite and the shielding material will eventually saturate
as the external field increases. Hence, the maximum magnetic flux inside the shell,
which occurs at θ = 90°, must be less than the saturation flux µo Msa of the shell
material. Thus:

(S3.18)

Solving Eq. S3.18 for d/R, we obtain:

(2.44)

Table 2.4 presents approximate values of differential µ/µo , defined as
, in the µo H0 range 5˜1000 gauss (0.5˜100mT) and µoM sa for an-

nealed iron, as-cast iron, and as-cast steel. The data indicate that these materials
are useful for magnetic shielding in external magnetic inductions up to ~200 gauss.
The materials have µo Msa values, respectively, of 2.15, 1.65, and 2.05T.
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Solution to Problem 2.3

Table 2.4: Approximate Values* of (µ/µo)dif and µ o Msa

For Iron Materials

µo H0

[gauss] Annealed Iron As-Cast Iron As-Cast Steel

5 250 610 1130

10 60 305 565

20 40 155 180

50 20 60 50

100 15 30 25

200 10 15 10

500 3 7 2

1000 1+ 3 1+

µo M sa 2.15 T 1.65 T 2.03 T

* Derived from M vs H plots given in Permanent Magnet Manual
(General Electric Company, 1963).

e) Field lines for the case µ/µo = 100 are shown in Fig. 2.6.

Fig. 2.6 Field distribution through a spherical magnetic shell in a uniform field.
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Problem 2.4: Shielding with a cylindrical shell

Here is another problem of magnetic shielding, this time in the two-dimensional
case with a cylindrical shell of o.d. 2R and wall thickness d /R << 1 of highly per-
meable material (µ / µ o >> 1) in a uniform external magnetic field, Either the
spherical shell model considered in the previous problem or the cylindrical shell
model considered here is applicable in most practical cases requiring magnetic
shielding. Which model to use must be considered on a case-by-case basis. Prob-
lem 3.11, for example, studies a case involving magnetic shielding of a computer
exposed to a fringing field of a magnet located far from the computer; for this
case, the spherical shell model is used.

In 2-D cylindrical coordinates is given by:

(2.39)

As in Fig. 2.4, which is a 2-D plot of 3-D spherical coordinates, θ is measured from
the abscissa.

a) Using a perturbation technique similar to that studied in Problem 2.3, show
that in the limits of µ / µo >> 1 and d / R << 1, an expression for Hcs / H0 , where
H c s is the magnitude of a magnetic field in the cylindrical space (r ≤ R – d )
surrounded by the magnetic shell, is given by:

Show that an expression of d /R for magnetic material with a saturation
magnetization of Msa is given by:

As in the perturbation approach used in the spherical shell, the condition
µd / µo R >>1 is unnecessary to arrived at this equation.

(2.45)

b)

(2.46)

“… you don’t know which way is straight up and
which way is straight down.” —Ty Ty Walden
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Solution to Problem 2.4
a ) The problem is divided into three regions: region 1 (r ≥ R ), region 2 (shell),
and region 3 (r ≤ R – d ). The appropriate potential for each region is:

(S 4.1a)

( S4.1b)

( S 4.1 c)

We proceed by assuming that µ of the cylinder material is infinite. We then find
that, as in the previous problem, the B lines enter and leave the cylinder at r = R
only normally. Thus at r = R we have:

(S4.2)

B in the shell is θ -directed and because flux is continuous. For the case d /R << 1,
the flux continuity requirement may be expressed by:

Thus:

(S4.3)

(S4.4)

Once is known for µ = ∞ , we know for µ / µ o >> 1:

(S4.5)

Because Hθ is continuous across a surface of discontinuity in the absence of surface
current, the same H θ must exist in regions 2 and 3: Hθ 2 = H θ3 . We thus have, at
r = R – d :

From Eq. S 4.6, it follows that:

(S4.6)

(S4.7)

(2.45)

b) As in the spherical shell, the cylindrical shell cannot be arbitrarily thin; it
must be thick enough to keep it from saturating:

(S4.8)

From Eq. S 4.8, we obtain:

(2.46)
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Problem 2.5: The field far from a cluster of four dipoles

This problem considers the field far from a cluster of four dipoles arranged as
shown in Fig. 2.7. The center-to-center distance between two opposing dipoles is
2δd. Each “ideal” j th dipole of zero winding thickness, diameter 2rd , and overall
length ld can be modeled in the “far” field (rj >> ld ) as a spherical dipole, given
by:

(2.47)

where rj is measured from the dipole center and is defined such that the field
inside the winding points in the rj -direction when Figure 2.7 indicates the
direction of the field inside each dipole. Also defined in Fig. 2.7 are r-θ coordinates
and z-x coordinates common to all the dipoles. Note that for r >> δd , we have

and

Show that an approximate expression for the far field is
given by:

(2.48)

Neglect end effects of each dipole.

Fig. 2.7 Cross-sectional view of the four-dipole arrangement. The arrow in
each dipole indicates the field direction inside the winding.
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Solution to Problem 2.5

For r >> δ d , rj of each dipole may be given in terms of r and θ:

(S5.1a)

(S5.1b)

(S5.1c)

( S5.1d)

Inserting Eq. S5.1 into Eq. 2.47 for each dipole with expressed in terms of θ,
we have:

( S5.2a)

(S5.2b)

(S5.2c)

(S5.2d)

For r >> δd the denominator of each term may be expanded to the term containing
δd / r (first order). Thus Eq. S5.2 may be written as:

(S5.3a)

(S5.3b)

(S5.3c)

(S5.3d)

Combining each field given by Eq. S5.3, we obtain:

(2.48)

Note that decreases ∝ 1 /r 4 rather than ∝ 1 /r 3 , as would be the case with a
single dipole.
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Problem 2.6: Induction heating of a cylindrical shell

This problem deal with induction heating in a metallic (nonsuperconducting) cylin-
drical shell. It is a good example of a case involving sinusoidal electromagnetic
fields, power flow (Poynting vector), and power dissipation. This and the next
problem are the first examples of an AC loss, specifically an eddy-current loss,
to be discussed further in Chapter 7. Although induction heating is widely used
in electric furnaces to achieve high temperatures in conducting materials, it is
sometimes used as a research tool in the study of the thermal behavior of super-
conducting windings. In superconducting magnet technology research, induction
heating is most often used in the form of pulse fields to simulate transient distur-
bances that create small normal regions in otherwise superconducting windings.

Figure 2.8 shows a “long” metallic cylindrical shell of resistivity ρe , of o.d. 2R,
and of thickness d << R, placed in a sinusoidally time-varying magnetic field, which
is within zeroth order, uniform and z-directed. Namely:

(2.49)

where H 0 is a complex (real and imaginary parts) field amplitude.

We shall approach this problem first (Part 1) by solving for the appropriate fields
by two methods and then (Part 2) solving for power dissipation in the cylinder by
two methods.

Fig. 2.8 Cylindrical metallic shell in a uniform sinusoidally
time-varying magnetic field.
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Problem 2.6: Induction heating—Part 1 (Field)

First, we shall solve appropriate fields using two methods, described below.

Method 1

a)

b)

c )

Using the integral form of Maxwell’s equations and neglecting end effects,
show that expressions for the first-order electric field, , in the region r ≤ R
and the first-order current density, , in the shell (r R) are given by:

(2.50)

(2.51)

Show that the resulting first-order magnetic field, , in the region r   R–d≤
can be expressed by:

(2.52)

Equations 2.50~2.52, derived using the quasi-static approximation, are valid
only in the “low” frequency limit, or frequencies less than the “skin-depth”
frequency, ƒsk . Show that an expression for the skin-depth frequency is given
by:

(2.53)

Method 2

, and , derived by Method 1, each increasing with ω, are valid only for
frequencies well below ƒsk . We now demonstrate a new technique that enables us
to derive the total field, , in the bore, valid for the entire range
of frequency. is the total net field, is the original field, is the reaction
field of the system in the bore. In this approach, first find the reaction field
in the bore by treating as a zeroth order field and solve for
as the usual 1st order magnetic field response.

d) Show that expressions for , and in the shell valid for d « R are:

(2.54)

(2.55)

(2.56)
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Solution to Problem 2.6—Part 1

a) From symmetry in the θ-direction, and are constant in the θ-direction
and only θ-directed. Thus:

(S6.1)

For r ≤ R ,

(S6.2)

(S6.3)

Thus:

The 1st order current flows only in the shell, and for d / R« 1 :

(2.50)

(2.51)

Also for d « R , we may treat current as the 1st order surface current , by
multiplying with d:

(S6.4)

b) For r > R , = 0. The discontinuity in at r = R , from Eq. 2.6, is given
by . That is:

Solving Eq. S 6.5 for (r ≤ R – d ) with d « R , we have:

(S6.5)

(2.52)
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Solution to Problem 2.6—Part 1

c) Equations 2.51, S6.4, and 2.52 show that , and all increase mono-
tonically with frequency; this cannot be valid for the entire range of ω. Clearly
these solutions are valid only in the “low” frequency limit, which is what the
quasi-static approximation is based on. More precisely, Eq. 2.52 for is valid
only when

(S6.6)

From Eq. S6.6, we can obtain the frequency limit, ƒsk , below which the above
solutions are valid:

(2.53)

d) In the second approach for computing the shell’s reaction field, we have ≡
, and substitute for in the expression for given in Eq. 2.52:

Solving Eq. S6.7 for , we obtain:

(S6.7)

(2.54)

Combining Eq. 2.54 and , we have:

(2.55)

and are related by ∇ × , which, for , reduces to:

(S6.8)

(2.56)

Note that in the low frequency limit, given by Eq. 2.54 reduces, as expected,
to given by Eq. 2.52. In the high frequency limit, reduces, also as expected,
to – and becomes 0. Similar comments may be made for



4 0 C H A P T E R 2

Problem 2.6: Induction heating—Part 2 (Power Dissipation)

Now, we can solve for power dissipation in the cylinder; two methods are used.

Method 1

e) We may calculate the resistive power dissipated in the cylindrical shell by
directly computing , where is given by Eq. 2.56.
Show that an expression for the time-averaged total power (per unit length)
dissipated in the shell, < P >, for d « R is given by:

(2.57)

Method 2

The same complex power supplied to the cylinder may also be viewed as a flow of
complex power flux entering the cylinder at r = R from a source located at r > R.

f ) Show that an expression for the surface integral (per unit cylinder length)
of the first-order complex Poynting vector entering into the cylinder at
r = R is given by:

g)

h)

i)

j)

(2.58)

Note that E1θ = ρe  Jθ, where Jθ is given by Eq. 2.56.

Take the real part of the right-hand side on Eq. 2.58 and show that it is
identical to the expression for < P > given by Eq. 2.57.

Plot < P > as a function of ρe . Because both a perfect conductor, i.e. ρe = 0,
and a perfect insulator, i.e. ρe = ∞ , obviously do not dissipate power, your
< P > vs ρe plot should start with < P > = 0 and < P > →  0 as ρe → ∞.
< P > given by Eq. 2.57 indeed indicates this behavior.

The behavior of the < P > vs ρe plot described above suggests the existence
of a critical resistivity, ρe , at which < P > is maximum. Show that ρc e c is
given by:

(2.59)

Compute ρe c for a copper tube 10-mm radius (R), 0.5-mm wall thickness
(d), and ρe = 2 × 10 –10 Ωm. This resistivity corresponds roughly to copper’s
resistivity at liquid helium temperatures.
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Solution to Problem 2.6—Part 2

e) In the sinusoidal case, the time-averaged total power (per unit length), < p >,
is given by , where is the complex current density (Eq. 2.56).
We thus have:

(S6.9)

The time-averaged total power (per unit length) dissipated in the shell, < P >, is
given by multiplying < p > with the cross sectional area of the shell:

(2.57)

We now examine two limits of ρe:

(perfect conductor) (S6.10a)

(perfect insulator) (S6.10b)

Note that in both limits, < P > → 0, as expected.

f) The complex Poynting vector, , expanded to the first order fields, is:

(S6.11)

In this particular case, we have = 0; thus Eq. S6.11 simplifies to:

(S6.12)

where from Eq. 2.56, is given by:

We thus have:

(S6.13)

(2.58)
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Solution to Problem 2.6—Part 2

g) The real part of Eq. 2.58 is given by:

(S6.14)

<P> derived by Method 2 (Eq. S6.14) is identical to Eq. 2.57 (Method 1).

h ) Figure 2.9 shows a plot of < P > vS ρe .

i) We differentiate < P > with respect to ρe and set that equal to 0 at ρec
:

(S6.15)

Solving Eq. 56.15 for ρe c , we have:

(2.59)

Equation 2.59 is important in induction heating. A uniform, sinusoidally time-
varying magnetic field is applied to a conducting sample to heat it by eddy currents.
For a given material resistivity and sample dimensions, the critical frequency,
derivable from Eq. 2.59 and identical to fsk , is selected to maximize the heating.

j) For a copper cylinder of R = 1 cm, d = 0.5mm, ρe = 2 × 10–10 Ω m (corre-
sponding to copper’s resistivity at ~4K), we obtain:

(2.53)

Another way of interpreting ƒs k is, as discussed earlier, that the induced magnetic
field is negligible compared with for ƒ << ƒsk .

Fig. 2.9 Power dissipation vs resistivity for induction heated cylindrical shell.
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Problem 2.7: Eddy-current loss in a metallic strip

4 3

In this problem an expression for eddy-current loss in a metallic strip subjected
to a time-varying magnetic field is derived. It is useful in computing eddy-current
heating in copper matrix superconductor strips. (When induced-current heating
is beneficial, it is usually called induction heating; when it is not, it is often called
eddy-current loss.)

One relevant example where eddy-current heating is a nuisance as a source of
extraneous heat is in high-field, low-temperature (millikelvin range) experiments.
A typical 20-T Bitter magnet at the FBNML contains an 84-Hz ripple field of an
amplitude of ~2mT; eddy currents induced in a test sample by the ripple fields
could prevent it from reaching temperatures below ~100 mK. For these millikelvin
experiments, ripple fields need to be less than ~0.2mT.

Figure 2.10 shows a “long” (in the x-direction) metallic strip of electrical resistivity
ρe, width b (in the y-direction), and thickness a (in the z-direction) placed in a
time-varying external magnetic induction, , which is, within zeroth
order, uniform and z-directed.

a) Show that the 1st order electric field, , can be expressed by:

(2.60)

b) Show that the spatially-averaged power dissipation density (over the unit
strip volume) can be expressed by:

(2.61)

c) When the external magnetic induction is sinusoidally varying in time with
radial frequency ω, B (t) = B 0 sin ωt, show that an expression for the time-
averaged < >, is given by:

(2.62)

Fig. 2.10 Metallic strip in a time-varying magnetic field.



a) Because the system is independent of x and is uniform, points only in
the x-direction and depends only on y. That is, reduces to:

(S7.1)

(2.60)

b) The local power density dissipated in the strip, p(y), is given by . The
total power dissipation (per unit strip length), P, is thus given by integrating p ( y )
over the strip width:

Solution to Problem 2.7

From symmetry, E1 x(y = 0) = 0, and we have from Eq. S7.1:

(S7.2)

Equation S7.2 is valid for “reasonably” slow variation of B0 and “reasonably”
resistive materials. That is, it is valid only when the induced (1st order) magnetic
induction generated by is small compared with B0 .

The spatially-averaged dissipation density, , is P (given by Eq. S7.2) divided by
the strip cross section:

(2.61)

c) Under sinusoidal excitations the time-averaged total power dissipation density,
<p>, is given by:

(S7.3)

With E1 x = jωyB > now averaged spatially over the0 and and <p
strip volume, we have:

(2.62)

Note that and < > are proportional, respectively, to (b 0 )² and (bωB0 )²,
i.e. both depend not only on the square of time rate of change of magnetic induction
but also on the square of conductor width.

Lamina t ion  to  Reduce  Eddy -Curren t  Loss

Suppose the strip is cut into two strips, each having a total width of b/2. Then
from Eq. 2.61 we see that both and the total power dissipation (over the two
narrow strips) will be 1/4 and 1/2 the original values, respectively. Thus, it is
possible to reduce eddy-current power dissipation to an arbitrarily small value by
dividing a conducting strip into many narrow strips. This lamination technique
is used most widely in transformers where iron yokes are made up of many iron
sheets. Similarly, as we shall see in Chapter 5, superconductors also benefit from
subdivision, leading to the universal use of multifilamentary conductors.
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CHAPTER 3
MAGNETS, FIELDS, AND FORCES

3 . 1 Introduction

In this chapter we study magnets, fields, and forces. Magnets discussed in this
chapter, all in the Problem Section, include: 1) solenoid; 2) Helmholtz coil; 3) ideal
dipole; 4) ideal quadrupole; 5) racetrack; and 6) ideal torus. The two important
solenoidal magnets for generation of high magnetic fields (Bitter and hybrid) are
also described in the Problem Section.

At the present time, field and force computations are generally performed with
computer codes that, for a given magnet configuration, give accurate numerical
solutions at any location. If the magnet is composed of separate coils, these codes
can also compute the inductance matrix and forces between the coils [3.1]. An-
alytical approaches derived in the Problem Section can give field values only at
restricted locations, usually at the magnet center; however, they elucidate subtle
relationships among fields, forces, and magnet parameters.

In this introductory section, we shall present the law of Biot and Savart and apply
it to derive a simple expression for the magnetic field of a current-carrying loop.
The expression is useful for solving field problems in solenoidal magnets. Using a
long solenoid, we also introduce the concepts of magnetic force and pressure.

3 . 2 Law of Biot and Savart

The differential magnetic field produced at point P by a differential current
element I located at point O, a distance r away from P, is given by:

(3.1)

Equation 3.1 is known as the law of Biot and Savart. It indicates that the magni-
tude of at any location decreases inversely as the square of the distance from
the differential current element: . At a fixed radius, varies as
sin θ, where θ is the angle between the and vectors, with θ = 0 defined when
the two vectors point in the same direction. Most field computation codes are
based on Eq. 3.1. We apply Eq. 3.1 to derive an expression for the central ( r = 0)
field as a function of axial (z) position created by a loop of radius a located at
z = 0 and carrying current I, as illustrated in Fig. 3.1. The loop’s axis defines the
z axis; θ, measured from the z = 0 plane, is defined in Fig. 3.1.

As seen from Fig. 3.1, the r-component of (H r ) at each axial (z) location cancels,
leaving only the z-component, Hz . For this particular case, the (Ι × ρ) term in
Eq. 3.1 simplifies to I(2πa)r sin θ, leading to:

(3.2)
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3 . 3 Lorentz Force and Magnetic  Pressure

In the presence of magnetic induction an electric charge q in motion with
velocity is acted on by a force called the Lorentz force: . For
a conductor element carrying current density in the presence of the Lorentz
force density, , is given by:

Equation 3.3 is one of the most useful expressions for field computation. It can be
used to derive an expression for the Hz -component along the axis of a solenoid of
arbitrary winding cross section having current distributions that are invariant in
the θ-direction. Problems 3.1 and 3.2 are good examples.

(3.4)

Equation 3.4 is the basic expression for computing magnetic forces and stresses
in magnets. As stated at the beginning of Chapter 1, whether superconducting
and operating at 4.2K or 77K, or resistive and operating at room temperature,
magnets producing the same field must deal with essentially the same stress level;
its ultimate field is dictated by the strengths of its structural elements that include
the current-carrying conductor. Thus a 50-T superconducting magnet—if it is
ever to be built—and a 50-T resistive magnet must both withstand tremendous
Lorentz stresses. As illustrated below, a 50-T magnetic induction corresponds to
an equivalent magnetic pressure of 10 GPa (10,000 atm).

Let us consider an infinitely long, “thin-walled” solenoid (thicknessδ) of an average
diameter 2a carrying a uniformly distributed current, approximated by the surface
current density Kθ [A/m]. The B z -component of magnetic induction at the center
(0, 0) is given by a modified expression of Eq. 3.3:
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Fig. 3.1 Loop of radius a carrying current I.

With sin θ = a/r and r² = a² + z ², Eq. 3.2 becomes:

(3.3)
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(3.5)

The integration is taken over the entire range of z because of the presence of
current “rings” that extend from z = –∞ to z = ∞ . The application of Ampere’s
law gives that for this infinitely long solenoid, outside the solenoid (r > a ) is
zero and that within the solenoid bore (r < a ) is B o , uniform in both z- and
r-directions. (From symmetry of current distribution, the field is also uniform
in the θ -direction. Also note that Eq. 3.3 is valid only for such cases.) That is,
the magnetic induction within the bore of an infinitely long solenoid is completely
uniform and directed only in the z-direction.

The B z  field just inside the winding is B o and that just outside the winding is
zero, decreasing linearly with r over the winding thickness δ . The average induction
acting on the current element in the winding, is thus B o /2, resulting in an
r -directed average Lorentz force density acting on the winding given by:

(3.6)

An r-directed Lorentz force, acting on the winding volume element, defined
in Fig. 3.2, is equivalent to a magnetic pressure, acting on the winding
surface element, also defined in Fig. 3.2. Thus:

(3.7)

Combining Eqs. 3.6 and 3.7 and solving for pm , we obtain:

That is, the magnetic pressure is equivalent to magnetic energy density. For B o

equal to 1 T, Eq. 3.8 gives a magnetic pressure of 3.98 × 10 5  Pa or ~4atm, from
which it follows that for B

(3.8)

o = 50 T, a magnetic pressure of ~10 GPa is reached.

Fig. 3.2 Top view of a differential element for a “thin-walled” solenoid (thickness δ) of
an average diameter 2a. The element is ∆ z high in the z -direction (out of the paper).
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Problem  3.1: Uniform-current-density solenoids

This problem deals with the axial field generated at the midplane of a uniform-
current-density solenoid of winding i.d. 2a1 , winding o.d. 2a2 , and total winding
length 2b Figure 3.3 defines the winding cross section and important parameters.
The differential magnetic field at the center, d Hz (0, 0), generated by a current-
carrying ring of differential cross section dA located at (r, z) is given by a modified
form of Eq. 3.3:

(3.9)

where λJ is the overall current density within the differential cross section. λ ,
called the space factor, acknowledges that not all the winding cross section is
occupied by current-carrying conductors. Note that λJ in this model is uniform
over the winding cross section.

a) By integrating Eq. 3.9 from r = a 1  to r = a 2  and from z = –b to z = b ,
show that an expression for H z (0, 0) for the solenoid is given by:

(3.10)

(3.11)

where α = a2 /a 1  and β = b /a 1 . F(α , β) is the “field factor” for a uniform-
current-density coil [3.2].

Fig. 3.3 Cross section of a uniform-current-density solenoid.
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Problem 3.1: Uniform-current-density solenoids

b)

c)

d)

e)

f )

By substituting N I /[2b (a 2 – a 1)]—the total ampere-turns (N is the total
number of turns and I is the current) divided by the solenoid overall cross
section—for λ J, we can also express H z (0, 0) by:

(3.12)

Equation 3.12 states that for a given set of α and β, Hz (0, 0) is proportional
to NI and inversely proportional to a1 .

"Filamentary” Ring Simplify Eq. 3.12 for a “filamentary” ring of radius
a 1 carrying total current NI and reduce it to:

(3.13)

"Long” Solenoid: Simplify Eq. 3.12 for the case of a solenoid that is much
longer than its winding thickness and reduce it to:

(3.14)

Equation 3.14 is essentially equivalent to Eq. 3.5, because NI /2b = K θ .

"Pancake” Coil: Simplify Eq. 3.12 this time for the case of a winding that
is very short compared with its winding thickness and reduce it to:

(3.15)

Equation 3.15 is valid for a “pancake” coil. More about pancake coils later.

Field vs Power: If the solenoid is layer-wound with copper conductor
(resistivity ρc u ), it will dissipate Joule heating power, P. Because the current
density J is constant through the solenoid, P may be given simply by: P =
ρ c u J

2  × <total conductor volume>. Expressed in terms of ρ cu  J2  and solenoid
parameters, a 1 , α, and β, show that P may be given by:

(3.16)

Combining Eqs. 3.10, 3.11, and 3.16, show that an expression for the central
magnetic field H z (0, 0) in a resistive solenoid is given by:

(3.17)

(3.18)

G (α , β ) is known as the G factor for a uniform-current-density coil [3.2].
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Solution to Problem 3.1

a) By integrating Eq. 3.9 over the appropriate limits for z– and r -coordinates,
we have:

From Eqs. S1.1 and S1.2, we have:

(S1.1)

(S1.2)

(S1.3)

By defining a2 /a 1  = α and b/a 1  = β, we can express Eq. S1.3 as:

(S1.4)

(3.10)

b) We shall first take the limit as β → 0 for the quantity within the log:

(3.11)

(S1.5)

Next, we let α = 1 + ∈: α → 1, ∈ → 0, and ln(1 + ∈) → ∈ = α – 1. Hence,
ln α → α – 1 as α → 1. We thus have:
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Solution to Problem 3.1

(3.13)

Note that Eq. 3.13 is equivalent to a simple expression for the central field of a
ring of radius a1  carrying a total current NI. Note also that Eq. 3.13 is equivalent
to Eq. 3.3 with z = 0 and a and I replaced respectively with a 1 and N I .

c) We take another limit for which β >> α:

Again, using the approximation ln(1 + x) x for x « 1, we have:

We thus obtain:

(S1.6)

(S1.7)

(3.14)

Note that Eq. 3.14 is a simple expression for the field inside a “long” solenoid of
length 2b carrying a total current of NI. As remarked in the problem statement,
NI/2b may be considered as ampere-turns per unit coil length or surface current
density K θ (Eq. 3.5).

d ) For a “pancake” coil, an appropriate limit is β → 0:

(S1.8)

(3.15)

Note that the central field of a pancake coil is equal to that of a “ring” coil times
a factor ln α /(α – 1); as α → 1, Eq. 3.15 reduces to Eq. 3.13.
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Solution to Problem 3.1

e ) Total conductor volume is equal to λ × <winding volume>. Winding volume
is given by:

( S1.9)

And thus:

where J is current density in conductor only.

f) From Eq. 3.16, we can solve for J in terms of P and other parameters:

(3.16)

Combining Eqs. 3.10, 3.11, and S1.10, we get:

(S l.10)

(3.17)

with

(3.18)

Note that Eq. 3.17 implies that in resistive solenoids the required power P in-
creases, with α and β constant, quadratically with the central magnetic field:

( S1.11)

A field efficiency (ηƒ) may be defined as and from Eq. S1.11, we
have:

(S1.12)

Note that ηƒ is proportional to λ and G²(α, β), and is inversely proportional to
ρcu and a1 . A further discussion of ηƒ follows Problem 3.2.
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Bitter Magnet

Although this book deals superconducting magnets, here we shall devote one prob-
lem to the resistive magnet, specifically the Bitter magnet. We may call the
development of iron-free electromagnets that Francis Bitter initiated at MIT in
the 1930s as the basis for modern magnet technology. Bitter successfully built
and operated the first 10-T Bitter magnet (1.7 MW), having a room-temperature
magnet-bore of 50mm, in the period 1937~38. His design employed a conductor
in the form of a stack of annular plates, each separated by a thin sheet of insula-
tion except over a segment. The bare segment makes pressure contact to the next
plate’s bare segment. Each plate, punched with hundreds of cooling holes, has a
radial slit (Fig. 3.4). The slit forces the current to commutate from one plate to
the next in a helical path as it flows from one end of the stack to the other. These
plates with cooling holes are called Bitter plates. (Plates with etched radial cool-
ing channels are also called Bitter plates.) To produce the required field, tens of
thousands of amperes of current are pushed through the electrically resistive stack,
consuming megawatts of electrical power, which the stack converts into heat. This
heat is removed by water forced through the cooling holes at high velocity.

A key feature of the Bitter magnet construction is that it is modular, consisting of
many similar plates. Plate thickness, mechanical properties, and electrical prop-
erties can be adjusted along the axial position to optimize magnet performance.

Fig. 3.4 Silhouette of two nested Bitter plates. The shape and distribution
of cooling holes of these plates have been modified by R. J. Weggel from those
of Bitter’s original design. The outer plate’s o.d. is 211 mm.
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Problem 3.2: Bitter magnet

As evident from results of Problem 3.1, the smaller the inner winding radius, a1 ,
the higher is the field at the bore, Hz(0,0), for a given total ampere turn, NI. This
can be seen readily from a simple expression such as Eq. 3.13. Another advantage
of smaller a1 is that for the same power consumption, P, higher Hz (0,0) is gener-
ated, as seen from Eq. 3.17. What these results point to is that for production of
highest field for a given power, it is obviously best to place ampere-turns closest
to the magnet bore. Since in practice, they cannot all be placed at the inner-
most winding radius, they must be distributed over the winding volume. As we
shall study here, in Bitter magnets more ampere-turns are placed in the innermost
winding radius than in uniform-current-density magnet, making Bitter magnet de-
sign superior to uniform-current-density magnet design. Additional comments on
current distributions are presented in p. 57.

a) Show that, ignoring the effect of the cooling holes, the current density in
each plate in the θ -direction, J θ , is inversely proportional to r:

(3.19)

where and V B  is the voltage across the slit.

b) Starting from Eq. 3.9 of Problem 3.1, show that the axial field at the coil
center in the Bitter magnet, [Hz (0,0)] B , is given by:

(3.20)

(3.21)

c) By deriving first an expression for the power PB for Bitter coils similar
to Eq. 3.16 for uniform-current-density solenoids, show that expressions for
[Hz (0,0)] B and [G(α, β)] B for the Bitter magnet are given by:

(3.22)

(3.23)

d) Using Eqs. 3.22 and 3.23, compute the power required to generate a central
magnetic induction of 20 T in a Bitter magnet having 2a1  = 6 cm, 2a2  =
40 cm, 2 b = 22 cm, λ cm. (The power computedB = 0.8, and ρcu = 2×10–6 Ω
here is typical of the 20-T Bitter magnets operated at the FBNML. Note that
your answer should be less than the FBNML’s power capacity of 9MW.)
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Solution to Problem 3.2

a) Consider a single disk, in which current, by geometry, is constrained to flow
in the θ-direction. The resulting E field gives potential VB that varies with θ only:

(S2.1)

Because is only θ-directed (Eθ) and it is constant at a given r, we have, from
Eq. S2.1:

(S2.2)

That is, E θ varies as ∝ 1/ r. Noting that , we have:

(S2.3)

Defining we can express Eq. S2.3:

(3.19)

b) Equation 3.9 may be integrated over appropriate limits:

From a Table of Integrals, we have:

Therefore:

(S2.5)

(S2.6)

(S2.7)

(S2.4)

We may express Eq. S2.7 as:

(3.20)

(3.21)

Note that there is a subtle difference between Eqs. 3.11 and 3.21.
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Solution to Problem 3.2

c ) Here, power density varies as ∝ 1/ r ² and it must be integrated over
the entire winding volume:

From Eq. S 2.8, we obtain:

(S 2.8)

Combining Eqs. 3.20, 3.21, and S2.9, we have:

(S2 . 9 )

(3.22)

(3.23)

As in uniform-current-density solenoids, [H z (0,0)] B increases as the square root
of P B ; P B is a quadratic function of field. The maximum of [G(α, β)] B occurs
when α  6.4 and β 2.1: [G (6.4,2.1)]B 0.17. [G(α, β)]B stays within 99%
of its peak value for 5 ≤ α ≤ 8 and 1.8 ≤ β ≤ 2.3. That is, PB for a given
field is minimal, and roughly constant within this range of α and β . However,
because field homogeneity for a given value of a 1 improves with 2b or β , most of
Bitter magnets used at FBNML have β values greater than 2.3 as in the magnet
considered in d) below.

d) We have: α = (2a 2 /2a1 ) = 40/6 = 6.67; β = (2b /2a1 ) = 22/6 = 3.67. Thus:

We have an expression of PB, similar to Eq. S1.11, in terms of [ Hz (0,0)] B and
other parameters:

(S2.10)

This power requirement is roughly equal to that needed for a typical 20-T Bitter
magnet.
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Additional Comments on Water-Cooled Magnets

One important parameter in water-cooled magnets is field efficiency, defined as
the square of the field at the magnet center divided by the total power input to
the magnet: [Hz (0,0)]²B / PB . As with η f (Eq. S 1.12, p. 52) for uniform-current-
density magnets, the field efficiency for Bitter magnets is proportional to λ B and
[G (α , β )]²B and inversely proportional to a 1 and conductor resistivity ρcu .

Current Density Distributions

We have considered two current density distributions so far: 1) uniform or J(r , z ) =
Jo and 2) Bitter or J (r, z ) α 1/r. The uniform distribution means J is independent
of r or z. Superconducting magnets wound with “graded” conductors have J (r)
that changes with r in discrete steps. Those consisting of many nested coils, each
of which is wound with a different conductor, also have J (r) distributions that
change in discrete steps.

We describe here three other current distributions of interest for water-cooled
magnets [3.3].

Kelvin Coil : The current density that gives the best field efficiency is known as
the Kelvin distribution, J k (r , z):

(3.24)

Its unique feature is that every portion of the Kelvin coil produces the same field
per unit power. In comparison with a Kelvin coil, a uniform-current-density coil
for the same total power produces 66% of field at the magnet center; for a Bitter
coil, the efficiency is 79%. In practice it is not possible to fabricate coils having
the Kelvin current density.

Gaume : The Gaume distribution, JG (r, z ), also gives a good field efficiency:

(3.25)

The Gaume coils make each turn produce the same field per unit power as every
other turn. A Gaume coil produces 89% of the field of a Kelvin coil. The current
distribution of Bitter coils designed and built at the FBNML approximates to a
degree the Gaume distribution. This is achieved by using thicker Bitter plates
axially away from the magnet midplane: JB (r, z ) α 1 /r (z + z o ).

Polyhelix : A polyhelix coil consists of many nested single-layer coils, in which
the current density of each layer is adjusted to maximize the field efficiency and/or
to match the stress in each layer to its conductor strength:

(3.26)

A polyhelix coil is 92% as efficient as a Kelvin coil. In practice, because of the
need to have many electrodes at both ends, polyhelix coils are considered more
difficult to manufacture than Bitter coils.
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Hybrid Magnet

The hybrid magnet was conceived in the late 1960s by Montgomery and others as
a means to achieve DC fields higher than ~25T, the limit of Bitter magnets at
the FBNML [3.4]. The name hybrid is used to denote a magnet system combining
both a water-cooled magnet and a superconducting magnet. Figure 3.5 shows a
drawing of Hybrid III, a 35-T system at FBNML. Hybrid III follows a series of
hybrids built at FBNML since the early 1970s [3.5~3.8]. There are three other
active 30-plus tesla hybrid systems elsewhere: Tohoku University in Sendai, Japan
[3.9]; the High Field Magnet Laboratory, Nijmegen, The Netherlands [3.6,3.10];
and the High Magnetic Field Laboratory in Grenoble, France [3.11]. In addition,
a 40-T hybrid at the National Research Institute for Metals in Tsukuba, Japan
[3.12] begins operation in 1995 and a 45-T hybrid is under construction at the
National High Magnetic Field Laboratory (NHMFL), Tallahassee, Florida [3.13].

The Hybrid III’s footprint occupies a 4-m² area and its overall height, excluding
service chimneys, is ~3m. The water-cooled insert (the two inner coils in Fig. 3.5)
resides in the room-temperature bore of the cryostat that houses the supercon-
ducting magnet (two outer coils). The 9-MW power access to the insert is from
below, while the 5000-liter/min cooling water access is at both top and bottom.

Fig. 3.5 Drawing of Hybrid III cross section.



M AGNETS, F IELDS, AND F O R C E S 59

Parameters of Hybrid III Superconducting Magnet (SCM)

Because Hybrid III’s superconducting magnet (SCM) is used as a vehicle to discuss
important issues of cryogenics in Chapter 4, of stability in Chapter 6, of dissipation
in Chapter 7, and of protection in Chapter 8, its basic parameters are presented
here. Specific problems will present other relevant parameters.

The Hybrid III SCM is comprised of two sections, an inner coil wound with two
grades of Nb 3Sn conductor and an outer wound with two grades of Nb-Ti conduc-
tor. In both coils the grading is between a high-field (HF) conductor inside and a
low-field (LF) conductor outside. The coils are housed in a single cryostat and, at a
nominal temperature of 1.8 K, generate a field of 12.3 T at the magnet center with
an operating current Iop of 2100A. Table 3.1 gives coil parameters. (For the reader
unfamiliar with these conductors, articles by Suenaga [3.14] and Larbalestier [3.15]
and a treatise on titanium alloys by Collings [3.16] are recommended.)

The Nb3 Sn coil is layer wound and contains a total of 18 layers. The first 8 layers
of the HF conductor were wound with a single piece of conductor. At the end of
the coil between layers 8 and 9, the HF conductor was spliced to the LF conductor.
Between layers 14 and 15, the LF conductor was spliced again because the low-field
conductor was not obtainable as a single length.

The Nb-Ti coil is an assembly of 32 “double pancakes.” A double pancake is wound
flat, consisting of a continuous piece of conductor that spirals in from the outside
of one pancake and then spirals back out in the other. The transition turn at
the inside diameter is managed without any space-consuming splicing or possible
loss of strength. Figure 3.6 presents a pictorial view of a double-pancake coil. As
stated above, each double pancake in the Nb-Ti coil contains two grades of Nb-Ti
conductor, a splice occurring at a diameter of 756mm (Table 3.1). Problem 7.9 in
Chapter 7 examines Joule dissipation generated in the splices in the Nb-Ti coil.

Table 3.1: Hybrid III SCM Parameters

Parameter Nb 3 Sn Nb- Ti

HF LF HF LF

2a 1 , winding i.d. [mm] 432 516 658 756

2a 2 , winding o.d. [mm] 516 621 756 907

2b, winding length [mm] 550 551 640 640

# of layers 8 10 —

# of double pancakes — 32

#  t u r n s 454 593 1120 2160

λ J @ I o p [MA/m²] 41 43 75 94

B p e a k @ I op [T] 13.2 11.5 9.4 7.5
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Problem 3.3: Hybrid magnet
a) Explain why the hybrid magnet configuration invariably consists of a super-

conducting magnet surrounding a water-cooled resistive insert and not the
other way around.

b) Optional Discuss the design and operational issues that are unique to hy-
brid magnet systems and those which are relatively inconsequential or nonex-
istent in either a Bitter magnet or a superconducting magnet alone.

Fig. 3.6 Pictorial view of a double-pancake coil with the two individual pancakes sep-
arated axially. The pancakes in this drawing are wound with a CIC (cable-in-conduit)
conductor with its conduit removed at each end over ~90° arc for splicing.

“We have learned that ‘paper’ hybrid magnets:
are always built with perfect superconductors;
can be built in perfect confidence with utmost materials;
are not subject to fatigue; never have shorts …;
have cryostats closed with zippers and are always vacuum tight;
provide unlimited experimental access; operate themselves;
… are always on schedule and within budget.” —Mathias J. Leupold
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Solution to Problem 3.3
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a) The unique features of water-cooled magnets may be summarized as follows:

• As expressed in Eq. S2.10 (Problem 3.2)) the power requirement PB for
Bitter magnets is proportional to a1 and [Bz (0, 0)]²B , with PB typically in
the 6~30 MW range. Bitter magnets are “power hungry,” and it is best to
minimize their overall volume;

• Unlike superconductors which have practical field limits of 15~20 T, water-
cooled magnets have no “intrinsic” limit—those made of stronger materials
generally require greater power (because they are more resistive) and thus
require more cooling than those of weaker materials, but there are no clear-
cut limits above which the magnets cannot be operated;

• Field efficiency decreases with magnet size, again requiring the magnets to
be as compact as feasible.

The unique features of superconducting magnets, on the other hand, are:

• Superconducting materials have fairly well defined upper field limits above
which they cannot operate;

• The total energy storage increases with magnet size, but the power required
remains insignificant. A 100-MJ magnet does not require a 100-MW power
supply; typically 10~100 kW supplies suffice.

This combination of features makes it natural for hybrid magnets to consist of a
water-cooled insert surrounded by a superconducting magnet.

b) A unique and demanding aspect of a hybrid magnet system arises from inter-
active forces between the two magnets. If the two magnets are perfectly aligned
axially and radially, they exert no force on each other. However, relative displace-
ments of their field centers result in forces of increasing magnitude. Axial dis-
placements produce axial restoring forces; the magnets tend to center themselves.
Radial displacements of the field centers result in forces of the same sign, i.e. in-
stability. Normally, forces are modest; careful design and construction can cope
with them relatively easily. However, the failure of a necessarily high-performance
water-cooled insert must be accepted as inevitable. In such a failure, large forces
can suddenly develop from a field displacement created when part of the insert
winding becomes shorted and ceases to produce field. Design problems related to
this insert fault mode are discussed in more detail in Problems 3.14~3.16.

Although less demanding than the structural requirements to contain fault forces,
magnet monitoring for electrical protection is also complicated because of magnetic
coupling (mutual inductance) of the two systems. Obviously each magnet and its
power system must have electrical protection of some sort to prevent damage or
injury if something goes wrong, but there are also strong electrical interactions
between the two magnets which would not exist were they separate. Problems 8.3
and 8.4 in Chapter 8 discuss coil monitoring in more detail for magnets in general
and for hybrid magnets in particular.

Administrator
ferret
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Problem 3.4: Helmholtz coil

CHAPTER 3

Highly uniform magnetic fields are desirable in many applications. An arrange-
ment known as the “Helmholtz coil” achieves a high uniformity of the field over a
limited region of space by simple means. It uses two identical coils spaced coaxi-
ally a distance d apart (Fig. 3.7a) in the magnet axis (z-direction); the top coil is
located at z = d /2 and the bottom coil is located at z = –d /2. The spacing d i s
adjusted to satisfy, at the magnet center (r = 0, z = 0):

(3.27)

a)

b)

Idealizing the two coils by two single-wire loops each of radius a , show that
when d = a , at the magnet center. The solid curve in
Fig. 3.7b gives H z (0, z) of a Helmholtz coil for d = 2a (not optimized).

Show that if the current polarity of the bottom coil is reversed, a gradient
field is generated at the magnet center. Evaluate this d Hz / dz at z =  0 .
(Note that at z = 0 even when d = a .) The dotted curve
in Fig. 3.7b gives H z (z ) of a gradient coil for d = 2a (not optimized).

Fig. 3.7 (a) Ideal Helmholtz coil arrangement; (b) Hz (0, z) for a “uniform”
field case (solid) and H z (0, Z ) for a “gradient” field case (dotted).
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Solution to Problem 3.4

a ) The z-component of magnetic field along the axis (r = 0) due to the bottom
loop, located at z = –d /2, may be given by Eq. 3.3:

(S 4.1)

Thus, with the top coil located at z = d /2, we have:

(S 4.2)

Differentiating B z (z) given by Eq. S 4.2 with z , we have:

(S4.3)

Note that from symmetry d Hz (0, z )/ dz = 0 at z = 0 for any value of a.

The second derivative of Eq. S4.2 is given by:

( S4.4)

The second derivative is also zero at z = 0 but only if d = a. This technique of
locating two identical coils with axial spacing equal to the coil radius to produce a
region of field homogeneity is the basic principle used in MRI and other magnets
requiring a high spatial field homogeneity.

b ) For this system with the current polarity of the bottom coil reversed, we have:

(S4.5)

Bz (z), as expected, is zero at z = 0. We have:

(S4.6)

Evaluating Eq. S4.6 at z = 0, we have:

(S4.7)

This method of locating two identical coils having opposite currents to achieve a
field gradient is the basic principle used in magnets requiring a gradient field at
the midplane. A pulsed magnet used in an MRI system to produce a gradient field
(to extract spatial information for imaging) is one example.
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Problem 3.5: Spatially homogeneous fields

In spherical coordinates (r, θ , ϕ) defined in Fig. 3.8, the magnetic field in the z-
direction, Hz , in a source-free space generated by a solenoidal magnet consisting
of nested solenoidal coils can be expressed by:

(3.28)

You may recognize Eq. 3.28 as same product solution from Eq. 2.32. i s
the set of Legendre functions with u = cos θ (Table 2.2) and associated Legendre
functions (Table 2.3):

Legendre functions:

Associate functions:

where s ≡ sin θ. A m
n and B m

n are constants, which, except for A0
1 and B 0

1 , are to be
minimized, because they contribute to field nonuniformity. A m

n and B m
n may be

minimized by adjusting the parameters of each coil comprising the magnet [3.17].
These parameters include winding i.d. (2a1 ), winding o.d. (2a2 ), winding length
(2b), coil midplane location relative to the magnet center, current density (λJ) ,
and number of turns (N ).

Show that expressions for H z (r , θ,  ϕ ) in Cartesian coordinates, H z (x, y, z),
for n’s up to 1, 2, and 3 are given by:

(3.29a)

(3.29b)

(3.29c)

Fig. 3.8 Spherical coordinates.
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Solution to Problem 3.5

The spherical coordinate parameters, r, u = cos θ, s = sin θ, sin ϕ , and cos ϕ are
given in terms of x, y, and z :

(S5.1a)

(S5.1b)

(S5.1c)

(S5.1d)

(S5.1e)

Equations 3.28 and S5.1a~S5.1e are combined for cases n = 1, n = 2, and n = 3.

n = 1 :

For n up to 1, we thus have:

Note that A 0
1  represents field at the magnet center (0, 0, 0).

n = 2 :

(S5.2a)

(S5.2b)

(3.29a)

(S5.3a)

(S5.3b)
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Solution to Problem 3.5

Thus for n up to 2, we have:

(3.29b)

Note that H z (x, y, z) contains terms up to those varying as z, zx, and zy.

n = 3 :

(S5.4a)

Summing Eqs. 5.2b, S5.3b, and S5.4b, we have, for n up to 3:

(S5.4b)

(3.29c)

Note that Hz (x, y, z) contains terms up to those varying as z², x ², y², zx, zy, a n d

x y .

"Ignorance is like a delicate exotic fruit; touch it and the bloom is gone.”

—Lady Bracknell
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Problem 3.6: Notched solenoid

The principle of the Helmholtz coil—to place current-carrying elements symmet-
rically about the solenoid center to create a spatially homogeneous field in the
central zone—is the basis for notched solenoids. Notched solenoids are indispens-
able components in MRI and NMR magnets.

For a simple solenoid, with winding inner radius a1 , winding outer radius a 2 , total
winding length 2b, and overall current density λJ, recall that the axial magnetic
field at the center, H z (0,0), is given by Eqs. 3.10 and 3.11:

(3.10)

(3.11)

where α = a2 /a1 and β = b / a1 .

Using symmetry considerations and superposition, show that an expression
for H z (0, z 1) of the notched solenoid having a uniform current density λJ
shown in Fig. 3.9 is given by:

(3.30)

where and
γ 2 = z 1 /a 3 . The coil parameters, a1 , a2 a 3 , b 1 , and b2 are defined in Fig. 3.9.
Note also that Eq. 3.30 is valid for 0 ≤ z1  ≤ b 2.

Fig. 3.9 Geometrical arrangement of a notched solenoid.
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Solution to Problem 3.6

To solve H z (0, z1 ), we may divide the solenoid into four single solenoids whose
cross sections are designated by corner points as follows:

Solenoid 1: ABDC (with

Solenoid 2: BEFD (with

Solenoid 3: IGDL (with

Solenoid 4: GKHD (with

Note that in each solenoid J is equal, but in Solenoids 3 and 4, it is in the opposite
direction from that in Solenoids 1 and 2. Also note that each solenoid is notchless.

Field from Solenoid 1: H z (0, z1 ) from Solenoid 1 (2b = b 1 + z1 ) is one half
of the center field of a solenoid 2b = 2( b 1 + z 1 ) long having the same values of
a1 , a2 , and λJ. This may be best seen by noting that the center field H z (0, 0) of
a notchless solenoid 2b long is the sum of the field generated by one half of the
solenoid (from 0 to z = b ) and that generated by the other half (from z = – b
to 0). That is, each half of the solenoid generates 50% of the total field Hz (0,0).
Thus:

( S6.1)

Field from Solenoid 2: At (0, z 1 ), H z from Solenoid 2 (2b = b1 – z1 ) is one
half of the center field of a solenoid 2b = 2 (b1 – z1 ) long, both solenoids having
the same values of a 1 , a 2 , and λJ.

(S6.2)

Field from Solenoid 3: At (0, z 1), H z from Solenoid 3 (2b = b 2 + z1) is one
half of the center field of a solenoid having 2b = 2(b2 + z 1), both solenoids with the
same values of a3 , a 2 , and λ J. Because J is directed opposite to that of Solenoids
1 and 2, we have:

(S6.3)

Field from Solenoid 4: At (0, z1 ), H z from Solenoid 4 (2b = b 2 – z 1 ) is one
half of the center field of a solenoid 2b = 2(b2 – z1 ) long.

(S6.4)

Field from the Notched Solenoid

H z (0, z1 ) from the original notched solenoid is given by the sum of Eqs. S6.1~ S6.4:

(3.30)
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Problem 3.7: Ideal dipole magnet

This problem studies an ideal dipole magnet, which is infinitely long (no end ef-
fects) and whose fields, directed normal to the dipole axis, are generated by a
longitudinal surface current having zero winding thickness. Field and force solu-
tions for real dipole magnets are more complex than those treated in this problem;
nevertheless the ideal dipole magnet, except for complications at the ends, illus-
trates most of the key aspects. Dipole magnets are used in systems that require a
uniform field directed transverse to the magnet axis; superconducting versions have
been used in high-energy particle accelerators [3.18, 3.19], MHD power generators
[3.20, 3.21], and electric generators [3.22, 3.23].

A long (two-dimensional) dipole magnet of radius R and of “zero” winding thick-
ness is energized by a surface current flowing in the z-direction at the dipole shell
(r = R ). The magnetic field within the bore (r ≤ R ), and that outside the
shell (r ≥ R ), are given by:

(3.31a)

(3.31b)

The 2-D coordinates are defined in Fig. 3.10. Note that the +z-direction is out of
the paper. In answering the following questions, neglect end effects.

a)

b)

c )

Draw neatly the field profile of the dipole for both regions, r < R and r > R.

Show that an expression for the surface current at r = R is given by:

(3.32)

Indicate on a sketch its direction either with circles (o) where is + z-
directed (out of the paper) or with crosses (× ) where is – z-directed.

Show that an expression for the Lorentz force flux, [N/m 2], acting on a
current-carrying element of the shell (per unit length), is given by:

(3.33)

Fig. 3.10 Two-dimensional cylindrical coordinates.
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Problem 3.7: Ideal dipole magnet

C H A P T E R 3

d)

e )

Show that the net x-directed Lorentz force (per unit dipole length), FLdx

[N/m], acting on the right-hand segment (–90° < θ < 90°) is given by:

(3.34)

Show that an expression for the total magnetic energy stored (per unit dipole
length), Em [J/m], is given by:

(3.35)

Compute Em for µ oH 0 = 5 T and R = 20 mm. Also compute the inductance,
Ld , of a 10-m long dipole with an operating current Iop of 5000 A.

To reduce the field outside the dipole, an iron yoke (µ = ∞ ) of radial thickness d
is placed outside the dipole, as shown in Fig. 3.11.

f ) Show that the new needed to generate the same field inside the dipole
is exactly one half that given by Eq. 3.32. Explain this current reduction.

g) In reality, the iron yoke cannot maintain its high µ for an unlimited value of
H 0 . Show that an expression for the minimum dm to keep the yoke unsatu-
rated is given by:

(3.36)

where M sa is the yoke material’s saturation magnetization. Compute dm for
the following set: µ o Ho = 5 T; µ o M sa = 1.2 T; R = 20 mm.

Fig. 3.11 Ideal dipole with an iron yoke of thickness d.
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Solution to Problem 3.7
a) The field lines are sketched in Fig. 3.12a for both regions. Note that the
normal (r-directed) component of the field is continuous at the boundary (r = R ) .

b) The discontinuity in the tangential (θ-directed) component of the field at
r = R is equal to the surface current density flowing there. From Eq. 2.6:

(3.32)

As indicated in Fig. 3.12b, in the –90° < θ < 90° segment points into the –z-
direction, while that in the 90° < θ < 270° segment points into the +z- direction.

Fig. 3.12 a) Dipole fields for inside and outside the magnet; b) surface current
density vectors on the magnet; c) force vectors on the magnet (solution for c) .
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Solution to Problem 3.7

c) is given by the cross-product of and where
Thus:

(S7.1)

(3.33)

Note that has no r-component; it only has the θ-component (Fig. 3.12c). Note
that the force density is maximum at θ = π/4 + nπ/2 and zero at θ = 0 + nπ/2
(n = 0, 1, 2, 3).

d) It is clear from Fig. 3.12c that the net Lorentz force acting on the right-hand
segment of the shell is +x-directed. Thus, FL d x  [N/m] is given by:

(S7.2a)

(S7.2b)

From Eq. S7.2b, we obtain:

(3.34)

The net Lorentz force on the left-hand segment has the same magnitude as that
on the right-hand segment except it is –x-directed. That is, there is a large force
trying to pull the two halves of the dipole apart. In fact structural support to
contain these forces is a key design issues for dipole magnets.

e) E m [J/m] may be computed by integrating , the magnetic en-
ergy density, over the entire surface, from r = 0 to r = ∞ and θ = 0 to θ = 2 π,
transverse to the dipole axis.

(S7.3a)

(S7.3b)

(3.35)

From Eq. S7.3b it is clear that the total stored magnetic energy is divided equally
inside and outside the dipole shell. This implies, as it will become even clearer in
f), that one half of the current flowing in the dipole is used to create and the
other half is used to create Inserting = 5 T and R = 0.02 m into
the above expression, we obtain:

(S7.4)
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Solution to Problem 3.7

For a 10-m, 5-T long dipole, the total magnetic energy becomes 250kJ. This total
energy may be equated to the dipole’s total inductive energy:

(S7.5)

Solving Eq. S7.5 for Ld  with Iop  = 5000 A, we have:

(S7.6)

Note that if the dipole’s operating current is, for example, 1000 A, then the dipole
must have an inductance of 0.5 H or it must have about five times more winding
turns than the 20-mH dipole.

f) Because = 0 for  R < r < R + d and    = 0 also for r > R + d.
We still have as before. Clearly:

(S7.7)

which is exactly one half of given by Eq. 3.32.

Considering the surface current requirements for both cases, with and without the
iron yoke, we might think of   cos as the source for the field inside
and the as the source for the field outside the dipole. In the
presence of an iron yoke of µ = ∞, there is no need to create the field outside the
shell; thus the current requirement is halved.

g) All the flux entering the yoke of radial thickness d between 0 and θ = 90°
must be equal to or less than That is:

(S7.8)

The minimum yoke thickness dm  is thus given by:

With R = 20mm, = 5T, and  = 1.2 T, we obtain:

(3.36)
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Problem 3.8:  Ideal  quadrupole magnet

This problem studies an ideal quadrupole magnet, which is infinitely long (no end
effects) and whose fields, directed normal to the magnet axis, are generated by a
longitudinal surface current having zero winding thickness.

A long quadrupole magnet of radius R and of “zero” winding thickness is energized
by a surface current flowing in the z-direction at the quadrupole shell (r = R).
The magnetic field within the bore (r ≤ R ),

are given by:
and that outside the shell (r ≤ R),

In answering the following questions, neglect end effects.

(3.37a)

(3.37b)

a)

b)

c )

d)

e)

f)

Draw neatly the field profiles of the quadrupole for both regions.

Show that an expression for the surface current at r = R is given by:

(3.38)

Indicate neatly on a sketch its direction either with circles (o) where is
+z-directed (out of the paper) or with crosses (×) where is –z-directed.

Show that an expression for the Lorentz force flux, acting on a current-
carrying element of the shell is given by:

(3.39)

Show that an expression for the “magnetic spring constant,” in the
x-direction for a proton travelling in the +z-direction along the center of the
magnet with a speed nearly equal to that of light, c, is given by:

(3.40)

Similarly, show that an expression for the “magnetic spring constant,”
in the y-direction for a proton travelling in the +z-direction along the center
of the magnet with a speed nearly equal to that of light, c, is given by:

(3.41)

By stating whether  and are unstable or restoring, describe the
function of quadrupoles for proton (and electron) accelerators.
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Solution to Problem 3.8

a) The field lines are sketched in Fig. 3.13a. Note that as with the ideal dipole,
the r-component of the field is continuous at r = R.

The vectors change directions four times around the magnet shell (Fig. 3.13b).

b) The discontinuity in the θ-component of the field at the boundary is equal to
the surface current density flowing at r = R. Thus:

(3.38)

Fig. 3.13 a) Quadrupole fields for inside and outside the magnet; b) surface
current density vectors on the magnet; c) force vectors on the magnet.
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Solution to Problem 3.8

c) The Lorentz force flux, is given by the cross product of and at
r = R. At r = R, we have sin because the θ-component changes
sign from + to – as we approach from r < R. Noting that
we have:

The distribution is sketched in Fig. 3.13c.

(3.39)

d) We may define the magnetic spring constant in the x-direction as:

(S8.1)

FL q x , the Lorentz force in the x-direction acting on the proton of electric charge
q travelling in the z-direction with velocity c, is given by:

(S8.2)

kL q x is thus given by:

(3.40)

e) In the y-direction (r-direction at θ = 90°), the magnetic force FLqy is given
by:

(S8.3)

kL q y  is thus given by:

(3.41)

f) The plus sign for kL q x indicates that FL q x is restoring, while the minus sign
for k L q y  indicates that FL q y is unstable, tending to diverge the beam in the y-
direction. In accelerator rings, quadrupole magnets are thus used in pairs, one
that focuses the beam in x-direction followed by another that focuses the beam in
the y-direction.
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Problem 3.9: Magnet comprised of two ideal “racetracks”

This problem deals with a magnet comprised of two infinitely long ideal “race-
track” coils, placed parallel at a distance of 2c. The name “racetrack” comes
about because in real magnets the axial extent is not infinite, and at each end the
conductor loops around 180°, like the end of a race track. Because racetrack coils
are flat, they are suitable for maglev [3.24~3.27].

Figure 3.14 shows a cross sectional view of the winding configuration of a magnet
comprised of two infinitely long ideal racetracks. Two sets of very long racetrack
coils, placed parallel to each other as shown, can sometimes substitute for a dipole
magnet. For example, if a long length of a superconductor must be tested in
a uniform field directed transverse to its major axis, this magnet configuration
could be used; it has the advantage of requiring simpler winding rigs than a dipole
magnet. This configuration also has been used as an MHD magnet [3.28]. As
indicated in Fig. 3.14, each racetrack has a winding outer width of 2a2, inner
width of 2a 1, and contains N turns. The two coils are placed a distance 2c apart.

The direction of current in the right-hand side of each racetrack coil is in the +z -
direction (out of the paper), while the direction of current in the left-hand side is
in the –z-direction (into the paper). In answering the following questions, neglect
end effects.

Fig. 3.14 Cross section of a magnet comprised of two ideal racetrack coils.
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Problem 3.9: Magnet comprised of two ideal “racetracks”

a) Show that when each racetrack is energized with current I, an expression for
the y-component of magnetic field, H ( x, y), in the regiony
and that at the magnet center (0, 0), are given, respectively, by:

(3.42a)

and

(3.42b)

where K = NI/ (a2 – a 1 ).

b) Show that near the origin Hy (x, y) given by Eq. 3.42 may be expressed as
the sum of Hy (0,0) and a term containing (x² + y ²). Namely:

(3.43)

c) Current distribution in the magnet may be approximated by four current
elements, 1, 2, 3, and 4, as shown in Fig. 3.15. Each element carries a net
current of NI in the direction indicated in the figure. A dot indicates it is in
the +z-direction and a cross in the –z-direction. Under this approximation,
show that expressions for Hy (0, 0) and Hy ( x, y) near the magnet center may
be given, respectively, by:

(3.44a)

(3.44b)

d) The same 4-current-element model may be used to compute the Lorentz
forces (per unit axial length) acting on current element 1, as the sum of
Lorentz interactions on current element 1 by current elements 2, 3, and 4:

(3.45)

where are the force vectors on element 1 by element 2,
element 3, and element 4, respectively.
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Neglecting end effects, show that expressions for (per unit magnet ax-
ial length) in the x-direction, F1x, and in the y -direction, F 1y , are given,
respectively, by:

(3.46a)

(3.46b)

e) Generalize to the remaining current elements, and describe interaction
forces within each racetrack and between the racetracks.

Fig. 3.15 Current distribution model for force calculation.

“Sometimes there is as much magic as science in the explanations of the force.
Yet what is a magician but a practicing theorist?”  —Obi Wan Kenobi
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Solution to Problem 3.9

a) The differential field at (x, y), from a differential surface current, K dξ,
located at ξ in the right-hand side of racetrack 1 (with + current) as shown in
Fig. 3.16, is given by:

(S9.1)

where the field direction is shown in the figure and K = NI/(a 2 – a1 ). Note that
Eq. S9.1 is an expression of the law of Biot and Savart. The y-component of field
contributed by the entire surface current, from ξ = a1 to ξ = a 2 , is given by:

(S9.2)

By inserting and cos into Eq. S9.2, we
obtain:

(S9.3a)

Similarly, the contribution from each of the three remaining current sheets is given
by:

(S9.3b)

(S9.3c)

(S9.3d)

Fig. 3.16 Field produced by a differential current element.
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(3.42a)

By inserting x = 0 and y = 0 into Eq. 3.42a, we obtain:

(3.42b)

b) H y1 + derived above (Eq. S9.3a) may be expressed as:

(S9.4)

The term In[(a 2 – x )² + (c – y)²] may be given as:

(S9.5)

By using In(1 + x) x for x <<  1, we have:

Similarly,

Thus:

(S9.6)

(S9.7)

(S9.8a)
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Solution to Problem 3.9

Similarly, Hy1– , H y 2+ , and H y 2– may be expressed as:

(S9.8b)

(S9.8c)

(S9.8d)

Combining each term, near (0, 0) we have:

(3.43)

Note that H y(x, y) has zero slope with respect to both x and y at (0,0). In other
words, the magnetic field is fairly uniform at the magnet center.

c) We can further simplify the expression for the magnetic field near the center
of the racetrack magnet by approximating each of the four current sheets as a
current element carrying NI, illustrated in Fig. 3.15. In this case, we let a1 =  a,

Substituting these parameters into Eq. 3.42
and noting In x = x for x <<  1, we have:

(3.44a)
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Solution to Problem 3.9

The quantity in the second term of the right-hand
side of Eq. 3.43 becomes 2aNI. Thus:

Combining Eqs. 3.43 and S9.9, we obtain:

(S9.9)

(3.44b)

d) The force on element 1 by element is +x-directed and given by:

(S9.10)

Similarly, the force on element 1 by element is –y-directed and given by:

(S9.11)

The force on element 1 by element is directed along both x and y axes
and given by:

(S9.12)

The x- and y-components of the electromagnetic force on element 1 from the three
other current elements, F1 x and F 1 y , are thus given, respectively, by:

(3.46a)

(3.46b)

e) Because points in the –y-direction. The net force between
elements 1 and 2, within racetrack 1, is repulsive because their current polarities
are opposite. Similarly, that between elements 3 and 4 in racetrack 2 is also
repulsive. This means that in the absence of external restraint, each racetrack
seeks a circular geometry.

The net force between elements 1 and 3, because their polarities are the same, is
attractive. Similarly, that between elements 2 and 4 is attractive. As indicated by
Eq. 3.46b, the net force between the two racetracks is attractive.



84

Problem 3.10: Ideal toroidal magnet

CHAPTER 3

This problem deals with an ideal toroidal magnet, illustrating key features of
toroidal magnets.

An ideal circular-cross-section torus of major radius R and minor radius a is
energized with a surface current sheet with equivalent total ampere turns NI
(Fig. 3.17). Assume the surface current to occupy zero thickness and to flow
around the torus in the plane purely perpendicular to the toroidal direction.

a) Show that an expression for the toroidal magnetic induction, Bϕ , within the
torus is given by:

(3.47)

Also show that Bϕ outside the torus is zero.

b) Assuming that the torus consists of N coils, each carrying a current of I,
show that an expression for the net radial Lorentz force FL + acting on a
single coil is given by:

(3.48)

Fig. 3.17 Ideal toroidal magnet.
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Solution to Problem 3.10

a) Noting that Hϕ , from symmetry, is constant in the ϕ-direction, we can apply
Ampere’s integral law within the torus:

(S10.1)

(3.47)

Outside the torus, no net current is enclosed when the above integral is performed
over the entire circumference. Therefore Hϕ = 0 and B ϕ = 0.

b) Figure 3.18 shows a single coil in which differential force acting on dif-
ferential element with differential force in the r-direction.

is given by:

(S10.2)

where the vector points in the direction of (Fig. 3.18). The r-component of
this differential force is given by:

(S10.3)

Fig. 3.18 Differential force acting on a single coil.
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Solution to Problem 3.10

Because ds = a dθ and r = R + a cos θ , we can write Eq. S10.3 for dFLr as:

By integrating Eq. S10.4 for the entire minor circle, we have:

Using a Tables of Integral, we obtain:

(S10.4)

(S10.5)

(S10.6)

(S10.7)

(3.48)

Note that as R → ∞ , the torus becomes a straight solenoid of diameter 2a and,
as expected, FL r→ 0.

Nuclear Fusion and Magnetic Confinement

If nuclei of light elements are confined and heated to a very high temperature
(~100 MK), they fuse. Because the total mass of the fusion products, Mƒ, is less
than the total mass of the original nuclei, Mn , a net energy is
released by the reaction. (c is the speed of light.) The sun generates energy through
this process. A controlled thermonuclear fusion reactor is a miniature man-made
sun. The sun, through its enormous size and mass, loses relatively little energy by
radiation and confines unstable hot plasma gravitationally. Magnetic pressure can
substitute for the gravitational pressure; the technique of using magnetic fields to
stabilize hot plasma is known as magnetic confinement.

Power-generating fusion reactors will most likely use the Tokamak, a toroidal-
shaped machine configuration that uses magnetic confinement. The tokamak was
conceived in the 1950s by L.A. Artsimovich and A.D. Sakharov of the Kurchatov
Institute of Atomic Energy, Moscow. Recently, a program known as the Interna-
tional Thermonuclear Experimental Reactor (ITER) was launched by the Euro-
pean Union, Japan, Russia, and the United States. ITER’s ultimate goal is to
construct a break-even Tokamak based on superconducting magnets. The ITER’s
toroidal magnet, not circular as studied above but D-shaped, will have a major
radius (R) of ~8m and be ~12m tall (2a in the z -direction); its toroidal magnetic
induction (Bϕ ) is ~6T, with a peak induction at the conductor of ~13T.
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Problem 3.11: Fringing field

This problem deals with the fringing field—an unwanted field outside a magnet
system. The fringing field is important because it presents a safety hazard to those
working on the system; it may also disrupt or distort field-sensitive equipment. For
computing the fringing field, at locations far from the magnet, the magnet
can be modeled as a spherical dipole with an effective radius R e :

(3.49)

where the induction at the center, is 12.2T for Hybrid III at Iop = 2100A.
We may compute Re by noting that the dipole’s far field (r >> Re) along the z-axis
( r-direction at θ = 0), given by Eq. 3.49, and that (z >> a) of a ring of current I
and radius a, given by Eq. 3.3, are equal and thus:

(3.50)

For a winding having a total ampere-turn of NI op , i.d. of 2a 1 and o.d. of 2a2 ,
Eq. 3.50 may be given by:

(3.51a)

Note that R e is independent of magnet length, 2b, and because Ho is proportional
to NIop , it is also independent of NIop ; it depends purely on magnet geometry.
For the Hybrid III SCM comprised of four winding sections, we apply Eq. 3.51a :

(3.51b)

By inserting parameter values given in Table 3.1 and solving Eq. 3.51b for R e , we
obtain: Re = 0.4m. (Because the effective radius R e for the insert in Hybrid III
is much smaller than that of the superconducting magnet, the insert contributes
little to the fringing fields and is neglected in the computation of Re . )

a) The computers used for monitoring and controlling Hybrid III are located
at approximately x = 8.8m, y = 0m, and z = 2.0m, with the origin (0,0,0)
located at the magnet center. Compute the magnitude at the computers
for = 12.2T and R e = 0.4m. Note that the θ-direction is measured
from the z-axis; that is, the magnet midplane is at θ = 90° (see Fig. 3.8).

b) A computer monitor display begins to be distorted when the monitor is
exposed to a field as low as ~2oersted (equivalent to a magnetic induction
of 0.2mT). Compute an approximate value of I at which the Hybrid III
monitors will begin to distort.

c) If the computer is to be shielded against this fringing field for currents up
to 2100A, give an estimate of the iron (as-cast) sheet that will surround the
computer over five of its six surfaces. Use the magnetic properties of as-cast
iron given in Table 2.4 (p. 31).
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Solution to Problem 3.11

a) First, we must find appropriate values of r and θ corresponding to (x,y,z ) =
(x = 8.8 m, y = 0, z = 2.0 m):

(S11.1)

(S11.2)

Thus for Iop = 2100 A, we have:

(S 11.3)

(S11.4)

= 0.57 mT (5.7 gauss)

b) Because Iop = 2100 A gives rise to a magnetic field of 5.7 oersted (or a
magnetic induction of 5.7 gauss), a field of ~2 oersted is reached at ~740 A. The
screens of the Hybrid III computers indeed begin to be distorted at around 700 A.

c) As computed in a), a fringing field reaching the computer at 2100 A will be
5.7 oersted (or an induction of 5.7 gauss). At this field level, from Table 2.4, as-cast
iron is still quite effective as shielding material.

We approximate this shielding to be of spherical shape of radius R of 25 cm. From
Eq. 2.44 (p. 26):

(2.44)

Solving Eq. 2.44 for d, we can compute a minimum thickness dm n for the sheet
(µo Msa = 1.65 T from Table 2.4):

The as-cast iron sheets of ~1-mm thickness often used in the laboratory to shield
computers and oscilloscopes are thus quite adequate for external magnetic induc-
tions up to ~100 gauss—at this field the material is still effective (µ/µo )dif = 30.
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Problem 3.12: Circulating proton in an accelerator

The Superconducting Supercollider (SSC), terminated in 1993, was to have been
the largest (super) “atom smasher” (collider) for high-energy physics research. The
prefix superconducting was used because its nearly 10,000 dipole and quadrupole
magnets were to be superconducting. (The SSC would have been the largest
single consumer of superconductor in history—nearly a thousand tons of Nb-Ti
multifilamentary conductor.)

The SSC’s main ring was to have two counter-circulating beams of protons, each
accelerated to an energy (Ep ) of 20 TeV.

a) Assuming that the main ring is perfectly circular, compute the ring’s radius
R a for a proton circulating with an energy Ep of 20 TeV in the presence of a
vertical magnetic induction (Bz ) of 5 T. You may also assume that the proton
speed is equal to the speed of light. Note: 1 eV= 1.6×10– l 9 J (Appendix I).

b) Show that the proton speed at an energy of 20 TeV is indeed very close to
the speed of light.

Particle Accelerators

The simple principle that an electric field accelerates charged particles is the
basis for particle accelerators. Early machines of Cockroft-Walton (1928) and Van
de Graaff (1930) were linear, accelerating particles along a straight path over a
potential A large potential is always required to produce highly energetic
particles. A linear accelerator thus requires either a large field, a long distance,
or a combination of both. The Stanford Linear Accelerator (~20 GeV) has a beam
distance of 2 miles (3.2km).

E.O. Lawrence in the 1930s developed the cyclotron, a circular accelerator. Modern
circular accelerators are variations of Lawrence’s cyclotron. In a circular accelera-
tor, charged particles are accelerated by a modest potential each time they revolve
around the machine; by circulating them many times it is possible to energize
them to energy levels well beyond those achievable by linear accelerators. One
essential component of a circular accelerator is a set of magnets that supplies a
magnetic field (usually in the vertical direction) to bend the particles into a circular
trajectory; modern machines use dipole magnets, while Lawrence’s first 1.2-MeV
cyclotron used magnet polepieces, which sandwiched the beam trajectory.

As shown in the next page, the particle energy ( Ep ) in circular accelerators is
proportional to the beam trajectory’s radius (Ra), beam velocity, and vertical
magnetic induction (Bz ). For a particle energy of 20 TeV proposed for the SSC, it
meant—also shown in the next page—a machine radius exceeding 10 km! Compare
this with ~0.1 m, the radius of Lawrence’s first cyclotron. If SSC were designed to
use ~1 T, the strength of B z in Lawrence’s first cyclotron, the factor of ~105 in-
crease in radius and increase in beam velocity would still bring Ep to only ~4TeV.
For SSC, the designers proposed to gain another factor of ~5 needed to reach the
energy level of 20 TeV through increased field strength, a goal achievable only by
the use of superconducting dipole magnets.
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Solution to Problem 3.12

a) The centripetal force, , on a circulating proton (mass Mp) is balanced by
the Lorentz force, The direction of Bz is chosen to make FL points radially
inward because Fcp always points radially outward. The two forces are given by:

( S12.1)

(S 12.2)

( S12.3)

Solving for Ra from + = 0, we obtain:

(S 12.4)

From Eq. S12.4, we have:

( S12.5)

The value of 26.6 km (2Ra ) is close to the diameter of the SSC’s main ring. Also
note that by making B m = 10T, the ring diameter can be halved; 10-T supercon-
ducting dipole magnets are not out of the question [3.29].

b) The proton mass Mp , travelling at speed v, is related to its rest mass, Mp o

(1.67×10 –27 kg), by:

Solving for v/c from Eqs. S 12.6 and S 12.7, we have:

(S12.6)

( S12.7)

( S12.8)

( S12.9)

Because v/c is very close to 1, Eq. S 12.9 may be approximated by:

(S12.10)

That is, the proton velocity is within one part per billion of the speed of light.



M A G N E T S, FI E L D S, A N D F O R C E S 91

Problem 3.13: Magnetic force on an iron sphere

For safety considerations, it is extremely important to keep ferromagnetic objects
away from a large magnet. This problem presents a quantitative approach to com-
puting the magnetic force on an iron sphere placed far from a solenoidal magnet.

As discussed in Problem 3.11, the fringing ( far) field of a solenoidal magnet is
given approximately by a dipole field:

(3.49)

(3.52)

where, as in Problem 3.11, for Hybrid III µo H0 = 12.2T at Iop = 2100 A and
R e = 0.4 m.

When a magnetic object, such as an iron sphere, is placed in a magnetic field that
is spatially varying, the object will be subjected to a net magnetic force density,

given by:
(3.53)

where ∇ is the grad operator in spherical coordinates and em is the magnetic
energy density stored in the iron due to its magnetization. We also know from
Problem 2.1 that for a ferromagnetic sphere with µ/µo 1, the magnetic induction
inside the sphere, sp , is three times that of the “uniform” applied magnetic
induction: For a sphere whose diameter is much smaller
than the distance from the magnet center to the sphere, we may assume f to be
uniform over the sphere. Thus:

(3.54)

When the iron is saturated with magnetization sa , its magnetic induction, be-
cause , is approximately equal to which is constant and
aligned with f . Its energy density e ms is thus given by:

(3.55)

In driving Eqs. 3.54 and 3.55, we have assumed that the impinging field is “uni-
form” for energy density computation, retaining the spatial variation of f for
force density computation, which comes next.

a) Show that (r, θ) acting on the unsaturated iron sphere is given by:

(3.56)
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Note that varies as 1/r 7 and as the minus sign indicates, as expected
for any ferromagnetic object, the r-component of is directed towards
the magnet center.

b) Show that acting on the saturated iron sphere is given by:

(3.57)

Note that varies as 1/r 4 and its r-component is also directed towards
the magnet center.

c) The Hybrid III platform, installed for use by experimenters, is located at
z = 1 m, measured from the magnet center. Compute y 0.1g , the distance from
the Hybrid III center line on the platform, at which | fmy |, the magnitude
of the y-component of the magnetic force at z = 1 m acting on the iron
sphere of density , is 0.1 , the equivalent force for 0.1 “gee” (Fig. 3.19).
Assume the iron sphere to be unsaturated at this location. Use the following
values: µo H 0

g = 9.8 m/s2.
= 12.2 T (at Iop = 2100 A); Re = 0.4 m; = 8000 kg/m 3 (iron);

d) Show that at y0.1g computed above for the iron sphere is still unsaturated.
Assume (µ / µo ) dif ~10 for iron at this location.

Fig. 3.19 Iron sphere placed on the Hybrid III platform.
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Solution to Problem 3.13

a) We first compute from Eq. 3.49:

(S13.1)

Combining Eqs. S13.1, 3.53, and 3.54 and using the grad operator in spherical
coordinates (Eq. 2.36), we obtain:

(S13.2a)

We can simplify Eq. S13.2b to:

(S13.2b)

(3.56)

As stated above, for any θ, (r, θ) always has a –r-directed component, or fer-
romagnetic objects will be attracted towards the magnet center.

b) The magnetic energy density of Eq. 3.55 is given by:

(S13.3)

Performing a similar grad operation on em , we obtain:

(3.57)

The magnetic force thus varies as 1/ r4 when the iron sphere is saturated. Note
also that because it is –r-directed, as in the unsaturated case, the iron sphere is
attracted to the magnet center.
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Solution to Problem 3.13

c) ƒmy , the y-component of at (x = 0, y0.1g , z), is given by:

(S13.4)

where ƒm r and ƒm θ are, respectively, the r- and θ -components of the magnetic
force. Combining Eq. 3.56 and S13.4, we have:

(S13.5a)

(S13.5b)

The minus sign in Eq. S13.5b indicates ƒmy actually points in the direction opposite
from that indicated in Fig. 3.19. r, sin θ , and cos θ  for the case x = 0 are given by:

(S13.6)

Combining Eq. S13.5b and S13.6 and equating ƒmy to 0.1 g, the equivalent force
for 0.1 “gee,” we have:

(S13.7)

By inserting appropriate values into Eq. S13.7, we have:

(S13.8)

Solving Eq. S13.8 for y0.1 g , we find: y 1.93m.

d) With and
substituted into Eq. 3.49, we have:

(S13.9)

At µo H0 = 0.07T, as-cast iron has a(µ/µo) dif value of less than 7 (Table 2.4)
or the analysis based on the assumption of unsaturated magnetization performed
here is barely valid. This means, at y0.1g = 1.93m from the magnet center line,
the actual magnetic force is slightly less than 0.1 gee. Nevertheless, during Hybrid
III operation no equipment, ferromagnetic or nonferromagnetic, is allowed on the
platform within a circular boundary defined by this distance.



M A G N E T S, FIELDS, AND F O R C E S 95

Problem 3.14: Fault condition in hybrid magnets

1. Fault-mode forces

Of the interaction problems between the water-cooled insert and the supercon-
ducting magnet in a hybrid system, the potentially violent consequences of an
insert failure have the greatest impact upon the design. As discussed in Problem
3.2, Bitter magnets are operated at very high power densities, in the range 1 to
10 GW/m³, all of which must be balanced by cooling provided by high-velocity
(~10 m/s) water flow. Moreover, Bitter plates are highly stressed, reaching stresses
in the range from 300 to 600 MPa.

The designer is challenged to provide strength and cooling in a limited space which
he would like to fill completely with current-carrying copper. Thus, the magnets
are by no means conservative and, as stated before, an occasional failure is almost
a fact of life. The system must be designed to withstand the disruptions caused
by insert burnouts.

Fault Scenario

The structural support for Hybrid III, an overview of which is shown in Fig. 3.5,
was designed according to the following postulated fault scenario:

1. At t = 0, with the superconducting magnet fully energized and generating
a field of 12.2T and the insert operating at the full current of 40kA, an
arc occurs at the midplane between the two Bitter stacks. (Normally, the
two stacks are connected in series at the top, and the current flows helically
upward through the inner one and downward through the outer one.) Now
current is suddenly flowing through the arc instead of through the top halves
of the insert.

2. At t ~ 0.1s, the arc which has been travelling downward because of the axial
voltage gradient between the coils reaches the bottom. Since the motor-
generator power supply used in FBNML behaves as a voltage source, the
decreasing resistance allows the current to increase manyfold.

3 . At t ~ 0.2s, the “bad news” has worked its way through the plant protection
logic to initiate an emergency stop. The generator excitation is inverted to
force the current down before the breakers open 0.3s later. In that time, the
current through the shorted insert can surge from 40 to 250 kA.

4. At t ~ 0.5s, the generator voltage returns to zero.

The arc-induced short thus effectively halves the insert length, shifting the insert’s
magnetic center downward by one quarter the length of the insert.

a) Show that between two concentric nested solenoidal coils, an interaction force
in the axial direction is restoring (stable). Assume the central axial field from
each coil points upwards, in the +z -direction.

b) Show that between two concentric nested solenoidal coils, an interaction force
in the radial direction is unstable.
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a) Figure 3.20 shows an arrangement of two nested solenoidal coils, Coil 1 (inner)
displaced axially upward by ∆z with respect to Coil 2 (outer). Each coil generates
an axial field that points upward.

Coil 2 generates radial field, Br2 , that points radially outward above its midplane
and inward below its midplane. Note that Br2 = 0 along its axis ( r = 0).

The net axial force acting on Coil 1 due to the Jθ1 × Br 2 interaction, where Jθ1,
the –θ-directed current density in Coil 1, is zero when the two coils are concentric
and the midplane of each coil coincides.

When the midplane of Coil 1 is placed ∆ z above that of Coil 2, Fz1 is given,
algebraically, by:

Fz 1 =< downward force on winding between 0 and b + ∆z >
– < upward force on winding between –b + ∆ z and 0 > (S14.1)

However, the net force generated in the upper winding between 0 and b – ∆z and
that generated in the lower winding between –b + ∆ z and 0 cancel each other.
This leaves an unbalanced downward force from the upper winding between b – ∆z
and b + ∆ z, given roughly by:

Because Fz 1 is –z-directed, it is restoring (stable).

(S14.2)

Fig. 3.20 Two nested solenoidal coils, one displaced axially from the other.
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Solution to Problem 3.14

b) When Coils 1 and 2 are concentric, the Jθ × Bz interaction force is r-directed
and the net radial force is zero. If Coil 1 is displaced by ∆r in the x -direction
(θ = 0), then its winding section within an arc between θ –90° and θ  +90° is
exposed to B z2 that is slightly higher than that to which the winding section within
an arc between +90° and 270° is exposed. The resulting net unbalanced force,
Fx 1, may be given approximately by:

(S14.3)

Because F x 1 is positive, it is unstable.

Another way of looking at this and the previous question is to recognize that an
energized coil is always attracted to the highest field region. Thus, if Coil 1 is
displaced axially by ∆z , it seeks to align its maximum field region with that of
Coil 2, resulting in a stable condition. If Coil 1 is displaced radially, however, it
continues to move radially towards the innermost winding of Coil 2 because that
is where the field generated by Coil 2 is highest.

Vertical Magnetic Force during Hybrid III Insert Burnout

A large magnetic interaction force, Fƒc, appears in the vertical direction in Hybrid
III during an insert burnout which follows the scenario outlined above. Figure
3.21 shows an analytical Fƒc (t) plot for an insert burnout event in Hybrid III
when both are fully energized— the insert generating 22.7T and superconducting
magnet 12.3T [3.30]. Note that a peak force of 1.1 MN is reached at 0.1s after
the start of the burnout, at which point the traveling arc reaches the bottom of
the Bitter stack.

Fig. 3.21 Analytical F ƒ c (T) plot during an insert burnout when
Hybrid III is fully energized [3.30].
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Problem 3.15: Fault condition in hybrid magnets

2. Mechanical support requirements

Figure 3.22 depicts the dynamic model of Hybrid III used to analyze responses of
major components during an insert burnout fault [3.7, 3.30]. It shows the insert
and the cryostat connected by a stretched spring representing the magnetic force
between them during a burnout event. Motion in the system can be retarded by
drag forces. The elements in the figure are as follows:

M1 : mass of the insert, 1000 kg;
M2 : mass of the superconducting magnet and cryostat, 5500 kg;
M3 : mass of the superconducting magnet (Nb3Sn coil and Nb-Ti coil), 3200 kg;
M4 : mass of the cryostat mass, 2300 kg;
k1
k2 : spring constant of the cryostat support (stiff), 45 MN/m;

: “magnetic” spring constant between the insert and the SCM, 9 MN/m;

k3 : spring constant of the insert support (stiff), 15 MN/m;
D1 : friction drag force provided to retard the cryostat motion, 130 kN;
D : friction drag force (friction hinge in Fig. 3.5) for the insert motion, 45 kN.2

a) Comment on the consequences of cryostat movement from an overall system
consideration.

b) The insert and the cryostat are supported so as to allow them to move. Why?

Fig. 3.22 Dynamic model of Hybrid III for fault analysis [3.7, 3.30]
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Solution to Problem 3.15

The model is essentially a two-mass system connected by a spring. By allowing
the masses (M1  and M2 ) to move under the action of the “magnetic” spring, the
designer sought to greatly reduce the forces within the cryostat and the external
support forces. Otherwise, the magnitude of the force would be several MN and
incompatible with cryostat construction, where small cross sections are needed to
minimize thermal conduction. It is necessary to extract energy from the oscillatory
system in order to limit the motion excursion; it is also necessary to examine floor
reactions to make sure the cryostat support structure remain in contact with the
floor at all times. The only parameters within the designer’s control are k2, k 3 , D1,
and D2 . The Hybrid III suspension system is designed to limit insert excursions
to ~10 cm and those of the cryostat to ~2 cm and to dissipate energy through
frictional drag devices provided for the purpose.

a) Obviously motion of the cryostat is undesirable, as it complicates the con-
nection of various services and it interferes with the experiment occupying the
magnet. Not only must motion be accommodated but the accommodation must
anticipate the potential violence from large accelerations—close to 10 gee on the
insert and 5 gee on the cryostat.

b) By allowing the two systems to move under the action of the magnetic spring,
the designer reduced the forces within the cryostat and on the external support.

Figure 3.23 shows analytical plots of the insert (solid) and cryostat (dotted) dis-
placements vs time during the first 0.2 s of an insert burnout based on the model
shown in Fig. 3.22 [3.30]. As before, Hybrid III is fully energized. The plots
show that the insert moves upward as much as ~10 cm, while the cryostat moves
downward by ~1 cm. As remarked above, the system is designed for cryostat
displacements up to about ±2 cm.

Fig. 3.23 Analytical plots of insert and cryostat locations during
the first 0.2 s of a Hybrid III insert burnout event [3.30].
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Problem 3.16: Fault condition in hybrid magnets

3 . Fault force transmission

CHAPTER 3

This problem considers a structural requirement that is unique to hybrid magnets;
it is not present in either a resistive magnet or a superconducting magnet alone.
Structure is needed to restrain the large axial interaction force that could arise
between the resistive (insert) and the superconducting magnet in the event of
an insert burnout. This interaction force is a severe complication, inasmuch as it
appears in the cold mass (consisting of the superconducting magnet and cryostat),
and therefore must also be transmitted over a large temperature difference with
minimum heat transmission.

In the most severe burnout scenario, as described in Problem 3.14, an arc develops
in the insert at its midplane, essentially shorting out half of the insert length.
Suddenly, only one half is still carrying current and continues to generate field.
This shift in current distribution displaces the magnetic center of the insert relative
to that of the superconducting magnet, thereby creating a large restoring force
between them. When Hybrid III is operating at its maximum field of 35 T, as
shown in Fig. 3.21, a peak axial force of 1.1 N would result from such an insert
burnout.

Fig. 3.24 Schematic structural diagram of the Hybrid III cryostat.
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Problem 3.16: 3. Fault force transmission

Figure 3.24 is a schematic of the structure inside the Hybrid III cryostat. The
center line of the cryostat bore is at the right; the figure thus represents only half
of the cryostat cross section. As remarked earlier and illustrated in the figure, the
superconducting magnet consists of two components, an inner Nb3 Sn coil placed in
the bore of an outer coil wound with Nb-Ti conductor. The total interaction force
is shared between them according to the system’s overall field distribution. The
basic structural problem is to firmly fix both coil windings to the magnet vessel
which is ultimately anchored to a room temperature support, all with enough
strength to withstand the maximum fault load.

As with the other hybrid magnets built at FBNML, the Hybrid III Nb-Ti coil
is assembled from double pancakes, and the assembly is clamped by an array of
tie rods around the outside. The tie rods clamp the stack of 32 double-pancakes
between a stiff plate at the top and the floor of the magnet vessel. The purpose
of the clamping is to provide a preload that will immobilize the winding as it is
subjected both to its own Lorentz forces and to fault forces. To maintain the
preload, a spring follow-up of the differing thermal contractions of the structural
elements is necessary. Otherwise the clamping force can vary between zero and
infinite as something “out-shrinks” something else. Elasticity is provided by stacks
of cone-spring (Belleville) washers on the tie rods.

The Nb-Ti coil is thus fixed to the magnet vessel bottom and forces exerted upon
the coil are transmitted directly to the magnet vessel without relative motion. The
Nb3Sn coil is wound on a form that is firmly attached to the magnet vessel, hence
the winding has to remain one with the form throughout the same temperature
excursions and forces. The coil form consists of a stainless steel tube with end
flanges. To keep it from becoming either too tight or too loose between the flanges,
the winding pack is spring loaded against the top flange. The spring load is set
to have a force equal to its share of the total fault force. Mechanically this is
accomplished with jacking screws and springs, preloading the winding against the
top flange. The layer-wound coil is thus a self-contained unit. It is fixed to the
magnet vessel indirectly in that its top flange is attached to the outer coil’s upper
clamping plate. In this arrangement, field misalignment from thermal changes are
reduced as the coil contractions tend to compensate each other.

a)

b)

c )

Examining Fig. 3.24 carefully, explain how fault forces experienced by each
coil are transmitted to the room-temperature shell of the cryostat. Also,
speculate on the structural design of the conductor joint between the two
coils, Nb3 Sn and Nb-Ti.

Although radiation shielding is not shown in the diagram, the approach to
minimizing thermal conduction to the magnet vessel is evident. Describe the
design concept, tracing the principal path of conductive heat to the magnet
vessel.

When the system is cooled from room temperature to liquid helium tempera-
tures, thermal contractions arise. How do they affect the alignment between
the insert and the superconducting magnet?
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Solution to Problem 3.16

a) The Nb-Ti coil is firmly anchored to the bottom of the magnet vessel; a
(fault) force appearing on it is transmitted directly to the magnet vessel’s outer
shell. The force is then transmitted to the G-10 cylinder, which is attached to the
midpoint of the vessel’s outer wall. The G-10 cylinder rests on a support plate
which is anchored to an 80-K radiation shield. The force is finally transmitted to
the room-temperature shell through the stainless steel support cylinder.

The Nb3Sn coil and Nb-Ti coil are joined at their top ends, as shown in Fig. 3.24.
Because the Nb-Ti coil is immobilized, both by anchoring and pre-clamping, its top
end remains motionless, immobilizing the splice joining the LF Nb3 Sn conductor
and HF Nb-Ti conductor.

b) The design concept adopted for Hybrid III is to use a thin-walled shell made
of a material with high strength but low thermal conductivity. The thin wall
takes up a small radial space. To minimize conductive heat input, the use of low
thermal conductivity alone is not sufficient; it must be supplemented by making the
conductive distance between the temperature points long and the conductive cross
section small. Force transmission usually dictates the conductive cross section to
be large because it is through this cross section that the fault force is transmitted;
this leaves only the conductive distance at the designer’s option. For Hybrid III, a
5-mm thick, 100-cm dia. 80-cm long G-10 cylinder was selected to transmit force
between the magnet vessel and the 80-K radiation panels.

The conduction heat input to the magnet vessel thus comes through the G-10
cylinder, whose warm ends (top and bottom) are anchored to 80-K radiation pan-
els. This means the “80-K” heat is conducted through the G-10 cylinder over
a distance of ~40 cm and enters the magnet vessel at its midpoint. The inside
diameter of the G-10 cylinder is “weakly” anchored to a 25-K panel. The total
computed heat input to the magnet vessel is ~3 W.

c) A shrinkage of the outer stainless steel tube tends to lift the bottom copper
support plate anchored at 80 K. The G-10 support tube also shrinks, out-shrinking
the stainless steel tube about twice on a unit length basis. However, because the
length of the stainless steel support cylinder is about twice as long as the distance
of the G-10 support tube from the bottom copper plate to its anchor position at
the magnet vessel’s midpoint, the net result is hardly any vertical displacement
of the bottom plate of the magnet vessel to which the two coils are anchored.
Alignment is thus minimally affected.

“Quality is remembered long after price is forgotten.” —Anonymous
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Problem 3.17: Stresses in an epoxy-impregnated solenoid

This problem deals with simple but approximate stress computations applicable for
epoxy-impregnated magnets. We will use a 500-MHz (12T) NMR superconducting
magnet built in the late 1970s at FBNML as an example [3.31]. The magnet
consists of a high-field insert, a main coil, and several correction and shim coils.
The main coil’s winding inner radius (a1 ) is 72.6mm, winding outer radius (a2 ) is
102mm, and the winding length (2b) is 488 mm. The main coil is wound with a Nb-
Ti multifilamentary conductor; the volumetric ratio of copper to Nb-Ti is 2.1. The
composite wire has diameters of 0.63 mm bare (D cd ) and 0.71 mm insulated (D ov).
The winding has a close-packed hexagonal configuration. The space between the
wires is filled with epoxy resin. Figure 3.25 shows three neighboring wires in a
close-packed hexagonal winding configuration.

When all the coils are energized, the axial (z) component of the magnetic induc-
tion, B z , decreases linearly with radial distance (r) through the build of the main
coil. At the midplane (z = 0) of the main coil, B z varies from 8.22T at r = a1 to
–0.21 T at r = a2. The overall operating current density (J ov ) in the main coil is
248 MA/m².

The analytical solution for an anisotropic cylinder loaded with body forces was
used to calculate the stresses at the midplane of the main coil. The hoop stresses
at the inner and outer radii were found to be, respectively, 105 MPa and 65 MPa;
the hoop stress decreases more or less linearly from the inner radius to the outer
radius.

a)

b)

c )

Using simple force equilibrium considerations, show that these stress values
are consistent with the loading situation.

Assuming the winding pattern is a close-packed (wires touching) hexagonal
configuration, compute the area fraction for each of the three constituents,
Nb-Ti, copper, and organic materials (epoxy plus insulation).

Based on these area fractions and approximate values of Young’s moduli for
these materials at 4.2K (E sc = 85 GPa, E cu = 100 GPa, and E in = 30 GPa),
find the hoop stresses in the Nb-Ti and copper at the innermost layer of the
winding.

Fig. 3.25 Three neighboring conductors in a close-packed
hexagonal winding configuration.



104 CHAPTER 3

Solution to Problem 3.17

a) The average hoop stress in the winding is given by:

(S17.1)

The mean winding radius, is 87.3 mm; the mean magnetic induc-
tion, is 4.0T. The mean hoop stress in the winding may thus
be given by:

(S17.2)

which is pretty close to computed (Eq.S17.1) by taking an average of σi  and σ o.

b) See Fig. 3.25 for the close-packed hexagonal configuration. The triangular
area, At r , defined by the dotted lines is given in terms of the overall conductor
diameter, D ov , by: The conductor area, Acd , within the triangle
is given by: of which 2.1/3.1 is copper area, Acu , and 1/3.1 is
Nb-Ti area, Asc . The epoxy and insulation area, Ain , within the triangle is given
by: Ain  = A t r – A cd . Thus:

(S17.3a)

(S17.3b)

(S17.3c)

c) The Young’s modulus for the composite, may be given from the parallel
mixture rule:

(S17.4)

We may calculate the stress of each component at the innermost winding radius:

(S17.5a)

(S17.5b)
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Problem 3.18: Stresses in a composite Nb3 Sn conductor

In this problem we shall study the stress state in a composite Nb3 Sn conductor,
focusing on the stress relationships among bronze, copper, and Nb3 Sn—the three
major constituents of the composite [3.32]. Because the superconducting proper-
ties of Nb3 Sn filaments are highly sensitive to strain, a thorough understanding
of the stress state in composite Nb3Sn conductors is very important in designing
successful magnets wound with this material. Ekin discusses in detail the effects
of strain on conductor performance [3.33,3.34].

When a Nb3 Sn composite is cooled to 4.2K, each constituent experiences a tem-
perature reduction of ~1000K, from the reaction temperature of ~1000 K to the
operating temperature of 4.2 K. Because each constituent has a different coefficient
of thermal contraction, residual stress arises in each constituent.

Figure 3.26 shows, schematically, strain states for three cases of interest: a) the
composite at a reaction temperature ~1000 K, b) at 4.2 K if the three constituents
can contract individually, c) the composite at 4.2K. Though exaggerated, the fig-
ure indicates the relative sizes of the individual thermal strains of bronze, copper,
and Nb3Sn, given respectively by after cooldown from ~1000 K
to 4.2 K. Correspondingly, their residual strains, in the composite
at 4.2 K are as shown in the figure. That is, both bronze and copper will be in
tension, while Nb3 Sn will be in compression.

In the figure E and A refer, respectively, to Young’s modulus and cross section,
with subscripts indicating constituents.

( a ) (b) (c)

Fig. 3.26 Schematic strain states in the Nb3Sn composite after cooldown.
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Problem 3.18: Stresses in a composite Nb3 Sn conductor

a) Explain the following equations:

(3.58a)

(3.58b)

(3.58c)

(3.58d)

Equation 3.58a implicitly assumes that each constituent is in its elastic range.
This assumption, however, is usually not valid.

b) By combining Eqs. 3.58a, 3.58b, and 3.58c, show that the following expres-
sions are valid for residual strains for the three constituents.

(3.59a)

(3.59b)

(3.59c)

c) By using Eqs. 3.59a, 3.59b, and 3.59c and the values given in Table 3.2 below
for each constituent, compute the residual strains,

d) From and computed above, compute the corresponding stresses in
the bronze and copper. You should find that these stresses put the metals
into the plastic range.

Table 3.2: Properties of Bronze, Copper, and Nb3 Sn at 4.2 K
—Approximate Values—

Constituent  [%] E [GPa]

bronze –1.66 100

copper –1.62 100

Nb 3Sn –0.72 165

* Thermal contraction strain from ~1000 to 4.2 K.
† Fraction of the total composite cross section.

A†

0.24

0.62

0.14
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Solution to Problem 3.18

a) Equation 3.58a states that the net internal force within the composite is zero.

Equation 3.58b gives the strain compatibility for the bronze and Nb3Sn.

Equation 3.58c gives the strain compatibility for the copper and Nb3Sn.

Equation 3.58d gives strain compatibility for copper and bronze.

b) Referring to Fig. 3.26, we have:

Thus,

Similarly,

Thus,

Also,

(S18.1a)

(S18.1b)

(S18.2a)

(S18.2b)

(3.59a)

(S18.3a)

(S18.3 b)

(S18.3c)

(S18.4a)

(S18.4b)

(3.59b)

(S18.5a)

(S18.5b)
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Solution to Problem 3.18

Thus,

(S18.6a)

(S18.6b)

(3.59c)

c) Inserting appropriate values from Table 3.2 into Eqs. 3.59a, 3.59b, and 3.59c,
we have:

Note that both matrix materials are in tension, while Nb3Sn is in compression;
of–1.25% is of course too severe and would certainly damage the conduc-

tor [3.33,3.34]. Note also that when the magnet is energized, the conductor is
subjected mostly to a tensile stress, which tends to place towards zero strain;
usually, the Lorentz tensile stresses are sufficiently great to make Nb3 Sn stretched
when the magnet is the energized.

d) We have:

( S18.7a)

(S l8.7b )

The yield stress of annealed bronze, and that of annealed copper, are
about the same and equal to ~100 MPa. Both bronze and copper are thus yielded
after cooldown.
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CHAPTER 4
CRYOGENICS

4.1 Introduction

Cryogenics deals with temperatures below 150~200 K. Two principal areas of cryo-
genics are: 1) processes and equipment and 2) experimental determination of phys-
ical properties of materials at these temperatures. For any equipment that must
be operated in a cryogenic environment the ultimate goal of cryogenic engineering
is to achieve with a high degree of reliability, the most efficient means of producing
and maintaining that environment

A superconducting magnet is cryogenic equipment. Cryogenics thus plays an im-
portant role in superconducting magnet technology. However, it is also important
to put cryogenics in perspective and not overemphasize its role. For example, from
a purely cryogenic standpoint, a superconducting magnet would operate more ef-
ficiently at liquid nitrogen temperature (77K) than at the temperature of liquid
helium (4.2K); but if this superconducting magnet is to be part of a complex
system, the impact of the higher operating temperature on the system as a whole
must be evaluated. In this case, the magnet at 77K may require considerably
more superconductor than at 4.2K. As a result, the cost reduction achieved in
cryogenics may be insufficient to offset the increased superconductor cost.

This chapter presents problems dealing with some important issues of cryogenics
as applied to the operation of superconducting magnets. In this introductory
section, we shall briefly review important properties of the cryogens most relevant
to superconducting magnets. Purely cryogenic issues, such as heat inputs to a
cryostat by conduction, radiation, and convection, are not discussed in this section;
they are studied in the Problem Section.

4.2 Cryogens

Because liquid helium, as any liquid, boils at a constant temperature as long
as pressure is kept constant, the most widely used mode of operation has been
simply to immerse a superconducting magnet in a bath of boiling helium under
atmospheric pressure. Fortunately for superconducting magnets, liquid helium
boils at 4.2K, a temperature sufficiently cold for Nb-Ti and Nb3Sn conductors.
Although we study design and operational issues of magnets using mostly LTS
systems as examples, we shall cover here four other cryogens whose normal boiling
temperatures are all below 100K; some of them may replace liquid helium as the
primary cryogen for HTS magnets.

Liquefaction of gases closely followed the development of thermodynamics. By the
mid 1850s most gases had been liquefied, exceptions being the so-called “perma-
nent gases,” i.e. oxygen, nitrogen, and hydrogen. At that time noble gases had
not been discovered. Helium (“sun”) was discovered by Janssen in 1868; argon
(“inert”) was discovered by Ramsey in 1894, who also discovered neon (“new”),
krypton (“hidden”), and xenon (“stranger”) in 1898.

111



112 C H A P T E R 4

4.2.1 Boiling Temperatures

Boiling temperatures of five cryogens having normal boiling temperatures below
100 K are presented in Table 4.1. T s in the table is saturation (boiling) temperature
under atmospheric pressure. T m n is the “practical” lower limit achievable under
the “pumped” condition; T m x is the practical upper limit considering that the
cryostat must be pressurized to achieve it. P mn and  P mx are saturation pressures
corresponding, respectively, to T mn and T mx. Because of its explosive nature,
hydrogen, though listed here, would unlikely be used in most applications. Neon is
at the right temperature range for the first generation of HTS magnets, expected
to be operated below ~30K. Its drawbacks are a narrow practical temperature
range, as seen from Table 4.1, and high price; in large quantity it may be purchased
at ~$100 per liquid liter, which is, at least in the United States, more than 20
times more expensive than liquid helium. Because of its wide availability and
virtual inertness, nitrogen would be the best cryogen for superconducting magnets
operable in the temperature range 64~80 K. Because of its reactivity, oxygen is less
desirable; however, it offers a wide practical boiling temperature range (55~94 K)
and may be suitable for “laboratory” use. Argon (87.3 K) is not included in the list,
because, though quite widely available, it has, like neon, a narrow practical boiling
temperature range (85~90 K). It should be noted that, except in a few special
situations where liquid nitrogen is used to maintain the operating temperature of
HTS magnets, HTS magnets will most likely rely on cryocoolers to maintain their
temperatures.

4.2.2 Latent Heat of Vaporization

The volumetric latent heat of vaporization (hL ) is one of the most important ther-
modynamic properties in magnet operation. It is the energy required to vaporize a
unit volume of cryogen; the smaller it is, the more quickly the cryogen boils away
for a given heat load to the magnet vessel containing the liquid. The last column
in Table 4.1 presents values of h L  (per unit liquid volume) for the five cryogens; hL

increases with boiling temperature. Helium thus has the lowest value; nitrogen’s is
~60 times helium's. (Oxygen is nearly 100 times helium’s.) Because nitrogen boils
at 77K, heat input to a magnet vessel containing liquid nitrogen would naturally
be much less than that to a vessel containing liquid helium, making it even easier
to maintain a liquid level with nitrogen than with helium.

Cryogen Ts Tmn ~Tm x Pmn ~P mx h L

[K] [K] [torr] [J/cm3 ]

Helium 4.22 1.6~4.5 6~984 2.6

Hydrogen 20.4 14~21 59~937 31.4

Neon 27.1 25~28 383~92

Nitrogen 77.4 64~80 109~1026

Oxygen 90.2 55~94 1.4~950

104

161

243

Table 4.1: “Practical” Boiling Temperatures and Heat of Vaporization
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4.2.3 Thermodynamic Properties

Appendix II presents selected thermodynamic properties of helium, hydrogen,
neon, nitrogen, and oxygen useful for magnet design.

4.2.4 Nucleate Boiling Heat Transfer

Nucleate boiling heat transfer curves are key input data for “cryostable” supercon-
ducting magnets which are usually operated in a bath of boiling liquid. (Cryostable
magnets will be discussed and studied in Chapter 6.) Figure 4.1 shows steady-
state heat transfer flux data for bare copper surface immersed in a bath of liquid
helium boiling at 4.2K under atmospheric pressure [4.1, 4.2]; the data span both
the nucleate boiling and film boiling regimes. It should be emphasized here that
transfer data scatter—easily by a factor of 2 both ways—influenced by important
factors of magnet design such as surface orientation and finish, and channel gap
and height (in most windings, channels are long and narrow). Transient heat flux
data, applicable in the nucleate boiling regime, are generally an order of magnitude
greater than steady-state values [4.3].

Because the liquid, or more precisely vaporization of liquid provides the cooling
in the nucleate boiling regime, vapor must be replaced with liquid continuously at
the surface for the curve shown in Fig. 4.1 to be valid. This means the winding
of a cryostable magnet must provide not only a sufficient cooling area but also
passages (ventilation) for the vapor to leave the winding. This point is always
a dilemma for the magnet designer: more space allocated for cooling means less
space available for the conductor and structural materials, and a structurally less
rigid winding.

Another important point to note is that the shape of the heat transfer curve, shown
in Fig. 4.1, is essentially the same for other liquids, including water. Obviously
key parameters on both axes, usually in log scale, need to be adjusted for a specific
liquid. The key parameters are Ts (saturation temperature), q pk , ∆ Tqp , and q f m .
qpk is the peak nucleate boiling heat transfer flux, which for liquid helium, from
the figure, is ~1 W/cm². ∆ Tqp is the ∆ T at which qpk occurs. q fm is the minimum
film boiling heat flux. As noted above, qpk and q fm are particularly sensitive to
cooling channel configuration and surface finish of the metal. Table 4.2 presents
these key parameters for the five liquids; values, all typical, are for each liquid
boiling under atmospheric pressure.

Table 4.2: Boiling Heat Transfer Parameters

Cryogen Ts [K] qpk [W/cm²] ∆Tqp [K] qƒm [W/cm²]

Helium 4.22 ~ 1 ~ 1 ~0.3

Hydrogen 20.4 ~10 ~ 5 ~0.5

Neon 27.1 ~15 ~ 5 ~ 1

Nitrogen 77.4 ~15 ~10 ~ 1

Oxygen 90.2 ~25 ~30 ~ 2
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Fig. 4.1 Steady-state nucleate and film boiling heat transfer
data for bare copper surface in liquid helium at 4.2 K [4.1, 4.2].
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4 .3 Superfluidity

Figure 4.2 shows the phase diagram of ordinary helium (He4), in which two forms
of liquid are present, He I and He II [1.1]. Because of its unique properties of
extremely high thermal conductivity (k ) and low viscosity (v ), He II is known as
superfluid helium; superfluidity has been compared to superconductivity. As may
be inferred from the phase diagram, ordinary liquid helium (He I) boiling at 4.2K
can readily be transformed to He II simply by pumping on the liquid. When the
saturation pressure of 38 torr (0.050 atm) is reached, the liquid is at 2.18K and
“enters” into the superfluid phase. According to the “two-fluid” model, the frac-
tion of superfluid is zero at 2.18K and increases monotonically as temperature is
lowered. Figure 4.3 shows the liquid specific heat, cp , as a function of temperature
[1.1]. cp remains nearly constant as the temperature is lowered from 4.2K towards
2.18K; however, just as the liquid enters into the superfluid phase, cp dramatically
increases. It has been speculated that under an ideal experiment cp may indeed
be infinite. Below 2.18K, cp decreases sharply. Because the shape of cp(T ) resem-
bles the Greek letter lambda (λ), the temperature 2.18K is known as the λ-point
and designated by T λ . The extraordinary thermal conductivity and viscosity of
this phase can best be appreciated by comparing these properties with those of
common materials, as summarized in Table 4.3.

Fig. 4.2 Phase diagram of ordinary helium (He4 ) [1.1].
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Table 4.3: Thermal Conductivity and Viscosity of He II
– Approximate Values and Comparison –

k [W/mK] v [ µPas*]

~100,000 0.01~0.1

0.02 ~3

~400 —

~ 1 ~1,000

~0.05 ~20

* 1 Pas = 10 poise.

4.3.1 Transport Properties

Because of its extremely high thermal conductivity, superfluid helium is some-
times used for the operation of superconducting magnets. In magnet applications,
a temperature of 1.8K (< T λ ) is considered the normal operating temperature.
As mentioned earlier, the liquid space within the magnet winding is quite limited
and for He I boiling above T λ it is necessary to provide ventilation passages to
allow the vapor to flow out of the winding. The high thermal conductivity of
He II does not allow a temperature gradient in the liquid sufficient for creation of
vapor; ventilation passages for vapor are thus not needed in the winding. However,

Fig. 4.3 Specific heat of liquid helium (He4 ) in contact with its vapor [1.1].

Material

He II

He I (4.2 K, liq.)

Copper (4.2K)

Water (RT)

Air (RT)
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this does not mean that He II can transport unlimited heat fluxes through narrow
channels. Analogous to the critical current density in superconductors, He II has
a critical heat flux.

Bon Mardion, Claudet, and Seyfert studied heat flux in He II through narrow
channels [4.4]. Figure 4.4 presents their results in the form of a parameter X(T )
designated by them; it is is given by:

(4.1)

where Tc l [K] is the cold-end temperature and T wm [K] is the warm-end temper-
ature. q [ W / c m2] is the heat flux through a channel L [cm] long connecting the
two ends. Note that Eq. 4.1 is applicable for the case when there is no additional
heating introduced to the liquid from the channel itself between the two ends. Un-
der normal operating conditions, Tcl  = Tb , where Tb is the bath temperature; T wm

would be the liquid temperature adjacent to a heated region within the winding
and Twm cannot exceed or from Fig. 4.4, X ( T wm ) = 0. Considering
these operating conditions, we can simplify Eq. 4.1 to:

(4.2)

Fig. 4.4 Bon Mardion-Claudet-Seyfert plot of X ( T ) for a channel of
length L [cm] filled with 1-atm, superfluid helium. The fluid tempera-
ture is Tcl [K] at the cold end and T wm [K] at the warm end [4.4].
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In designing channel configuration and dimensions, we must make sure that the
operating heat flux, qop, corresponding to a particular channel design, does not
exceed qc given by Eq. 4.2.

Heated  Channel

When heating is uniformly introduced over the entire length of channel, L, rather
than at the hot end as discussed above, Eq. 4.2 is modified [4.5]:

(4.3)

4.3.2 Heat Transfer—Kapitza Resistance

Heat transfer between normal metal and He II is controlled by Kapitza resistance.
Heat transfer flux, qk [W/cm²], between a metal whose surface is at Tcd [K] and
liquid at Tb [K] is given by:

(4.4)

Table 4.4 gives typical values of a k and n k .

Table 4.4: Approximate Values for Kapitza Resistance*

Metal (surface) ak [W/cm²] nk

Aluminum (polished)

Copper (polished)

Cooper† (ploished)

Cooper (as-received)

Copper (solder-coated)

Copper (varnish-coated)

Silver (polished)

* Based on values given in references [4.6,4.7].

† Annealed.

“The perpetual motion? Nonsense! It can never be discovered.
It is a dream that may delude men whose brains are mystified
with matter, but not me.” —Owen Warland

0.05 3.4

0.02 4.0

0.02 3.8

0.05 2.8

0.08 3.4

0.07 2.1

0.06 3.0
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Problem 4.1: Carnot refrigerator

This problem deals with a Carnot refrigerator. The Carnot cycle is composed of
two reversible adiabatic (isentropic) and two reversible isothermal processes, in
which a working fluid operates between two thermal reservoirs to produce work or
refrigeration at the most efficient level.

While Carnot efficiency can never be attained in practice, it sets an upper bound
on what is possible. Since superconductivity occurs at very low temperatures,
refrigeration is required to achieve and maintain the cryogenic environment for
magnet operation. Currently, most superconducting magnets operate at liquid
helium temperatures (~4K).

a) Draw a Carnot cycle on a T vs S plot. Use the following notation: T1 is
the temperature of the cold reservoir; S1 is the entropy leaving the cold-
temperature reservoir; T2 is the temperature of the warm-temperature reser-
voir; and S 2 is the entropy entering the warm-temperature reservoir.

b) Show that for an ideal Carnot refrigerator, the work input Wca required to
extract heat Q1 from the reservoir at T1 and release it to the reservoir at
T2  > T 1 (Fig. 4.5) is given by:

c ) Show that W ca / Q 1 74 and W ca / Q1 3 for a Carnot refrigerator operating
in the temperature ranges, respectively, 4 to 300K and 77 to 300K.

(4.5)

Fig. 4.5 Carnot refrigerator operating between two heat reservoirs.
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Solution to Problem 4.1

a) The Carnot refrigerator operates between two reservoirs, the lower one at T1
and the higher one at T2 , extracting heat Q 1 at T 1 and rejecting heat Q 2 at T2 . As
illustrated schematically in Fig. 4.5, work W ca is needed to run the refrigerator.

The Carnot refrigeration cycle consists of 4 reversible processes performed on a
working fluid, as shown in the T vs S plot of Fig. 4.6.

� an isentropic compression of working fluid, starting at state 1 (S2 , T 1);

� an isothermal compression, starting at state 2 (S2, T 2);

� an isentropic expansion, starting at state 3 (S1, T2);

� an isothermal expansion, starting at state 4 (S 1 , T1) and ending at state 1.

b) From the 1st law of thermodynamics, we have:

(S1.1)

Q 1 for the reversible process is given by T1(S2 – S l ). W ca is the work input to
the refrigerator, graphically equal to the area enclosed on the T-S diagram. Q 2

for the reversible process is given by T2( S2  – S 1).

Because the entire cycle consists of 4 reversible processes, the net entropy generated
is zero and there is a constant entropy flow from the cold-temperature reservoir
at T 1 , given by Q 1 / T1, to the warm-temperature reservoir at T2 , given by Q 2/ T2.
Thus:

(S1.2)

Fig. 4.6 Temperature vs entropy plot for the Carnot refrigerator.
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Solution to Problem 4.1

Combining Eqs. S1.1 and S 1.2, we have:

By solving Eq. S1.3 for Wca , we obtain:

(S1.3)

(4.5)

c) Temperature  range  4~300K: With T 1 = 4K and T 2 = 300K, Eq. 4.5
gives W ca / Q 1 74. That is, for each 1 W of refrigeration at 4K, the refrigerator
requires 74 W of work input. In a real refrigerator, the ratio varies from about 300
for large systems to about 2000 for small systems.

Temperature range 77~300K: With T 1 = 77K and T 2 = 300K inserted into
Eq. 4.5, we find W ca / Q1 3. In a real refrigerator, the ratio is close to ~10.

Clearly, it is much more expensive to provide refrigeration at 4.2K than at 77K.
Even with the reduced refrigeration cost to motivate an increase in the magnet
operating temperature, however, we must ask what percentage of the total system
cost, both capital and operating, is directly related to the operating temperature
of the magnet. The answer to such a difficult but important question invariably
depends on numerous parameters.

Joule-Thomson Process

In the Joule-Thomson (J-T) process, a working gas expands adiabatically and
isenthalpically through a restricted passage, e.g. a needle valve, changing its tem-
perature. Whether the change is positive, negative, or zero depends on the gas
properties, the starting temperature, and initial and final pressures. For helium
at initial and final pressures of 10 atm and 1 atm, respectively, liquefaction re-
sults if the initial temperature is below ~7.5 K. Because the process is irreversible,
liquefaction by the J-T process always results in a smaller portion of liquid pro-
duced than if the gas was expanded isentropically. For example, if the helium gas
is expanded at a starting temperature of 6 K and a pressure of 10 atm—typical
values for liquefiers—to liquefaction at 4.2 K and 1 atm, the following isenthalpic
relationship may be used to compute a fraction of helium liquefied ( ):

(4.6)

From Eq. 4.6 we find = 0.47. If the same gas is expanded isentropically, an
entropy relationship similar to the enthalpy relationship of Eq. 4.6 gives = 0.53.
Despite this reduction in liquid production efficiency, the J-T expansion, because
of its mechanical simplicity, is used in the final stage of many helium liquefiers.
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Problem 4.2: Cooling modes of a magnet

This problem deals with the cooldown of a magnet using liquid helium. A super-
conducting magnet is often operated while immersed in a bath of liquid helium.
Because liquid nitrogen is less expensive than liquid helium, a common magnet
cooldown procedure consists of the following sequence: 1) fill the cryostat with liq-
uid nitrogen at 77K, immersing the magnet in a bath of liquid nitrogen; 2) flush
out the liquid nitrogen from the cryostat; 3) while the magnet is still at ~77K,
transfer liquid helium into the cryostat until the magnet is completely submersed.
In some cases involving large magnets (> 1 ton), there can be an additional step
between steps 1 and 2 in which liquid nitrogen is pumped down to a pressure of
109 torr to bring the boiling temperature to 64K thereby further reducing the mag-
net enthalpy. For each of the following questions, you may use the thermodynamic
properties of copper for those of the magnet.

a)

b)

c)

“Perfect” Cooldown Mode: Under a “perfect” cooldown mode, the mag-
net is cooled by a series of infinitesimal energy exchanges with cold helium.
At the n th step, for example, the magnet at temperature Tn is cooled an
infinitesimal amount ∆ T by exchanging heat with an infinitesimal amount
of cold helium mass ∆ M h e, which is heated from 4.2K (liquid) to Tn . All
of the “coldness” in the helium between 4.2K (liquid) and Tn is assumed to
be used to cool the magnet by ∆ T. Note that the “coldness” in the helium
between T n and room temperature is not usable in the cooling.

If M he  is the mass of helium required to cool a magnet of mass M mg  from
Ti to 4.2K, show that an expression for M he / M mg is given by:

(4.7)

where cc u (T ) is the specific heat of copper (representing all the materials in
the winding) and h he (T ) is the specific enthalpy of helium

“ D u n k ”  M o d e : An extreme mode of cooldown is to “dunk” the whole
magnet initially at T  into a bath of liquid helium boiling at 4.2K. Showi

that an expression for M he / M m g under this “dunk” mode to cooldown the
magnet initially at T i to 4.2 K is given by:

where h L is the heat of vaporization of liquid helium at 4.2K. h c u(Ti ) is the
specific enthalpy of copper at T i and h c u(Ti ) >> h cu (4.2K) when T i > 10K.

(4.8)

A 1000-kg copper block is to be cooled to 4.2K from an initial temperature
of T i . Use Eqs. 4.7 and 4.8 to construct a table of liquid helium required
(in liters) vs Ti for the two cooling modes in the temperature range 10K to
300 K. The values obtained are good estimates for a 1000-kg superconducting
magnet.



C RYOGENICS 123

Solution to Problem 4.2

a) In the perfect cooling mode, we have:

dqmg = infinitesimal heat removed from magnet =
dqhe = infinitesimal heat added to helium =

For perfect heat exchange between magnet and helium, we have dqmg  = dq he , and
hence:

From Eq. S2.1, we obtain:

(S2.1)

Integrating Eq. S2.2 and dividing both sides by M mg , we obtain:

(S2.2)

(4 7).

This cooling mode may be approached, but never realized in practice, by having
liquid helium introduced in the cryostat space underneath the magnet at a very
slow rate. However, the cooling rate cannot be too slow because of two heat
sources: 1) the cryostat containing the magnet, which itself is not completely
adiabatic; and 2) the transfer line that brings in the liquid from the storage dewar
which also introduces heat into the liquid.

b) In the dunk cooling mode, only the latent heat of vaporization of liquid helium
(hL ) is used to cool down the magnet. Thus:

From Eq. S2.3 we obtain:

(S2.3)

(4.8)

c) Table 4.5 presents liquid helium (LHe) requirements (in liters) to cool a 1000-
kg copper block from Ti  to 4.2K for both cooling modes. The values in Table 4.5
clearly suggest that it is important to precool a magnet with liquid nitrogen first.
For certain experiments, e.g. cryotribology, it is not permissible to contaminate or
“wet” the system with liquid nitrogen and the liquid helium must be used from
the. beginning. Under such a condition it is extremely important to remember
the tremendous difference—a factor of almost 40—in liquid helium requirements
between the two cooling modes and to transfer the liquid at the slowest rate
practical.
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Solution to Problem 4.2

Table 4.5: Liquid Helium Required to Cool
a 1000-kg Copper Block from Ti  to 4.2 K

T i LHe Requirement [liter]

[K] “Perfect” “Dunk”

300 790 31200

280 750 28210

260 710 25230

240 660 22290

220 610 19430

200 560 16610

180 500 13830

160 440 11165

140 375 8660

120 305 6310

4150230100

90 190 2030

80 150 1640

70 113 1620

60 77 1010

50 44 550

40 37 240

761930

25 6 35

20 3.5 13

15 1.4 4

10 0.5 1
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Problem 4.3: Optimum gas-cooled leads—Part 1

This problem deals with a quantitative design approach for “optimum” gas-cooled
leads. Because the power supply to a superconducting magnet is usually located
outside the magnet’s cryogenic environment, current leads that span over a large
temperature range between power supply and magnet are an essential component
in any superconducting system. Unfortunately, these leads are also a heat load on
the cryogenic environment through both conduction from the room-temperature
environment and Joule heating generated by the transport current they carry. The
basic design concept for optimum leads is to make the Joule heating and conduction
heating about equal and to remove them by funneling cold vapor rising from the
boiling helium through the lead.

Because this problem consists of many (17) questions, it is divided into Part 1 (7
questions) and Part 2 (10 questions).

a) Using a one-dimensional model of a differential element dz, show that the
steady-state power equation [W/m] within a gas-cooled copper current lead
carrying transport current It is given by:

(4 9).

where z is the axial distance along the lead, z = 0 at the lead cold end. k(T) ,
A, and ρ(T) are, respectively, the lead (usually copper) thermal conductivity,
cross section, and electrical resistivity. and cp (T) are, respectively, the
helium mass flow rate and specific heat. Note that heat transfer between the
helium and the lead is assumed perfect, and that T is the temperature of
both lead and helium at z.

b) In the “high” current limit, it is possible to neglect the fist term in Eq. 4.9
which represents axial conduction along the lead. Under this assumption,
show that the total heat Q I  transferred into the cold reservoir (liquid helium
bath) by conduction is given by:

(4.10)

k0 , ρ0, and cp0  are evaluated at the lead bottom-end temperature, T0  (~6 K).

In real systems, the current lead’s bottom end (z = 0) is above the liquid helium
level and connected by a bus bar to a terminal of the magnet, immersed in the
liquid. Often the bus bar consists of a Nb-Ti composite superconductor to which
an additional copper bar is soldered. The composite carries I t with zero Joule
dissipation; the copper bar carries QI , given by Eq. 4.10, from the lead’s bottom
end to the liquid. To keep the composite superconducting over the entire length
of the bus bar, the temperature at the bus bar’s top end (z = 0) must be below
~9K (Nb-Ti’s Tc ); at the same time, the copper bar must conduct Q I  with a small
temperature difference (at most ~5 K). These two conditions usually translate to
a copper bar having a considerable cross section and a temperature of ~6 K at the
current lead’s bottom end.
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Problem 4.3: Optimum gas-cooled leads—Part 1

CHAPTER 4

c)

d)

e)

f)

By equating Q I given by Eq. 4.10 with the power necessary to generate a
liquid boil-off rate of , show that is given by:

where hL is the liquid helium’s volumetric heat of vaporization.

By combining Eqs. 4.10 and 4.11, derive the following equation:

(4.11)

(4.12)

By using and values for cp 0 and k 0 corresponding to the
bottom-end temperature (T 0 = 6K), show:

(413)

To derive an appropriate design value of (It l/A )ot for an “optimum” lead,
where l is the lead length and I t is its designed transport current, one begins
with the high-current approximation of Eq. 4.9 and combines it with Eq. 4.11.
Derive the following integral expression:

(4.14a)

Tl (at z = l) is the lead top-end temperature. Assume cp(T ) = cp0.

For copper, the integral of the left-hand side of Eq. 4.14a is given approxi-
mately by:

g)

for copper:
for T0  = 6K and Tl = 273K. By combining Eqs. 4.14a and

(4.14b)

4.14b, show that

(4.15b)

(4.15 a)

Equation 4.15b is our criterion for an optimum current lead for given It . In
practice, It is usually set by the magnet design; the appropriate (l/A) ratio
may then be selected for the optimum current lead.
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Solution to Problem 4.3—Part 1

a) The total power Qin flowing into and generated within a differential volume
A∆z of the lead, shown in Fig. 4.7, is given by:

(S3.1)

The total power Qout flowing out of the differential volume of A∆ z is given by:

(S3.2)

In the steady-state condition, we have Q in  = Q out . Combining Eqs. S3.1 and
S3.2, we have:

(S3.3)

By dividing Eq. S3.3 by ∆z and letting ∆z go to zero, we obtain Eq. 4.9:

(4.9)

Fig. 4.7 Heat balance for the differential volume of a gas-cooled lead.
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Solution to Problem 4.3—Part 1

b) In the “high” current limit, Eq. 4.9, evaluated at z = 0, where T (0) = T 0 , is
simplified to:

(S3.4)

where cp 0 = cp ( T0) and ρ0 = ρ(T0). From the above equation, we can solve for
(dT / dz)z=0 :

(S3.5)

Because Q I at z = 0 is purely by conduction, we have:

(4.10)

c) The power input Q I into the liquid boils off the liquid at a rate given by:

(S3.6)

Combining Eqs. 4.10 and S3.6 and solving for we obtain:

d) Inserting given by Eq. 4.11 into Eq. 4.10, we have:

(4.11)

(4.12)

Note that Q I depends neither on l, the lead active length between the bottom end
and top end, nor on A , the lead conductor cross section. It is, however, directly
proportional to transport current.

e ) From Eq. 4.12, we have:

(S3.7a)
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Solution to Problem 4.3—Part 1

With h L = 20.4 × 10 3J/kg and for helium; k0 = 600 W/mK
and for copper, we obtain:

(S3.7b)

(4.13)

For an optimum gas-cooled lead, 1 mW/A is a rule-of-thumb value useful for es-
timating the heat input into liquid helium. For a 10-kA lead operating at 10kA,
the heat load will be ~10 W or ~20 W for a pair of such leads.

f) The high-current approximation of Eq. 4.9 is given by:

(S3.8)

Solving for dT/ρ (T ) from Eq. S3.8 with and integrating both sides
over appropriate limits (T0 at z = 0 and Tl at z = l ) we obtain:

(S3.9)

Inserting (Eq. 4.11) in Eq. S3.9 and rearranging the right-hand side, we obtain:

g) Combining Eqs. 4.14a and 4.14b, we obtain:

(4.14a)

(4.15a)

Inserting appropriate values for the parameters in the above equation, we can
numerically solve for ζo :

(S3.10)

(4.15b)
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Problem 4.3: Optimum gas-cooled leads—Part 2

h) Now let us estimate the boil-off rate of liquid helium when the optimized
lead carries no current. This boil-off, called the “standing” boil-off rate,
is due to heat input into the helium by conduction only. Solve Eq. 4.9 for
T (z ) when I t = 0, using the following boundary conditions:

(4.16a)

(4.16b)

Replace k(T ) appearing in Eq. 4.9 with an average value, given by:

is a thermal conductivity value useful for computing thermal conduction
rates over a given temperature range. Table 4.6 (p. 140) presents values
of for three materials (G-10, stainless steel 304, and copper) over three
common temperature ranges in cryogenic applications: 4~80 K; 4~300 K;
and 80~300 K.

With Tl = 273K and T 0 = 6K, = 660 W/mK for copper. Also assume
cp (T) = cp 0. Under these conditions, show that T(z ) is given by:

(4.17)

(4.18)

Note that T (z ) increases exponentially with z.

i) Using another boundary condition, T( l ) = T l , show that the standing heat
input at z = 0, Q0 , for the optimum lead is given by:

(4.19)

j) Combining Eqs. 4.12 and 4.19, show that an expression for the ratio of Q0
(standing boil-off rate) to QI (boil-off rate with It ) is given by:

(4.20)
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Problem 4.3: Optimum gas-cooled leads—Part 2

k) Solve Q0 /Q I numerically for T0 = 6 K and Tl =273 K and show that:

(4.21)

l ) The catalogue of American Magnetics Inc., a manufacturer of gas-cooled
leads, indicates that the boil-off rate of their pair of 500-A leads at 500 A
is 1.4 liters (liquid)/h. Is their claim consistent with an estimate based on
Eq. 4.11? (AMI’s leads are manufactured according to the design principle
developed by Efferson [4.8].)

m) The catalogue also claims the standing boil-off rate of the leads is 0.9 liter
(liquid)/h. Is this claim consistent according to the analysis studied here?

n) Show that irrespective of current rating or size, the voltage drop across an
optimum lead, Vot , at its rated current, I ot , is independent of current rating
or size. That is, the voltage drop across an optimum 100-A lead at a current
of 100 A and that across an optimum 10-kA lead at a current of 10 kA are
essentially identical. Specifically, show that for each optimum lead at the
rated current:

(4.22)

o) For the same designed operating current, optimum gas-cooled leads of differ-
ent lengths (l ) give rise to the same liquid helium boil-off rate under equi-
librium conditions: QI /I t ~1mW/A (Eq. 4.13), which as given by S3.7a is
independent of l.

When the cooling gas flow is abruptly discontinued, the steady-state solution
on which the design of optimum leads is based is no longer valid. If the
lead continues to carry its operating current without cooling, “flow stoppage
meltdown” of the lead may occur, most often near the top end. By deriving
and solving the time-dependent heat equation, show that the thermal time
constant, , of the lead is given by:

(4.23)

where Co is the heat capacity of copper, assumed constant. b is a coefficient
appearing in the resistivity function: ρ(T ) = a + bT. Equation 4.23 indicates
that is proportional to the square of the lead length, making a longer
optimum lead safer than a shorter optimum lead in the event of cooling gas
flow stoppage.

p) Compute an approximate value of for an optimum 10-kA lead 1-m long.
Use Co = 3.4 MJ/m3 K and b = 68pΩm/K.

q) Compute the mass of the conductive part of the above lead.
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Solution to Problem 4.3—Part 2

h) With I t = 0 inserted into Eq. 4.9, we have:

By letting dT/dz = θ(z), we rewrite Eq. S3.11 as:

from which we obtain:

(S3.11)

(S3.12)

or

(S3.13)

Equation S3.13 may be solved to obtain T(z):

(S3.14)

where C0 and C1 are constants to be determined from boundary conditions given
by Eqs. 4.16a and 4.16b.

Combining the boundary condition given by Eq. 4.16a and T (z = 0) given by
Eq. S3.14, we have:

(S3.15a)

Equating the boundary condition given by Eq. 4.16b with (dT/dz)z=0 given by
Eq. S3.14, we have:

(S3.15b)

From Eq. S 3.15b, we obtain Inserting it and C1 = T 0  –
into T(z) (Eq. S3.14), we obtain:

(4.18)
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Solution to Problem 4.3—Part 2

i) From Eq. 4.18, we have T( l ):

From Eq. S3.16, we can obtain the expression for

Solving Eq. S3.17 for we have:

Solving Eq. S3.18 for we obtain:

(S3.16)

(S3.17)

(S3.18)

(S3.19)

With and inserting an expression for given by the above equation,
we obtain:

(4.19)

j) By inserting into Eq. 4.19, we obtain:

(S3.20)

Combining Eqs. S3.20 and 4.12, we can also obtain an expression for Qo / QI :

Inserting ζ o given by Eq. 4.15a (p. 126) into Eqs. S3.21, we obtain:

(S3.21)

(4.20)
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Solution to Problem 4.3—Part 2

k) With = 660 W/mK, h L = 20.4 × 103 J/kg, k 0 = 600 W/mK, cp0 = 6.0 ×
103  J/kg K, ρ0  = 2.5×10 –10  Ωm, Tl = 270K, and T0 = 6K inserted into 4.20, the
ratio becomes:

(S3.22)

(4.21)

That is, a standing boil-off rate is roughly half that corresponding to the full
current state; this is reasonable because an optimum lead is designed to make heat
input at the bottom end equally divided between conduction and Joule heating.

l ) By inserting proper values into Eq. 4.11, we obtain:

(4.11)

(S3.23)

Because liquid helium density at 4.2 K is 0.125 g/cm3, a mass flow rate of 18 mg/s is
equivalent to a boil-off rate of ~0.5 liter/h. With two leads, a boil-off rate at 500 A
becomes ~1 liter/h, which is ~70% of the boil-off rate quoted by AMI for their
500-A leads. This discrepancy results in part by our high-current approximation
which neglects conduction through the lead.

m) Combining Eq. 4.21 and the above result, Q0 = 9mg/s, which is equivalent
to a boil-off rate of 0.27 liter/h for a 500-A lead or a boil-off rate of 0.54liter/h for
a pair. These rates are ~60% of corresponding rates quoted by AMI.

n) Equation 4.15b relates It , l, and A for an optimum lead:

(4.15b)

The voltage drop Vot over the entire length of the lead at Iot  is given by:

(S3.24)
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Solution to Problem 4.3—Part 2

Integration over lead length l is necessary because ρcu , the electrical resistivity of
copper, is temperature-dependent and thus varies with z. Equation S3.24 may be
expressed as:

where

(S3.25)

(S3.26)

Note that Eq. S3.26 assumes linear temperature gradient along current lead. Com-
bining Eqs. S3.25 and S3.26, we have:

(S3.27)

That is, Vot is the same among leads optimized for a given value of It .

For copper, ρcu varies from a low value of ~2.5 × 10–10 Ωm at 6 K to a high value
of ~2 × 10–8 Ωm at 273 K; it is essentially linear with T above ~50 K. cu  is thus
~ 1 × 1 0– 8 Ω m. For either an optimum 100-A lead at 100 A or an optimum 10-kA
lead at 10kA, we have:

(4.22)

o) A time-dependent power equation [W/m] for a differential element of an op-
timum lead is given by:

(S3.28)

where C cu (T ) is the heat capacity of the lead metal (copper). With no cooling
( I = 0) and the conduction term set equal to zero, Eq. S3.28 becomes:

(S3.29)

We also know that an optimum lead satisfies (It l /A)ot = ζo = 2.5 × 107  A/m. We
thus have:

(S3.30)
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Solution to Problem 4.3—Part 2

Because flow stoppage meltdown usually happens near the top end, we replace
Ccu (T) with Co  (a constant) and ρcu(T ) = ρo + bT ( b another constant):

The thermal time constant of the lead, l , is given by:

(S3.31)

(4.23)

The solution to Eq. S3.31 is given by:

(S3.32)

Equation S3.32 states that upon gas flow stoppage T(t) rises exponentially with a
time constant of l . Because l is proportional to l2, a longer optimum lead takes
a longer time to reach the metal’s meltdown temperature than does a shorter
optimum lead. That is, a longer optimum lead is safer than a shorter optimum
lead in the event of cooling gas flow stoppage.

p) Inserting C0  = 3.5 × 106 J /m3 K, l = 1 m, b = 68 × 10 –12 Ωm/K, and ζo =
2.5 × 107 A/m into Eq. 4.23, we obtain:

Note that we can double the time constant by selecting an optimum 10-kA lead
1.4-m long.

(S3.33)

q) Solving Eq. 4.15b for lead cross sectional area A, we obtain:

(S3.34)

With I t = 104 A, l = 1 m, and ζo = 2.5 × 107 A/m inserted into Eq. S3.34:

(S3.35)

The conductive part of the lead mass, Ml , is given by:

(S3.36)

The conductive element of an optimum 10-kA lead has a mass of 3.6 kg.
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Problem 4.4: Optimum leads for a vacuum environment—

Normal conductive metal vs HTS

This problem deals with the design of optimum leads applicable for cryocooler-
cooled superconducting magnets operated at Top > 10 K in a vacuum environment.
We shall approach the problem by examining first normal conductive metal leads
and then HTS leads.

a) With I = 0 in Eq. 4.9 of Problem 4.3, show that an expression for Q I i s
given by:

(4.24)

Assume k( T) and ρ(T ) to be constant and represented by and respec-
tively. Define T (z = 0) = T0  and T(z = l ) = Tl . Note that T 0 < Tl .

b) Optimize Eq. 4.24 in terms of l /A to minimize Q I . Show that the value of
(I t l /A) ov ≡ ζ that minimizes Q I is given by:

c) Show an expression for heat input to the cold end by a normal conductive
metal lead, [Q Iov]ncm , is given by:

(4.25)

(4.26)

d) For temperatures up to ~80 K, it is now possible to consider using HTS as
a lead material; effective HTS leads have been successfully demonstrated
[4.9, 4.10]. As is evident from Table A5.4 (Appendix V), thermal conductivi-
ties of HTS materials, like those of LTS materials, are quite low—comparable
with those of alloys, e.g. brass. Also like the normal-state resistivities of LTS
materials, the normal-state resistivities of HTS materials are several orders
of magnitude greater than those of normal conductive metals. Therefore,
HTS materials cannot be used alone for leads; they must be “stabilized” in
case they are driven to the normal state—during this time Eq. 4.24 is valid.
Because this stability requirement makes Eq. 4.24 valid even for HTS leads,
they must also satisfy the same (It l /A) ov given by Eq. 4.25.

Show that an expression for heat input by a stabilized HTS lead at the cold
end, [Q Iov]H T S, is given by:

(4.27)

ov
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Solution to Problem 4.4

a) With I = 0 and k(T ) , Eq. 4.9 of Problem 4.3 reduces to:

(S4.1)

Integrating Eq. S4.1 twice with respect to z and dividing the resulting equation
byA , we obtain:

(S4.2)

where a and b are constant. Using appropriate boundary conditions, T(z = 0) = T0
and T (z = l ) = T l , we can reduce Eq. S4.2 to:

Q I is given by:

(S4.3)

(4.24)

b) Differentiating Eq. 4.24 with respect to l /A and setting it to 0 for (It l /A)ov =
ζov, we can solve for ζov that minimizes Q I:

(S4.4)

Solving for (I t l /A)ov from Eq. S4.4, we obtain:

(4.25)

c) From Eqs. 4.24 and 4.25, we obtain an expression for [QIov] ncm :

(4.26)

d) Because current in an HTS lead is carried superconductively, heat input at
the cold end, [QIov]H T S , is by conduction only, which, for optimum leads, is half
that given by Eq. 4.26. Thus:

(S4.5)

(4.27)

In addition to the HTS leads considered here, which depend only on conduction
for cooling, there also are HTS versions of gas-cooled leads [4.9, 4.10].



C RYOGENICS 139

Wiedemann-Franz-Lorenz Law and Lorenz number

The product of electrical resistivity and thermal conductivity, ρ(T)k(T), in most
conductive metals is proportional to temperature. This relationship is known as
the Wiedemann-Franz-Lorenz (WFL) law:

(4.28)

where Ll is the Lorenz number. According to the free electron model of metals,
Ll is the same for all metals:

(4.29)

where kB is the Boltzmann’s constant and e is the electronic charge.

Because of this universality of Ll ,  the variation in ρ (T)k(T) among conductive
metals is generally minimal. Figure 4.8 shows Ll (T) plots for copper (RRR=100),
silver (99.99%), and aluminum (99.99%). The plots are based on property values
presented in Appendices III and IV. The dotted line is the theoretical value of the
Lorenz number based on the free electron model.

Fig. 4.8 Ll (T) plots. 1: copper (RRR=100); 2: silver (99.99%); and 3: aluminum
(99.99%). The dotted line is the theoretical value based on the free electron model.
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Problem 4.5: Gas-cooled support rods

This problem deals with conduction loss associated with support rods. Structural
supports inside the cryostat represent a conductive heat load on the cryogenic
environment. Like the current leads of Problem 4.3, the use of a stream of helium
gas to cool a support rod spanning two temperatures (T0 at the bottom end and
T l at the top end) can greatly reduce the conductive heat loss.

a) Equation 4.19 may be used to show that it is possible to reduce significantly
the conduction heat input through a support rod by means of the cold helium
gas that removes the conduction heat. The rod has a cross-sectional area of A
and the distance between the bottom and top ends is l. Assume its thermal
conductivity is temperature-independent and given by  Assume also that
heat transfer between the helium stream and the rod is perfect. Specifically,
show that the ratio of conduction heat input through the rod from Tl to  T0

without helium cooling, , to that with helium cooling, Q g , is given by:

(4.30)

b) Compute Eq. 4.30 for stainless steel 304 with T 0 = 4K and Tl  = 300K. Use
k 0  = 0.25 W/mK and a value of given in Table 4.6.

c) Repeat b) for copper. Use k 0  = 560 W/mK for copper.

Structural Materials for Cryogenic Applications

Structural materials for cryogenic applications must withstand a large tensile or
compressive stress, while conducting as little heat flux as possible over a tem-
perature range. A material property that can be used to quantify the suitability
for cryogenic applications is , the ratio of the material’s average thermal
conductivity (from Tc d to  Tw m ) to its tensile strength.

Table 4.6 presents values of appropriate properties for G-10, stainless steel 304, and
copper to gauge their suitability as structural materials for cryogenic applications;
copper is included to demonstrate its unsuitability. Based on values, G-10
appears more suitable than stainless steel.

Table 4.6: Values of Thermal Conductivity-to-Tensile Strength Ratio
For G-10, Stainless Steel 304, and Copper

[W/m K] σU

Temperature Range [K] [MPa] [m²/Ks]

4~80 4~300 80~300 295K (80~300K)

G-10 0.25 0.50 0.56 280 2×10– 9

SS 304 4.5 11 13 1300 10×10 – 9

Copper 1300 660 460 250 2×10– 6
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Solution to Problem 4.5

a) The conduction heat input through a gas-cooled support rod, Qg , is identical
to Q 0  (Eq. 4.19, Problem 4.3), the standing loss of the optimum gas-cooled lead.
Thus:

(4.19)

For a noncooled support rod of cross section A and length l with a linear temper-
ature variation (T0 at z =  0 and T l at z = l ) and constant thermal conductivity

, the conduction heat input, , is given by:

(S5.1)

Taking the ratio of and Qg , we have:

(4.30)

Note that the ratio is independent of A and l.

b) With cp 0 = 6.0×10³ J/kgK, hL  = 20.4×10³ J/kg, k 0 = 0.25W/mK, =
11 W/mK for stainless steel 304 and with T0  = 4K and Tl  = 300K, we have:

(S5.2)

That is, it is possible to greatly reduce the conduction heat input through struc-
tural elements by an effective use of cold helium gas.

c) With cp 0 =  6 .0×10³  J /kgK,  hL  = 20.4×10³ J/kg, k0  = 560W/mK, =
660 W/mK for copper and with T0  = 4K and Tl  = 300K, we have:

(S5.3)

The impact of gas cooling is greater for stainless steel than for copper; however,
because copper conducts much more so than stainless steel in absolute term, gas
cooling is particularly important with copper—of course the best example is gas-
cooled leads studied in Problem 4.3
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Problem 4.6: Subcooled 1.8-K cryostat

This problem deals with a cryostat for the operation of superconducting magnets
in a bath of subcooled, 1.8-K superfluid helium at 1 atm. Magnet performance
at 1.8K is improved significantly over that of operation at 4.2K, particularly
in bath-cooled Nb-Ti magnets [4.11], because of significant improvement in: 1)
critical current density; and 2) heat transfer between conductor and coolant.

Figure 4.9 presents a schematic of the subcooled 1.8-K cryostat for the Hybrid III
system [4.12]; it is a modified version of the design invented by Claudet, Roubeau,
and Verdier [4.13]. The 1-atm, 1.8-K magnet vessel is connected hydraulically to
the 1-atm, 4.2-K reservoir located above through a narrow channel sufficient both
to keep the magnet vessel essentially at 1 atm (subcooled) and to minimize heat
input from the reservoir to the magnet vessel.

Refrigeration is provided by an evaporator located inside the magnet vessel. The
helium to be pumped in the evaporator is fed from the 4.2-K reservoir. Helium
at point 1 in the figure is thus 1-atm liquid at 4.2K; it is cooled by the J-T heat
exchanger and flows through the J-T valves, isenthalpically dropping its pressure to
12.6 torr as it enters the evaporator. The helium leaves the evaporator as vapor at
1.8K. After passing through the J-T heat exchanger, the vapor leaves the cryostat
and goes into a pumping station located outside the cryostat system. The helium
is purified and stored in a pressure tank. The exhaust helium gas from the 4.2-K
reservoir is funneled through the current leads and it too is stored in the pressure
tank. Room-temperature helium from the tank is liquefied and transferred into
a 500-liter storage dewar, from which it is continuously transferred to the 4.2-
K reservoir to maintain the reservoir’s liquid level. The 1.8-K cryostat system,
therefore, is a closed system.

Under normal operating conditions, the superfluid helium inside the evaporator is
at a saturation temperature of 1.8K and pressure of 12.6 torr and the liquid level
is maintained inside the evaporator. The total combined heat load on the magnet
vessel, Q1.8 , is thus matched by refrigeration produced by the evaporator. Q 1.8

enters into the evaporator from the vessel through the evaporator wall.

The current leads pass through the 4.2-K reservoir and then enter the magnet
vessel through current links connecting the two liquid vessels. Note that important
components not directly related to the refrigeration cycle, e.g. structural elements
(Fig. 3.24), are not included in Fig. 4.9; that is, the cryogenic system is more
complex than indicated in the figure.

a) Using the first law of thermodynamics, explain the following basic power
equation for the 1.8-K circuit:

where is the mass flow rate through the evaporator and the h s designate
helium enthalpies at designated points in the figure.

b) What role does the J-T heat exchanger play in the evaporator circuit?

(4.31)
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Problem 4.6: Subcooled 1.8-K cryostat

Fig. 4.9 Schematic of a subcooled 1.8-K cryostat [4.12].
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c)

d)

e)

f )

g )

h)

Using helium data given in Appendix II, determine he (in g/s) to make
Q 1.8 = 20W. Assume P2 = 1 atm, T2 = 3.0K, P3 and T3 are saturation
values corresponding to 1.8K, and helium at point 3 is 100% vapor.

What is the minimum input power required to the pump when he = 1 g/s,
P4 = 12.6 torr, T4 = 300K, and P5 = 1 atm (760 torr)? Assume the pumping
process to be isentropic.

What precaution(s) must the magnet designer take in designing the plumbing
system connecting points 3 and 4?

For the Hybrid III cryostat, the hydraulic communication has an effective
area of 2.6mm to keep the magnet vessel at 1 atm. Its effective length, L,
connecting the helium in the reservoir and that in the magnet vessel is 10 cm.
Using a Bon Mardoin-Claudet-Seyfert plot of X(T) given in Fig. 4.4, compute
the heat input into the magnet vessel, Qhh , conducted by the superfluid
helium in the channel. Assume the helium temperature at the bottom of the
reservoir to be Tλ and that at the magnet vessel to be 1.8K.

One of final steps in the “cool-down mode” of Hybrid III SCM involves cool-
ing the liquid helium in the magnet vessel from 4.2K to 1.8K. The necessary
cooling is provided by the evaporator, which is continuously fed 4.2-K liquid
from the reservoir and at the same time pumped. Assuming that the liquid
volume in the magnet vessel is 250 liters, estimate the total volume of “re-
plenishment” liquid for the magnet vessel as the liquid is cooled from 4.2K
to 1.8K.

The current leads must reach from the bottom of the reservoir to the termi-
nals of the magnet located in the magnet vessel. It is customary to use Nb-Ti
composite superconductors for the leads. Clearly each composite supercon-
ductor must have a small cross sectional area occupied by copper to minimize
conduction heat input to the vessel from the reservoir but still large enough
to keep the superconducting filaments stable during magnet operation. The
lead criterion developed in Problem 4.4 is applicable for this case because
between the two ends, the lead is essentially insulated—in the Hybrid III
cryostat, the space separating the two vessels is vacuum. Show that the
steady-state peak temperature in the lead when it is in the normal state and
carrying I t occurs at the lead’s reservoir end and because its temperature
is close to Tλ , well below Nb-Ti’s critical temperature, the entire lead will
recover.

“He was right, he is right; Murphy will always be right.”
—An exasperated cryogenic engineer

²
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Solution to Problem 4.6

Fig. 4.10 Heat balance for an evaporator.

a) Equation 4.31 is derived from the first law of thermodynamics applied to the
control volume (c.v.) enclosing the evaporator (Fig. 4.10). Under the steady-state
condition, the heat input to the evaporator, Qin , is given by:

(S6.1)

where Q 1.8 is the refrigeration load to the evaporator. Q1.8 consists principally of:

• dissipation within the magnet—AC losses during field change, splice losses—
these losses are discussed in Chapter 7.

• heat input to the magnet vessel. For example, conduction through structural
supports, radiation, conduction through leads between the 4.2-K reservoir and
the magnet vessel, superfluid conduction through the pressure communication
channel (Qhh in f) ) .

Heat output, Q out , from the control volume is given by . By equating Q in

with Q out and solving for Q 1.8 , we obtain:

(4.31)

b) Helium leaving the reservoir (at point 1) is at 4.2K; helium leaving the evap-
orator (at point 3) is nominally at 1.8K. To maximize Q 1.8 at a given helium flow
rate, as seen from Eq. 4.31, (h3  – h2 ) must be maximized, or the helium temper-
ature at point 2 must be as close to 1.8K as possible. The heat exchanger is used
to cool down this incoming helium.

c) Appropriate values for h3 (1.8K, 1atm) and h2  (3.0K, 1atm), both from Table
A2.2 (Appendix II) are:

h3 = 24.0J/g

h2 = 5.23J/g
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Solution to Problem 4.6

With these values inserted into Eq. 4.31, we obtain:

Solving for , we obtain = 1.07g/s, which corresponds to a liquid helium
(at 4.2K, 1atm) supply rate of 31 liter/h.

Note that in addition to this 31 liter/h liquid replenishment rate, it is necessary to
transfer liquid into the reservoir to replenish that boiled off by heat inputs caused
by current leads, etc.

d) For an isentropic pump, the pump power requirement, , is given by:

( S6.2)

γ = C p / Cv for helium is 1.67; v4 is the specific volume at point 4, which for
helium at 300K and 12.6 torr is 371m³/kg. With P4 = 12.6 torr = 1.68 × 10³ Pa,
P5/ P4 = 60.3, and = 0.001kg/s (1g/s), we obtain: = 6487W or ~9hp
(horsepower). Note that this is for an ideal case; the power requirement for a real
pump would be roughly ~30hp.

e) The pressure drop between points 3 and 4 for a necessary helium flow rate
must be much less than 12.6 torr, the operating pressure at point 3. Note that the
lower P4 gets (below 12.6 torr), the more = is needed.

For the Hybrid III system, a piping system connecting the top of the “chimney”
to the pump consists basically of a 15-cm i.d. pipe, 13m long. It has a total of
five 90° bends and one shut-off valve and can handle mass flow rates up to ~2g/s
with a total pressure drop less than 1 torr.

Also, precautions should be taken not to introduce contaminants to the evapo-
rator through the piping system. Such contaminants usually get solidified at the
narrowest passage areas, e.g. J-T valves, and block the line. In Hybrid III each
J-T valve has a heater attached to melt away solidified contaminants.

f ) For narrow channels filled with 1-atm superfluid helium, as discussed in 4.3.1,
a function X ( T ) given by Eq. 4.1 and plotted in Fig. 4.4 relates conduction heat
flux q [W/cm²], channel length L [cm], and two end temperatures, Twm (warm)
and T c l (cold). With Twm  = T λ, Tc l = 1.8K, and L = 10cm, we have: X (Tλ) = 0,
and X (1.8) = 360 (in appropriate units). Thus, we obtain:

(S6.3)

Solving Eq. S6.3 for q, we have: q = 1.46 W/cm². With the channel cross sectional
area of 2.6mm², total conduction heat input to the magnet vessel through the
hydraulic communication channel becomes ~40mW.
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Solution to Problem 4.6

Three carbon resistors are placed in the bottom area of the reservoir to measure
liquid temperature in that area. (Problem 4.10 studies carbon resistors as ther-
mometers.) Measurements indicate that the liquid temperature at the reservoir
bottom is ~3K, clearly above Tλ . Often with subcooled 1.8-K cryostats of this
basic design configuration, the liquid at the reservoir bottom is very close to Tλ.

Because a cross section of 2.6mm² is insufficient to maintain atmospheric pressure
in the magnet vessel in the event of a magnet quench, the Hybrid III cryostat has
a “poppet” valve with a cross section of 40mm². Under normal conditions the
poppet valve is kept shut by means of a spring; it opens only when a pressure is
built up in the magnet vessel.

g ) From Table A2.2 (Appendix II), the liquid densities at 1 atm are 125kg/m³
at 4.2K and 145kg/m³ at 1.8K. Thus for Hybrid III, the 250-liter vessel starts
with about 31kg of liquid at 4.2K and ends up with about 36kg of liquid at 1.8K.
That is, about 5kg of liquid must be supplied to the vessel. In terms of volume at
4.2K, this translates to 40 liters.

Although a cross section of 2.6mm² provided by the hydraulic communication
channel is adequate to transport this additional mass of liquid over a cooldown
period of ~2hr, the poppet valve with a total flow passage area of 40mm² is kept
open until the liquid in the vessel reaches Tλ.

h) An expression for the steady-state temperature profile along the lead that is
in the normal state and generating Joule heating is given by a modified expression
of Eq. S4.3 (Problem 4.4, p. 138):

(S6.4)

where ρ and k are the electrical and thermal conductivity of copper used in the
lead. A and are the lead’s cross sectional area and length separating the cold
and warm ends, respectively, at T0 (1.8K) and T (~Tλ ). According to Problem
4.4, an optimal lead satisfies the condition given by Eq. 4.25 (p. 137):

(4.25)

Combining Eqs. S6.4 and 4.25 and defining a new variable , we have:

(S6.5)

Either by actually plotting Eq. S6.5 or finding the location at which dT/dy = 0
occurs, we can show that a peak in the temperature distribution given by Eq. S6.5
occurs at y = 1 and thus the peak temperature is Tλ . That is, even if the lead is
driven normal, if the lead satisfies the criterion given by Eq. 4.25, the conduction
cooling is sufficient to recover the lead.
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Problem 4.7: Residual gas heat transfer into a cryostat

This problem deals with heat input into a cryostat by residual helium gas present
within the space in the cryostat’s multi-walled structure. The Hybrid III cryostat
is used as an example.

Heat Input by Residual Gas: “High” Pressure Limit

When the pressure of a gas is sufficiently high, the mean free path (λg ) of the gas
is generally much shorter than a typical distance (d) separating the two surfaces at
different temperatures in a cryostat. Under this condition of λg <<  d, the thermal
conductivity of a gas (kg ), according to the kinetic theory, is proportional only to
the mean velocity of the molecule ( ), which in turn varies as . The important
point here is that when λg d , k g is independent of gas pressure, Pg . For a
cryostat this condition is of secondary interest because the space in the cryostat’s
multi-walled structure is usually kept at “vacuum,” which means Pg of ~10–4 torr
(~10 – 2 Pa) or less.

The kinetic theory also shows that λg is proportional to T and inversely propor-
tional to Pg:

(4.32)

For helium gas at T = 300 K and Pg = 105 Pa (1 atm), λg is ~0.1 µm, or the
condition λg d is clearly satisfied in this “high” pressure limit. At a “vacuum”
pressure of P g ~10 – 4 torr, however, λg becomes ~1 m and the condition λg d is
violated. That is, when λg>>d, we have a “low” pressure limit, discussed below.

Heat Input by Residual Gas: “Low” Pressure Limit

Under a vacuum pressure Pg of ~10– 4 torr or less, kg is no longer independent
of pressure: kg becomes directly proportional to P g . For a parallel-plate config-
uration with one plate at a cold temperature Tc l [K] and the other at a warm
temperature T wm [K], heat flux (qg [W/m²]) from the warm plate to the cold
plate by a “residual” helium gas at pressure Pg [Pa] may be given by [4.14]:

(4.33)

η g [W/m²PaK] depends not only on Twm and T c l but also on the so-called ac-
commodation coefficient, which for helium varies from 0.3 at room temperature to
1 at 4.2K. Table 4.7 presents ηg and qg at a pressure Pg of 10 –5 torr (1.33 mPa)
across two parallel plates, respectively, at Tc l and Twm .

Compute total heat input into the Hybrid III magnet vessel at 4.2K by
residual helium gas of pressure 10– 5 torr present in the vacuum space. Use
the “parallel- plates” approximation, i.e. the surface area of one plate at a
cold temperature Tc land that of the other plate at a warm temperature Twm

are the same. The magnet vessel surface areas are: 1) 7.3m² facing the 20-K
radiation shields; 2) 2.8m² facing the 80-K radiation shields.

<<

<<
<<
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Problem 4.7: Residual gas heat transfer into a cryostat

Table 4.7: Heat Conduction by
Residual He Gas at Pg of 10 – 5 Torr [4.14]

Tc l ~ Twm ηg qg

[K] [W/m²PaK] [W/m² ]

4~20 0.35 8

4~80 0.21 21

4~300 0.12 47

80~300 0.04 11

Vacuum Pumping System

Figure 4.11 shows a schematic diagram of a typical vacuum system used in the
operation of a superconducting magnet. The cryostat vacuum space outlet is
connected to a diffusion pump via a cold trap and the diffusion pump is in turn
connected to a mechanical pump. The cold trap—a 77-K surface one side of which
is in direct contact with boiling liquid nitrogen—serves to condense oil, water, and
other contaminant vapors that would otherwise be condensed on the cold surfaces
of the cryostat. A procedure customarily used to evacuate the cryostat vacuum
space is to reach a vacuum of ~10 – 2 torr by the mechanical pump alone and then
use the diffusion pump, eventually reaching a vacuum of 10 –5 ~10 –6 torr.

Fig. 4.11 Schematic diagram of a typical pumping vacuum system used in
the operation of a superconducting magnet.
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Solution to Problem 4.7

For a magnet vessel surface at 4.2K exposed to 20-K radiation shields, qg at
Prg  = 10 – 5 torr is 8 mW/m² . Thus, for a surface area of 7.3 m2 under the parallel-
plates approximation, the total heat input becomes 58mW. Similarly, for a magnet
vessel surface at 4.2 K exposed to 80-K radiation shields, qg is 21  mW/m², or a
heat input of ~60mW for a surface area of 2.8m². Thus the combined heat input
to the 4.2-K magnet vessel becomes ~120mW, which is quite acceptable.

At a poorer vacuum, e.g. Prg =  10– 3 torr ( λg ~ 0.1m, still greater than “d ” in
most cryostats), the heat input becomes ~12W, which is intolerably high. It is
therefore important to keep the cryostat vacuum pressure to less than ~10– 4 torr.

Vacuum Gauges

Two types of vacuum gauges are commonly used for cryostats: 1) thermocouple;
and 2) ionization. Below is a brief description of each type.

Thermocouple: The thermocouple gauge relies on the dependance on pressure
of the thermal conductivity of a gas, valid in the “low” pressure limit discussed
above. The thermocouple junction is situated in a tube connected to the vacuum
space to be measured and its temperature is set by a heater. The gas provides
cooling, which varies with the gas pressure; the change in the induced current
through the junction circuit is a measure of the vacuum pressure. The gauge’s
range of applicability is 10– 3 ~1 torr or the range covered by mechanical pumps.

Ionization : For the vacuum range between ~10– 6 and ~10 –3 torr, the operating
range in most cryostats, the ionization gauge is used most widely. There are two
versions: 1) hot-cathode; and 2) cold-cathode.

Hot-Cathode : This gauge consists of a heated filament (hot cathode), an anode,
and a negatively biased ion collector plate, all housed in a tube that connects to
the vacuum space to be measured. The electrons flowing from the filament to the
anode collide with gas molecules, creating ionized molecules that are drawn to
the collector plate and measured as a current through the measurement circuit.
Because the molecules are ionized by electrons, the ion current depends also on the
number of electrons bombarding the molecules: accurate pressure measurement
thus requires careful control of filament current. The hot-cathode gauge used in
the Hybrid III cryostat is turned off during magnet operation to minimize "filament
fatigue” caused by the filament’s oscillating motion that results from the Lorentz
interaction of the filament supply current (60 Hz) and the magnet’s fringing field.

Cold-Cathode: Known as the Philips gauge, it uses a cold cathode and two parallel
anode plates with a magnetic field applied in the direction normal to the anode
plates, which are turned on (~2kV) one at a time. The small number of electrons
produced by the cold cathode are thus made to travel in a helical path alternatively
toward one of the two plates. This configuration effectively increases the collision
chances between the small number of electrons and gas molecules. Unlike hot
filaments, cold cathodes do not contaminate the gas nor are they destroyed in the
event of a loss of vacuum.
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Problem 4.8: Radiation heat transfer into a cryostat

This problem deals with heat input to a cryostat by radiation. The Hybrid III
cryostat is used as an example.

Radiation Heat Transfer: Applications to a Cryostat

The theory of radiative heat transfer begins with the Stefan-Boltzmann equation:

(4.34)

qr is the radiative heat flux [W/m2] from a surface at temperature T [K]. e r is the
total emissivity at T. σ SB is the Stefan-Boltzmann constant, 5.67×10 – 8 W/m 2 K4 .
What makes computation of radiation heat input to a cryostat usually less straight-
forward than suggested by Eq. 4.34 is the task of having to choose a correct value
of er for each of the two surfaces that are radiating heat according to Eq. 4.34. For
the parallel-plates configuration with emissivities of [er]c l and [er ] wm , respectively,
for one surface at cold temperature Tcl and the other at warm temperature Twm ,
the effective total emissivity, [er] cw is given by:

(4.35)

Although theory distinguishes among “parallel-plate,” “cylindrical,” and “spheri-
cal” configurations, in most cryostat applications, the parallel-plate configuration
suffices even for nonparallel-plate configurations. (Nonparallel-plate configurations
usually mean that the two surfaces have different areas.) This is because: 1) in
most cryostats, the distance separating the two surfaces is generally much less than
a characteristic surface length; and 2) an error that would invariably be introduced
in an estimate of radiative heat input through this geometric approximation is still
likely to be considerably less than that introduced by uncertainties associated with
emissivities of the surfaces in question. Equation 4.34 is thus modified to:

Effect of Superinsulation Layers

(4.36)

Examination of Table 4.8 reveals that the largest radiative heat load in a cryostat
is usually on an 80-K shield, which receives heat from the 300-K surface. Thus,
it is quite customary to place a number of aluminized Mylar sheets, known as
superinsulation, in the vacuum space between the 80-K and 300-K surfaces. As-
suming [er]c w of all surfaces to be nearly identical, the presence of Ni layers of
superinsulation modifies Eq. 4.36 to:

(4.37)

Equation 4.37 indicates that the presence of even one layer of superinsulation
between the 300-K and 80-K surfaces reduces qr by a factor of 2. A rule of thumb
is to use about 10 layers for each 1-cm spacing.
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Problem 4.8: Radiation heat transfer into a cryostat

Table 4.8: “Typical” Values of Radiation Heat Flux [4.14]

* One half of the 4.2~80 K value.

Material Tc l ~ Twm [e r] cw qr

[K] [mW/m² ]

Copper
as received 4~20 0.03* 0.3

4~80 0.06 140
80~300 0.12 55,000

mechanically 4 ~ 2 0 0.01* 0.1

polished 4~80 0.02 46

80~300 0.06 27,000

Stainless steel
as received 4~20 0.06* 0.6

4 ~ 8 0 0.12 280
80~300 0.34 155,000

mechanically 4~20 0.04* 0 . 4

polished 4 ~ 8 0 0.07 160

80~300 0.12 55,000

electropolished 4 ~ 2 0 0.03* 0 . 3
4 ~ 8 0 0.06 140

80~300 0.10 46,000

Aluminum

as received 4 ~ 2 0 0.04* 0.4

4 ~ 8 0 0.07 160
80~300 0.49 224,000

mechanically 4~20 0.03* 0.3

polished 4~80 0.06 140

80~300 0.10 46,000

electropolished 4~20 0.02* 0.2
4 ~ 8 0 0.03 70

80~300 0.08 37,000

foil 4~80 0.01 20

80~300 0.06 28,000
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Problem 4.8: Radiation heat transfer into a cryostat

Table 4.8 presents “typical” values of [er]c w over three different temperature spans
for three common materials used in cryostats [4.14] and values of corresponding
qr [mW/m²]. As indicated in the footnote of Table 4.8, values of [er] c w over a
temperature span of 4.2 to 20K, not given by Noguchi [4.14], are taken to be half
of those corresponding to a temperature span of 4.2 to 80K. It should be stressed
that values given in Table 4.8 are typical; actual values to be used for the surfaces
of a specific cryostat can vary at least by a factor of 2 in either directions.

a)

b)

c)

Compute the total heat input to the Hybrid III magnet vessel at 4.2K by
radiation from the 20-K and 80-K radiation shields. The magnet vessel sur-
face areas are: 1) 7.3m² facing the 20-K radiation shields; 2) 2.8m² facing
the 80-K radiation shields.

Assume that the total surface area of the 20-K panels facing the magnet
vessel is 7.3m² and the total surface area of the 80-K panels facing the
magnet vessel is 2.8m². Also assume all three surfaces to be of mechanically
polished stainless steel.

Compute the net heat input to the 80-K radiation shield facing the 300-K
surface. The total area of the 80-K panels facing the 300-K surface is 11.7m².

Assume that the total 300-K surface facing the 80-K panels is also 11.7m².
The 80-K panels also face the 20-K panels and the magnet vessel. The 80-
K panels receive cooling from these cold surfaces; it may be neglected for
computing the total heat load to the 80-K panels.

The Hybrid III cryostat does not contain “superinsulation” layers. Discuss
the effect of superinsulation in reducing radiation heat input.

•

•

•

•

Practical Considerations of Emissivity

It is important to note that radiation is an electromagnetic phenomenon: emissiv-
ity er increases with “surface” electrical resistivity of the material. The material’s
emissivity is thus affected in the same way the material’s surface electrical resis-
tivity is affected. Based on this principle, we may list the following rules of thumb
on emissivity:

For the same temperature range, er values of copper are smaller than those
of aluminum, which in turn are smaller than those of stainless steel.

For the same surface, er decreases with temperature. Thus, copper’s er

decreases more markedly than does stainless steel's.

er of conductive metal is more sensitive to surface contamination than that
of nonconductive metal. Contamination includes oxidation and alloying.

Mechanical polishing sometimes improves (decreases) er and sometimes de-
grades (increases) er . If an oxide layer from conductive metal’s surface is re-
moved by mechanical polishing, the result is an improvement. If the metal’s
resistivity is increased by work-hardening, the result is degradation.
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Solution to Problem 4.8

a ) Using appropriate values of qr given in Table 4.8 for the mechanically polished
stainless steel surface, we have:

20-K panels to vessel

Q r = (0.4 × 10 – 3 W/m²)(7.3 m²)

3 m W

(S8.1)

80-K panels to vessel

Qr = (160 × 10 – 3 W)(2.8 m²) (S8.2)

= 448mW

Thus the total radiative heat input into the vessel is ~0.5 W or unlikely to be more
than ~1 W.

b ) Again, using appropriate values of q r given in Table 4.8 for the mechanically
polished stainless steel surface, we have:

300-K to 80-K panels

Q r = (55W/m²)(11.7m²)

= 644 W

(S8.3)

Thus the net radiative heat input into the 80-K panels is ~650 W.

c ) Unfortunately—by oversight—the superinsulation wrapping around the 80-K
panels was not installed by the vendor contracted by MIT to supply the Hybrid III
cryostat. The absence of superinsulation causes a much higher heat load than the
designed heat load on the 80-K panels. Even the presence of one layer of superin-
sulation would have reduced the heat load to ~150 W. A factor of 4 reduction is
possible because there are two factors of 2 reductions—one from 0.12 to 0.06 in
[er]c w (Table 4.8) and the other 1/(N i + 1) where N i = 1 (Eq. 4.37). Because of
this oversight, these panels operate at higher temperatures, ranging from 95 K to
as high as 120 K, in turn causing the 20-K panels to operate at close to 25K.

“We may not arrive at our port within a calculable period,
but we would preserve the true course.” —Henry D. Thoreau
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Problem 4.9: Laboratory-scale hydrogen (neon) condenser
This problem deals with design principles for a laboratory-scale condenser for
liquefaction of hydrogen; the principles are also applicable for liquefaction of neon.
A small quantity of liquid hydrogen or neon is useful for measuring the current-
carrying capacities of HTS, because immersing a test sample in boiling liquid at a
known pressure is the easiest way to maintain (and be sure of) the superconductor’s
temperature, particularly for currents above 10 A.

Because of the explosive nature of hydrogen in both liquid and vapor phases, the
procedure enforced at FBNML for liquid-hydrogen experiments consists of five
stages: 1) liquefaction in a cryostat; 2) sample holder insertion into the cryostat
after the completion of liquefaction; 3) magnet run; 4) sample holder extraction
from the cryostat; and 5) discharge from the cryostat of liquid unused in the
magnet run. Safety rules stipulate that Stages 1,2,4, and 5 be performed outdoors,
that in Stage 3 the cryostat be completely sealed to keep air from condensing, and
that the hydrogen vapor be vented outdoors through a pumped line to keep it
from mixing with air inside the building.

Figure 4.12 illustrates the liquefaction setup in Stage 1, with the condenser placed
in a cryostat [4.15]. A regulated high-pressure tank supplies the hydrogen gas,
which is cooled and liquefied through the condenser by a stream of liquid helium
supplied from a standard 25-liter storage dewar.

Note that this hydrogen liquefier can also be used to condense about the same
amount of liquid neon, again using liquid helium as a refrigerant [4.16].

a )

b )

c )

d )

Using an enthalpy balance argument, show that an expression for the ratio
of 4.2-K liquid helium mass required to the mass of hydrogen liquefied at
20 K, M he ( T ) /Mh 2 , is given by:

(4.38)

where (h L ) h 2 is the volumetric heat of vaporization of hydrogen. Assume
that the helium entering the condenser is 100% liquid. Note that the ratio
is a function of temperature, T , because the upper temperature limit of the
helium can be as low as 4.2K to as high as 20K, depending on condenser
design.

Using Eq. 4.38, compute the liquid helium transfer rates (liter/h) required
to liquefy hydrogen at a rate of 1 liter/h with: 1) an ideal condenser; and 2)
a condenser with T at 10 K.

The condenser, in addition to condensing hydrogen, must be able to cooldown
the hydrogen gas from room-temperature to its condensation temperature
(20 K) at a specified rate. For a condensation rate of 1 liter/h, what would
the required length be if the condenser is to be made of 5-mm o.d. copper
tubing? The question really is to find the condenser surface area sufficient to
cooldown the gas from room-temperature to 20 K at this condensation rate.

The hydrogen condenser built at FBNML was used to condense neon to make
J c measurements  for HTS samples [4.16]. Show that the condenser is almost
as effective for neon as it is for hydrogen.
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Problem 4.9: Laboratory-scale hydrogen (neon) condenser

Fig. 4.12 Hydrogen liquefaction setup in stage 1. Dimensions are in mm.
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Solution to Problem 4.9
a) The hydrogen gas entering the cryostat at the top end is cooled gradually as
it moves downwards. Condensation takes place on the cold part of the condenser
where the surface temperature of the coil is at a temperature below 20 K, the
condensation temperature of hydrogen. (Most of the condenser surface is needed
to cool the room-temperature hydrogen to 20 K. Condenser design is thus dictated
really by the cooldown process as discussed in c) of this problem.)

The only refrigeration available to condense hydrogen at 20 K is thus the total en-
thalpy increase of helium from 4.2 K liquid to a vapor temperature T, which cannot
exceed 20 K: M he [h h e(T ) – h he (4.2 K, liq.)], where Mhe [g] is the total mass of he-
lium needed for hydrogen condensation and hhe (T) [J/g] and h he (4.2 K, liq.) [J/g]
are the specific enthalpies of helium, respectively, at T and 4.2 K (liquid phase).
This enthalpy increase must match the latent heat of vaporization of hydrogen:
M h2 (h L ) h 2 , where M h 2 [g] is the total mass of hydrogen condensed and (hL ) h 2 [J/g]
is the latent heat of vaporization of hydrogen. Thus:

(S9.1)

Solving for M he (T ) /M h 2 from the above equation, we obtain:

(4.38)

The mass ratio is minimum at T = 20 K, achievable only with an “ideal” condenser.
Typically T ~ 10K, or a temperature difference of ~ 10K, is required for real
condensers.

b ) With ( h L ) h 2 = 443 J/g, h he (20 K) = 117.9 J/g, and h he (4.2K, liq) 9 .7J /g ,
we have, from Eq. 4.38, the minimum mass ratio of 4.1. For T = 10K, which
corresponds to a temperature difference of 10K between the helium vapor and
condensing hydrogen, the mass ratio becomes 8.0, or almost twice that for the
ideal condenser.

Because the density of “normal” hydrogen at 20 K is 0.071 g/cm³, 1 liter of liquid
hydrogen has a mass of 71g. The M he required to liquefy 1 liter of hydrogen is
291g for the ideal condenser; it is 568g for the 10-K condenser. Corresponding
liquid helium transfer rates are 2.3liter/h and 4.5liter/h.

c ) The total heat transferred, Q cn , from hydrogen to helium in the condenser,
cooling hydrogen from 300 to 20K, is given by:

(S9.2)

where , A c n , and ∆ T cn , all applicable at the hydrogen side of the condenser
surface, are, respectively, the convective heat transfer coefficient, total area, and
temperature difference. is related to the Nusselt number, Nu, of the hydrogen
flow and the hydrogen thermal conductivity, k, as:
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Solution to Problem 4.9

(S9.3)

D c n is the outside tube diameter of the condenser coil. Nu is related to the Prandtl
number Pr and the Reynolds number Re of hydrogen flow by:

(S9.4)

Reynolds number Re is given by:

(S9.5)

To produce 1 liter (71g) of liquid hydrogen from room-temperature hydrogen gas
in 1 hour, Q c n is given by:

Although an appropriate value of Re can vary with condenser design, typically it
is in the range of 1~100. With D c n 5 mm, we find to be ~500 W/m²K
for ∆ Tc n ~ 1K. Thus the required A c n becomes ~0.15m² which, for a 5-mm
o.d. copper tubing, translates to a length of ~10m.

d) B e c a u s e is proportional to Nu k (Eq. S 9.3), we can compare this for hy-
drogen and neon. Thus:

Combining Eqs. S9.4~S9.6, we have:

(S9.6)

(S9.7)

Inserting values of each gas’ parameters near, for example, its saturation temper-
ature (Table A2.4, Appendix II), we have:

= (1.12)(0.46)(1.79)(1.6) = 1.47

Thus, the condenser is less effective for neon than for hydrogen; nevertheless it
should be adequate for condensing neon, as it turned out in actual use at FBNML.
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Problem 4.10: Carbon resistor thermometers
Temperature measurement is one of the key requirements in the operation of su-
perconducting magnets; it is not a straightforward matter in the cryogenic envi-
ronment, particularly in the presence of magnetic field. This problem deals with
low-temperature thermometry based on carbon resistors.
Despite their magnetoresistance effect, carbon resistors are often used in the oper-
ation of superconducting magnets, because they: 1) are sensitive (below ~20K);
2) occupy small space; 3) are easy to calibrate and use; and 4) are inexpensive.
The absolute uncertainty in temperature measurement, although dependent on
temperature, is ~1 mK at 1.8 K.
The following logarithmic polynomial form relating T and R has been found to fit
well with experimental points:

where T is in K and R is in Ω . The m j s are constants (with appropriate units)
derived from calibrated points. Typically, j runs from 0 to 2 or from –1 to 1
(meaning at least three calibration points are required):

For this problem, a nominal 47-Ω (l/8 W) resistor with the following sets of coef-
ficients are used: 1) m 0a = –0.647403121; m1a = 0.115776702; m 2 a = 0.00650089
and 2) m–1b = 1.749782525; m 0b = –1.464991212; m 1b = 0.242426753 [4.17].
These m j

1.58 K [4.17]. Equation 4.40 in either form with these mj s is thus accurate only
over this temperature range.

a) Using Eq. 4.40a, determine the value of R [Ω] at T =4.23 K to within ±0.1 Ω.
0 a =

–0.6474; m 1a = 0.1158; m 2a = 0.0065.
b) Now use Eq. 4.40b and determine R [Ω] at T =4.23 K to within ±0.1 Ω. You

may use the following approximate values for the coefficients: m –1b = 1.7498;
m0b = –1.4650; m 1b = 0.2424.

c) What is the sensitivity (S ≡ dR /dT, in Ω /K) of this carbon resistor at
3.35 K (R 439Ω) and at 1.80 K ( R 1577 Ω ) ?

d) The resistance R is determined by measuring the voltage V across the re-
sistor at a given current I supplied by a stable current source. Estimate
the experimental uncertainty in temperature, ∆T, for this resistor when the
uncertainties in voltage ∆V /V and supply current ∆I/ I are, respectively,
±0.3% and ±0.1%. Compute values of ∆T for 4.23 K and 1.80 K.

(4.39)

(4.40a)

(4.40b)

s were determined from 7 calibration points taken between 4.23 K and

You may use the following approximate values for the coefficients: m
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Solution to Problem 4.10
a) With T = 4.23 K inserted into Eq. 4.40 a, we have:

0.2364 = –0.6474 + 0.1158 ln R + 0.0065(ln R )² (S10.1)

Equation S10.1 can be written as:

(ln R )² + 17.8154 ln R – 135.9692 = 0 (S10.2)

Solving Eq. S10.2 for R, we find: R = 319.8Ω . The actual measured value at
4.23 K (one of the calibrated points) is 319.8Ω.

b) Similarly, Eq. 4.40b becomes:

0.2364 =
1.7498

– 1.4650 + 0.2424 ln R
ln R

which can be written as:

(ln R )² – 7.0190 ln R + 7.2186 = 0

Solving Eq. S10.4 for R, we find: R = 319.7 Ω .

c) We differentiate Eq. 4.40a with respect to R and obtain dR /dT:

At T = 3.35 K (R 439Ω), we have:

S 3.35  =
(3.35)²[0.1158 + 2(0.0065) ln(439)]

201 Ω /K
439

At T = 1.80 K ( R = 1535 Ω ), we have:

S 1.80 =
(1.80)²[0.1158 + 2(0.0065) ln(1577)]

= 2301 Ω/K
1577

(S10.3)

(S10.4)

(S10.5a)

(S10.5b)

The sensitivity clearly decreases with increasing temperature.
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Solution to Problem 4.10
Because R increases rapidly as temperature is decreased, one important point to
remember is to use a low value of supply current I to keep the resistor from being
“overheated.” A rule of thumb for use in the liquid helium temperature range of
1.8~4.2 K is to select a supply current so that V across the resistor is in the range
1~10mV. With R ~ 2000 Ω , a voltage of 10mV implies a supply current of no
greater than ~5 µA or a total dissipation within the resistor of ~50nW.

c ) Once S is defined, we have:

(S10.6)

Because R = V /I, uncertainties in R, ∆ R, may be related to ∆V and ∆I as:

(S10.7)

Combining Eqs. S10.6 and S 10.7, we obtain:

(S10.8)

As indicated by Eq. S10.8, ∆T is clearly dependent on T through R(T) and S (T).
For T = 4.23 K, we have R 320 Ω and S = 201 Ω/K, and:

For T = 1.80 K, we have R = 1577 Ω and S = 2301 Ω/K, and:

These values indicate that measurement error in terms of absolute temperature
increases with increasing temperature. In fact carbon resistors are not usable as
accurate thermometers above ~20 K.

Effects of a Magnetic Field on Thermometers
A magnetic field affects most low-temperature thermometers, including carbon
resistors [4.18]. Carbon resistors cannot be used for temperature measurements
in which ∆T /T uncertainties must be kept less than 0.01%; they are acceptable
as temperature sensors in 1.8-K cryostats provided that the sensors are located
in a fringing magnetic field less than ~2T. At 2.5T, a typical value of ∆T/ T
for carbon resistors (47, 100, and 220 Ω ) at 4.2K is less than 1% or ∆T of no
more than ~40 mK; this jumps to ~400 mK in a field of 14 T. Sensors having the
smallest field effects are SrTiO3 capacitors; their ∆T /T at 4.2 K is less than 1 mK
in a field of 14T [4.18].
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CH A P T ER 5
MAGNETIZATION OF  HARD  S UPERCONDUCTORS

5.1 Introduction

This chapter discusses the magnetization of hard superconductors. When the
first generation of superconducting magnets was built in the mid 1960s, many of
them failed to reach their designed operating currents. These magnets quenched
at currents far below their expected values because of a then unknown or little
understood magnetic phenomenon called flux jumping. By the late 1960s, the rea-
sons for flux jumping were elucidated, and solutions to eliminate it emerged soon
afterwards. Today, well-established methods of producing superconducting wires
and cables that minimize the problems of flux jumping are available. However,
AC loss is another magnetization issue that directly affects magnet operation and
that continues to challenge the magnet designer. This chapter discusses the funda-
mental theory behind the magnetization of hard superconductors; AC losses will
then be addressed in more detail in Chapter 7. As in previous chapters, only those
problems that can be treated analytically by simple closed-form mathematical
expressions are considered.

5.2 Bean’s Critical State Model

Of the two “mixed” state models to describe magnetic behaviors of hard (Type
II) superconductors—the “lamina” by Goodman and the “vortex” by Abrikosov—
Abrikosov’s model, as remarked in Chapter 1, was verified experimentally. Never-
theless, we shall use Goodman’s lamina model, which consists of superconducting
and normal layers that permit penetration of field into the superconductor. In this
model, each superconducting lamina that experiences a magnetic field carries an
induced supercurrent density equivalent to the conductor’s critical current density,
Jc . Because each lamina that carries current does so at the critical value, we say
the superconductor is in the “critical” state. This phenomenological model was
first proposed in 1962 by Bean [5.1] and is known as Bean’s Critical State model.
Although Jc  decreases with field in all real superconductors, the Bean model as-
sumes Jc to be field-independent to simplify the mathematical treatment of the
magnetization problem.

5.2.1 Magnetization of Hard Superconductors

Magnetization M is defined as M = B/µo – H (from Eq. 2.15); according to
the Bean model, magnetic induction B is not zero within the interior of the hard
superconductor and is equal to the superconductor’s volumetric average of µoHs ,
where Hs  is the magnetic field within the superconductor.

Figure 5.1 shows a hard superconducting slab infinitely high (in the y-direction),
infinitely deep (in the z-direction), and 2a wide (in the x-direction). External field
He, applied parallel to a slab previously unexposed to a magnetic field (“virgin”
slab), creates Hs (x) within the slab. With Ampere’s law applied
to the slab, we obtain the magnetic field within the superconductor, Hs (x):
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Fig. 5.1 Slab of hard superconductor exposed to an external field.

(5.1a)

(5.1b)

(5.1c)

Note that the slope of the H s (x ) is equal to Jc , positive where Jc is positive (z-
directed, out of the paper) and negative where Jc is negative. x* (and 2a – x+)
gives the extent of the field penetration in the slab; in terms of He and Jc :

(5.2)

At H e  = H p Jc a, x* = x + = a and the entire slab is in the critical state; Hp is
known as the penetration field.

The average magnetic induction within the slab, Bs , is thus given by

<shaded area in Fig. 5.1> (5.3a)

(5.3b)

From the definition, M = we have:

(5.3c)

(5.4)

Because the superconductor is diamagnetic, –M is usually used to express its
magnetization.

As the external field is increased further, the field finally penetrates the slab com-
pletely (He ≥ H p ), and B s  = He  – H p /2, and thus:

(5.5)
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Fig. 5.2 Hs (x) during a return sequence of H e from H m  to zero.

The dotted lines in Fig. 5.2 represent Hs (x) at H e  = H m  > H p , where Hm  is the
maximum external field applied in this particular field sweep sequence.

As He  is reduced from Hm  towards 0, Hs (x) changes as indicated by the solid lines
in Fig. 5.2. When H e c  = H m  – 2Hp , as may be inferred from Fig. 5.2, because
Hs (x) is a complete mirror image of that at Hm , –M becomes – Hp /2. That is,
magnetization is now positive. It can be shown that for the return field sweep
from H m  to H e c , – M(He ) is given by:

(5.6)

Note that –M is a quadratic function of H e as is the case when an external field
is applied to the virgin slab. Note also that – M( Hm ) = H p /2 and – M (H ec ) =
–Hp /2. For the range H e  = H e c  → 0, – M (He ) is constant and remains – Hp /2
even when He returns to 0. Hs (x) corresponding to this “remanent” magnetization
is indicated by the hatched lines in Fig. 5.2. Once exposed to an external mag-
netic field, a hard superconductor will thus become magnetized. This remanent
magnetization cannot be removed by means of external field; one way to remove
it is by heating the superconductor and raising its temperature to above Tc .

Figure 5.3 gives –M vs He  plots for the entire positive field sweep sequence
from 0 to H m = H c 2  and back to 0. H c 2  is the upper critical field. The solid
curve is based on Eqs. 5.4~5.6 derived with Bean’s assumption that Jc  is field-
independent. The dotted curve qualitatively corrects for the more realistic case
in which Jc  is a decreasing function of field, specifically becoming 0 at H c 2 . Note
that magnetization is hysteretic, and its magnitude at H p < H e  < H m  – 2Hp,
∆ M = –M(He ↑) + M (He ↓ ), is equal to H p = J c a. Magnetization measurement
is thus sometimes performed to obtain Jc (He ) data, as discussed in Problem 5.4.
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Fig. 5.3 Magnetization vs field traces for a hard superconducting slab subjected to an
external field sequence of 0 → H c 2 → 0. The solid curve presents the case Jc =constant;
the dotted curve qualitatively presents the case Jc (He ), with Jc  = 0 at H c 2.

Figure 5.4 shows the current distribution within the slab corresponding to the field
distribution given in Fig. 5.1. The net current per unit length in the y-direction
[A/m] flowing through the slab in the z-direction is given by:

(5.7)

As expected, I = 0 in the absence of transport current.

5.2.2 Effect of Transport Current on Magnetization

When a transport current It  (per unit length in the y -direction) is applied uni-
formly over the slab in the +z-direction (out of the paper), we see an increase in
magnetic field of It /2 at x = 2a and a decrease in magnetic field of I t /2 at x = 0.

Because the shielding current within the slab builds up from each surface into the
interior, the field distribution Hs (x) within the slab will be that shown in Fig. 5.5.
In Fig. 5.5, x* and x +  are given by:

Fig. 5.4 J(x) corresponding to Hs (x) given in Fig. 5.1.
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Fig. 5.5 Hs (x) with transport current It  in the slab.

(5.8a)

(5.8b)

(5.8c)

Figure 5.6 shows current distribution J( x) in the slab. By integrating J(x) across
the slab width, we can show that the net current flowing in the slab is indeed It :

(5.9a)

(5.9b)

As expected, the net current in the slab is the current supplied by the external
source. Note that the presence of an external field , when it is applied after
It has been applied, does not fundamentally change the distributions shown in
Figs. 5.5 and 5.6; but if is applied before It , different H s (x) and J(x) would
emerge. Problems 5.1~5.3 treat the effects of transport current on magnetization
in detail.

Fig. 5.6 J(x) corresponding to Hs (x) given in Fig. 5.5.
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5.3 Experimental Confirmation of Bean’s Model

Perhaps the most direct and beautiful confirmation of the Bean model was by
Coffey [5.5], who mapped field distributions in a test sample of a hard supercon-
ductor. Figure 5.7 presents tracings of the field distribution in a long test sample
consisting of two Nb-Ti rods, each 60mm long and 8.3mm in diameter, joined
together with a gap of 0.5mm between two ends. Because the gap is much smaller
than the diameter, the field distribution in the gap, measured by a Hall probe of
thickness 5~10 µ m, is a good approximation to that of a long single rod. Two
aspects of field distribution evident in Fig. 5.7 have already been discussed:1) Hs
decreases from surface to interior with nearly constant slope; and 2) the slope (Jc )
decreases with increasing field. Another feature yet to be discussed is flux jump-
ing, a thermal instability phenomenon that occurs in hard superconductors. (Flux
jumping is treated in Problems 5.6 and 5.7.) Figure 5.7 shows four incidences of
flux jumping, each evident from the flat field distribution across the rod.

When shown Coffey’s paper, Bean is reported to have exclaimed, “I’m right!”
Perhaps the model should be called . . . “Coffey-Bean’s!”

Experimental confirmation of Bean’s model came quickly [5.2]. The effects of
transport current, treated in Problems 5.1~5.3, were also tested and confirmed by
experiment [5.3,5.4].

Fig. 5.7 Detailed tracings of field distribution data across a 0.5-mm gap
between two Nb-Ti rods, each 60 mm long and 8.3 mm in diameter. Each
of the four flat field lines running across the rod represents the field dis-
tribution immediately after a flux jump [5.5]. (Courtesy of H.T. Coffey.)
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5.4 A Magnetization Measurement Technique

We describe here the technique most widely used to measure magnetization. It
applies Faraday’s law to analyze a voltage induced across the terminals of a loop
coupled to a time-varying magnetic induction.

Figure 5.8 presents the key components of this technique [5.6]: 1) a primary search
coil; 2) a secondary search coil; and 3) a balancing potentiometer. Not shown in the
figure but equally essential is an integrator that converts the bridge output voltage,
Vbg (t ), to a voltage that is directly proportional to M(H e ). The test sample is
placed within the primary search coil set. When the primary and secondary search
coils are subjected to a time-varying external magnetic field He (t ) which is nearly
uniform over the space occupied by each search coil, voltages, Vpc(t ) and Vsc (t),
are induced across the terminals of each search coil:

(5.10a)

(5.10b)

The subscripts pc and sc refer to the primary and secondary search coils, respec-
tively. N is the number of turns of each search coil and A is the effective area of
each turn in the coil through which He (t ) is coupled. is the space-averaged
field over each search coil.

The bridge output voltage Vbg (t ) is given by:

(5.11)

Fig. 5.8 Schematic of a magnetization measurement technique.
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Combining Eqs. 5.10 and 5.11, we obtain:

(5.12)

Now, it is possible to adjust k of the potentiometer to satisfy the following condi-
tion and make Vbg (t ) proportional only to dM/dt :

(5.13a)

(5.13b)

Although in practice the condition required by Eq. 5.13a is not always satisfied
over a wide frequency range, Eq. 5.13b is a good approximation for most cases.
Generally k is close to 0.5. Vbg (t ) is fed into an integrator and its output, Vm z (t ) ,
is proportional to M. Specifically, if the test sample is at the virgin state (M = 0)
and H e (t ) is increased (He↑) from 0 (at t = 0) to H e (at t = t 1 ), then we have:

(5.14)

where it is an effective integrator time constant. If He  > H p , then M ( He ) =
– Hp /2 = – Jc a /2, and Eq. 5.14 simplifies to:

(5.15a)

where the factor ƒ m is the ratio of magnetic material volume to the total test
sample volume. This factor is needed because generally a test sample does not
consist entirely of magnetic material for which magnetization is measured; in the
case of a multifilamentary conductor, for example, the test sample consists not only
of superconducting filaments but also of a matrix metal and other nonmagnetic
materials, e.g. insulator. If an external field excursion is
Hp , then we have:

(5.15b)
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is thus proportional to the “width” of
magnetization curve at He:

(5.16)

From Eq. 5.16 we note that ∆Vmz is directly proportional to Jc and a.

Figure 5.9 shows typical magnetization vs field traces for a Nb-Ti conductor. The
solid curve corresponds to the case when the primary and secondary coils are well
balanced (Eq. 5.13a is satisfied), while the dotted curve corresponds to a tilted
magnetization trace that results when Eq. 5.13a is not quite satisfied.

Fig. 5.9 Magnetization vs field traces for a Nb-Ti conductor. The
solid curve: the primary and secondary coils are balanced (Eq. 5.13a
is satisfied), the dotted curve: the coils are not quite balanced.

“Through measurement to knowledge.” —Heike Kamerlingh Onnes
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Problem 5.1: Magnetization with transport current

1. Field and then transport current

In this and the next two problems, we examine the effects of transport current on
magnetization. As remarked briefly in the introductory section, magnetization in
the presence of transport current depends on the order in which external field and
transport current are applied. In this problem, an external field is already
present when It is applied to the Bean slab of width 2a.

a)

b)

With external field He  = 2.5H p = 2.5Jca applied to the slab, It  is introduced.
Plot H s (x) distributions for It = 0, I t = J ca, and I t = 2Jc a. Note that
2J ca = I c [A/m] is the critical current of the slab. Also note that I t = I c i =
2H ip , where i ≡ I t /I c. As indicated in Fig. 5.10, take the slab’s left-hand
side to be x = 0 and its right-hand side to be x = 2a. In the presence of a
transport current, field profiles are no longer symmetric with respect to the
slab’s midplane and the entire slab must be considered.

Show that an expression for –M(i), the magnetization as a function of a
normalized transport current i for He ≥ H p, is given by:

(5.17a)

(5.17b)

where ƒ1(i) = 1 – i.

Fig. 5.10 Bean slab, 2  wide, for computation of magnetization.a
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Solution to Problem 5.1

s1 (

H s1 (x ), Hs2 (x), and H s3 (x ) are given by:

a) At H e = 2.5Hp , Hs (x) for I t = 0 (dotted), Hs  (x) for I t = J ca (solid), and
Hs (x) for I t = 2Jca (hatched) are shown in Fig. 5.11.

For It = J c a, Hs(x) (solid) is a piece-wise linear function consisting of H x) for
0 ≤ x ≤ x *, Hs2(x) for x * ≤ x ≤ x +, and H s3(x) for x+ ≤ x ≤ 2a.

For I t = 2Jca, H s (x) (hatched) is a straight line, going from 1.5 Hp at x = 0 to
3.5H p at x = 2a.

x* and x + may be found:

(S1.1a)

(S1.1b)

(S1.1c)

Fig. 5.11 Field profiles, with It  = 0 (dotted), J c a (solid), and 2J c a (hatched).
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Solution to Problem 5.1

b) H s (x) for the general case in the presence of I t is plotted in Fig. 5.12 with
the solid lines, Hs 1(x), Hs 2 (x), and Hs 3(x ). For ∫ H s (x) dx integration, the slab
is divided into three regions, I, II, and III.

H s1( x),  H s 2(x ), and Hs 3(x ) are given by:

(S1.2a)

c (S1.2b)

(S1.2c)

(S1.3a)

(S1.3b)

(S1.3c)

(S1.4a)

(S1.4b)

(S1.4c)

We solve for x* and x +, and determine Hs 2(x* ) and H s2 (x+ ).

Fig. 5.12 Field profile with transport current (solid) for computation of magnetization.
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Solution to Problem 5.1

M is proportional to the “shaded area,” shown in Fig. 5.12, which is the sum of
areas I (AI), II (AII), and III (AIII). As in earlier integral computations, a simple
method to compute the area of a trapezoid—(base) × (height 1 +height2 )/2—is used
to compute AI, AII, and AIII.

(S1.5a)

(S1.5b)

(S1.6a)

(S1.6b)

(S1.7a)

(S1.7b)

(S1.8a)

(S1.8b)

Once the shaded area is known, M can be computed quickly:

(S1.9)

(5.17a)

(5.17b)

where ƒ1 (i) = 1 – i. –M(i) decreases linearly with i, becoming 0 at i = 1.
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Problem 5.2: Magnetization with transport current

2. Transport current and then field

In this problem, we reverse the order in which external magnetic field and transport
current are introduced to the slab. Specifically, a transport current of J

/2)
c a =

( I (out of the paper) is introduced to the slab initially at the virgin state.c

While I  is held at It c /2, an external magnetic field is now applied to the slab in
the + y-direction, increasing from 0 to 2H p .

a) Sketch H s ( x ) after the transport current of Jc a (= Hp ) but before H  of 2e

 of 2
p

is introduced. Also sketch Hs (x ) after He H  is introduced.p

b) Using appropriate H ) profiles obtained in a) , show that Is (x t = Jca before
and after the application of He .

c) Show that an expression for –M (i) valid for He  ≥ H p  is given by:

(5.18a)

(5.18b)

where ƒ2 (i) = 1 – i  ². Again, it is easier to place the x = 0 point at the left
end of the slab.

Use of SQUID for Magnetization Measurement

A SQUID (Superconducting Quantum Interference Device), based on the principle
of Josephson effect, is an electronic device that can be used to measure a change
in magnetic field with an extremely high resolution—in the unit of a quantized
flux density, equal to 2.0 x 10– 1 5  Wb (T/m²).

A typical SQUID magnetization measurement setup consists of a test sample, at
a constant temperature, placed in a uniform field. The test sample is moved back
and forth in the uniform field; during each cycle it cuts through measurement
coils, one located at one end of the test sample and the other located at the other
end. The induced current in each measurement coil is measured by the SQUID in
terms of a field generated by the current, which, in turn, is a measure of the test
sample’s magnetization. Because SQUIDS operate only in a low-field environment
(perhaps no higher than ~100 oersted or ~0.01 T), they must be well shielded from
the high-field environment of the test sample.

To do is to be. —Imanuel Kant
To be is to do. —Jean-Paul Sartre

Do be do be do. —Frank Sinatra
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Solution to Problem 5.2

a) In Fig. 5.13, shown below, the dotted lines present Hs (x) after a transport
current of Jc a (Hp /2) but before He  of 2H p is introduced; the solid lines present
Hs (x) after He  of 2Hp  is introduced.

b ) In both cases the net current in the slab is Jc a, as demonstrated below:

He = 0:

He = 2Hp :

(S2.1)

(S2.2)

c) To determine the magnetization in the slab, we must first find x*  (Fig. 5.14),
which can be determined from Hs 1 (x) and Hs 2 (x).

(S2.3a)

(S2.3b)

(S2.4a)

(S2.4b)

Fig. 5.13 Field profiles, with transport current only (solid)
and with transport current and field (dotted).
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Solution to Problem 5.2

Once x*  is determined, we can compute Hs1(x *):

(S2.5)

We can now compute the shaded area, which is the sum of AI and AII (Fig. 5.14).

(S2.6a)

Once the shaded area is known, we have M:

a )

where ƒ2(i) = 1 – i². This magnetization is a parabolic function of i.

(S2.6b)

(S2.7a)

(S2.7b)

(S2.8)

(S2.9)

(5.18

(5.18b)

Fig. 5.14 Field profile with transport current
and field for computation of magnetization.
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Problem 5.3: Magnetization with transport current

3. Field and then current changes

Finally, we shall consider Hs (x) and –M(i) for the slab when the following se-
quence of field and transport current is applied.

Step 1: Starting with a virgin state and It = 0 initially, the external magnetic
field, H e = 2Hp , is applied in the +y -direction.

Step 2: While H e remains at 2Hp , a transport current I t = J c a is introduced
into the slab in the z-direction (out of the paper).

Step 3: With H e remaining at 2H p , I t is reduced to zero.

Step 4: I t is now reversed and | Jc a | is introduced into the slab in the –z -direction
(into the paper).

Step 5: I t is again reduced to zero; H e still remains at 2H p .

The field profile Hs (x ) after Step 5 is shown with solid lines in Fig. 5.15.

By generalizing the Hs (x ) profile shown in Fig. 5.15 for any H e ( ≥ Hp) and
I t ( ≤ Ic ), show that an expression for –M( i ) is given by:

(5.19a)

(5.19b)

where f 3 ( i ) = (1 – i )².

Fig. 5.15 Field profile after Step 5.
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Solution to Problem 5.3

The two “dotted” areas in Fig. 5.16 are equal in magnitude but have “opposite”
signs, hence they cancel out when we perform the area integral.

Shaded area = 2aHe – “crossed” area (S3.1a)

crossed area =  1
2 (base) × (height) (S3.1b)

(S3.1c)

(S3.2a)

(S3.2b)

(S3.3a)

(S3.3b)

(S3.4a)

(S3.4b)

(S3.5a)

(S3.5b)

Fig. 5.16 Field profile (after Step 5) for computation of magnetization.
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Solution to Problem 5.3

(S3.6)

(S3.7)

where f3(i) = (1 – i)².

(5.19a)

(5.19b)

Magnetization Functions – Summary

Figure 5.17 presents three normalized magnetization functions, ƒ1 ( i), f 2 ( i ), and
f 3 ( i ), where i = I t /Ic . It is interesting to note how different sequences of trans-
port current and external field applications affect M( i ). These functions of mag-
netization vs normalized transport current were actually observed experimentally
[5.3, 5.4] and shown to agree with analytical results based on Bean’s model, thereby
helping to quickly confirm its validity.

Fig. 5.17 Three normalized magnetization vs normalized transport
current functions studied in Problems 5.1, 5.2, and 5.3.
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Problem 5.4: Critical current density from magnetization

This problem demonstrates how to derive critical current density (Jc ) data from
the magnetization measurement of a typical HTS.

The most widely used and most direct technique to determine the Jc of a super-
conductor is the “critical current measurement.” A “long” test sample is prepared
from the superconductor, and a direct current is slowly increased through it under
given test conditions (T, He ) until a resistive voltage across the sample is detected.
The test sample must be “long,” because if the sample is too short, two problems
arise: 1) it becomes too difficult to obtain voltage resolution sufficient to detect
a resistive electric field used to indicate the superconducting-to-normal transition
(the typical criterion is between 0.1 to 1 µV/cm); 2) the contact resistance to the
lead wires at each end of the test sample becomes too large, causing excessive
heating at its ends and, therefore, a premature normal transition. The test sam-
ples should normally be at least 10 mm long; perhaps under certain circumstances
they can be as short as 5mm, but not much shorter than this. It really depends
to a large degree on the level of critical current.

During the early period (1987~1989) following the discovery of HTS, it was difficult
to produce an HTS of sufficient length to perform a critical current measurement
either because there was an insufficient quantity to manufacture a 10-mm long
sample, or because it was nearly impossible to form the HTS into a conductor of
any length due to its extreme brittleness, or both. Consequently, Jc data were
often extracted from magnetization data through the Bean model.

Figure 5.18 presents the magnetization vs applied (external) field data at
4.5K for a single crystal of (HTS) [5.7]. Compute Jc for this
crystal at an applied field of 20 kilogauss. Assume the crystal is 300 µm high,
300 µm thick, and 180 µm wide. Treat the crystal as a Bean slab of thickness
2a = 180 µm.

Fig. 5.18 Magnetization vs applied field hysteresis curves for an
HTS single crystal at 4.5K [5.7]. (Courtesy of W.J. Gallagher.)
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Solution to Problem 5.4

First, we must divide magnetization by sample volume to express it in terms of
a magnetization density, emu/cm³. Then, we convert emu/cm³ into the SI unit
equivalent, A/m, by multiplying it by 1000. (See Appendix I.)

At µ o H e = 20 kilogauss, ∆ M, from Fig. 5.18, is 0.0015emu, which when divided
by the test sample volume of 1.62 × 10 –5 cm³, gives magnetization density of
92.6emu/cm³ or 9.26 × 10 4 A/m. With 2a = 180 × 10–6 m and ∆ M = J c a , we
obtain: J c = 1.0 × 10 9 A/m². Note that because ∆M remains nearly constant
for the range of µ o H e between 2 and 4T, we may conclude that Jc is also nearly
constant over this field range. At zero field –M = 0.0027emu or 166.7emu/cm³,
which is equal to J c a /2. Thus, we obtain J c = 3.7 × 109 A/m³ at zero field.

Contact-Resistance Heating at Test Sample Ends

As remarked above, excessive heating at the test sample’s ends can cause an error
in critical current measurements. Figure 5.19 shows temperature plots along a
silver-sheathed bismuth-based HTS tape at selected transport currents, with the
tape immersed in a bath of liquid nitrogen boiling at 77 K [5.8]. Transport currents
are expressed as ratios to the tape’s critical current ( I c ) at 77 K in zero field. The
plot labeled 1.00 corresponds to a transport current equal to I c . Overheating
is evident at the right-hand end, most likely because the tape at this end was
improperly soldered to its electrode. Asymmetry in the temperature distribution
increases with transport current. Although I c measurement in this particular
example was unaffected, due chiefly to its long length (60 mm between electrodes),
it could certainly have been affected were the tape shorter than ~30mm.

Fig. 5.19 Asymmetric temperature distributions of a silver-sheathed bismuth-based
HTS tape at selected transport currents with the tape in a bath of liquid nitrogen [5.8].
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Problem 5.5: Magnetization measurement

This problem presents an example of the magnetization measurement technique
discussed in Section 5.4; the technique was applied for magnetization measure-
ments of one of the four superconductors used in the Hybrid III SCM. The mea-
surement was necessary to make sure that there would be no flux jumping. The
absence of flux jumping is one of the necessary conditions for magnets that are
not “cryostable” —this point will be discussed in more detail in Chapter 6.

Table 5.1 presents specifications of the superconductor, a bare Nb-Ti composite
strip with overall dimensions of 9.2mm width and 2.6mm thickness. (Not all
parameters in the table, e.g. twist pitch, are relevant for this problem.)

The test sample consists of 52 (13×4) 100-mm long strips assembled in a rectan-
gular solid of square cross section, 38mm×38mm, as shown in Fig. 5.20. Each
bare strip was electrically insulated with a thin tape. In the orientation shown
in Fig. 5.20a, each strip’s broad surface is parallel to the direction of external
magnetic induction B e ; in the orientation shown in Fig. 5.20b, it is normal to
B e . The test sample assembly was placed inside a rectangular-bore (cross section
107 mm×42mm) search coil set containing a primary search coil and two secondary
coils (Fig. 5.20c). The test assembly midplane was placed to coincide with that
of the primary search coil, whose midplane was in turn placed to coincide with
that of a magnet providing Be . The midplane-to-midplane distance between the
primary and one of the secondary coils is 70 mm. The primary coil contains 500
turns of fine copper wire over an axial distance of 40 mm about its midplane; each
secondary search coil contains 280 turns, extending an axial distance of 20 mm
about its midplane. The turn density in the axial direction in each search coil may
be assumed uniform.

When an external magnetic induction B e was swept at a rate of 0.05T/s between
0 and 5T with the test sample at 4.2K and oriented as shown in Fig. 5.20a
(broad face parallel to external field), the V m z vs Be plot sketched in Fig. 5.21
was obtained. +V m z is the integrator output proportional to –M , the negative
of the test sample magnetization. The effective integration time, it , was 1s; the
balancing potentiometer’s constant k was 0.5. Assume that the voltage drift of
the integrator was zero during the time the magnetization plot was traced.

Table 5.1: Specifications for a Hybrid III Nb-Ti Conductor

Overall width, a [mm]

Overall thickness, b [mm]

Filament diameter* [µm ]

Twist pitch length, l p [mm]

Insulation

9.2

2.6

100

100

none

Cu/Sc ratio, γ c / s 3

T c  @ 10T [K] 4.7

I c @ 1.8K, 10T [A] 6000

Jc  @ 4.2K, 5T [GA/m 2 ] 2.0

— —

* Computed value for circular cross sectioned filaments.
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Problem 5.5: Magnetization measurement

Fig. 5.20 Magnetization measurement details, dimensions in mm.
(a) Each conductor strip is orientated with its broad face parallel
to the external magnetic induction, B e ; (b) Each conductor strip is
orientated with its broad face normal to Be ; (c) Search coil setup.
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Problem 5.5: Magnetization measurement

a )

b)

c )

Make a ballpark estimate of ∆ Vm z at B e ~2.5T (Fig. 5.21). Note that i t  = 1s
and k = 0.5. Assume d f = 2a, where d f is the filament diameter and 2a is
the width of the Bean slab.

The 1.8-K measurement was performed by pumping on the cryostat and
reducing the liquid helium bath pressure to 12.6 torr. During the 1.8-K mea-
surement, the technician who controlled the cryostat pressure noticed that
pressure control was more difficult, because of an increased liquid boil-off
rate, when the test sample orientation was as in Fig. 5.20b rather than when
it was as in Fig. 5.20a. Is this an aberration or does his observation make
sense? Explain.

The z-component of the external induction Be over the radial space occupied
by the search coil may be approximated to vary as:

(5.20)

where z o = 75mm. Based on information you have, compute the value of c.

Fig. 5.21 V m z vs B e plot with the test sample at 4.2K and oriented with
respect to B e  as in Fig. 5.20a. B e was swept at a |rate| of 0.05T/s.
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Solution to Problem 5.5

a) Equation 5.12 indicates that if the search coils were not balanced, a term
proportional to the applied field would contribute to the magnetization. Since the
Vmz vs Be trace in Fig. 5.21 is not tilted, the search coils are balanced, similar to
the solid trace of Fig. 5.9. From Eq. 5.13b:

(5.13b)

We have from Eq. 5.16:

(5.16)

We have: k = 0.5; τit = 1s; N p c = 500; A p c = (13)(0.1 m)(2.6 × 10 –3 m) =
3.38×10 –3 m² m) = 3.8 –3[(0.1m)× (38 × 10–3 ×10 m² is also acceptable]; ƒm =(Nb-
Ti volume)/total composite volume)= 1/(γc /s + 1) = 0.25.

Estimate of Jc (4.2K, 2.5T):

From Table 5.1 we have Jc  at 4.2K and 5T of 2.0 × 10 9  A/m². It is generally
accepted that for a given temperature, Jc(Be ) may be given by the following
approximate expression (based on Eq. 1.5):

(S5.1)

where for Nb-Ti, B0  ~ 0.3T. J0 is the zero-field critical current density, which is
usually difficult to measure. Thus from the Jc value at 5T and B 0 = 0.3T, we
can first solve for J0 B0 :

Once J0 B0  is known, then Jc may be solved at 2.5T. Thus:

Inserting appropriate values into Eq. 5.16, we have:

(S5.2)

(S5.3)
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Solution to Problem 5.5

Because the strip is made from a round conductor by a rolling process, the pro-
jected diameter of filaments in the direction parallel to Be would be actually
slightly less than the equivalent circular-area radius, a = 50µm, which is used in
the above computation for ∆Vm z . If a diameter less than 50µm is used, ∆ Vmz
would be less than 50mV.

b) The anisotropic shape of the Nb-Ti filaments makes magnetization in the
orientation shown in Fig. 5.20b, greater than that in the orientation of Fig. 5.20a—
both Jc and the “effective” a are greater. Thus there will be more magnetization
loss.

Eddy current loss is proportional to in the orientation of Fig. 5.20b, while
it is proportional to in the orientation Fig. 5.20a—review Problem 2.7.
Thus eddy current loss is increased by a factor of (9.2/2.6)² = 12.5 in Fig. 5.20b
from that in Fig. 5.20a.

The increased heat load on the helium due to higher magnetization and eddy
current losses causes a higher boil-off rate; thus his observation makes sense.

c) The –M vs B plot shown in Fig. 5.21 suggests, as remarked above, that the
search coils are well balanced. Thus:

(S5.4)

Because Ap c = As c , we have: From symmetry, we consider
only the upper half (the unit mm is neglected in the following equations):

The equality gives:

(S5.5a)

(S5.5b)

(S5.6)
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Problem 5.6: Criterion for flux jumping

This problem deals with the derivation of the critical conductor size above which
flux jumping will occur. Specifically, if a slab’s width, 2a, exceeds a critical size,
2ac , the slab will be thermally unstable against a flux jump.

As mentioned earlier, flux jumping was the most important source of frustration for
those who designed the first superconducting magnets of engineering significance
in the early 1960s [5.9]. Flux jumping is a thermal instability peculiar to Type
II superconductors that permits the magnetic field to penetrate far inside their
interiors. A rapidly-changing magnetic field, , at the surface of a Bean slab
induces an electric field within the slab, which interacts with the supercurrent
of critical current density, Jc . This interaction generates heat within the slab.
Because Jc decreases with temperature, the field (flux) penetrates further into the
slab, generating more heat, which further decreases Jc , and so on. If the dissipation
density associated with the field penetration exceeds the slab’s heat capacity, the
field will penetrate unchecked and the temperature will rise uncontrollably until
the slab loses its superconductivity. Such an event is called a flux jump.

half (0 ≤ x ≤ a ) of the slab, show that an expression for the dissipative energy
density, eø [J/m³], generated within the slab when the critical current density
Jc is suddenly decreased by is given by:

(5.21)

Note that the entire slab is in the critical state with field at its surface (± a)
exposed to external field of

x = a and equating it with change in magnetic energy storage and dissipation
energy εø in the positive half of the slab.

assume a linear temperature dependence for Jc (T):

(5.22)

a) Using the Bean model and computing the interaction over the positive

b) Derive Eq. 5.21 by computing the Poynting energy flow into the slab at

c) To relate ∆ Jc , to an equivalent temperature rise in the conductor, we may

where Jco is the critical current density at operating temperature Top . Tc i s
the critical temperature at a given magnetic induction Bo . From Eq. 5.22,
∆ Jc in Eq. 5.21 may be related to an equivalent temperature rise ∆T :

(5.23)

Now, by requiring that where C s is the superconduc-
tor’s heat capacity, show that an expression for thermal stability leads to the
critical slab half width ac given by:

(5.24)
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Solution to Problem 5.6
a) Because of symmetry about x = 0, we
shall consider only one half of the slab, be-
tween x = 0 and x = a. As illustrated in
Fig. 5.22, the solid line corresponds to Hs1 (x),
which gives the field distribution within the
slab carrying Jc . The dotted line corresponds
to Hs 2 (x) for the slab carrying Note
that the field at the surface is He for each case.
We thus have:

CHAPTER 5

(S6.1a)

(S6.1b) Fig. 5.22 Field profiles.

isBecause there is a change in magnetic field within the slab, an electric field
generated, which from Faraday’s law of induction, is given by:

(S6.2)

From symmetry we have (x = 0) = 0 and points in the z-direction. ∆Hs (x)
is given by:

(S6.3)

Combining Eqs. S6.2 and S6.3, we obtain:

(S6.4)

Dissipation power density, p(x), is given by E z (x)Jc and total energy density
dissipated in the slab, ε ø [W/m²], per unit slab surface area in the y-z plane is
given by:

(S6.5)

Dissipation energy density, eø , is given by εø /a :

(5.21)
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Solution to Problem 5.6

b) The Poynting energy flux [W/m²] in the y-z plane into the slab (in the –x -
direction) at x = a is equal to the change in magnetic energy storage flux ∆E m

[J/m²] and dissipation energy flux εø in the slab. Thus:

(S6.6)

We can verify the direction of by computing at x = a. At x = a,
from Ez (x) derived in Eq. S6.4:

(S6.7)

Thus:

(S6.8)

The difference in magnetic energy flux ∆Em in the slab is given by:

As expected, (a) points  in the –x-direction or energy flux indeed flows into the
slab. Thus:

(S 6.9)

(S6.10)

Neglecting the term in the above integral, we obtain:

From Eq. S6.6, we have:

Combining Eqs. S6.9, S6.11, and S6.12, we obtain:

(S6.11)

(S6.12)

Equation S6.13 leads directly to Eq. 5.21:

(S6.13)

(5.21)
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Solution to Problem 5.6

c) As given by Eq. 5.22, Jc (T) is a decreasing function of temperature. We thus
have:

(5.23)

From Eq. 5.23, we have:

(S6.14)

Replacing J c  with Jco in Eq. 5.21 and combining it with Eq. S6.14, we obtain:

( S6.15)

Note that e ø is not only proportional to ∆T but more importantly varies with
a2. Under adiabatic conditions, the dissipation energy density eø increases the
superconductor’s temperature by ∆ T s, given by:

(S6.16)

where Cs  is the superconductor’s heat capacity [J/m3 K]. Combining Eqs. S6.15
and S6.16 and requiring ∆Ts  < ∆ T for thermal stability, we have:

( S6.17)

For a given superconducting material and operating temperature, the only param-
eter that can be varied by the magnet designer to satisfy Eq. S6.17 is a . That
is, thermal stability can only be satisfied if the slab half width a is less than the
critical size ac , given by:

(5.24)

For a Nb-Ti conductor at Top = 4.2K and at a magnetic induction of 5T, we
have the following set of data (all approximate): Jc o  = 2.0 × 109 A/m 2; C s  =
6 ×1 03  J/m 3 K; Tc = 7.1 K. With these values inserted into Eq. 5.24, we obtain:

( S6.18)

For a circular filament, ac = 100 µm means a critical diameter of ~200 µm.
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Problem 5.7:  Flux jumps

The magnetization vs ambient field trace shown in Fig. 5.23 was obtained with a
monofilament of Nb-Zr wire (0.5 mm dia.) at 4.2 K carrying no transport current.
[In the early 1960s, superconductors based on alloys of niobium and zirconium
(Nb-Zr) preceeded Nb-Ti. Shortly after a composite superconductor became the
standard form for magnet-grade superconductors in the mid 1960s, Nb-Ti replaced
Nb-Zr; it is much easier to co-process Nb-Ti with copper than Nb-Zr with copper.]
Note that both ordinate (magnetization) and abscissa (field) are given in non-SI
units. You may use Bean’s model and treat a single wire of diameter d f  as a slab
of thickness 2a .

a) Show that the field interval, ∆ Hf , indicated in the trace is consistent with
the measured magnitude of magnetization.

b) What is an estimated value of dissipation energy density [J/m3] resulting
from one flux jumping event, say the one labeled A in Fig. 5.23?

c) Give an estimate of the temperature rise for flux jump A. Assume the heat
capacity of Nb-Zr to be independent of temperature and equal to 6kJ/m 3 K.

Fig. 5.23 Magnetization vs ambient field trace for a 0.5-mm dia. Nb-Zr monofilament.
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Solution to Problem 5.7
a) From Bean’s model, flux jumping can occur every Hp . Clearly, H p = ∆ Hf ,
where ∆ Hf is indicated in Fig. 5.23. We also know full magnetization is Hp /2 .

From Fig. 5.23, ∆ H f 5 kilogauss, µo ∆ H f = 0.5T. Also from Fig. 5.23, Hp / 2
2.5 kilogauss, which is (1/2) ∆ H f . They are consistent.

b) We can derive the flux jump energy density, eφ , using the Poynting energy
balance: es = e φ + ∆ em , where es is the Poynting energy density entering the
superconductor at x = a and ∆ e m is its change in stored magnetic energy density.
Let’s consider only 0 ≤ x ≤ a. ∆ H (x) within the slab is given by:

From Eq. S7.1, we have:

at x = a is thus given by:

(S7.1)

(S7.2)

(S7.3)

(a) is directed towards the slab and the Poynting energy density es is given by:

(S7.4)

The stored magnetic energy after flux jumping (em2 ) is . The stored
magnetic energy before flux (em 1) is given by:

(S7.5)

(S7.6)

Because eφ = e s – ∆em , we obtain:

(S7.7)

(S7.8)

c) e φ = Cs ∆Ts ; 33×10 3 = 6× 103∆Ts . Solving for ∆ Ts , we obtain: ∆Ts = 5.5K,
sufficient to drive the superconductor normal.
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Problem 5.8:  Filament twisting
As discussed in Problem 5.6, the criterion on flux jumping requires conductor
diameters to be less than 2ac , which for Nb-Ti is ~200 µm. With Jco typically
2 × 10 9 A/m² (at 4.2K and 5T), a 200-µm diameter Nb-Ti filament has a critical
current of only ~60 A—insufficient for most magnet applications if used alone. The
idea of using many filaments, each meeting the diameter criterion of flux jumping,
in a matrix of normal metal, emerged in the late 1960s to build conductors with
critical currents as high as 1000A. Today, 50-kA conductors are available.

In early (c. 1969) “multifilamentary” conductors, filaments were still untwisted,
violating, it turned out, the size criterion. Problem 5.9 deals with such conduc-
tors. Results of a thorough study of multifilamentary conductors, both analytical
and experimental, carried out by Wilson, Walters, Lewin, and Smith of the Su-
perconducting Application Group, Rutherford Laboratory, and published in 1970
launched a new era of multifilamentary conductors [5.10].

Simply stated, when filaments are embedded in a conductive metal such as cop-
per and subjected to a time-varying magnetic field, the filaments are electrically
coupled according to Faraday’s law. Thus they act as a single entity with an ef-
fective conductor diameter that is virtually equal to that of the whole conductor.
The basic premise of the flux jumping criterion for isolated filaments is there-
fore violated in such an coupled filamentary conductor. In order to eliminate flux
jumping in multifilamentary conductors, filaments must be decoupled. Twisting
of the filaments does the trick.

Consider a two-dimensional conductor model comprised of two Bean slabs, each df
wide, separated by a copper slab of width 2w and electrical resistivity ρcu . Figure
5.24 shows a representation of the conductor as seen looking down the z-axis. Note
that unlike the one-dimensional Bean slab which extends into infinity in both the
y - and z-directions, this conductor is 2l long in the y -direction.

Fig. 5.24 Two-dimensional conductor comprising of a nor-
mal metal slab sandwiched between two Bean slabs.
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Problem 5.8: Filament twisting

CHAPTER 5

Suppose the conductor is subjected to a spatially uniform, time-varying magnetic
field pointed in the z-direction,

a) Show that the x-directed electric field within the copper slab is given by:

(5.25)

Assume the electric field in each superconducting slab to be zero—strictly
speaking it is not, but compared with that in the copper, it is extremely small
hence the zero field assumption is valid. Also assume that the quasi-static
assumption applies. Under these assumptions, it is apparent that the field
in the copper, as indicated in Eq. 5.25, has only an x component.

Show that an expression for the net current flowing through the copper (per
unit conductor depth in the z-direction), Icp  [A/m], from one superconduct-
ing slab to the other superconducting slab, over one half conductor length
(from y = 0 to y = l ), is given by:

(5.26)

At a critical length lc , the net current Icp given by Eq. 5.26, becomes equal
to Jc d f , the slab’s critical current (per unit conductor depth). Show that an
expression for l c in terms of appropriate parameters is given by:

(5.27)

Multifilamentary superconductors for 60-Hz power applications must have
filaments size (d f ) that is extremely small, in the range 0.1~0.5µm, which is
even smaller than the wavelength of visible light (~0.7 µm). This extremely
small size is required to keep hysteresis energy, generated within each filament
every time a magnetic field is cycled, “manageable.” (As will be discussed
in Chapter 6, hysteresis loss per cycle of field excitation is proportional to
filament diameter.)

Compute l c for a typical “submicron” superconductor having the following
parameters:
(equivalent to a sinusoidal excitation of 5-T amplitude magnetic induction
at 60 Hz). Note that ρm represents the matrix resistivity, which is generally
of copper-nickel alloys.

Compute the number of filaments required for a submicron multifilamentary
conductor with a filament diameter of 0.2µm having a critical current of
100 A. Use the same values of parameters given in d).

b )

c)

d )

e )
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Solution to Problem 5.8

(5.26)

a) From Faraday’s law, applied under the quasi-static assumption, we have:

(S8.1)

Because is zero in the superconducting slabs, Ey = 0 at x = ±w, forcing E1y = 0
everywhere in the copper slab. Thus:

(5.25)

b) Once the E field is known, the current density Jcu in the copper slab is given
by: Jcu = E 1x / ρcu . The net current flowing in the copper from one superconduct-
ing slab to the other over half the conductor length is given by:

c) Equating Icp given by Eq. 5.26 with Jcd f and solving for lc , we have:

(5.27)

d ) Inserting appropriate values into Eq. 5.27, we obtain:

In typical submicron strands, the twist pitch length is ~10mm! This means that
the diameter of such strands, by mechanical requirements, should be ~1 mm; ac-
tually a thermal-magnetic stability criterion, similar to the flux jump criterion,
requires it to be even smaller than 1mm. This is because the strand, to reduce
coupling losses, use Cu-Ni alloys as the matrix materials, resulting in a magnetic
diffusion time constant that is smaller than its thermal diffusion time constant.

e) Critical current ( Ic ), critical current density (Jc ), the number of filaments
(Nƒ ) and filament diameter ( dƒ) in a multifilamentary conductor is related by:

Solving for Nƒ from Eq. S8.3 with appropriate values of parameters, we obtain:

In submicron strands, the number of filaments may reach one million.

(S8.2)

(S8.3)

(S8.4)
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s

This problem illustrates the effect of filament size and twisting on magnetization.
In the late 1960s, three Nb-Ti composite superconductors of equal volume were
subjected to magnetization measurements [5.11]. Conductor 1 was twisted mul-
tifilamentary wire with a twist pitch length lp1 . Conductor 2 was also twisted
multifilamentary wire with a twist pitch length l p2 > l p1 , while Conductor 3 was
a monofilament.

Figure 5.25 presents three magnetization curves, labeled A, B, and C, for the
three Nb-Ti composite conductors. Each conductor was subjected to field pulses
indicated by arrows in the figure. Traces A, B, and C do not necessarily correspond
to Conductors 1, 2, and 3 respectively. Note that Traces B (B1 , B2 , B3 ) show a
dependence on field sweep rate; trace C is independent of field sweep rate; trace
A is also independent of field sweep rate, but shows “partial” flux jumps induced
by the field pulses.

a) Identify which magnetization trace corresponds to which conductor.

b) Estimate the ratio of filament diameter in the monofilament conductor to
that in the multifilament conductors.

c) Estimate a value of lp2 . Take Jc df = 4 x 10 4 A/m for Conductors 1 and 2.
Also comment on lp 1.

Fig. 5.25 Magnetization traces for Conductors 1, 2, and 3 [5.11].

Problem 5.9: Magnetization of conductors
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Solution to Problem 5.9

a) Note that Traces A and C are field sweep-rate independent and the corre-
sponding magnetization—an indication of filament diameter—is much greater for
Trace A than that for Trace C. We therefore conclude that Trace A is for Con-
ductor 3 (monofilament) and that Trace C is for Conductor 1 ( p1 ). That leaves
Trace B for Conductor 2 ( p2 ). (Note that each conductor, whether monofila-
ment or multifilament, has the same volume of Nb-Ti superconductor and thus its
measured magnetization should be directly proportional to filament diameter.)

b ) The ratio of magnetization width of Conductor 3 (monofilament, trace A) to
that of Conductor 1 (trace C), is roughly 10 for µo He below ~1 T (10 kilo-oersted).
Therefore, we conclude that the filament ratio is roughly 10.

c ) Because a field sweep-rate of 900 oersted/sec makes the
magnetization of Conductor 2 (Trace B3 ) nearly equal to that of Conductor 3
(Trace A), we may conclude that this sweep rate makes Conductor 2’s filament
twist pitch length p2 critical. Thus from Eq. 5.27:

(S9.1)

With and we obtain:

(S9.2)

This value is close enough to the actual twist pitch of 10 mm. Because magneti-
zation of Conductor 1 (trace C) at a sweep rate of 320 oersted/sec is considerably
smaller than that of Conductor 2 for the same field sweep rate, we conclude that

p1 is significantly shorter than p2 .

Filament Twisting in Composite Superconductors

An important implication of the condition I cp = Jc dƒ , used to derive Eq. 5.27
(Problem 5.7), is that the two superconducting slabs are electrically coupled. Were
the conductor length substantially shorter than , on the other hand, the two
would be decoupled. In reality, these slabs may be decoupled, even if each is
much longer than , if they are alternated in their position with a pitch length
less than . Thus in multifilamentary conductors, we achieve partial decoupling
by twisting the filaments with a pitch length Note that in a twisted
conductors each filament remains at a fixed radial distance from the strand axis.
By contrast, in a cable comprised of transposed strands, more complete decoupling
is possible because each strand is made to occupy every radial position across the
cable diameter as it spirals along the cable’s twist pitch length. In multifilamentary
conductors, because filaments are arranged in fixed radial locations in the matrix
at the billet-making stage, transposition is not possible; the conductor is simply
twisted during the production stage.

= 27 mm
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Problem 5.10: Flux jump criterion for HTS tapes

Although measurements of magnetization as comprehensive as that performed on
LTS have not yet been carried out on HTS, it is assumed that Bean’s critical state
model can be used to describe the macroscopic magnetic behavior of HTS. (As
demonstrated in Problem 5.4 for an YBCO crystal, the model may be used to
extract J c values from magnetization data.) To date, a series of flux jumps such
as the one studied in Problem 5.7 has not been observed in HTS. In this problem
we apply the flux jumping criterion derived in Problem 5.6 (Eq. 5.24) to HTS,
specifically a BiPbSrCaCuO (2223) HTS, by studying the effect of temperature on
the parameters appearing in Eq. 5.24.

a )

b)

Comment on the vulnerability of HTS to flux jumping by examining the
temperature dependence of each parameter appearing in Eq. 5.24. Here, we
are discussing the intrinsic stability and it is not necessary to include the
effect of silver, the standard matrix metal used in bismuth-based HTS tapes
presently available. For the heat capacity Cs appearing in Eq. 5.24, you may
use copper’s heat capacity.

Compute the values of ac for BiPbSrCaCuO (2223) superconductor in zero
magnetic field at 4, 10, 20, 30, 40, 50, 60, 70, and 80K. Use the zero-field
(0 T) values of Ic (T ) corresponding to Tape 1 (open circle data) shown in
Fig. 5.26 [5.12]. The cross sectional area occupied by BiPbSrCaCuO alone
is 0.118mm².

Fig. 5.26  I c vs T data at 0, 5, 10, and 19.75 T [5.12].
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a) The first important point to note is that in each of the HTS discovered so far
Jc decreases with temperature, i.e. the HTS are in principle vulnerable to thermal
instability. Their critical filament sizes should be considerably greater than those
of LTS because of two parameters in Eq. 5.24: (T c – Top ) and Cs . For LTS,
( Tc  – Top ) ranges 1~5 K, while for HTS it ranges 10~50 K, a factor of 10 increase.
An increase in Cs  (for copper) from Top  ~ 4 K to Top  ~ 40 K is ~700; this increase
in Cs  alone can increase the critical size by a factor of over 25.

From these observations, we state that when HTS are operated at temperatures
above ~20 K, they are unlikely to suffer flux jump instability. Quantitative results
are presented below.

b) Table 5.2 presents the values of ac for the temperature range 4~80 K. It
also includes values of Ic  extracted from Fig. 5.26 and corresponding Jc used for
computation.

Table 5.2: Critical Size vs Temperature

T I c Jc C *s ac

[K] [A] [MA/m²] [kJ/m³K] [mm]

4 228 1932 0.8 0.2

10 217 1839 7.7 0.7

20 194 1644 68.5 2.4

30 163 1381 240 5.5

40 135 1144 534 9.8

50 108 915 881 16

60 80 678 1219 25

70 53 449 1540 43

80 24 203 1825 103

* Copper heat capacity.

The HTS tape used to compute ac is of “single-core,” meaning each tape contains
a central strip 3~5 mm wide (2a), processed with a silver matrix which occupies
60~70% of the total conductor volume. Tape 1, including its silver matrix, is
4.09 mm wide and 0.153 mm thick. Values of ac listed in Table 5.2 indicate that
even these “single- core” tapes are stable against flux jumping when they are op-
erated above ~20K. Within a few years these silver-sheathed tapes will likely be
multifilamentary, consisting of many (up to ~100) “mini strips” [5.13, 5.14]. The
need to process tapes in the multifilamentary form, however, is driven not so much
to satisfy the flux jumping criterion but to make them more strain resistant. Also
making strips thin inherently improves the critical current density of these HTS
tapes [5.15].



202 C H A P T E R 5

References

[5.1] C.P. Bean, “Magnetization of hard superconductors,” Phys. Rev. Lett. 8 , 250
(1962).

[5.2] Y.B. Kim, C.F. Hempstead, and A.R. Strnad, “Magnetization and critical super-
currents,” Phys. Rev. 129 , 528 (1963).

[5.3] M.A.R. LeBlanc, “Influence of transport current on the magnetization of a hard
superconductor,” Phys. Rev. Letts. 11 , 149 (1963).

[5.4] K Yasuk chi, Takeshi Ogasawara, Nobumitsu Usui, and Shintaro Ushio, “Mag-
netic behavior and effect of transport current on it in superconducting Nb-Zr
wire,” J. Phys. Soc. Jpn. 19 , 1649 (1964).

K Yasuk chi, Takeshi Ogasawara, Nobumistu Usui, Hisayasu Kobayashi, and
Shintaro Ushio, “Effect of external current on the magnetization of non-ideal
Type II superconductors,” J. Phys. Soc. Jpn. 21 , 89 (1966).

[5.5] H.T. Coffey, “Distribution of magnetic fields and currents in Type II supercon-
ductors,” Cryogenics 7 , 73 (1967).

[5.6] W.A. Fietz, “Electronic integration technique for measuring magnetization of
hysteretic superconducting materials,” Rev. Sci. Instrum. 36 , 1621 (1965).

[5.7] T.R. Dinger, T.K. Worthington, W.J. Gallagher, and R.L. Sandstrom, “Direct
observation of electronic anisotropy in single-crystal Y1 Ba 2 Cu 3 O7– x ,” Phys. Rev.
Lett. 58 , 2687 (1987).

[5.8] M. Yunus and Y. Iwasa (preliminary results, FBNML, 1994).

[5.9] See, for example, M.S. Lubell, B.S. Chandrasekhar, and G.T. Mallick, “Degrada-
tion and flux jumping in solenoids of heat-treated Nb-25% Zr wire,” Appl. Phys.
Lett. 3 , 79 (1963).

[5.10] Superconducting Applications Group (Rutherford Laboratory), “Experimental
and theoretical studies of filamentary superconducting composites,” J. Phys. D3,
1517 (1970).

[5.11] Y. Iwasa, “Magnetization of single-core, multi-strand, and twisted multi-strand
superconducting composite wires,” Appl. Phys. Lett. 14 , 200 (1969).

[5.12] K. Sato, T. Hikata, and Y. Iwasa, “Critical currents of superconducting BiPb-
SrCaCuO tapes in the magnetic flux density range 0 to 19.75T at 4.2, 15, and
20 K,” Appl. Phys. Lett. 5 7 , 1928 (1990).

[5.13] K. Sato, N. Shibutani, H. Maki, T. Hikata, M. Ueyama, T. Kato, and J. Fu-
jikami, “Bismuth superconducting wires and their applications,” Cryogenics 33,
243 (1993).

[5.14] A. Otto, L.J. Masur, J. Gannon, E. Podtburg, D. Daly, G.J. Yurek, and A.P. Mal-
ozemoff, “Multifilamentary Bi-2223 composite tapes made by a metallic precursor
route,” IEEE Trans. Appl. Superconduc. 3 , 915 (1993).

[5.15] H. Ogiwara, M. Satou, Y. Yamada, T. Kitamura, T. Hasegawa, “Induced critical
current density limit of Ag sheathed Bi-2223 tape conductor,” IEEE Trans. Magn.
30 , 2399 (1994).



CHAPTER 6
STABILITY

6 . 1 Introduction

Reliability is one requirement that all devices must meet; superconducting mag-
nets are not excepted. Historically, reliability has been one of the most troubling
(and at the same time most challenging) aspects of superconducting magnet tech-
nology. An early failure of a magnet of significant size was that of a solenoidal
magnet designed and built at MIT in 1961 [6.1]. Part of a thermonuclear fusion
research project, the magnet, 20-cm bore and 1.2m long, was wound with a 250-
µm diameter single-core Nb-Zr superconductor. It may be noted that conductors
like this—of single core exceeding the flux jumping criterion size 2ac (Chapter 5)
and processed without any normal metal matrix—were the only type available at
that time; remarkably—a more appropriate expression would be misleadingly—
these conductors worked well in “small” magnets. When it was finally tested in
1962, the magnet, instead of reaching a designed operating current of 20 A and
generating a central field of 3 T, prematurely quenched at ~1 A; repeated tries did
not improve its performance. No doubt there were many magnet failures of this
nature—mostly unreported—during this early era of antiquity. Further discussion
of premature quenches (quenches occurring at currents below designed operating
current) and “training” in “adiabatic” magnets will be given in Chapter 7.

6.2 Stability Theories and Criteria

As stated in Chapter 1, superconductivity is confined within the phase surface
bounded by magnetic field, temperature, and current. Of these three parameters,
the temperature is neither completely controllable nor predictable within the wind-
ing of a superconducting magnet, because the energy stored in the magnet, both
magnetic and mechanical, can easily be converted into heat, upsetting the thermal
equilibrium of the winding and raising the conductor temperature to above its
critical value. Therefore, in magnet operation the temperature stability or more
generally thermal behavior of the conductor is crucial. We may discuss the thermal
stability by examining the power equation operating on a unit conductor volume,
one of the three basic constituents of the magnet winding.

The three winding constituents, as shown schematically in Fig. 6.1, are: 1) con-
ductor; 2) structural material; and 3) coolant. The conductor temperature, T, is
governed by the following power density equation:

unit,

of the superconductor and normal-metal (usually copper) matrix.

gk represents the conduction heat flow into the conductor element, i.e. gk  =
is the conductor element’s thermal conductivity.

(6.1)

represents the time rate of change of thermal energy density of the conductor
is the heat capacity of the conductor, which, after

the development in 1964 by Stekly [6.2] of composite conductors, consists

203
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Fig. 6.1 Winding pack cross section comprising the three basic constituents.

g j represents the Joule heating, i.e. is the conduc-
tor’s normal-state electrical resistivity and j cd its current density. (This
term is zero when the conductor is superconducting.)

gd represents heat generation, primarily magnetic and mechanical in origin;
this term is important in the so-called “adiabatic” magnets in which the
cooling, represented by gq , is absent in the winding.

gq represents the cooling on the conductor element; it plays a prominent role
in the so-called “cryostable” magnets and none at all in adiabatic magnets.

The history of the development of theories and concepts for stability (and protec-
tion to be discussed in Chapter 8) may be said to have evolved around specific
solutions to Eq. 6.1. Table 6.1 lists various concepts derived from Eq. 6.1 under
special conditions. In the table, the parameter with 0 signifies that the parameter
is negligible or not considered in the equation; √ signifies it is included. Each case
is briefly discussed below [6.3].

6.2.1 Flux Jumping

Flux jumping is a thermal runaway instability unique among superconductors.
As discussed in Chapter 5, it occurs primarily at or near 4K, the temperature at
which LTS is operated, because the superconductor (as with everything else except
helium) has an extremely small specific heat. The magnetic energy density stored
in the superconductor in the form of the supercurrent can thus easily be converted
into heat, exceeding the superconductor’s critical temperature. As remarked in
Chapter 5, flux jumping is no longer a serious problem for magnet operation.
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Table 6.1: Concepts Derived from Eq. 6.1

g k g j g d g q Application

√ 0 0 √ 0 Flux jump

0 0 √ 0 √ Cryostability

√ √ √ 0 √ Dynamic stability

0 √ √ 0 √ “Equal area”

0 √ √ 0 0 MPZ*

√ 0 √ 0 0 Protection

√ √ √ 0 0 Adiabatic NZP†

* Minimum propagation zone.

† Normal zone propagation.

6.2.2 Cryostability

By the mid-1960s, the basic concept for an engineering solution to achieve reliable
magnet operation was developed, chiefly by Stekly [6.2], who proposed composite
conductors comprising a superconductor core—at the beginning still a single core—
that is co-processed with a highly conductive copper. The copper reduces the
normal-state Joule heating density, g j , to a level sufficiently low so that it can
be balanced by cooling, g q , operating on a surface of the unit conductor volume.
The theory based on this concept is known as cryostability and magnets designed
according to this theory are cryostable. Problems are presented to discuss and
study cryostability in more detail.

6.2.3 Dynamic Stability

In the adiabatic treatment of flux motion within the superconductor, discussed
in Chapter 5, it is implicitly assumed that the superconductor’s magnetic time
constant, , is much shorter than its thermal time constant, . Obviously, as
confirmed by experiments, this assumption was valid in many cases. As a result
flux jumping occurred in virtually all conductors through the mid-1960s. Hart
[6.4] treated magnetic instabilities in which this assumption was no longer valid.
His analyses led to what has become known as dynamic stability. Its practical
applicability was mostly confined to Nb3 Sn superconductors that were then avail-
able only in the tape form. Since the termination of Nb3 Sn tape production in the
mid-1970s and the availability henceforth of Nb3 Sn conductors in wire and mono-
lithic strip forms, the dynamic stability theory has become dormant. However,
because the only conductor form available in promising high-T c superconductors
has been tape, the dynamic stability theory was recently revived by Ogasawara
for application to HTS magnets [6.5]. Because the standard operational mode of
HTS magnets is to have them coupled to cryocoolers and operated in a vacuum
(“adiabatic”) environment, the relevancy of dynamic stability for HTS magnets is
questionable. Nevertheless, a problem on dynamic stability as applied to tapes is
presented.
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6.2.4 “Equal Area”

The “equal-area” criterion is one of those rare instances in engineering where its
formulation, though undoubtedly inspired by engineering need, seems to have been
propelled more by mathematical logic. It is a special case of cryostability theory in
that thermal conduction within the winding, not included in cryostability, is neatly
used. The result is an improved magnet performance through an enhancement in
the overall current density. A problem is devoted to tracing the criterion’s original
derivation in 1969, by Maddock, James, and Norris [6.6].

6.2.5 MPZ

The concept of MPZ (minimum propagating zone) was introduced in 1972 by Mar-
tinelli and Wipf [6.7] to consider the effect on coil performance of a quench-causing
disturbance (the term expressed by g d in Eq. 6.1) occurring locally, like a point
source, within the coil winding. An epoxy-cracking event in epoxy-impregnated
windings would be such a point source disturbance. The MPZ concept shows that
it is possible to sustain “superconductivity” in a magnet even in the presence of a
small normal-state region in its winding; the normal-zone volume must be smaller
than a critical size defined by the MPZ theory. For typical winding parameters,
however, this critical size is so small that its practical importance on cryostable
magnets is virtually nil. Its importance in adiabatic magnets was recognized by
Wilson in the late 1970s [6.8], and it has since become an indispensable concept
for analyzing the stability of adiabatic magnets.

6.2.6 Nonsteady Cases

The last two cases in Table 6.1 concern the non-steady state thermal behavior of
the winding. They are treated in Chapter 8.

6 .3 Cable-in-Conduit (CIC) Conductors

It was through consideration of stability that the concept of cable-in-conduit (CIC)
conductors was proposed by Hoenig and Montgomery in the early 1970s [6.9]. The
concept is to encase a cable of superconducting strands in a leak-tight conduit
through which supercritical helium is forced to maintain the strands’ supercon-
ductivity. The conduit not only holds the strands and helium but also provides
strength. Figure 6.2 presents sketches of CIC conductors.

Fig. 6.2 Examples of CIC conductors.
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The conduit makes CIC conductors suitable for Class 1 magnets and unsuitable for
Class 2 magnets. Generally magnets require strong windings and the conduit is an
effective strengthener. However, because the conduit itself occupies a significant
fraction of the conductor cross sectional area, a CIC magnet must operate at
high currents (above ~10 kA) to maintain reasonable overall current densities.
Both of these features make CIC conductors desirable for Class 1 magnets, while
neither extra strength nor high-current operation is needed or desirable for Class 2
magnets. Indeed, magnet engineers engaged in the fusion programs have been
the most enthusiastic advocates of CIC conductors and have made significant
contributions to the development of CIC conductors from the very beginning.
Key issue still face designers of CIC conductors in the following areas.

�

�

�

�

The conductor itself: encasing a bundle of cabled strands into a tight-fitting
conduit is difficult, particularly when the strands are of composite Nb 3 Sn,
which are brittle and must not be strained above ~0.3%. This means that
in the production of a CIC conductor, the final heat treatment for Nb 3 Sn
reaction must be performed after the unreacted strands are encased within
a conduit and the CIC conductor, save heat treatment, is processed into its
final form. The heat treatment temperature of ~700°C makes the manu-
facturing process of Nb3 Sn magnets at least one order of magnitude more
complex than that required for Nb-Ti magnets. The strands, bundled quite
tightly within the conduit, for example, should not sinter, because sinter-
ing dramatically increases AC losses in the conductor. Another important
point is that the conduit must not lose its strength during heat treatment,
resulting in the development of a special material for the conduit: a nickel-
iron based superalloy, Incoloy 908. Also troubling is the differential thermal
contraction among the conductor constituents—Nb3 Sn, bronze, copper, and
other metals—which when the conductor is eventually cooled from ~700°C
down to 4.2K, may, as studied in Problem 3.18, strain Nb3 Sn close to its
permissible limit.

Stability: this is discussed below.

AC losses: because superconducting magnets in fusion reactors are subjected
to time-varying magnetic fields, AC losses occur within CIC conductors. How
to deal with AC losses is a major topic in the design of CIC conductors. AC
losses are discussed more fully in the next chapter.

Other issues include: conductor joints; coolant flow circulation and distribu-
tion; and quench-induced pressure rise in the conductor. Conductor splicing
and pressure rise are discussed, respectively, in Chapters 7 and 8.

6.3.1 Stability

From the very beginning in the early 1970s, much attention was given to the
stability of CIC conductors. One of the important results from the early era was
the observation in 1977 of “recovery” in a CIC conductor even in the absence
of a net coolant flow through the conductor [6.10]. Apparently, heating-induced
high-velocity local coolant flow in the heated region is responsible for supplying
the cooling necessary for recovery.
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An important milestone early in the stability work for CIC conductors is the
discovery by Lue, Miller, and Dresner in 1979 of multivalued stability margins
that can exist under certain operating conditions in CIC conductors [6.11]. Here
the energy margin, ∆e h , is defined as the maximum dissipative energy density
pulse (per unit strand volume) to which a conductor can be exposed and still
remain superconducting when it is carrying a given transport current. Figure
6.3 presents a typical ∆ eh vs It / Ico for constant values of operating temperature
(T op), field ( B0 ), and coolant flow rate. Here, It  is the transport current and
I co(T op, B 0) is the critical current. The “dual stability” regime, characterized by
multivalued stability margins, occurs near I t / Ico ~0.5. The regime below the dual
stability regime is referred to as “well-cooled” and that above as “ill-cooled” [6.12].
Because the greater the transport current, the lower will be the “current sharing”
temperature (Tcs ) beyond which partial Joule heating takes place, ∆eh is expected
to decrease with increasing I t /Ico . (The current sharing temperature is discussed
in the Problem Section of this chapter.)

Thus in this dual stability regime, the conductor has multiple values of energy
margin. Stability is maintained for energy density inputs up to ∆eh1 . Beyond
∆ eh1, the conductor is unstable until ∆eh2 is reached. Then, for the next range
of energy, from ∆ eh2 until ∆ e h3, the conductor again remains stable. Dresner
explained the stable range from ∆eh2 to ∆eh3 in terms of the same heating-induced
local coolant flow used to explain the results of the earlier experiment [6.10]. The
higher the heating, the higher will be the induced local cooling. Under the right
circumstances, this induced cooling overtakes the heating, creating multivalued
energy margins; this dual stability regime must necessarily be confined to a small
range of transport current, as is suggested in Fig. 6.3.

Fig. 6.3 General shape of an energy margin vs normalized
transport current plot for a CIC conductor [6.12].
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In the face of the requirement to virtually guarantee stable operation of large fusion
superconducting magnets, the fusion community, which, as remarked in Chapter
3, was internationalized recently in the form of the ITER consortium, has decided
to take a conservative route, ITER magnets will be designed to operate in the well-
cooled regime. Despite intensive and numerous efforts to understand and improve
the stability of CIC conductors, carried out analytically and experimentally during
the 1980s [6.13~6.16], CIC magnets for ITER, as remarked above, will be designed
to satisfy a criterion similar to the classic Stekly criterion.

The major difference between the two criteria is cooling, or more precisely the
spatial and temporal extent to which cooling is assumed to be available. In the
Stekly criterion, to be studied in Problems 6.3 and 6.4, it is assumed that cooling
by liquid helium is available to conductor situated at every region of the winding
at all times and as long as required to achieve recovery; the winding designs
of early magnets were filled with cooling channels to satisfy the Stekly criterion
“unconditionally.”

In a criterion applied to CIC windings (“pseudo-Stekly criterion”), which will be
studied in Problem 6.11, conductor parameters are chosen to satisfy the Stekly
criterion; however, cooling available within the conduit is not sufficient to guar-
antee unconditional stability against a disturbance that drives the whole winding
normal nor a normal zone that remains normal for a long time period. It is for
this reason that energy margin ∆eh and AC losses are considered critical param-
eters by the ITER magnet design team; these two issues are among the primary
research targets of ITER’s CIC conductor design effort. The concept of energy
margin assumes a priori that disturbances, other than AC losses, are localized
and transient: against a localized and transient disturbance the Stekly criterion’s
“infinite” cooling supply requirement may be relaxed. AC losses are also critical
in CIC windings because their impact extends globally throughout the winding; it
is absolutely necessary to avoid a global quench, an event in fusion magnets that
can be induced by AC heating in the CIC windings.

This concludes a brief introduction to the stability of superconducting magnets
[6.17]. Problems presented in the Problem Section examine some of the theories
and concepts in greater detail to enhance the reader’s understanding of them. The
problems on the basic theories and concepts are presented first, with the topics
appearing in the same order as in Table 6.1. Problems dealing with applications
of these theories and concepts follow.

“Mendel’s epoch-making discovery required little previous knowledge; what it
needed was a life of elegant leisure spent in a garden.” —Bertrand Russell
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Problem 6.1: Cryostability

1. Circuit model

CHAPTER 6

We shall study the theory of cryostability in two steps. In the first step, treated
here, a circuit model is used to study the behavior of a composite superconductor
comprised of superconducting filaments embedded in a matrix of copper.

Figure 6.4a shows an “ideal” Rs vs I plot for the superconducting filaments. Fig-
ure 6.4b shows an appropriate circuit model for the composite superconductor.
R s is the filaments' effective resistance and Is is the total current through the
filaments. The plot is ideal in the sense that for Is ≤ I c , R s = 0, where Ic is the
superconductor’s critical current at temperature T. (In Chapter 7 where the main
topic is disturbances in magnets, a problem will deal with the effects on magnet
operation of a more realistic Rs vs Is curve, in which Rs ≠ 0 even for I s < Ic .)
For I s ≥ I c , 0 ≤ Rs ≤ Rn , where R n is the normal-state resistance. Note that at
I s = I c, R s is indeterminate; it satisfies conditions imposed by the circuit. Rm
represents the total resistance of the copper matrix and generally Rm << Rn. Let
us assume the conductor is at temperature T and carrying a net transport current
It , which is varied slowly from 0 to Ic and beyond.

a) For I t < I c , derive expressions for Vcd , the voltage over the conductor length,
and Gj , the total Joule dissipation in the conductor.

b) Repeat a) for It ≥ Ic and show:
(6.2)

Assume that the conductor is well cooled and that its temperature remains
constant at T. In reality, when Gj is nonzero, the conductor’s temperature is
actually raised slightly by ∆T even when it is well cooled; for this problem,
assume ∆ T = 0.

Fig.  6.4 (a)  R s vs I s plot for superconducting filaments
alone. (b) Circuit model for a composite superconductor.
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Solution to Problem 6.1

a) We have I s = I t ≤ Ic and, from Fig. 6.4a, Rs = 0. Because Rs = 0, Vcd = 0
from Fig. 6.4b, and hence Gj = 0.

b) When I t ≥ I c, any excess current greater than Ic now flows through the
copper matrix because R m << Rn . That is, I m = I t – Ic and Is = Ic . I m is the
current flowing through the copper matrix. We then have:

(S1.1)

Since the same voltage appears across Rs , we have:

(S1.2)

(S1.3)

That is, Rs increases linearly with It starting with R s = 0 at I t = Ic . We have:

(S1.4)

Combining Eqs. S1.1 and S1.4, we obtain:

(6.2)

Note that G j is temperature-independent as long as R m and I c remain independent
of temperature. Because copper resistivity is nearly temperature-independent for
the temperature range from 4 to ~30 K (Appendix IV), Rm is always assumed
constant in stability analyses of low-Tc superconductors. In the next problem, we
let Ic be temperature-dependent and examine Gj (T).

Peak Nucleate Boiling Heat Transfer Flux: Narrow Channels

As remarked briefly in Chapter 4, peak nucleate heat transfer flux (qpk ) is af-
fected by many factors. For a cooling surface situated in a narrow channel, qp k

is smaller than that for an open surface. Because the cooling surfaces in most
magnet winding geometries are situated in narrow channels, qpk valid for narrow
channel geometry should be used. Wilson’s data [6.18] on qpk [W/cm²] vs channel
width (w [cm]) in the range 0.01~0.15cm, over the vertical channel height (z [cm])
range 2.5~20cm, may be fit by the following simple expression:

(6.3)

Note here that qpk is in W/cm², w and z are in cm.
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Problem 6.2: Cryostability

2. Temperature dependence

We shall now investigate the temperature dependence of Gj , total power dissipa-
tion in the unit composite superconductor length considered in Problem 6.1 and
given by Eq. 6.2. Figure 6.5 presents an often used linear approximation of the Ic

vs T curve at a given magnetic field for superconductors. (Equation 5.22 gives the
same linear approximation for critical current density.) Note that Ic(Top ) = I co

and Ic(Tc) = 0. The net transport current through the composite conductor It

remains constant as the conductor temperature is varied. Tcs , the current sharing
temperature, is given by I t = Ic (T cs ) and is indicated in the plot.

a) With Ic (T ) of the filaments approximated by:

(6.4)

show that an expression for Gj (T), the total joule dissipation of the composite
conductor as a function of temperature, is given by:

(6.5a)

(6.5b)

Assume R m to be temperature independent.

b) Make a plot of Eq. 6.5 for the temperature range, from Top to T > T c .

c ) Give a physical explanation of G j(T ) given by Eq. 6.5b.

(Eq. 6.4) for the superconduting filaments.
Fig. 6.5 Linear approximation of the Ic vs T curve
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Solution to Problem 6.2

a) Because (Fig. 6.5), we have:

(6.5a)

By inserting Ic (T) given by Eq. 6.4 into G j given by Eq. 6.2, we obtain:

(S2.1)

Setting and inserting this into Eq. 6.4, we can solve for Ico :

(S2.2)

where Combining Eqs. S2.1 and S2.2, we obtain:

(6.5b)

b) Equation 6.5 is plotted in Fig. 6.6.

c) Clearly, as long as all the transport current flows through the
filaments and V cd  = 0, making Gj (T) = 0.

At T cs when I t  = I c, the filaments are carrying the maximum they can carry
superconductively; beyond Tcs  the current begins to “spill” over to the copper
matrix, generating Joule dissipation in the composite. This spilling continues
monotonically with T until Tc  is reached, at which point all the transport current
is now flowing through the matrix. Note that Gj varies linearly with T between
Tcs and Tc. Beyond Tc, G j remains constant as long as Rm remains constant; with
copper as the matrix metal it does so for temperatures up to ~30 K.

Fig. 6.6 Plot of Gj (T) for the composite superconductor.
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Problem 6.3: Cryostability

3. Stekly criterion

We now proceed to derive an expression for the Stekly stability parameter αsk and
formulate the theory of cryostability. At the time Stekly formulated the theory
(c. 1964), which was first applied to and tested with short lengths of crudely made
composite superconductors, it was customary to assume that the superconducting
magnet would always be operated at its conductor’s critical current, Ic . Later on,
it was realized that the magnet did not have to be operated at its utmost limit; a
“safety margin” was introduced, i.e. With this safety margin
came the current-sharing temperature Tcs .

a)

b)

c )

Show that a new expression for Gj(T) for the case It = I c o is given by:

(6.6)

Show that gj (T), defined as Gj (T) divided by the unit conductor volume, is
given by:

(6.7)

where ρm is the matrix metal electrical resistivity. Acd is the total conductor
cross sectional area. Note that Acd = A m + As , where Am is the total matrix
cross sectional area and As , is that of the filaments.

Here, we shall use a constant heat transfer coefficient hq for helium cool-
ing. Under this assumption, cooling density, gq (T)—the cooling per unit
conductor volume—is given by:

(6.8)

T is the conductor surface temperature. Tb is the helium temperature, which
may be assumed to be equal to the operating temperature,
P cd is the total conductor perimeter. To introduce a variability to surface
cooling, a constant p is used in Eq. 6.8 to quantify the fraction of Pcd exposed
to liquid helium.

Stable conditions are achieved when cooling equals or exceeds Joule gener-
ation: By equating the two power densities, show that αsk,
known as the Stekly stability parameter, is given by:

(6.9)

Note that the conductor is stable when αsk  ≥ 1 and unstable when α sk < 1.

 ƒ
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Solution to Problem 6.3

a) By inserting It = I co into Eq. 6.5b and noting that in this case T cs = T op

because It = I co , we can immediately rewrite Eq. 6.5b as:

(6.6)

Note that Gj(T) now increases linearly with T starting at Top . Obviously, this
is because the superconductor is now carrying its maximum allowable current,
namely I co , and Tcs = Top .

b) The matrix resistance over a unit conductor length is given by:
The conductor volume over a unit conductor length is given by Acd. Inserting

into Eq. 6.6 and dividing it by Acd, we have:

(6.7)

c) The total cooling operating on a unit conductor length, Gq (T), is given by:

(S3.1)

Dividing Gq(T) by the unit conductor volume and noting that Tb T op , we obtain:

(6.8)

The Stekly cryostability theory requires that gq (T) ≥ gj (T). Combining Eqs. 6.7
and 6.8, we obtain:

(S3.2)

The Stekly stability parameter, αsk , is given by the left-hand side of Eq. S3.2:

(6.9)

Note that αsk , a dimensionless number, expresses the ratio of cooling density to
Joule dissipation density. The operation is thus stable when αsk  ≥ 1 (sufficient
cooling) and unstable when αsk  < 1 (insufficient cooling.)
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Discussion of Stekly Cryostability Criterion

Stekly’s cryostability criterion requires “composite superconductors” but not nec-
essarily “multifilamentary superconductors;” all multifilamentary superconductors
are, however, composite superconductors. (The development of twisted multifila-
mentary superconductors came in the late 1960s, after the formulation of cryosta-
bility criterion.) With Stekly’s cryostability established, the stage was set for
building in earnest—and with great confidence—large superconducting magnets.
Examples of large magnets built and operated reliably in the early era of this
new era of magnet building include, just to cite a few, those for bubble chambers
[6.19, 6.20], MHD [3.20, 3.21], and motors [6.21].

In magnet design, as discussed in Chapter 3, an important parameter is “overall
winding” current density, λJ ≡ J ov , rather than actual operating current, Iop.
As noted in Chapter 3, λ (space factor), represents the fraction of the total cross
sectional area occupied by the conductor to that occupied by the winding; after
all it is only the conductor that carries current and contributes to the field. In
discussing “composite superconductors,” an important parameter is their “overall
conductor” current density, J cd , given by which in this case would be

Note that J cd  is always greater than J ov because whereas Jcd only ac-
counts for A cd, given by A s and Am , J ov  must in addition account for the areas
occupied by coolant, insulators, and reinforcing materials. Still, the greater the
Jcd , generally the greater will be Jov.

Equation 6.9 states αsk ∝ A m and implies that for a given cooling condition
stability (or reliability) is directly linked to Am and vice versa:

(6.10)

To achieve a greater degree of stability for given cooling conditions, therefore, it
is necessary to increase Am , which is usually copper in LTS and most likely in
HTS. The conductor’s overall critical current density and the conductor’s
“intrinsic” critical current density, are related as:

(6.11)

where is commonly known as copper-to-superconductor ratio.

It is clear from Eq. 6.11 that is always less than because γ c/s  > 0.
Equation 6.11 implies stability can be costly. The greater the αsk  is, which makes
magnet operate more stably, the greater must be Am , and hence γ c/s , and the
smaller will be

Values of αsk  selected for early large magnets were quite large, some exceeding 10
[6.22, 6.23]. Clearly, magnet reliability was unquestionably favored over magnet
efficiency. Right or wrong, this philosophy continues to this day, particularly with
Class 1 magnets.
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Problem 6.4: Cryostability

4. Nonlinear cooling curves

The parameter α sk  derived in Problem 6.3 is based on the cooling characteristic
that assumes hq  to be temperature independent. In reality, cooling curves are
quite nonlinear, even in the nucleate boiling heat transfer regime where these
cryostable magnets generally operate, see for example, Fig. 4.1. It is thus more
accurate to incorporate the heat transfer curve, q(T ), directly in the derivation of
the cryostability theory.

a) Show that an expression for for cryostable operation at
incorporating the heat transfer flux curve q( T) [W/m²] may be given by:

b) Draw qualitatively, on the same plot, a q(T ) curve and a dimensionally consis-
tent generation curve, and indicate on the plot the region of stable operation.

(6.12a)

(6.12b)

where q fm is the minimum heat transfer flux in the film boiling regime.

c) Generalize b) for the case I op < I co on the same plot used in b).

Composite Superconductors: “Monolithic” and “Built-up”

Magnet-grade superconductors are available in two types, one known as “mono-
lithic” and the other known as “built-up.”

Monolithic: As the name implies, the superconductor and the normal metal in
a monolithic form one entity, achieved chiefly through metallurgical processes. By
visual inspection from outside, it is impossible to distinguish, except through the
conductor cross section, the existence of more than one constituent in a monolithic
conductor. Virtually all round conductors are of this type. For values of γ c/s above
~10, however, it becomes difficult to manufacture monolithic conductors without
breaking filaments in the metal forming processes, particularly for conductors with
filament sizes less than ~100 µm. Early monolithic conductors [6.22, 6.23] had
filaments with large diameters, i.e. 1~5mm; filament breakage was hence rare.
These sizes, however, clearly exceeded the critical size set by the flux jumping
criterion.

Built-Up: A built-up conductor is comprised of a monolithic conductor having
a γ c/s  value close to 1 and normal-metal stabilizer parts that are generally soldered
to the monolith, after the monolith has been prepared. Mechanical properties
of the stabilizer parts are therefore unaffected by manufacturing processes of the
monolith, making it sometimes easier to satisfy conductor specifications. The CIC
conductor is a variant of built-up conductors.
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Solution to Problem 6.4

a) In most applications where cryostability is applied, we must assume that
the conductor may operate—even briefly—in the fully normal state. Under this
assumption, it is safe to use the minimum heat flux (q f m in Table 4.2) in the film
boiling regime. We thus have:

Combining Eqs. S4.1 and 6.11 and solving for [ Jc o]c d, we obtain:

(S4.1)

(6.12a)

(6.12b)

Equation 6.12b indicates that increasing Am to improve stability decreases [Jco]cd .

b) Figure 6.7 presents a typical plot of q(T) for liquid helium. Plotted also is
a curve of Parameters are chosen to make

slightly less than qfm so that operation is stable for
the entire temperature range from Top to temperatures even above Tc.

c) The dotted line in Fig. 6.7 presents the case in which It < Ico . Note that in
the temperature range Top ≤ T ≤ Tcs the conductor is fully superconducting.

Fig. 6.7 Qualitative plots of q (T) for liquid helium and (T) for the case
I o p = I c o (solid straight line) and Io p < I c o (dotted straight line).
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Problem 6.5:  Dynamic stabi l i ty  for tape conductors

1. Magnetic and thermal diffusion

Before formulating the dynamic stability theory applicable to superconducting
tapes—the only conductor configuration for which this theory is considered in this
book—we shall study basic equations of magnetic and thermal diffusion to identify
two time constants in dynamic stability: magnetic, , and thermal, . These
time constants are, in turn, related to magnetic diffusivity, Dmg , and thermal
diffusivity, Dt h , respectively.

a) Starting with diffusion equations, both magnetic and thermal, show that
expressions for magnetic diffusivity, D m g , and thermal diffusivity, D t h , are
given by:

(6.13a)

(6.13b)

ρe is electrical resistivity, k is thermal conductivity, and C is heat capacity.
As in Chapter 5, consider a one-dimensional slab of width 2a, where mag-
netic field (x, t), directed only in the y -direction, is given by: (x, t) =

b )

c)

Compute D m g and D t h for stainless steel and copper at temperature near
4.2K. Discuss how differences in these two diffusivities may impact the mag-
netic and thermal behaviors of these metals. Stainless steel, an alloy, has
electrical and thermal properties very much like those of normal-state low-Tc

superconductors.

A solution to either one of these diffusion equations is generally in the form
of an infinite series. For a one-dimensional slab of width 2a, the first term
in the series for magnetic field, H y ( x , t), is given by:

Inserting Eq. 6.14 into the magnetic diffusion equation, show that an expres-
sion for in terms of Dm g is given by:

(6.14)

By analogy, an expression for is given by:

(6.15)

(6.16)
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Solution to Problem 6.5

a) Two Maxwell’s equations applicable to derive the magnetic diffusion equation
are Ampere’s law and Faraday’s law, both given by differential forms:

Ampere’s law: (2.5)

Faraday’s law: (2.8)

For the slab (width 2a) geometry studied in Chapter 5, we can express Eqs. 2.5
and 2.8, respectively, as:

Ampere’s law:

Faraday’s law:

Combining Eqs. S5.1 and S 5.2, we obtain:

(S5.1)

(S5.2)

Equation S5.3 is a magnetic diffusion equation and we obtain:

(S5.3)

(6.13a)

Similarly, the one-dimensional thermal diffusion equation having constant ther-
mal properties can be derived from Eq. 6.1 with g j  (Joule heating), g d  (other
dissipations), and gq (cooling) terms zero:

(S5.4)

Dividing both sides of Eq. S5.4 by C, we obtain:

(S5.5)

Equation S5.5 is a thermal diffusion equation and from the equation we have:

(6.13b)
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Solution to Problem 6.5

From Table 6.2 we can clearly see that stainless steel, essentially representing
normal-state superconductors, and copper have diffusivities that are asymmetric
with respect to magnetic and thermal diffusivities. Specifically, changes in mag-
netic field propagate quickly through stainless steel, whereas temperature gradients
are relatively slow to propagate; hence, large nonuniform temperature distribu-
tions can be created in stainless steel during changing magnetic fields. Physically,
it means that magnetic heating happens quickly and uniformly within stainless
steel just as it does in the hard superconductors studied in Chapter 5. In copper,
the reverse is true: the magnetic field moves very slowly, while any nonuniformity
in temperature is quickly “evened out.” The presence of copper right next to hard
superconductor should therefore alleviate field-motion induced instability in hard
superconductors. This thinking is the essence of dynamic stability.

b) Table 6.2 presents approximate values of electrical and thermal properties and
corresponding diffusivities (Eqs. 6.13a and 6.13b), all near 4K, for stainless steel
and copper.

c) From Eq. 6.14 we obtain:

Combining Eqs. S5.3, S5.6, and S5.7, we have:

(S5.6)

(S5.7)

(S5.8)

From Eq. S5.8, we can solve for and combining it with Eq. 6.13a , we have:

Table 6.2: Diffusivities* of Stainless Steel and Copper at 4.2K

(6.15)

*  P r o p e r t i e s  v a l u e s  a r e  a p p r o x i m a t e .
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Problem 6.6:  Dynamic stabi l i ty  for tape conductors

2. Criterion for edge-cooled tapes

This problem deals with the formulation of the dynamic stability criterion appli-
cable to composite tapes. The criterion, as stated earlier, has been reexamined
recently, because many promising HTS are available only in tape form.

Figure 6.8 shows the cross section of a composite tape 2a  wide, comprised of a su-
perconductor d thick sandwiched between copper layers, each D/2 thick. Because
the winding is in the form of a stack of tapes, cooling for each tape is only at the
edges (x = ± a) and may be given in terms of a constant heat flux coefficient hq .

An energy equation (per unit tape length) valid for the tape after its tem-
perature was raised ∆T following the deposition of an energy (per unit tape
length), Gd , is given by:

(6.17)

where eφ is the magnetization energy density (Eq. 5.21, p. 189) triggered and
released in the tape. Defining λs = d /(d + D ), the volumetric fraction of the
superconductor, we can derive an energy density equation:

(6.18)

Because of the presence of copper, the condition is valid and the
process time is given by . Show that the critical tape half width ac  for
edge-cooled tapes to satisfy the dynamic stability criterion is given by:

(6.19)

where ρcu is the electrical resistivity of copper and Jc o is the critical current
density of the superconductor at operating temperature Top . In arriving at
Eq. 6.19, use corresponding to copper because the copper layers in the
composite tape are the ones slowing down the magnetic process and keeping
the tape essentially at a uniform temperature. (Note that the second term
in the right-hand side of Eq. 6.19 also contains ac .)

Fig. 6.8 Cross section of a composite superconducting tape.
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Solution to Problem 6.6

From Eqs. 5.21 and 5.23, we have:

(S6.1)

The composite’s effective resistivity, ρ e f , is a weighted average of both copper
(ρ cu) and normal-state superconductor (ρ n s):

(S6.2)

Because ρ c u  << ρ ns , we have:
(S6.3)

Combining Eqs. 6.15 and S6.3, we obtain:

By combining Eqs. 6.18, S6.1, and S6.4, we obtain:

(S6.4)

(S6.5)

The “effective” heat capacity of the composite, Ce , defined by C e  ≡ g d /∆T, i s
thus given by:

(S 6.6)

For thermal stability, C e must be positive. Solving Eq. S 6.6 for a c under this
condition, we have:

(6.19)

Except for λ s which indicates the composite nature of the tape conductor, note
that Eq. 6.19 is identical to the flux jumping (“adiabatic”) criterion given by
Eq. 5.24 if the cooling term represented by the second term on the right-hand side
of Eq. 6.19 is set to 0 (which will be the case when the edge-cooling is absent).

The dynamic stability criterion as given by Eq. 6.19 is applicable to silver-sheathed
HTS tapes, with ρ c u replaced with ρ ag the electrical resistivity of silver. The
criterion could be useful for HTS magnets operated in a bath of cryogen or force-
cooled by stream of cold gas (helium). For HTS magnets operated in a vacuum
environment (hq = 0) of cryocoolers, the criterion is not applicable.
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Problem 6.7:  “Equal-area” criterion

This problem concerns the “equal-area” criterion proposed by Maddock, James,
and Norris in 1969. Following the work of Wilson [6.24], we shall extend the
criterion, originally derived for one-dimensional geometry, to a special case of two-
dimensional geometry.

a ) Under steady-state conditions (dT /d t = 0), an expression for the 1-D power
density (Eq. 6.1) with no dissipation other than Joule heating dissipation,
i.e. g d = 0, may be expressed:

c)

d)

(6.20)

where k cd (T ) is the composite conductor’s temperature-dependent thermal
conductivity. We now introduce a new variable S (T ) defined by:

(6.21)

Inserting a new variable S( T ) given by Eq. 6.21 into Eq. 6.20 and being clever
about mathematics, derive first the following equation:

(6.22)

Equation 6.22 is an intermediate point on the way to the equal-area criterion.

Integrate Eq. 6.22 between the two points on the conductor where S1 (T) =
S2 (T ) and where equilibrium is reached, i.e. gj(T) = gq (T ), and d T/dx = 0.
Next, make kc d (T ) temperature-independent and show that:

b)

(6.23)

T1 is temperature at the center of normal zone and T 2 is conductor temper-
ature far way from the normal zone.

Interpret Eq. 6.23 in terms of gq (T ) and g j (T ) plots. In plotting g j (T )
consider two cases of interest: 1) a “long” normal zone; and 2) a “short”
normal zone. The “long” normal zone corresponds nearly to that satisfied
by the Stekly criterion.

Consider 2-D geometry such as pancake windings and derive a 2-D equivalent
of Eq. 6.21 for the special case in which d T/ d θ = 0; explain why under this
condition the 2-D windings may tolerate a greater value of g j than  tha t
satisfying Eq. 6.23 for the 1-D geometry.
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Solution to Problem 6.7

a ) Defining a new variable S(T) = k c d (T) dT/d x, we may express Eq. 6.20 as:

Also from the definition of S(T) given by Eq. 6.21, we have:

Combining Eqs. S7.1 and S7.2, we obtain:

(S7.1)

(S7.2)

(6.22)

b) Integrating Eq. 6.22 between point 1 (T1 ) and point 2 (T2 ), we have, when
kc d (T ) = k 0 , a constant:

(S7.3)

At both points, equilibrium conditions exist (dT/dx = 0): that is, S(T 1) = S (T2 ),
and thus:

(6.23)

c) As long as the net area under the gq (T) – g j (T) curve is zero, Eq. 6.23 is
satisfied. This is the “equal area” criterion. Here where
ƒp is the fraction of the conductor perimeter, Pcd , exposed to cooling; Acd is the
conductor cross sectional area. Figure 6.9 plots gq (T) and g j(T). For a given
cooling density curve gq (T), the generation curve g j 1(T) satisfies Eq. 6.23 because
the net area under the gq (T) – g j 1(T) curve is zero. Wilson [6.24] also notes that
for “short” normal zones, S (T) = 0 at the center (by symmetry) even though
heating and cooling may not be equal at that point. Thus, the equal area criterion
may still be applied to generation curves such as g j 2 (T) in the figure. The excess
of heating over cooling in the center is conducted outwards along the conductor
to the cooler regions, where it is transferred to the coolant.
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Solution to Problem 6.7

d) In 2-D cylindrical coordinates with dT /d θ = 0, the term from
Fourier’s heat conduction equation, may be given by:

(S7.4)

Thus, in 2-D cylindrical coordinates with dT/d θ = 0, Eq. 6.20 may be modified
to:

(S7.5)

That is, as long as d T/dr < 0—which is valid in most cases—the last term on
the right-hand side of Eq. S7.5 has the same effect as an increase in the cooling
density or a decrease in the heating density. Therefore, in this special 2-D case,
the equal area criterion can be met with a higher conductor current density.

Fig. 6.9 Cooling density and heating density curves, showing the “equal
area” criterion. The g j 1(T ) curve (the solid piece-wise line) corresponds to
the generation curve with a “long” normal zone and g j 2 (T ) (the dotted piece-
wise line) corresponds to the generation curve with a “short” normal zone.
The shaded areas below and above the cooling curve are equal; similarly the
dotted areas below and above the cooling curve are equal.
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Problem 6.8: The MPZ concept

As briefly stated in the introductory section, the MPZ (minimum propagation
zone) concept, introduced by Martinelli and Wipf in 1972, has played a key role
in advancing our understanding of “disturbances” that occur within the magnet
winding and their effects on the performance of virtually every kind of magnet,
adiabatic as well as cooled. The concept showed the minuteness of disturbances
degrading the magnet performance. It also helped to launch a more thorough and
systematic inquiry into detrimental mechanical disturbances taking place within
the winding: microscopic conductor motions and cracking of the winding impreg-
nants. These mechanical disturbances are discussed in Chapter 7.

This problem traces the formulation of MPZ size and computes an actual size for
typical winding parameters.

a) Consider a “spherical” winding geometry of infinite radial extent as shown
in Fig. 6.10, in which region 1 (r ≤ R mz ) is fully normal and dissipating
Joule heating density of g j ; region 2 (r ≥ R m z) is superconducting, and far
away from R m z , the winding temperature is T op . Using spherical coordinates
and assuming that the winding is characterized by thermal conductivity kwd ,
show that under “adiabatic” and steady-state conditions in
Eq. 6.1), the radial function of temperature in region 1, T1(r), with no other
dissipation sources (gd = 0), is given by:

Assume also that both g j and k wd are temperature independent.

(6.24)

Fig. 6.10 “Spherical” winding where in region 1 (r ≤ R m z )
the winding is normal and generating Joule heating and in
region 2 (r ≥ R m z ) the winding is superconducting.
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Problem 6.8: The MPZ concept

CHAPTER 6

b)

c )

d)

e)

f )

Show that the total Joule heating generated within region 1 is matched ex-
actly with that leaving the winding at Rmp by thermal conduction.

Equating and the critical temperature of the
conductor, show that Rmz is given by:

(6.25)

ρ m and Jm are, respectively, the electrical resistivity and current density of
the matrix metal; where Am is the matrix’s cross sectional area.

Compute R m z1 for the following winding parameters: kwd  = 400 W/mK
(thermal conductivity of copper at 4K);

gives the MPZ size along the con-
ductor axis.

Compute R m z2 for the same set of winding parameters as in d) except
kw d = 400 W/mK is replaced with k wd  = 0.1 W/mK, thermal conductiv-
ity of an epoxy at 4K. Rm z2 gives an approximate MPZ size transverse to
the conductor axis of epoxy-impregnated windings.

Compute the total energy margin ∆ Eh for the ellipsoid-shaped MPZ shown
in Fig. 6.11 with major radius Rm z1 computed in d) and minor radii R m z2
of e).

Fig. 6.11 Ellipsoid-shaped MPZ with major radius Rm z1 and minor radii R mz 2 .
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Solution to Problem 6.8
a) Under adiabatic and steady-state conditions with Joule heating as the only
source of dissipation, Eq. 6.1 becomes:

(S8.1)

From symmetry, temperatures in both regions are dependent only on r. Thus,
with kw d  assumed constant, we may express Eq. S8.1 for T1 (r) in region 1 and
T2(r) in region 2 in spherical coordinates:

(S8.2a)

(S8.2b)

T1 ( r) and T2 (r) have solutions of the form given below:

(S8.3a)

(S8.3b)

A, B, C, and D are constants of integration.

Boundary Conditions

Substituting A, C, and D found above into Eqs. S8.3a and S8.3b, we obtain:

(S8.4a)

(S8.4b)

By equating T1 and T2 at r = R m z , we obtain:

(S8.5)

Combining Eqs. S8.4a and S8.5, we have:

(6.24)
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Solution to Problem 6.8

b) The total Joule heating generated within region 1, G j , is given by the volume
of region 1 times gj :

(S8.6)

Under steady-state conditions, Gj given by S8.6 is equal to the total heat leaving
Region 1 at r = R m z by conduction. Thus,

c) By noting that and , we modify Eq. 6.24 to:

Solving Eq. S8.7 for Rm z , we obtain:

(S8.7)

(6.25)

d) For the first set of parameters (kw d = 400 W/mK;
we have:

(S8.8)

e) Because R m z is proportional to the square root of kwd , we have:

(S8.9)
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Solution to Problem 6.8

As Wilson points out in his textbook [6.3], the thermal conductivity is anisotropic
in real windings, being essentially that of copper (matrix) along the conductor axis
and that of a filler, usually an epoxy, in the directions transverse to the conductor
axis, thus making the MPZ ellipsoidal rather than spherical as assumed in the
present analysis. Such an ellipsoidal MPZ will have the major radius given by
Rmz1 and the minor radii given by Rmz 2 .

f) The total energy margin ∆ Eh is given by:

(S8.10)

where Cw d is the heat capacity of the winding, which we shall assume to be
nearly equal to that of copper. (Volumetrically, the heat capacities of most solid
materials are nearly equal.) Note that the upper limit of integration is Tc rather
than T1(r ) given by Eq. 6.24, in which case it is also necessary to perform the
volume integral instead of simply multiplying the energy density term by Vm z as
is done in Eq. S8.10. The reason for this simplification is that once the winding
temperature within the MPZ is driven to Tc , Joule heating is generated in the MPZ
which will supply the additional energy needed to create the stable temperature
profile defined by T11 ( r).

The ellipsoidal MPZ volume, Vm z , having major radius Rm z1 and minor radaii
R m z 2 , is given by: Vm z =  We thus have:

(S8.11)

With and
, we obtain:

(S8.12)

(S8.13)

Since Rmz 2 0.2 mm is smaller than typical conductor diameters, Vmz  and there-
fore ∆ Eh in real windings would be greater than the values computed above.

In any event, only a minute amount of energy, in the range of microjoules, is needed
to create an MPZ in typical windings, implying that adiabatic magnets are very
susceptible to quench with tiny inputs of heat. This conclusion was indeed verified
experimentally by Superczynski [6.25] and Scott [6.26].
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Problem 6.9: V vs I traces of a cooled composite conductor

This problem investigates V vs I traces of a composite superconductor immersed
in a bath of liquid helium boiling at 4.2K; we will generate V vs I traces for
three different cooling conditions. The conductor parameters are as follows:
1000 A, the critical current at  electrical resistivity
of matrix metal; , the total matrix cross section;
the total conductor perimeter exposed to liquid helium and it is varied as fp Pcd ;
h q = 10 4 W/m2 K, heat transfer coefficient. V is measured across the conductor
length l = 0.1m. In deriving V vs I traces, assume also that Ic (T ) is given by
Eq. 6.4.

a )

b)

c)

d )

e)

f )

For , we have V = 0V. For , show that V is given by the
following expression:

(6.26)

where To derive this equation you must assume that the
conductor is always in thermal equilibrium, with the resistive dissipation
balanced by the cooling, which requires that the conductor temperature be
at Top  + ∆T. Also note that current in the matrix is given by I – I s ,  where
I s , the current in the superconductor, is given by Eq. 6.4 with T = Top + ∆ T.

By defining two additional dimensionless parameters,
, and also using α sk (Stekly parameter), show that dimensionless voltage

in terms of dimensionless current, v(i), and dimensionless current in terms
of dimensionless voltage, i(v) are given by:

(6.27a)

(6.27b)

Condition 1: fp = 1. For Tc  = 5.2 K (and Top  = 4.2K), compute v at i = 1,
1.1, 1.5, and 2.

Condition 2: fp = 0.1. Show that v is independent of i.

Condition 3: fp = 0.05. Here, because most of the surface area is insulated
from liquid helium, we expect the conductor to behave unstably. Specifically,
solve i for v = 0, 0.125, 0.25, 0.5, and 0.625. Also compute v which lands on
the v = i line.

Plot v(i) traces for the three conditions studied above. Plot v = i with a solid
line. Label α sk = 10 for the curve corresponding to Condition 1; αsk = 1 for
the Condition 2 curve: αsk = 0.5 for the Condition 3 curve.
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Solution to Problem 6.9

a ) For I  > I co , V across the voltage taps is given by Rm( I – I s) where Is
is the current in the superconductor, i.e. Is  = I c(T ). Joule heating generation
G j ( Top + ∆ T) in the composite is thus given by:

(S 9.1)

G j (Top + ∆T ) is matched by the cooling, which is given by
Equating these two powers and solving for ∆T, we obtain:

Combining Eqs. S9.1 and S9.2 and solving for V, we obtain:

(S9.2)

(S9.3)

(6.26)

b) W i t h and
(Eq. 6.9) or all dimensionless parameters, we
can rewrite Eq. 6.26 as:

(6.27a )

Solving Eq. 6.27a for i, we obtain:

(6.27b )

c) With fp = 1,
we have
and Eq. 6.27a is given by: v(i) = 10(i – 1)/(10 – i). Values of v(i) at selected
values of i are given in Table 6.3.

Table 6.3: v vs i for α s k =10

i 1 1.1 1.5 2

v 0 0.11 0.59 1.25
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Solution to Problem 6.9

Table 6.4: i vs v for α s k =0.5

v 0 0.125 0.25 0.5 0.625 0.707

i 1 0.9 0.833 0.75 0.722 0.707

d) When fp  = 0.1, α sk  becomes 1 and from Eq. 6.27a, v(i) = – αsk  = –1.
Equation 6.27b gives i = 1 when α sk  = 1. Thus, v(i ) is really indeterminate;
physically this means that v can be any point on the vertical line at i = 1.

e) Here, with fp = 0.05, αsk  = 0.5, Eq. 6.27b is solved for various values of i
and presented in Table 6.4. To compute v that lands on the v = i line, we set
αsk  = 0.5 in Eq. 6.27b and solve for v . Thus:

(S9.4)

From Eq. S9.4, we have: v = = 0.707, as indicated in Table 6.4; i = 0.707 is
known as the “recovery” current (normalized) for αsk  = 0.5. Once the conductor
is driven normal, the transport current must be reduced to below 0.707Ico before
superconductivity is restored.

f )

Fig. 6.12 Normalized voltage vs normalized current traces for αs k = 10, 1, and 0.5.
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Problem 6.10: Stability analyses of Hybrid III SCM

The Nb-Ti coil, as described in Problem 3.3, consists of a stack of 32 double-
pancake coils, with a total overall winding height of 640 mm. Each pancake coil has
winding i.d. and o.d., respectively, of 658 mm and 907 mm (Table 3.1). Figure 6.13
shows important details of the winding. As is evident from the figure, each turn
is separated by a thin insulator strip. The two pancakes in each double-pancake
unit are separated by a sheet of 0.5-mm thick insulator bonded with epoxy resin.
Between adjacent double pancakes are 1.0-mm thick insulating spacers extending
radially from the inside radius to the outside radius to provide cooling. The spacers
cover, on the average, 60% of the flat surface of each coil exposed to liquid helium.
Note that in each double-pancake set, the top coil has its top surface (40%) exposed
to liquid helium, while the bottom coil has its bottom surface (40%) exposed to
liquid helium. Because the liquid helium is at 1.8 K (superfluid), there is no adverse
effect on cooling for the “face-down” bottom coil.

This problem deals with the cryostability of the Hybrid III’s Nb-Ti coil, whose
conductor specifications are given in Table 5.1 of Problem 5.5 (p. 184). (Unlike
the real Nb-Ti coil which is wound with two grades of Nb-Ti composite conductors,
the coil in this problem is assumed to be wound with only one grade.)

Fig. 6.13 Winding details for the Nb-Ti pancakes.
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Problem 6.10: Stability analyses of Hybrid III SCM

The Nb-Ti coil (and Nb3Sn coil) is designed to be operated while immersed in
a bath of 1-atm subcooled 1.8-K superfluid helium. Assume the cooling to be
dominated by Kapitza resistance; qk  given by Eq. 4.4 should hence be used for
cooling, q(T):

(4.4)

T cd [K] is the conductor temperature (really the temperature of the conductor
surface, which is copper) and Tb [K] is the bath temperature. You may take ak =
0.02 W/cm2  and n k = 4.0. At an operating temperature Top  of 1.8 K ( Top  = Tb) ,
the coil carries a transport current Iop of 2100 A and is exposed to a maximum
magnetic induction of ~10T.

a)

b)

Make an appropriate Ic(T) plot for this conductor covering the tempera-
ture range 1.8 K~ Tc (10T). Determine, from the plot, the current sharing
temperature Tcs  for a transport current It of 2100 A. Indicate Tcs in the plot.

Make, and label, power flux [W/cm2 ] vs temperature [K] plots for both cool-
ing and heat generation at 10 T when Top = Tb = 1.8 K, Iop = 2100 A. Table
5.1 gives useful data. Based on the plots, state whether the pancakes are sta-
ble, and if so under which criterion. If not, explain why they are not stable.
For the purpose of solving this question you may assume that: 1) q(T) given
above is valid over the entire temperature range of interest and that 2) heat
generated within each pancake is transported freely through the 1-mm high
radial channels.

c) In the pancake coils in previous Hybrids built at FBNML, each turn was
separated by thin (~0.4 mm thick) spacers to make the coils cryostable. In
the early phase of the Hybrid III project, pancake designs with such turn-to-
turn cooling spacers were seriously considered but were abandoned in favor
of a spacerless winding design, because turn-to-turn spacers reduce the radial
stiffness of the winding. Assuming turn-to-turn cooling channels are present
in the Hybrid III Nb-Ti pancakes, draw again neatly on another graph power
flux [W/cm2] vs temperature [K] plots for both cooling and heat generation
at 10 T when T b = 1.8 K, Iop = 2100 A. For this case, assume 50% of the
total conductor perimeter is exposed directly to liquid helium. Again, based
on these plots, comment on the stability of the pancakes.

“...there must be discipline. For many things are not as they appear.

Discipline must come from trust and confidence.” —Robert Jordan
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Solution to Problem 6.10

a) Figure 6.14 presents the I c (T ) plot for this conductor, constructed by joining
two points: one at 6000 A at 1.8 K and 10 T (Table 5.1) and the other at 0 A at
4.7 K ( Tc at 10 T; Table 5.1). The current sharing temperature Tc s is given by
2100 A = Ic(Tc s): it is 3.7 K.

Fig. 6.14 Ic vs T plot (solid) for a Hybrid III Nb-Ti conductor at 10 T. The
intersection of the line at Ic = 0 determines Tc = 4.7 K. I t  = 2100 A is given
by the dotted line, which intersects the solid line at Tc s = 3.7 K.
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Solution to Problem 6.10

b) Let us first compute in the normal state valid for T ≥ T c = 4.7K. As
discussed in Problem 6.4, (Tc), unlike , is the
normal-state generation flux (per unit conductor surface exposed to liquid helium).
That is, , where ƒp Pcd  is the conductor perimeter ex-
posed to liquid helium. Acd  and A m are the overall conductor cross sectional
area and matrix metal cross sectional area, respectively. We have: Acd  = ab,
where a and b are the overall conductor width and thickness, respectively; and

, where is the copper-to-superconductor  ratio. We thus
have:

With
we obtain:

(T) is zero for 1.8K ≤ T ≤ Tc s  (3.7K) and starting at Tc s it rises linearly with
T until Tc (4.7K), at which  point

Figure 6.15 shows (T) and q (T) plots. From the plots, it is clear that the
pancakes are almost cryostable; they certainly satisfy the equal area criterion.

Fig. 6.15 (T) plot (solid) and q (T ) plot (dotted);
(T) (dashed) corresponds to question c).



STABILITY 2 3 9

Solution to Problem 6.10

c) Both g j (T) and q(T) are the same as those computed in b). The area exposed
to helium per unit conductor length will of course be much greater in this case
than in the spacerless winding. For this case, ƒp P cd  = (0.5)(23.6 × 1 0 –3 m )  =
11.8 × 10 –3 m  and (Tc ) = 0.13 × 10 5W/m².

The dashed curve in Fig. 6.15 shows the (T) plot; the same q(T) used in the
previous case is valid. From the plots, it is clear that the pancakes are cryostable.

Cryostable vs Quasi-Adiabatic (QA) Magnets

As described in Problem 6.10, the double pancakes of the Hybrid III Nb-Ti coil
have no cooling channels between turns. Decision to make these double pancakes
“quasi-adiabatic” (QA) was based more on stress considerations than on stabil-
ity considerations. The term “quasi-adiabatic” was used because it was thought
that the Nb-Ti coil, without cooling channels, would not be cryostable but would
approximate adiabatic performance—later, when the stability analysis presented
above was performed as an exercise for the students, the coil was found to be
stable. (A stability study, examining the effects of mechanical disturbances on coil
operation, was performed with satisfactory conclusions at the time of the decision
to make the Nb-Ti coil quasi-adiabatic [6.27].)

Figure 6.16 shows hoop stress (σh) vs winding radius (r) plots of the Nb-Ti conduc-
tors (HF and LF) or cryostable and QA windings [3.7]. For cryostable windings,
because of the presence of structurally “soft” spacer material, σh  vs r traces es-
sentially present (r × J × B ) stresses. (A jump in the stress at the HF-LF transition
is due to reduction in conductor cross section.) For the QA winding, because the
winding is much more rigid in the radial direction (no spacers), radial expansion
of the inner turns is supported by the outer turns, increasing stress at the outer
turns. The net result is a more uniform stress distribution. (In the analysis it
was assumed that the both sections had the same conductor cross sectional area.)
Equally important is a substantial reduction in the overall size of the Nb-Ti coil,
from a winding o.d. of over 1m to an o.d. of ~0.9m (Table 3.1, p. 59).

Fig. 6.16 Hoop stress vs radius plots for cryostable (Cryo) and
quasi-adiabatic (QA) windings.
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Problem 6.11: Stability of CIC conductors

This problem deals with the stability of CIC conductors; in particular, the amount
of copper matrix needed in CIC conductors from stability and energy margin (∆ eh )
considerations. We progress using a step-by-step approach similar to that used by
Bottura in designing a 40-kA CIC conductor for the Next European Torus [NET]
machine [6.28].

The cable consists of Nst  numbers of circular strands, with fcu defined as the ratio
of A cu  to A cd : ƒcu  = A cu /Acd . Acu  is the total copper cross sectional area in the
conductor whose total cross sectional area is Acd . Acd  includes areas occupied by
copper, non-copper metals (superconductor, unreacted metals, etc.), and helium.
Note that ƒcu  + ƒnc  + ƒhe  = 1. ƒn c is the fraction of the conductor cross section
occupied by non-copper metals. ƒhe  is commonly known as void fraction; in most
CIC conductors it generally ranges from 33 to 40%. In the “well-cooled” region of
operation [6.12], a CIC conductor may be treated like a bath-cooled conductor—
except here cold helium, confined within the conduit, is not available in abundance.
In this case, we have a stability criterion very much like that of Stekly’s. For a
single circular cross-section strand of diameter, dst, operating current density in the
copper matrix, [jop ] cu  must satisfy the following condition to achieve cryostability:

CHAPTER 6

(6.28)

ƒp  is the fraction of conductor surface exposed directly to helium at Tb  = Top ; hq
is the heat transfer coefficient; and pcu is the copper resistivity.

a)

b)

For a CIC conductor containing Ns t strands, each of diameter ds t, show
that the [Jop ]cd  , operating current density in the conductor containing Ns t
strands, must satisfy the following condition for cryostability:

Note that

Energy margin density, ∆eh , is defined as the amount of dissipation density
(per unit volume of all strands) imposed into the CIC conductor just sufficient
to drive the conductor to the current sharing temperature, Tcs . Because the
heat capacity of the conductor is essentially that of helium, ∆eh may be
equated with the helium enthalpy available between Top  and T cs . Show that
∆ eh  is given by the following expression:

(6.29)

(6.30)

where h and Cp are, respectively, helium’s volumetric enthalpy and heat
capacity. The heating takes place with constant helium pressure and mass.
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Problem 6.11: Stability of CIC conductors

c) By combining Eq. 6.30 and the usual linear dependance of Jc (T), show that
an expression that relates and is given by:

(6.31)

where

d) An equation relating fcu  and f n c  that satisfies both the stability criterion of
Eq. 6.29 and the energy margin density criterion of Eq. 6.30 is given by:

(6.32)

Make a fcu vs fnc  plot of Eq. 6.32 on graph paper for the parameters pre-
sented in Table 6.5 applicable to a 40-kA CIC conductor proposed by the
NET team [6.28]

Also on the same plot, draw a line given by this line
corresponds to the case for a helium void fraction of 40%. The intersection
of the Eq. 6.32 curve and the line gives the desired set of fcu and fnc  for this
40-kA CIC conductor, making it satisfy the stability criterion of Eq. 6.29 and
the energy margin criterion of Eq. 6.30.

Table 6.5: Parameter Values for
An NET 40-kA CIC Conductors [6.28]

ƒp

hq

T c @ 1 2 T

Top

[Jco ]nc

pcu

ds t

∆eh

C p

[W/m²]

[K]

[K]

[MA/m²]

[ nΩ m]

[mm]

[ k J / m ³ ]

[ M J / m ³ K ]

5/6

800

8.5

4.5

490

0.7

0.75

500

0.75
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Solution to Problem 6.11

a) We may express the stability condition of Eq. 6.28 for the whole conductor
by balancing the total normal-state Joule heating at Tc and total cooling. Thus:

(S11.1)

where Pcd is the total wetted perimeter of the cable. Pcd may be given by:

(S11.2)

Also, we have:

(S11.3)

Combining Eqs. S11.2 and S11.3, we  obtain:

(S11.4)

Now, by combining Eqs. S11.1 and S11.4, we obtain:

Dividing Eq. S11.5 by A²cd and recognizing we have:

(S11.5)

(6.29)

b ) The total energy margin ∆Eh (per unit conductor length) required to raise
the conductor to its current sharing temperature is transferred almost entirely to
the surrounding helium and given by:

(S11.6)

∆ eh  is given by ∆Eh  over the total volume of strands. Thus:

(S11.7)

By dividing the numerator and denominator of Eq. S11.7 by Acd , we have:

(6.30)
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Solution to Problem 6.11

c) To determine the value of [J op]cd corresponding to ∆ eh , the usual linear de-
pendance of critical current, Ic(T ), first is given by Eq. 6.4:

Equation 6.4 may be rewritten as:

Dividing the above expression by Acd, we obtain:

(6.4)

(S11.8)

( S11.9)

At T cs , by definition, we have [ Jc(Tcs)]cd  = [J op]cd, and solving Eq. S 11.9 for T cs

we obtain:
(S11.10)

Combining Eqs. 6.30 and S11.10, we have:

(S11.11)

Solving Eq. S11.11 for [Jop]cd and noting fhe = 1 – ( fc u + fn c), we obtain:

(6.31)

d) By inserting parameter values into Eq. 6.32, we have:

(S11.12a)

(S11.12b)
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Solution to Problem 6.11

Fig.  6.17 f c u vs f n c plots for a 40-kA CIC conductor
proposed by the NET team [6.28].

( S11.13)

Equation S11.13 is plotted in Fig. 6.17. From the figure we have: f cu 0.4;
f 0.2. Note that 1 – fcu – f n c = 0.4 = f he , as expected.nc

“In this very spot there are whole forests which were buried
millions of years ago; now they have turned to coal, and for me
they are an inexhaustible mine.” —Captain Nemo (c. 1870)

“The seas of this planet contain 100,000,000,000,000,000 tons of hydrogen
and 20,000,000,000,000 tons of deuterium. Soon we will learn to use these
simplest of all atoms to yield unlimited power.” —Arthur C. Clarke (c. 1960)
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Problem 6.12: “Ramp-rate-limitation” in CIC conductors

This problem deals with what has become known as the “ramp-rate limitation”
phenomenon. Simply stated, a CIC conductor afflicted with ramp-rate-limitation
quenches prematurely before reaching its design current when it is ramped too
fast in current, background field, or a combination of the two. These premature
quenches were first observed in the Demonstration Poloidal Coil (DPC) project
experiments for large fusion experimental superconducting magnets [6.29,6.30].
The experiments were conducted at the Japan Atomic Energy Research Institute
(JAERI), Tokai. The ramp-rate-limitation phenomenon studied in this problem
was observed in a CIC coil built in the U.S. (known as the US-DPC coil)and tested
at JAERI’s DPC test facility .

Although the mechanism responsible for ramp-rate limitation has not been identi-
fied, a model proposed in 1993 by Takayasu [6.31] leads to an equation for quench
currents that fits experimental data quite well. Figure 6.18 presents quench and
nonquench currents (respectively, solid and open circles) vs ramping time data for
the US-DPC coil [6.31]. For a given current reached, quenched or nonquenched, the
shorter the time, the greater the ramp rate. The data cover the current ramp rate
range from ~3 to ~75kA/s. The solid curve is based on the Takayasu equation,
the derivation of which is the focal point of this problem.

The Takayasu model, unlike Stekly’s model which assumes continuous Joule heat-
ing, postulates that during a ramp, each strand is subjected to a periodic Joule
heating. The mechanism for a periodic disturbance that induces this Joule heating
has not been identified other than that it is apparently triggered by the ramping.

Fig. 6.18 Ramp-rate-limitation data for the US-DPC coil [6.31].
Solid circles indicate quenches and open circles nonquenches. The
solid curve is based on Eq. 6.39 to be derived in this problem.
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Problem 6.12: “Ramp-rate-limitation” in CIC conductors

We start with a single strand of a CIC conductor which contains Ns t strands.
The strands are cooled by helium, which is initially at Tb . Although the helium

o

is forced through the conduit, for the purpose of the present analysis it may be
assumed static, because in these current-ramping events, as can be inferred from
Fig. 6.18, each event lasts at most several seconds, while helium “replenishment”
time over the conductor length of interest is of the order of tens of seconds.

For a strand undergoing Joule heating, the model postulates a scenario which
progresses through the following steps.

1. The strand is subjected to periodic (frequency fh ) “disturbance pulses,” each
pulse of constant amplitude and “negligible” duration that is repeated every
t p ( tp = l / fh ). The pulsing is active during current ramp that starts at t = 0
and ends at t = t r, at which time the strand current has reached iq . Note
that n p = t r / tp= fht r, where n p is the number of pulses in one ramping
sequence. The conductor quench current, Iq , is given by Iq = N s ti q .

2. Each time the strand is “pulsed,” its temperature is raised “immediately”
to Tc , the critical temperature for a given magnetic field, and it generates
Joule heating for a duration of td, after which, it is cooled to below Tcs , the
current sharing temperature, and regains superconductivity. The bottom
trace of Fig. 6.19 indicates this periodic Joule heating generation. Note that
because i s t(t) is ramping, the size of gj (t ) increases as t²; Fig. 6.19 indicates
this quadratic dependence schematically.

3 . The Joule heat is released to the helium and, because the helium is assumed
static, the helium temperature, initially at Tbo , increases, as indicated in the
top trace. If the helium temperature reaches Tcs at the end of the ramping,
the strand will not recover and quench ensues at Iq = Nstiq .

Fig. 6.19 Heating scenario according to the model proposed by Takayasu [6.31].
gj (t ) function is modified from that shown in [6.31].
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Problem 6.12: “Ramp-rate-limitation” in CIC conductors

a) Assume that the cooling power density gq (Eq. 6.1) acting on the heat gen-
erating strand to be given by:

(6.33)

where ps t is the strand perimeter, as t is the strand cross sectional area,
hq is the heat transfer coefficient; Ts t and Tb are, respectively, the strand
temperature and helium temperature, both time-dependent during current
ramping. Equation 6.33 implies that the entire strand surface is exposed
to helium. Using Eq. 6.33, show that an expression for the energy density
equation in integral form, valid over the ramping period (from t = 0 to t = tr )
for constant h q, is given by:

(6.34)

where C s t is the strand heat capacity, is used during ramped current
experiments to represent the average value of np Joule heating pulses in
terms of the quench current iq [strand current, is t(t), as noted above, is
ramping with time and is not equal to iq], ρ is the copper resistivity, icu q
is the quench current in the strand, and acu is the strand’s copper cross
sectional area. Note that n p = f htr .

b) The second term on the right-hand side of Eq. 6.34 represents cooling and
may be divided into two terms, given by:

(6.35)

The first term on the right-hand side of Eq. 6.35 represents cooling when
the strand is in the normal state: it is on np times, each time for a duration
of t d or the total duration of t d n p = t d fh tr . The second term represents
cooling when the strand is in the superconducting state: it is on np times,
each time for a duration of tp – t d. For the first term, Takayasu simplifies
the integral by assuming Ts t(t ) Tc and Tb(t) Tb
assumption seems reasonable. Combining Eqs. 6.34 and 6.35, and making

o
, both constant; the

the assumption noted above, show that an expression for iq² may be given by:

(6.36)

where

(6.37)



248 C H A P T E R 6

Problem 6.12: “Ramp-rate-limitation” in CIC conductors

c) By recognizing that the conductor quench current, Iq , is Ns t times iq , i.e. Iq  =
Nst iq , Eq. 6.36 applied to Iq may be written:

where

(6.38)

(6.39)

I sk is the Stekly stability current with α sk = 1, which is valid when Joule
heating is on continuously; in this event, the helium must of course be re-
plenished.

Now Takayasu makes additional postulates for the pulsing frequency, fcd ,
for a conductor that contains Ns t strands: 1) f cd = N s t f h  and 2) f cd  =

Here B is the magnetic induction at the quench
location; it can be generated by the test coil itself, the test coil and the
background-field magnet, or the background-field magnet alone. The first
postulate recognizes that disturbance frequency fcd for the whole conductor
is N st times that for each strand—a plausible assumption. The second pos-
tulate, somewhat contrived, chooses a d B² / dt dependence of fcd because it
makes the model fit the data best; among other candidates tried were dB / dt,
d(BI)/dt, and d I/dt. None works as well as the B dependence. ξ and n ,
both appearing in Postulate 2, are constants. Combining Eq. 6.38 and these
two postulates, show that an expression for Iq is given by:

The solid curve in Fig. 6.18 is a plot of Eq. 6.40 for the US-DPC coil. In
general Eq. 6.40 must be solved numerically because Tc and ρ cu  depend on B,
which can be self field, background field, or a combination. The solid curve
shown in Fig. 6.18 was calculated with the following values of parameters:
N s t = 225; a cu  = 2.6 × 10 –7 m²; p s t  = 2.5mm; h q = 1400 W/m² K; T c  =
15.1 – 0.59B K ( B in tesla); T bo = 4.5K;  = 1; p cu  =  7.4 × 10 –l0  + 4.8 ×
1 0 –11 B Ω m ( B in tesla); β = 800WT²/ms; and n = 1.25.

Interpret I sk and explain why Iq is always greater than I sk . Discuss whether
Eq. 6.40 is valid for very slow ramp rates.

(6.40)

d )
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Solution to Problem 6.12

a ) An equation of energy balance (per unit strand length) valid over the entire
ramping duration of t r is given by:

(S12.1)

where eh and e j , both per unit strand volume, are the thermal energy density
absorbed by and the Joule heating density generated in the strand, respectively.
eq  is the energy flux (per unit strand surface) released into helium and pst is the
strand perimeter in contact with helium. Because the conductor’s temperature
rises from its operating temperature, which is equal to the initial bath temperature
(Tb o ), to the strand’s current sharing temperature (Tcs ), eh is given by:

(S12.2)

td , ∆ ej , is given by:

(S12.3)

where i s t ( t ) is strand current, which is being ramped from 0 to iq , the quench cur-
rent. ζm ( is t) is a current-dependent parameter to make the second equality valid.
Because this Joule heating density occurs np ( = f h tr ) times over one ramping
period, we have:

is an average parameter value from m = 1 to m = np . The energy flux (per
unit strand surface) released into the helium over one ramping period is given by:

(S12.4)

(S12.5)

Combining Eqs. S 12.1, S12.2, S12.4, and S12.5, we obtain:

(S12.6)

By dividing S 12.6 by as t , we have:

(6.34)

The Joule energy density generated by a single m th pulse of 
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Solution to Problem 6.12

b) We may simplify the first term of the right-hand side of Eq. 6.35 by substi-
tuting T c for Ts t (t) and Tbo  for Tb (t ). Thus:

Substituting Eq. S 12.7 into Eq. 6.35, we simplify Eq. 6.35 to:

(S12.7)

(S12.8)

Combining Eqs. 6.34 and S 12.8, we obtain:

(S12.9)

where

(6.36)

(6.37)

c) By substituting into Eq. 6.38, we have:

(S12.10)

Solving Eq. S 12.9 for i²q , we obtain:
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Solution to Problem 6.12

From Eq. S12.10, we have:

(6.40)

d ) As remarked above, I sk is the Stekly stability current with α sk = 1, which is
valid when Joule heating is on continuously. The reason Iq is greater than I sk is
because Joule heating is on only for a fraction of the time. In fact, Eq. 6.40 will
break down for very slow ramp rates. This may be seen more clearly by rewriting
the heat transfer term in Eq. 6.34 in terms of heat absorbed by the helium. In this
model, in which the helium is essentially stagnant, heat transferred to the helium
must be absorbed by it. Thus, on a per unit conductor length basis, we have:

q

ever, above a critical power density (per unit conductor length), power flow into

where is the maximum nucleate heat transfer flux under transient conditions.
Generally, can be as large as 10 times the maximum for steady-state nucleate
heat transfer flux. Accordingly, Eq. 6.40 should be modified to:

(S12.11)

where a he  is the equivalent helium cross sectional area for a single strand. In terms
of the entire conductor (Nst strands), Eq. S12.11 may be written:

(S12.12)

where Acd is the total conductor cross sectional area; Acu is the total copper cross
sectional area; and Ahe  is the total cross sectional area of the helium. Because
Che >>  Cs t , we can approximate S12.12 and solve for I ² :

(S12.13)

Equation S12.13 implies that Iq can be arbitrarily large by making tr small. How-

the helium will be heat transfer-limited, requiring Eq. S12.13 to be modified as:

(S12.14)

(S12.15)
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Problem 6.13:  MPZ for a composite  tape conductor

This problem studies the MPZ in “one-dimensional” composite tape supercon-
ductors. Figure 6.20 shows the tape configuration (width w, superconductor
thickness d, matrix thickness D ). The tape, with a critical current of Ic o a t
operating temperature Top , is carrying transport current I t = I co . In the MPZ
region, the tape is fully normal. Assume that the MPZ zone

is insulated from cooling and that one of the tape’s broad surfaces is
exposed to cooling for The coolant temperature is equal to the tape’s
operating temperature and surface cooling flux acting on one side of the broad
(w) tape surface is given by hq (T – T op ), where h q is a heat transfer coefficient,
assumed constant in this analysis. Because of symmetry about the origin (x = 0),
we shall consider only the +x region. The steady-state power density equations
for region and region are given by:

(Region 1) (6.41a)

(Region 2) (6.41b)

where k m and ρm are, respectively, the matrix thermal conductivity and electrical
resistivity. J m is current density in the matrix:

Fig. 6.20 One-dimensional MPZ in a composite superconducting tape.
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a)

(6.42a)

(6.42b)

b )

where T c is the tape’s critical temperature and α mz = In
deriving Eqs. 6.42a and 6.42b, assume that heat is conducted in the tape only
by the matrix metal because k m >> k s and that Joule heating is generated
only in the matrix because ρ m << ρ s (normal state). Assume also that km
and ρ m are temperature-independent.

Show that an expression for xmz is given by:

(6.43)

c)

d)

Solve Eq. 6.41 and show that the temperature distribution, T1(x), within
the +x half of the MPZ (region 1) and the temperature distribution, T2(x),
beyond +x m z (region 2) are given by:

where [ Jco]s is the critical current density in the superconductor at Top.

Initially, the entire tape is at Top and superconducting and it is insulated
over the region –x m z  ≤ x ≤ x mz . Compute the energy margin, ∆Eh [J],
required to create this MPZ for the parameters given in Table 6.6.

Compute Tmax within the MPZ for the parameter values of Table 6.6.

Table 6.6: Tape Parameters

Tc [K] 12

T op [K] 10

ρm [ nΩm] 0.2

k m [W/mK] 1200

hq [ W / m2 K] 250

w [mm] 5

D [µ m] 5 0

d [µ m] 8

[Jco] s [GA/m 2] 2

“What you need at the outset is a high degree of uncertainty; otherwise
it isn’t likely to be an important problem.” —Lewis Thomas
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Solution to Problem 6.13

a) Let us solve Eq. 6.41a first.

( S 13.1)

From symmetry, dT 1 /dx = 0 at x = 0, thus A = 0. Integrating Eq. S 13.1, we
have:

At x = x m z , T 1 = T c . Thus:

Now, let us solve Eq. 6.41b with θ = T2 – T op :

( S 13.2)

(6.42a )

( S13.3)

At x = x m z , we have T2 = T c . Thus:

We thus have:
(6.42b)

b ) At x = x m z , dT 1 /dx = d T 2/dx, thus:

(S 13.4)

(S 13.5)

Thus,

We have A m = wD and J m Dw = [Jc o]s dw or J m = [Jc o]s d/ D. Thus:

(6.43)

c ) Wilson argues that ∆ Eh should be given by the energy needed to create T1 (x )
(Eq. 6.42a) within the MPZ [6.24]. Accordingly,

(S13.6)

where C cd is the conductor’s volumetric heat capacity.
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Solution to Problem 6.13

Another plausible scenario, as discussed in Problem 6.8, is that it is only necessary
to raise the conductor’s temperature to Tcs throughout the MPZ, because once this
temperature is reached, Joule heating becomes active and the final temperature
distribution is automatically established.

Let us first compute 2xmz (Eq. 6.43) for the parameters given:

(S13.7)

The energy margin, ∆Eh , will be given by the change in enthalpy between 10K
and 12K for the entire volume whose length is 2xm z . Thus:

(S13.8)

where Ccd (T) is the heat capacity of the conductor, which may be roughly given
by that of copper. For copper, we have:

(S13.9)

where hcu (12K) is the enthalpy [J/m³] at 12K and hcu (10K) is the enthalpy at
10K. With h (12K) = 42kJ/m³ and h(10K) = 21 kJ/m³, Eq. S13.8 becomes:

(S13.10)

d) Once the MPZ region is driven to Tc with an energy input of ~100 µJ, Joule
heating will take over to further heat up the tape to create the temperature dis-
tribution given by T1 (x). Tmax occurs naturally at x = 0 and is given by:

(S13.11)

Thus:

(S13.12)
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Problem 6.14: Stability of HTS magnets

This problem discusses the stability of high-Tc  superconductors. In Fig. 1.2 of
Chapter 1 it is indicated that the stability issue for HTS magnets should be easier
than that for LTS magnets. Here we shall study the stability of HTS magnets in
more detail and derive some quantitative results.

a ) For an HTS magnet cooled in a bath of cryogen boiling at Ts  and satis-
fying the Stekly criterion, show that the improvement in [Jc o ] c d from an
LTS magnet cooled in a bath of liquid helium boiling at 4.2K and satisfying
the Stekly criterion is noticeable for liquid neon but is negligible for liquid
nitrogen. Specifically, show:

(6.44a)

(6.44b)

where is the current density (over conductor cross sectional area)
for an HTS operating in a bath of liquid neon and satisfying the Stekly
criterion, i.e. Eq. 6.12 b; is the overall current density for an
LTS operating in a bath of liquid helium and satisfying the Stekly criterion;

is similarly defined. Assume the LTS magnet is wound with a
superconductor-copper (RRR=100) composite and the HTS magnet is wound
with a superconductor-silver (99.99% purity) composite. The approximate
boiling heat transfer parameters given in Table 4.2 are adequate for the
purpose of deriving Eq. 6.44. You may also use electrical resistivity data
given in Fig. A4.1 (Appendix IV).

b) Now consider two adiabatic magnets—an LTS magnet operating at 4K and
an HTS magnet operating either at 27K or 77K—and show that the HTS
magnet either at 27K or 77K has an MPZ energy margin ∆Eh  much greater
than that for the LTS magnet. Specifically show that:

(6.45a)

(6.45b)

and are MPZ energy margins for the HTS magnet
operating, respectively, at 27K and 77K; similarly is the MPZ
energy margin for the LTS magnet operating at 4K.

In deriving Eqs. 6.44 and 6.45, as indicated in both equations, use a simple
notation defined by:

(6.46)

where P can be any parameter, e.g. ρm , at 4.2K or 27K.

c ) Discuss results of a) and b) .
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Solution to Problem 6.14

Table 6.7: Parameter Ratios for 27-K and 77-K Operations

Table 6.7 presents appropriate parameter ratios for operation of an LTS magnet at
4.2K to that of an HTS magnet either at 27K or 77K. Ratio values are computed
from data given in Table 4.2 (Chapter 4), Figs. A3.1 and A3.2 (Appendix III),
and Fig. A4.1 (Appendix IV).

a) From Eq. 6.12b of Problem 6.4 we have an expression for [Jc o ]cd  for cryostable
operation valid for Am >> As :

(6.12b)

In the above equation, fp  is the fraction of conductor perimeter P cd  directly ex-
posed to cryogen, q f m is the minimum film boiling heat transfer flux, ρm  is the
matrix metal resistivity, and A m  is the matrix cross section.

Assuming LTS and HTS conductors have the same shape and dimensions, we
compute the ratio of Jcd  for the two magnets:

(S14.1)

Inserting appropriate values given in Table 6.7 into Eq. S14.1, we obtain:

(6.44a)

(6.44b)

b) As we have studied in Problem 6.8, ∆Eh is the product of V mz  (MPZ volume)
and energy density between T op and  Tc . V m z  is given by:

(S14.2a)

(S14.2b)
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Solution to Problem 6.14

By designating ∆ To p = T c  – T op , we shall first take the ratio of V m z for the two
magnets:

In Eq. S 14.3, J m is assumed to be the same for both magnets.

(S14.3)

The energy margin density ∆eh is given by:

(S14.4)

Combining Eqs. S14.3 and S14.4, we obtain:

Inserting appropriate values from Table 6.7 into Eq. S14.5, we obtain:

(S14.5)

(6.45a)

(6.45b)

c ) Equation 6.44 indicates that an anticipated improvement in [Jco]c d of HTS
over LTS for cryostable magnets is marginal: a factor of ~3 when an HTS magnet
is operated in liquid neon and hardly any improvement when it is operated in
liquid nitrogen. Operation in liquid hydrogen will be about the same with that in
liquid neon. An implication is that both LTS and HTS cryostable magnets will
have about the same size and weight.

In Problem 6.8 we found ∆ Eh ~10µJ for an LTS magnet. A factor of ~106 im-
provement in MPZ energy makes ∆ E h for the HTS magnet in the range ~10J,
whether it is operated at 27 K or 77 K. Mechanical properties of magnets are es-
sentially temperature-independent, making mechanical integrity of magnets also
temperature-independent, as briefly discussed in Chapter 1. This implies that the
size of mechanically-induced disturbances— the most troublesome disturbances af-
flicting adiabatic LTS magnets, as will be discussed more fully in Chapter 7—will
also be temperature-independent and a six-fold increase in ∆ Eh thus makes adia-
batic HTS magnets almost absolutely stable against mechanical disturbances.

We can draw an important conclusion by comparing the stability performances of
LTS and HTS with different cooling methods. There is no significant improvement
in magnet size or weight for cryostable magnets. Adiabatic HTS magnets, however,
are phenomenally more stable against disturbances than their LTS counterparts.
Hence, all HTS magnets should be operated adiabatically at ~20K and above;
even at 20 K, is ~2 x 10 5, still a comfortably high value.
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CHAPTER 7
AC, SPLICE, AND MECHANICAL LOSSES

7.1 Introduction

Although the perfect conductivity of superconductors is what has made super-
conductivity an enduring fascination for scientists, engineers, and entrepreneurs,
Type II superconductors suitable for magnets, as seen in Chapter 5, are magneti-
cally hysteretic. That is, these superconductors are intrinsically dissipative when
subjected to a time-varying magnetic field, transport current, or a combination
of both. Furthermore, when a hard superconductor is processed into a compos-
ite conductor in the form of multifilaments embedded in a normal metal matrix,
other magnetic losses beside hysteresis come into play. These magnetic losses are
commonly known as AC losses. In addition, when a multifilamentary conductor is
wound into a magnet, the magnet is subjected to other dissipations. The sources
of these dissipations include: 1) conductor splices (Joule heating); 2) Lorentz-
force induced conductor (and even winding) motion, which results in frictional
heating; and 3) Lorentz-force induced cracking in the winding impregnants, which
also results in dissipation. Superconducting magnets in fusion reactors will also
be subjected to an additional source of heating: neutron radiation. This radiation
heating, however, is not discussed in this book.

The dissipation power density expressed by gd in Eq. 6.1 of Chapter 6 lumps all
these mostly non-Joule heating dissipation densities. Its size, when compared with
the Joule dissipation density (gj in Eq. 6.1) is minuscule. Despite its relatively
small magnitude, it is critical in adiabatic superconducting magnets because the
steady-state dissipation base line for superconducting magnets is, by definition,
zero or nearly so. Compared with this zero base line, the dissipation density
base line for water-cooled Bitter magnets is as great as tens of GW/m3 . Because
of this nearly infinite difference in the dissipation density base line, any nonzero
dissipation, irrespective of its size, can be devastating in superconducting magnets.
In Bitter magnets, on the other hand, dissipations other than Joule heating are
completely negligible; they are indeed neglected in designing these magnets.

As mentioned above, the largest form of dissipation in superconducting magnets
is Joule heating (other than that of splices), which actually occurs only after the
conductor becomes nonsuperconducting; its density can reach tens of MW/m3 —
still only about 1/1000th of a Bitter magnet’s. Because Joule heating density in the
normal-state composite superconductor is by far the largest dissipation that can
appear in the winding, as we have studied in Chapter 6, successful solutions to deal
with Joule heating have evolved over the years. Indeed, even before any other losses
were identified, let alone understood in superconducting magnets, a quantitative
criterion—cryostability—was already available to build superconducting magnets
that operated stably.

This chapter studies the disturbance term gd , specifically of magnetic (AC), elec-
trical (splice), and mechanical (frictional, epoxy cracking) origin. Among these
losses, the most intractable are mechanical. Although considerable progress in

261
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understanding and dealing with these losses was achieved in the 1980s, it is still
difficult to accurately quantify their energies and locations in the winding. A
unique diagnostic technique based on acoustic emission (AE) has been developed
and successfully applied to monitor high-performance magnets that are afflicted by
mechanical disturbances, which are primary causes of premature quenches for these
magnets. A brief description of the AE-based diagnostic technique is presented in
this section.

7 . 2 A C  L o s s e s

There are three distinguishable AC loss energy densities in multifilamentary com-
posites: 1) hysteresis, e h y ; 2) coupling, ecp ; and 3) eddy-current, eed . These losses
are briefly discussed here. Each loss is treated independently in computing AC
losses in multifilamentary composites.

7.2.1 Hysteresis Loss

As studied in Chapter 5, hysteresis loss occurs within superconducting filaments
because each filament is made of hard superconductor which can sustain a nonzero
electric field. The nonzero electric field is sustainable within the filament because
the Type II superconductor really consists of finely divided nonsuperconducting
regions in a sea of superconductivity. Fortunately, for the scope of this book,
the hysteresis energy loss density per cycle of field excitation, ehy , is derivable
in closed analytical form for our standard Bean slab. Although we shall defer
the derivation to the Problem Section (Problems 7.1~7.4), useful formulas for
e h y applicable to four common field excitations—sinusoidal, exponential decay,
triangular, and trapezoid—are summarized in Table 7.1 (Eqs. 7.1~7.6). As is
evident from the table, each of the four field excitations is characterized by two
parameters: amplitude ( B m ) and time constant ( m ).

7.2.2 Coupling Loss

The key parameter used to compute ecp —coupling energy loss density per cycle of
field excitation—is the coupling time constant, c p . It defines a decay time constant

currents decay in a much more complicated way, governed by a diffusion equation
whose solution is in the form of an infinite series containing an infinite number of
time constants that for higher terms diminish rapidly. Experimentally, only the
dominant term can be determined and it is used in most of the “phenomenological”

Coupling loss is actually another form of Joule heating generated within the matrix
metal by inter-filament currents that are induced under a time-varying magnetic
field (or transport current) excitation. Because of the complex geometry of a
multiflamentary conductor, with twisted filaments as one source of complications,
a straightforward analytical approach based on the Bean slab model similar to that
used to derive closed-form formulas for hysteresis loss cannot be applied. More
rigorous derivations are beyond the scope of this book; the reader is referred to
the works of Ries and Brechna [7.1], Soubeyrand and Turck [7.2], Ogasawara [7.3],
Hlásnik [7.4], and Wilson [6.3].

of inter-filament (coupled) currents induced in the conductor. In reality, these
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approaches cited above. τcp is given by:

(7.7)

where lp is the twist pitch length of filaments and ρe ƒ is the effective matrix
resistivity for inter-filament currents. Using the Bean slab model, we shall derive
an expression nearly identical to Eq. 7.7 later in the Problem Section.

Because the longer the coupled currents last, the greater the energy dissipated,
the greater τcp is, the greater will be ecp . As Wilson points out [6.3], ecp may be
viewed as a fraction of the total magnetic field (Bm ) energy density stored in the
composite, and as

Table 7.1 also gives formulas for ec p (Eqs. 7.8~7.11) for the same four common
“slow” field excitations. Although none of Eqs. 7.8~7.11 (all from Wilson’s text
book [6.3]) is derived in the Problem Section, some of them will be used to solve
practical problems.

7.2.3 Eddy-Current Loss

The eddy-current loss energy density, eed , has already been discussed in Chapter
2; its formulas, for the same field excitations, are also summarized in Table 7.1
(Eqs. 7.12~14); they, too, correspond to slow (quasi-static) excitations.

7.2.4 AC Power Densities

Although we have so far presented AC dissipation in the form of energy densities,
under certain conditions it is more appropriate to express AC dissipation in the
form of power densities. By examining the formulas summarized in Table 7.1,
we may conclude that dependences of phy , p cp , and ped , respectively, hysteresis,
coupling, and eddy-current power loss densities, on time rate of change of external
field,  are given by:

(7.15)

(7.16)

(7.17)

These equations suggest that during a long charging sequence, such as when
the superconducting magnet of Hybrid III is energized at a relatively slow rate
(~5mT/s), the hysteresis loss, rather than the coupling and eddy-current losses,
dominates AC dissipation in the magnet. When the magnet is discharged at a fast
rate (~500 mT/s) on the other hand, which happens when the magnet is “dumped”
in an emergency, the coupling and eddy-current losses, both proportional to
dominate. (Problem 7.7 studies AC losses for these two cases.)

Which is more important: energy loss or power loss? It depends on the cooling
provided to the magnet. Obviously, it is desirable to maintain isothermal operation
even in the presence of these losses and this can be achieved only if the cooling
rate matches the dissipation rate.
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Table 7.1: AC Energy Loss Density Formulas for Selected Field Excitations
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7.2.5 Effective Matrix Resistivity

We shall briefly discuss the resistivity, ρeƒ, appearing in Eq. 7.7. It represents the
matrix’s effective resistivity for the flow of current perpendicular to the axis of
filamentary conductors. Two models have been proposed by Carr for ρeƒ [7.5]:

(7.18a)

(7.18 b)

where λ ƒ is the volumetric fraction of the superconducting filaments in the com-
posite superconductors and ρm is the matrix resistivity.

The above expressions are based on the two limiting current distributions shown in
Fig. 7.1. Figure 7.1a models the case in which the contact resistance at the filament
surface is zero and current is drawn into the filaments as indicated schematically.
With this flow distribution, the “apparent” cross section and distance for the
passage of current are, respectively, increased and decreased, thereby effectively
reducing the matrix resistivity and hence Eq. 7.18a. Similarly, Fig. 7.1b depicts
the case for an infinite contact resistance that expels current from the filaments
and hence Eq. 7.18b. Neither expression has been demonstrated rigorously, ana-
lytically or experimentally, to be correct. In practice, Eqs. 7.18a and 7.18b apply
to composite superconductors, respectively, of Nb3Sn and Nb-Ti.

Fig. 7.1 Current distributions in a multifilamentary composite conductor per-
pendicular to the conductor axis. (a) Contact resistance between filament and
matrix is zero—Eq. 7.18a. (b) Contact resistance is infinite—Eq. 7.18b .
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7.3 Splice Resistance

Splice resistance is important in magnet design because in most magnets conduc-
tors must be spliced. Splicing must sometimes be superconducting or nearly so—
less than 1 pΩ per splice for persistent-mode magnets such as those used in MRI
and MMR devices—but generally it is resistive in nonpersistent-mode magnets.
Splicing is needed primarily because it is economical to use graded conductors in a
coil or in a magnet consisting of many coils; material handling of limited conductor
length is also easier for big magnets.

In a given coil, the magnetic field in the inner region of the winding is considerably
greater than that in the outer region. A conductor designed for the inner region of
the winding will therefore contain superconducting filaments that are more than
sufficient for use in the outer region of the winding. That is, it is generally advisable
to wind the coil with graded conductors; for practical reasons only two grades of
conductors are generally used in a given coil form. For a magnet consisting of a set
of coils, each wound in a separate coil form, the conductors are naturally graded
and each coil must be spliced to its nearest neighbors.

A resistive splice becomes a design issue only when: 1) it must be confined within
a restricted space or conform to a specific cofiguration; 2) it is located deep inside
the winding where there is a limited or zero amount of replenishable coolant; 3) it
must withstand large forces; 4) there are so many of them that a net dissipation
can affect the system’s refrigeration capacity; or 5) it is not in direct contact with
coolant as is the case in cryocooler-cooled magnets.

7.3.1 Lap Splice

A “shake hands” lap splice, shown in Fig. 7.2, is one of the most widely used splice
designs; it is also quite suitable even for use within the winding. Its dissipation
can be set to any desirable level by adjusting the overlap length, ls l .

Fig. 7.2 Sketch of a typical “shake-hands” lap splice.
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7.3.2 Contact Resistance

Joule dissipation, Gs l , in a lap splice such as the one shown in Fig. 7.2 is given by:

(7.19)

Rs l is the joint resistance and It is transport current. Rs l is given by:

(7.20)

where Rc t is the contact resistance in units of [Ωm2 ] and a is the conductor width
and ls l is the overlap length (Fig. 7.2). As remarked above, Gs l can be made
arbitrarily small by making ls l sufficiently long.

Because the solder used to join two broad surfaces of the conductors is often an
alloy of tin and lead, which means its conductivity does not improve with decreas-
ing temperature as do the conductivities of pure metals, most of the contribu-
tion to contact resistance Rc t comes from the layer of this solder. Theoretically,

where ρ s l is the solder resistivity and δs l is the solder layer thickness.
(This expression neglects the “real” contact resistance at each solder-matrix metal
interface.) In practice these kinds of theoretical equations are useful only as a gen-
eral guide to create “good splices,” meaning joints that have sufficient mechanical
strength and a permissible level of splice resistance.

Table 7.2 presents values of Rc t for selected tin-lead solders. Rc t is magnetic field-
dependent, increasing linearly with B. In some data, a nonlinearity is observed
between zero and 1 T. These data are presented only as a general guide. In projects
involving large magnets and where splice resistance is an important design issue,
it is worthwhile to rely on actual measurements.

Table 7.2: Solder Contact Resistances at 4.2K

Solder Rc t [p Ω m2]
0T 1 T 2T 9T

Sn60-Pb40 [7.6] 3.0* 3.3* 3.6* 5.5*
1.1* 1.6* 2.0* 5.3*

Sn50-Pb50 [7.7] 0.8 1.5* 1.7* 2.9*
1.8 3.3* 3.7* 6.8*

Sn50-Pb50 [7.8] ρs l = 5.90(1 + 0.0081 B) nΩm (B in [T])
Sn60-Pb40 [7.8] ρs l = 5.40(1 + 0.0089 B)

USW † [7.9] 0.45 (B = 0 T)

Sn60-Pb40 ‡ [7.10] Rs l(B)/Rs l (0) = 1 + 0.57B (B in [T])

* Linear with B in this range.
† Between two scarfed copper surfaces ultrasonically welded.
‡ Splice resistance between two CIC conductors.
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7.4 Mechanical Disturbances

The subject of mechanical disturbances was not a pressing issue in the early period
(before 1975) when most magnets were built according to the Stekly stability crite-
rion: magnets that are well-cooled and therefore have low overall current densities.
Only when it became necessary to make magnets operate at high overall current
densities (~100 A/mm² and above)—a real necessity in dipole and quadrupole
magnets of high-energy physics particle accelerators—did mechanical disturbances
become a critically important design issue. One obvious way to make a magnet
“high performance” is to minimize the space occupied by coolant or even replace
it altogether with field generating conductor or load-bearing material.

High-performance magnets are thus by necessity essentially adiabatic, and the
power density equation (Eq. 6.1) for adiabatic magnets has the cooling term ( g q )
set to zero. Under this condition, the only way to maintain , which is propor-
tional to dT/dt of the conductor, at or near zero is to require that both g j (Joule
heating) and g d (disturbance heating) be zero. If can be maintained at or near
zero, the Joule heating term will remain zero. This requires that the disturbance
term must also remain essentially zero. This means AC losses, splice losses, me-
chanical losses, and any other losses must all be kept zero or nearly so. Thus,
in adiabatic magnets no splices are placed within the winding. For this reason
also, the magnets are generally swept at a “comfortably slow” rate, particularly
as the operating current is approached, to keep the heat generation rate by AC
and mechanical losses less than the limited heat removable rate available through
thermal diffusion (the and g k terms).

7.4.1 Premature Quenches and Training

The absence of cooling makes adiabatic magnets prone to quench prematurely,
sometimes at currents well below their intended operating currents. Through the
use of AE technique described below, it has been demonstrated that virtually ev-
ery incident of premature quench in adiabatic magnets is induced by a mechanical
event, primarily either conductor motion or epoxy fracture. Fortunately, these
mechanical events usually obey what is known in acoustic emission as the “Kaiser
effect.” It describes mechanical behavior observed during a sequence of cyclic load-
ing in which mechanical disturbances such as conductor motion and epoxy fracture
appear only when the loading responsible for events exceeds the maximum level
achieved in the previous loading sequence. Thus an adiabatic magnet suffering pre-
mature quenches generally “trains” and improves its performance progressively to
the point where it finally reaches its intended operating current. Obviously, the
goal in designing an adiabatic magnet is to make it reach the operating current on
the first try; quite recently such a remarkable feat was achieved with an adiabatic
magnet for use in a 750-MHz (17.6T) NMR system [7.11].

7.4.2 Conductor Motion and Epoxy-Resin Impregnation

Even if the space occupied by coolant is minimized and the winding no longer
satisfies the Stekly criterion, it is still sufficiently loose for the conductor to move
against a frictional force under the action of Lorentz forces. We may estimate
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the extent of the frictional displacement needed to adiabatically drive the unit
conductor volume normal in a typical operating condition and show that this
displacement is indeed within a possible range of motion, even in “tightly packed”
windings. A conductor at r = 0.2 m, subjected to an induction in the z-direction
(Bz ) of 5T and carrying a current density (over conductor cross section) in the
θ -direction of Jθ = 200×10 6 A/m², experiences an r-directed Lorentz force density
ƒLr = JθBz  of 2×10 8 N/m³. Suppose that the conductor slides against the frictional
force opposing this ƒL r by a distance ∆ rƒ. Then a frictional energy density, eƒ ,
generated by this motion over the unit conductor volume may be given by:

(7.21)

where µƒ is the frictional coefficient. Inserting values of µ ƒ = 0.3 and e ƒ  =
1300 J/m³, which is equivalent to the copper’s enthalpy difference between 4.2 K
and 5.2 K, and ƒL r  = 2 × 10 8 N/m³, and solving Eq. 7.21 for ∆rƒ, we find:

A distance of ~20µm is within the range of possibility in tightly packed windings.
Indeed quench-inducing slips as small as ~10  µm (“microslips”) were observed
in an experiment [7.12]. One effective way to eliminate these microslips is to
impregnate the winding with epoxy resin that leaves no void space for conductor
motion; impregnation transforms the entire winding into one structural unit.

7.4.3 Impregnated Windings

Although conductor motion may be absent in the impregnated windings, two prob-
lems still remain. First, by the action of Lorentz forces, the entire winding body—
in solenoidal magnets—tries to become barrel-shaped. Unless the winding is firmly
anchored to the coil form to prevent this barrel-shaped deformation, interface mo-
tion occurs between the winding and the coil form; this motion generates heating,
which in turn may result in a premature quench. It is possible to decouple the
conductor from such frictional heating by means of a low thermal conductive sheet
bonded to the inner surface of the winding [7.13]. Second, if the winding is firmly
held to the coil form, high stresses are developed in the winding and the impreg-
nant may fracture, resulting in another source of thermal disturbance.

In impregnated windings, there are two possible approaches to prevent epoxy
fracture quench: 1) minimize the amount of energy induced by an epoxy fracture;
and 2) eliminate fracture incidents altogether. Although there have been attempts
to quantify fracture-induced energies at cryogenic temperatures [7.14, 7.15], our
present understanding of the fracture mechanisms is not sufficiently advanced to
permit this approach to be useful at the moment.

Great progress has been achieved in the second remedy for eliminating the fracture
incidents. The techniques developed include controlling conductor tension during
the winding process [7.16] and allowing the winding section to “float” in the coil
form [7.16, 7.17]; Maeda has pushed the floating winding concept to an extreme
limit and achieved successful performance with “coilformless” solenoids [7.18].
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7.4.4 Dry Windings

We have just seen that even in a tightly packed winding, if it is not impregnated
(“dry”) with organic materials such as epoxy resins, frictional sliding of the con-
ductor is possible and can lead to a premature quench. Under certain conditions,
however, it is possible to have dry winding magnets operate stably.

Considerable effort has been devoted in cryotribology work to find “tribological”
approaches for preventing quenching in dry magnets [7.12, 7.19~7.23]. There are
three possible approaches: 1) rely on cooling provided by the void-space helium;
2) minimize the frictional heating intensity; and 3) eliminate incidents of motion.

Because of an extremely limited space available for the coolant within the winding
pack, the coolant is believed to have only a modest effect in balancing out motion-
induced energies. Although its benefit has not been well quantified, there have
been successful “quasi-adiabatic” magnets, among them, Hybrid III SCM [6.27].

A key element of the second approach to minimizing the frictional heating intensity
is to achieve stable sliding by using insulating materials that, when paired with
a copper-stabilized superconductor, exhibit a positive slope in their friction vs
velocity plots. Based in part on the results of recent measurements on epoxy
resins [7.22], we may conclude that winding materials having a sufficiently positive
friction-velocity characteristic to provide much benefit at cryogenic temperatures
are unlikely to exist. Most of the friction-velocity stabilization techniques that
have been examined thus far rely on temperature-dependent creep mechanisms.
In these materials, the strain rate sensitivity of the flow stress is responsible for the
velocity dependence of the friction coefficient. In the absence of thermal activation
at cryogenic temperatures these creep mechanisms become inoperative [7.22, 7.23].

In the third approach for eliminating incidents of motion (similar to the approach
of eliminating fracture used in impregnated winding), Takao and Tsukamoto have
shown that motion-induced energy can be reduced by increasing the winding stiff-
ness [7.24]. It may also be possible to control the winding stiffness and configura-
tion to eliminate incidents of conductor motion, at least over the critical volume of
the winding, by matching ratios of the tangential to normal Lorentz force compo-
nents to the prevailing static friction coefficient [7.25, 7.26]. It has been suggested
both extremely high and low force ratios may be used, each ratio strategically
located in the winding [7.26]. An extreme extension of this approach, of course, is
epoxy impregnation. Under this design philosophy, the friction coefficient should
be maximized. The ultimate goal in dry magnets is to achieve comparable struc-
tural integrity as in epoxy-impregnated windings.

7.5 Acoustic Emission Technique

Acoustic emission (AE) monitoring of superconducting magnets is the technique
that has proven most successful in elucidating mechanical events occurring within
the winding of high-performance magnets. Begun in the late 1970s [7.27~7.29],
it was established in the 1980s that the two principal mechanical events afflict-
ing high-performance magnets—conductor motion and epoxy fracture—can be
detected by the AE technique [7.30~7.39].
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Fig. 7.3 Acoustic emission and voltage signals induced by a
conductor motion event in a dipole magnet [7.31].

The most effective use of AE for superconducting magnets is the AE/voltage tech-
nique first reported by Brechna and Turowski in 1978 [7.29]. Because a sudden
conductor motion event generates an AE signal and at the same time induces a
voltage spike across the magnet, the simultaneous detection of AE and voltage sig-
nals at the time of a quench shows that it is induced by a conductor motion event.
(A sudden shift in the position of a short length of the conductor in the presence
of a magnetic field generates, through Faraday’s law, a voltage pulse across the
terminals of the winding.) The technique can also be used to demonstrate that a
quench accompanied by an AE signal but not by a voltage spike is induced not
by a conductor motion event but by an epoxy fracture event [7.30]. Examples of
premature quenches induced by these two distinctive mechanical disturbances are
shown below.

Figure 7.3 shows an early example of a successful application of the AE/voltage
monitoring technique. The top two traces are AE signals and the bottom trace
is the coil voltage in a 1.5-m long dipole [7.31]. Sensor AE2 was located at one
end of the dipole and sensor AE4 at the other. The voltage pulse that precedes
a rising resistive voltage was conductor-motion-induced. Sensor AE4 first records
an AE signal, which after attenuation and a delay of ~0.3 ms—the time delay
discernable in an expanded scale not shown here—is recorded by sensor AE2. Since
the AE wave propagates at speeds of 2~5km/s, a delay of ~0.3ms equals a travel
distance of 0.6~1.5m; the event thus occurred near the AE4 sensor. This example
demonstrated the technique’s usefulness not only for quench source identification
but also for source triangulation.

Figure 7.4 shows another example of a simultaneous capture of AE/voltage signals,
recorded in a Nb3 Sn coil prematurely quenching at 520 A, the quench induced by a
conductor motion event [7.38]. Ogitsu and others demonstrated that it is unneces-
sary to detect AE signals to infer mechanical disturbances [7.40]. By canceling out
the charging voltages, they successfully extracted motion-induced voltage spikes
from a quadrupole magnet.
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Fig. 7.4 Signals induced by a conductor motion event that
prematurely quenched an Nb3 Sn coil. [7.38].

Another important source of quench in adiabatic magnets is epoxy fracture, which
converts stress energy into heat. Because it is a mechanical event, epoxy fracture
generates AE signals. The most significant feature, however, is that the event
does not induce voltage spikes because it involves no relative motion of a current-
carrying element in a magnetic field. Figure 7.5 shows an oscillogram of traces
recorded at an epoxy fracture-triggered quench event in a test coil [7.35]. The
top two traces are epoxy fracture-induced AE signals and the bottom trace is the
quench voltage. Figure 7.6 shows another example of an epoxy fracture-induced
quench recorded in a superconducting racetrack magnet [7.41].

Fig. 7.5 Epoxy fracture-induced quench signals, AE (top two
traces) and voltage (bottom trace) [7.35]. Time scale: 4ms/div.
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Fig. 7.6 AE (top) and coil voltage (bottom) traces recorded at
an epoxy fracture-induced quench in a racetrack magnet [7.41].
The voltage trace near the fracture point is enhanced to indicate
the absence of a pulse. Time scale: 5 ms/div.

“Time, time, what is time?
Swiss manufacture it.
French hoard it.
Italians squander it.
Americans say it is money.
Hindus say it does not exist …” —O’Hara

“We can know the time, we can know a time. We can never know Time.” —Ada
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Problem 7.1: Hysteresis loss—basic derivation

1. Without transport current

In this problem we first demonstrate, using the Bean slab, that in the absence of
transport current the slab’s hysteresis loss is given by the integral of its magne-
tization curve. As we briefly reviewed in Chapter 2, dissipation within a volume
may be treated as the flow of Poynting vector (Eq. 2.20, p.15). In the integral
form, not including the electric energy term, Eq. 2.20 may be expressed by:

(7.22)

For a complete cycle, Eq. 7.22 becomes:

(7.23)

The nonzero right-hand side of Eq. 7.23 represents dissipation and is known as
hysteresis loss. In purely magnetic and low-conductive materials such as ferrites,

= 0 and the hysteresis loss is purely magnetic. As evident from Eq. 7.23, the
hysteresis loss in superconductors has an extra term coming from which, in
this case, is equal to 

Using a Bean slab of width 2a, we can show that the hysteresis loss density, ∆eh y,
may be given by the area under the magnetization curve. Namely,

a)

(7.24 a)

(7.24b)

We shall now examine the case in which the external field He  is raised by
∆He  from H e for a “virgin” Bean slab: He  < H p  = Jc a, the critical field.
Show that the incremental dissipation energy density, ∆e h y, is given by:

(7.25)

Derive Eq. 7.25 two ways, using: 1) Eq. 7.24a and 2) Eq. 7.24b.

b) Repeat a) for the slab in the critical state, i.e. He  > H p. Show that ∆e h y  is
given by:

(7.26)

c)

Again, derive Eq. 7.26 two ways, using: 1) Eq. 7.24a  and 2) Eq. 7.24b.

For the slab in the critical state, derive Eq. 7.26 by computing the Poynting
energy flow (left-hand side of Eq. 7.23).
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Solution to Problem 7.1

a) We shall solve this problem by considering
only the positive half (0 ≤ x ≤a) of the slab.
First, let us find an expression for Ez (x) when
the field inside the slab between x*  = a–H e / Jc

and a, is raised by ∆He, as shown in Fig. 7.7.
Ez (x) due to this field change, valid for x*  ≤
x ≤ a, may be given by:

Fig. 7.7 Field profiles.

We thus can compute the first term in the right-hand side of Eq. 7.24 a :

(S1.2)

Next, we shall compute the second term on the right-hand side of Eq. 7.24 a. –M
for a partially critical-state slab is given by Eq. 5.4 (p. 164):

Differentiating M, we have:

The second term of the right-hand side of Eq. 7.24 a is thus given by:

(5.4)

(S1.3)

(S1.4)

Combining Eqs. S1.2 and S1.4, and dividing the sum by a, we can obtain an
expression for the right-hand side of Eq. 7.24 a:

(S 1.5)

Combining Eq. 5.4 and the right-hand side of Eq. S1.5, we also have:

(S1.6)

Thus the hysteresis loss density, ∆eh y, may be computed either by Eqs. 7.24a or
by Eq. 7.24b.
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Solution to Problem 7.1

b) When the slab is in the critical state, an increase in external field by ∆H e
creates electric field Ez (x ), given by:

(S1.7)

We thus have:

(S 1.8)

Because M = H P /2 in the critical state and it is constant, dM = 0, we have:

(S1.9)

Because –M = Hp /2 in the critical state, Eq. S1.9 can also be expressed by:

(S1.10)

Again, we have shown that it is thus possible to compute Eq. 7.24 either way.

c ) In this approach, we shall compute the Poynting energy flowing into the slab
at x = a (again, only the positive half of the slab is considered) per unit volume
and the magnetic energy change per unit volume; the difference between these is
the dissipation per unit volume. The Poynting vector at x = a, for this slab
geometry, is given by:

(S1.11)
Note that as expected, the Poynting vector is pointing towards the slab. Because

we obtain the Poynting energy density:

(S1.12)

The change in magnetic energy density, ∆e m , is given by:

(S1.13)

where Hs 2 (x) is the field distribution after an increase in field at x = a of ∆H e a n d
H s 1(x) is the original field distribution. In the critical stage, we have

. We thus have:

(S1.14)

Combining Eqs. S1.12 and S1.14, we have:

(7.26)
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Problem 7.2: Hysteresis loss—basic derivation

2. With transport current

In this problem we shall derive the formula for hysteresis loss in the fully critical-
state Bean slab in the presence of transport current. The derivation also demon-
strates that in the presence of transport current the hysteresis loss cannot be
determined from the area under the – M vs H e curve as is possible in the absence
of transport current.

Figure 7.8 presents field distributions for a Bean slab of width 2a carrying a nor-
malized transport current of i (≡ I t / Ic ) and exposed to external fields of H e  (solid
lines) and He  + ∆He (dotted lines). As is the case in Problem 5.2, the order of
excitation is transport current followed by external field.

a) Using the Poynting energy approach, similar to Problem 7.1 c), show that
an expression for hysteresis energy density, ∆eh y, for a Bean slab carrying a
normalized transport current i as external field is increased from H e (He  >
Hp ) to H e + ∆He  is given by:

(7.27)

b) Show that Eq. 7.27 cannot be given by the integral –  That is, in
the presence of transport current, show:

(7.28)

Fig. 7.8 Field distributions in a Bean slab carrying a normalized
transport current of i. The dotted lines show the distribution
after the field is increased by ∆He .
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Solution to Problem 7.2

a) We shall first compute Poynting energy inputs at two surfaces, at x = 0 and
x = 2a.

At x = 0, we have electric field E z (0), given by:

( S2.1)

(0) points in the – z-direction. Because the field at x = 0, H e – H p i, points in
the +y-direction, we note that (0) = (0) × e points in the +x-direction, or
into the slab. The Poynting energy flux [W/m 2] at x = 0, εS(0), is given by:

(S 2.2)

(S2.3)

At x = 2a, we have electric field Ez ( 2a ), given by:

(2a ) points in the +z-direction. Because the field at x = 2a , H e + H p i , points

in the + y-direction, we note that (2a ) = (2a) × e points in the – x-direction,
or into the slab. The Poynting energy flux at x = 2a, ε s (2a), is given by:

( S 2.4)

( S 2.5)

The total Poynting input energy density, es , is given by:

Next, we compute the difference in magnetic energy stored in the slab in the new
state ( H e + ∆ He ) and in the original state (He ). The computation is divided into
two regions, ∆εm 1 for Region I (0 ≤ x ≤ x*) and ∆εm 2 for Region II (x* ≤ x ≤
2a), where x* = (1 – i )a. Note that as expected, x* = a when i = 0 .

(S 2.6a )
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Solution to Problem 7.2

( S2.6b)

The change in magnetic energy density stored in the slab, ∆ e m , is given by:

( S2.7)

The hysteresis energy density ∆e h y is given by the difference between the Poynting
energy density and the magnetic energy density. Thus:

(7.27)

b) As studied in Problem 5.2, magnetization in the presence of transport current
in the fully critical state is given by Eq. 5.18a, presented once again here:

Thus the integration of the magnetization curve is given by:

(5.18a )

( S2.8)

(7.28)

We therefore have demonstrated:

That is, in the presence of transport current, hysteresis loss cannot be given by
the area under the –M vs H e plot. In fact, the area under the –M vs H e plot
may be much smaller than the actual hysteresis loss.
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Problem 7.3: Hysteresis loss (no transport current)

1 . "Small" amplitude cyclic field

Figure 7.9 shows magnetization traces for a virgin Bean slab (width 2a) subjected
to an external field H e . As indicated by arrows in the figure, H e initially increases
from 0 to a peak field of Hm (trace A), where H m < H p = Jc a , and decreases back
to 0 (trace B), continues to – H m (trace C), and increases from – H m back to 0
(trace D). It cycles back to H m (trace E), completing a full cycle. From symmetry,
traces B and D are mirror images of each other and likewise traces C and E are
also mirror images of each other. For the triangular and trapezoid excitations of
Table 7.1 that swing between 0 and B m = µo H m , the up-swing follows trace F
indicated in the figure. Expressions for traces A, B, D, and F are given by:

(5.4)

(7.29 a )

(7.29b )

(7.29c )

a ) Derive Eq. 7.1 given in Table 7.1 for hysteresis energy density, eh y , under a
cyclic (B→ C →D→ E) B -field excitation, between B m and – B m .

b) Derive Eq. 7.2 for an exponential decay from Bm to 0.

c ) Derive Eq. 7.3 for the triangular and trapezoid excitations of Table 7.1.

Fig. 7.9 Magnetization traces for “small” amplitude
field cycles with no transport current.
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Solution to Problem 7.3

a) Because the slab carries no transport current, ehy for a complete field cycle
is given by:

(S 3.1)

where – M( He ) is given by the difference between Eqs. 7.29b and 7.29 a. We thus
have:

( S 3.2)

( S3.3)

(7.1)

b) If the slab is exposed to Hm from the virgin state and then the field decays
exponentially, e h y is nearly half the area enclosed by traces F and B. Thus:

(S 3.4)

(7.2)

c) When the slab is exposed to a periodic excitation field varying between 0 and
H m , then e h y is given by the area enclosed by traces F and B. Thus:

(S 3.5)

(7.3)

An important point to note is that in each case eh y is proportional to the 3rd
power of Bm . Note also that because H p = Jc a, eh y for small field excursions
depends inversely on Jc a.



282 C H A P T E R 7

Problem 7.4: Hysteresis loss (no transport current)

2. “Large” amplitude cyclic field

This problem is similar to Problem 7.3 except that H m now exceeds Hp so that the
slab is driven to the critical state during most of the field excursion. Specifically,
we treat the case where the amplitude of the cyclic external field H m is at least
twice H p , i.e. H m > 2 Hp . Note that µ o Jc a is typically about ~0.1 T so that in
most field excitations, this condition is met.

Figure 7.10 presents the magnetization for the slab subjected to a cyclic field of
amplitude H m , where H m > 2 H p . As indicated in the figure, the complete field
cycle consists of B, C, D, E, F, and G. (The initial trace A may safely be neglected
for this case.) – M ( H e ) for trace B is given by:

(7.30)

For traces C and D, – M (H e ) = – H p /2, as indicated in Fig. 7.10. Trace E
is a mirror image of trace B and similarly, traces F and G are mirror images,
respectively, of traces C and D.

a) Show that an expression of e h y derived from one complete field excursion of
Fig. 7.10 is given by:

(7.31)

b) Use Eq. 7.31 to derive Eq. 7.4 for sinusoidal excitation with a field amplitude
H m >> H p . Clearly for triangular and trapezoid excitations shown in Table
7.1, eh y (Eq. 7.6) is half that given by Eq. 7.4; for exponential decay, eh y

(Eq. 7.5) for H m >> H p is half that given by Eq. 7.6.

Fig. 7.10 Magnetization traces for “large” ampli-
tude field cycles with no transport current.
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Solution to Problem 7.4

a) Again, we start with:

(S4.1)

The integration must be divided into two regions, from He = 0  to H bc and from
Hbc to H m , where H bc is the field at which traces B and C meet. Thus:

(S 4.2)

Solving Eq. S 4.2 for H bc , we obtain: Hbc = H m – 2Hp . Equation S 4.1 may now
be integrated:

( S4.3)

( S4.4)

Inserting H bc  = H m – 2H p into Eq. S 4.4, we obtain:

(S 4.5)

(7.31)

b ) For Bm » B p Eq. 7.31 approximates to:

(7.4)

Both the B 3
m and Bm dependences of e h y (Eqs. 7.3 and 7.4) have been verified

experimentally [7.42]. Because triangular and trapezoid excitations cover half the
M ( He ) area covered by the sinusoidal excitation, their ehy (Eq. 7.6) is half that
given by Eq. 7.4. For the exponential decay, the M ( He ) covered is half that covered
by the triangular and trapezoid excitations, giving rise to eh y (Eq. 7.5) that is 1/4
of Eq. 7.4.

An important point to note for all the cases considered here is that eh y increases
with a , requiring “submicron” filaments [7.43] if superconductors are to be used
in 50-Hz or 60-Hz electrical devices.
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Problem 7.5:  Coupling t ime constant

In this problem we shall derive the coupling time constant, , an indispensable pa-
rameter in computing the coupling loss. Figure 7.11 presents a two-filament model
of a multifilamentary composite conductor subjected to a time-varying magnetic
induction B directed in the z-direction. As indicated in the figure, l p represents a
twist pitch length.

Starting with Eq. 6.15 (p. 219), an expression for the magnetic diffusion time
constant , use a “plausible” argument to show that an expression for the
coupling time constant for a Bean slab of width 2a , , is given by:

(7.32)

Here ρe in Eq. 6.15, representing the matrix electrical resistivity, is replaced
by ρ e f , either of the effective matrix electrical resistivities given by Eq. 7.18.

Solution to Problem 7.5

From Fig. 7.11, it is appropriate to model a conductor of length lp /2 as one Bean
slab of thickness 2a, because over this length induced currents are similar to those
in the slab. From Eq. 6.15, we have:

Substituting 2a = lp /2 and ρe = ρ e f into Eq. 6.15, we obtain:

(6.15)

(7.32)

Note that  derived above is off by a factor of 2 from that given by Eq. 7.7.

Fig. 7.11 Two-filament model of a multifilamentary composite wire.
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Problem 7.6:  Hysteresis  loss  of  an Nb3 Sn strand

In the US-DPC program, a pair of ~1-m diameter coils was tested at JAERI.
The US coils, wound with a CIC conductor containing many Nb 3 Sn multifilamen-
tary strands, was placed in JAERI’s superconducting pulsed magnet system and
subjected to an AC field excitation.

During design of the coil, the magnetization of a test sample consisting of many
short lengths of strands carrying no transport current was measured to estimate
AC losses of the conductor under a cyclic excitation between 0 and 3 T. Figure 7.12
gives the magnetization curve of the test sample [7.44]. The ordinate (–M) unit
has been adjusted from raw data to correspond to magnetization for one filament
of diameter d f in the strands.

Bean’s model.

a) Show that the hysteresis loss density per cycle generated within one fila-
ment as computed directly from the –M vs. Be plot shown in Fig. 7.12 is
~85 kJ/m³. You may assume that d f = 2a , where 2a is the Bean slab width.
Further, you may treat the entire filament as a hard superconductor obeying

Fig. 7.12 Magnetization behavior deduced for one filament of the strands [7.44].
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Problem 7.6: Hysteresis loss of an Nb3 Sn strand

b) Based on an I c  measurement of the strands, the critical current density, Jc

[A/m²], of each filament as a function of Be [T] is found to be [7.44]:

What is the effective filament diameter d f e consistent with the magnetization
data given in a), the measured Jc( Be) given above, and the AC loss theory
based on Bean’s model? Note that here you cannot assume Jc to be field
independent as is usually assumed in the simple analysis. You may assume
µ o H p « 1 T for the entire field range.

c) Theoretically, each filament in the strand is of perfectly circular cross section
with a diameter (d f ) of 6 µm. Is your effective diameter d f e obtained in b )
greater or smaller than d f ? Explain your discrepancy, if any, using infor-
mation contained in the microphotograph of the strand cross section shown
in Fig. 7.13. Each square-like cross section shows the cross section of one
filament .

Fig. 7.13 Microphotograph of a section of one strand, showing
cross sections of many individual filaments [7.44].
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Solution to Problem 7.6

a) The hysteresis loss density [J/m³] is given by the total area enclosed under the
– M vs B e curve, as B e [T] is swept 0 → 2.8 → 0. Thus:

(S6.1)

(S6.2)

where – ↑  and ↓ are, respectively, the average magnetization over the magnetic
induction range from 0 to B m and that over the range from B m to 0. Substituting
into Eq. S 6.2 – 15kA/m, – 15kA/m, and B m = 2.8T, we have:

b) We shall assume µ o Hp «  1 T, and thus – M = H p /2 = Jc a /2. By substituting
2 a = d f e , we have: –M = J c d f e /4. e h y is thus given by:

(S6.3)

Substituting the given Jc ( Be ) function into Eq. S6.3, we have:

(S6.4)

Solving for d f e from Eq. S6.4, we obtain d f e = 13 µm .

c) Because d f e = 13 µ m, d f e 2df . As seen from the microphotograph of
Fig. 7.13, the most likely reason for d f 2d f is that some filaments are sintered toe

their neighbors, making d f e more like twice the actual filament size, or d fe ~ 2df .
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Problem 7.7: AC losses in Hybrid III SCM

This problem deals with AC losses generated in the Hybrid III SCM during its
operation. Hybrid III’s typical operational sequence is described below:

Step 1:

Step 2:

Step 3:

Step 4:

Panic:

SCM is charged from 0 to 800 A in a period of 1200s. This charging rate
corresponds to a field sweep rate at the innermost winding radius at the
magnet midplane of 4 mT/s. During this sequence, a significant dissipa-
tion apparently takes place, resulting in a net rise in bath temperature
of ~0.1K, from 1.70 to 1.80K.

SCM is charged from 800 to 1800 A in a period of 900s. No measurable
increase in bath temperature is observed.

In the final leg of the charging sequence, SCM goes from 1800 to 2100 A in
a period of 600s. Again, with no apparent increase in bath temperature.
The SCM is now generating 12.3T at the magnet center.

With SCM held at 2100A, the insert is energized and discharged at a
constant rate to an induction, typically between 0 and 22.7T. Again, dur-
ing this charging-discharging sequence, no measurable increase in bath
temperature is observed.

In the event of an insert malfunction, the insert is “tripped,” forcing its
field to decay from 22.7 to 0T in a time period of ~0.3s. Because of large
AC dissipations expected in the SCM under this emergency condition,
the SCM is automatically “dumped,” resulting in a decay of its current
from 2100 to 0A with an effective time constant of ~10s.

As noted above, AC losses are important only during Step 1. Because of a rapid
decrease in the insert’s fringing field during Panic, the SCM, particularly the Nb-
Ti coil, is driven normal, forcing the SCM to dump.

Table 7.3: Pertinent Conductor Parameters

Parameter

Overall width, a [mm]

Overall thickness, b [mm]

Filament diameter, d f [µm]

Twist pitch length, lp [mm]

Filament #, N f

Total conductor length, lcd [m]

Jc  @0~5T, 1.8 K [GA/m 2]

ρm  @0~8 T, 1.8 k [nΩ m]

Nb 3Sn Coil*

9.50

4.50

50

100

1000

1700

5

0.5

Nb-Ti Coil*

9.20

2.60

75

100

2500

8100

3

0.5

* For the purpose of this problem, each conductor is assumed to be wound with only one
grade of conductor.
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a)

b)

c )

Justify a temperature increase of ~0.1K (from 1.70 to 1.80K at 1 atm) as
the SCM is charged from 0 to 800A, at which point it is generating 4.8T.
In computing AC losses generated by the SCM’s own field, assume the field
decreases linearly from 5T at r = 0.22m (the innermost radius of the Nb 3 S n
coil; see Table 3.1, p. 59) to ~0T at r = 0.45m (the outermost radius of the
Nb-Ti coil) over the entire length of each coil. Note that the magnet vessel
contains 250 liters of superfluid liquid helium.

Show that the narrow cooling channels provided in each double pancake are
sufficient to transport AC losses generated in the double pancake to annular
spaces at the i.d. and o.d. Note that there are 32 double pancakes in the
Nb-Ti coil, each double pancake having cooling channels of l-mm height and
occupying ~40% of the pancake surface area (Fig. 6.13, p. 235). The pancake
i.d. and o.d. are, respectively, 658mm and 907mm.

During Panic each coil is subjected to a rapid decrease in the insert’s fringing
field. For the Nb-Ti conductor at the innermost turn at the magnet midpoint
(r = 329mm, z = 0), ∆ Be is estimated to be ~1T, taking place in a time
period of 0.3s, or ∆ e ~ 3T/s. Show that the average temperature of a
unit combined volume (conductor and liquid helium adjacent to it) located
at the innermost radius at the midpoint will exceed Tλ .

“Burst Disk” and Diffuser for Hybrid III Cryostat

As discussed in Problems 3.14~3.16, the major fault condition in hybrid magnets
is triggered by an insert burnout; the Hybrid III SCM is designed to be discharged
quickly in the event of an insert burnout—
the event described above as Panic. (Prob-
lems 8.1 and 8.2 discuss this fast discharge
mode in more detail.)

One critical consequence of this fast dis-
charge is a rapid rise in the cryostat pres-
sure. The Hybrid III cryostat is, there-
fore, equipped with a “burst disk” to keep
the pressure increase in the cryostat below
1 atm; a 40-µm thick aluminum foil disk,
with an active diameter of 70 mm, is placed
in vacuum fittings (Fig. 7.14). When a pres-
sure increase of 1 atm is reached in the cryo-
stat, the foil ruptures, relieving the cryostat
pressure. As indicated in the figure, a dif-
fuser is placed at the burst disk exit to min-
imize the exit pressure loss of the vapor re-
leased from the cryostat.

Fig. 7.14 Burst disk (with diffuser) arrangement for Hybrid III cryostat.
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Solution to Problem 7.7

a) The major source of dissipation during Step 1 is hysteresis loss. For the Nb 3 Sn
coil, we have:

where V f 1 is the total volume of the filaments in the coil. The factor 2 is needed
here because we are computing Ehy1 only during a field excursion from 0 to
which is an average of the maximum field the coil is subjected to. Vf 1 is given by:

where N f 1 is the total number of filaments in the conductor; l cd 1 is the total
conductor length; and d f 1 is the filament diameter. Combining Eqs. S7.1 and
S 7.2 and noting that we obtain:

Inserting appropriate values (Table 7.3) into Eq. S7.3 and with = 4.3 T (an
average of 5.0 T at r = 216 mm and 3.6 T at r = 328 mm), we obtain:

Similarly, we can compute Ehy 2, the hysteresis energy generated in the Nb-Ti coil:

Inserting appropriate values into Eq. S7.5, we obtain:

The total hysteresis loss released into the liquid is thus ~10000 J.

(S7.1)

( S7.2)

(S7.3)

(S7.4)

(S7.5)

(S7.6)
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Solution to Problem 7.7

The mass of 250 liters of liquid helium at 1.70K is 37 kg. The enthalpy of 1-
atm helium at 1.70K is 1280 J/kg and that at 1.80K is 1530 J/kg (Table A2.1,
Appendix II), or a net change in enthalpy of 250 J/kg. With a total mass of 37 kg,
an increase in bath temperature from 1.70 to 1.80K requires a net energy input
of 9250 J, which is close to the total hysteresis dissipation computed above.

Note that during this field sweep, the system’s refrigeration rate, matched to a
quiescent load of ~10W, may increase by a marginal amount as the fluid is heated;
the increase may, however, be neglected.

b) As computed above, the total hysteresis energy dissipation in the Nb-Ti coil
is 9000 J, taking place over a period of 1200 s, or an overall hysteresis dissipation
rate of ~8W. For each double pancake, the dissipation rate would be ~0.2W.
Under the most conservative condition, the total channel cross section for each
double pancake would be ~4cm2  (40% of the circumference corresponding to the
innermost diameter of 658mm times a channel height of 0.5mm—note that the
1-mm high channel is shared by two pancakes), or a heat flux of 0.05W/cm2 .
Since heat can flow radially both inward and outward, an appropriate value for
the channel length is one quarter the difference between o.d. and i.d., or ~6cm.

Because dissipation is taking place over the entire channel length, Eq. 4.3 (p. 118)
is applicable. Thus:

(4.3)

From Fig. 4.4, we have: X(Tb  = 1.8K) = 350. With L = 6 cm and solving Eq. 4.3
for qc , we obtain: q c = 5.1W/cm2, which is clearly greater than the minimum
required value of 0.05W/cm2 . That is, the channels are sufficient to remove the
hysteresis dissipation during a charge up from 0 to 800 A. This conclusion has been
validated by actual runs.

c) In a rapidly changing field, the most important losses are coupling ( ecp) and
eddy (e ed ). We shall consider here only ecp because it alone is sufficient to drive
the conductor-helium unit volume to Tλ.

We shall first compute cp, the coupling time constant, for the Nb-Ti conductor.

For Nb-Ti composite, ρe f given by Eq. 7.18b is generally used. In terms of γc/s,
the copper-to-superconductor ratio, ρe f is given by:

(7.7)

(S7.7)
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Solution to Problem 7.7

With γc/s ~3 (deducible from the conductor parameters given in Table 7.3) and in-
serting appropriate values into Eq. 7.7, we obtain: cp = 0.2s, which is comparable
with m = 0.3s for the insert discharge.

We shall apply Eq. 7.11 of Table 7.1, inserting a factor of 1/2 (for discharge only),
we obtain:

Consider a unit length (1 cm) of conductor. Because the conductor’s cross section is
(0.92 cm)×(0.26 cm) = 0.24 cm2, it has volume V cd of 0.24cm3 . Over this conductor
length, helium occupies 0.4 cm length (40% filling) and 0.5mm channel depth (1-
mm deep channel is shared by conductors of the top and bottom pancakes) over
the conductor width of 2.6mm. Thus for a unit conductor length, helium occupies
a volume Vhe of 5.2 × 10 –3 cm3 . The total dissipation energy over unit conductor
length, Ecp , will thus be given by:

(S7.8)

(S7.9)

The total thermal energy, ∆ Eth needed to raise the unit conductor (and accom-
panying liquid helium) from 1.8K to Tλ is given by:

(S7.10)

Inserting we have:

(S7.11)

Because Ecp  » E th , the entire helium volume surrounding the unit conductor
volume be heated well above Tλ , making it impossible for the conductor to recover.

“Oh figures! You can make figures do whatever you want.” —Ned Land
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Problem 7.8: AC losses in the US-DPC Coil

This problem deals with a US-DPC Experiment on AC loss measurements con-
ducted at JAERI (Naka, Japan) in late 1990 [6.29]. The US-DPC consists of three
double-pancake (DP) coils, A, B, and C, each wound with a CIC conductor con-
taining Nb3Sn multifilamentary strands. The three DP coils are stacked and con-
nected in series, with DP-B sandwiched between DP-A and DP-C. The 3-double
pancake US-DPC Coil assembly is in turn sandwiched between two coils, DPC-U1
and DPC-U2 [7.45] that provide a background field to the US-DPC coil. Figure
7.15 shows the overall assembly of the experiment. Figure 7.16 shows a simplified
flow diagram for supercritical helium forced through the double pancakes.

The pertinent parameters of DP-B and the CIC conductor used to wind the pan-
cakes are summarized in Table 7.4. Values are approximate and some parameters
are simplified for this problem. Table 7.5 presents DP-B field data, generated by
three DP coils, at radial locations across the DP-B’s midplane at a transport cur-
rent of 25 kA. For the purpose of this problem, you may assume that |B | at each
radial location is constant in the axial direction. If needed, you may use a linear
interpolation for |B| between two radial locations.

Figure 7.17 shows the waveform of a transport current pulse applied to the US-
DPC. The transport current rises from 0 to 25 kA in a ramp-up time of 1.75s,
remains at 25 kA for 3.0s, and decreases from 25 to 0 kA in a ramp-down time of
1.75s. In this particular run, the total steady-state helium mass flow rate through
DP-B before, during, and after the pulsing was constant at 13g/s. The helium at
the inlet of the DP-B remained at a constant temperature and at 6.1 atm at all
times. Figure 7.18 shows the corresponding measured temperature trace, Tex (t) ,
at the exit of the DP-B. Note that there is a long time delay and that the exit
temperature for 0 ≤ t < 20s is the steady-state temperature before the application
of the current pulse. The steady-state temperature is restored for t > 250s. The
measured steady-state pressure drop between the inlet and exit was ~1 atm. You
may make the following additional assumptions:

Fig. 7.15 Drawing of the US-DPC Coil placed in the DPC
Test Assembly. Based on a drawing appearing in [7.45].
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Fig. 7.16 Schematic diagram showing helium flow
in three double pancakes of the US-DPC Coil [6.30].

� The current-pulse-induced AC losses were generated in the strands only and
were totally released to the helium flowing through the DP-B. This energy
transfer was completed well before t ~ 225 s.

� The inlet and exit helium pressures remained constant at all times.

� No heating was generated in the DP-B by transient turbulence induced in
the conductor’s helium flow resulting from the current ramping. Steady-state
frictional flow losses through the DP-B are, however, present.

Table 7.4: Parameters of DP-B and CIC Conductor

Double-Pancake B CIC Conductor

Winding i.d., 2a1 [mm] 1000 # strands 225

Winding o.d., 2a 2 [mm] 1820 Strand diameter d s t [mm] 0.78

Winding height, 2b [mm] 50 Total Acu + A nc [mm²] 107

Total # turns in DP-B 33 Total conductor length [m] 150

Table 7.5: DP-B Midplane Field Data @ 25 kA

r [m] |B | [T] r [m] |B| [T]

0.5

0.6

0.7

5.0

3.0

1.5

0.8

0.9

—

0.5

2.0

—
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Problem 7.8: AC losses in the US-DPC Coil

Figure 7.19 presents measured total AC losses per cycle [mJ/cm³], at 4.2K, vs
B m [T] data for a single Nb3Sn strand used in the DP-B conductor. The strand
was subjected to external field pulses (inset); the strand carried no transport
current. Data, originally based on those of Takayasu [7.46], are for cycle times
of 24, 12, and 6s; only those for = 6s are presented in the figure. You may
assume the total AC losses are composed only of hysteresis (ehy ) and coupling
(e cp). A valid theoretical ecp line for this strand at = 6 s is also plotted in
Fig. 7.19. With Bm given in tesla: ecp = 0.53B2

m mJ/cm³. Also note that for this
strand, where is the coupling time constant.

Fig. 7.17 Transport current pulse applied to the US-DPC [6.30].

Fig. 7.18 Temperature waveform measured at the exit of DP-B
for the transport current pulse shown in Fig. 7.17 [6.30].
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Problem 7.8:

a)

b)

c)

AC losses in the US-DPC Coil

Explain the general shape of the temperature trace Tex (t) shown in Fig. 7.18.

Using the exit temperature trace, Tex(t ) presented in Fig. 7.18, determine
the total AC losses generated in the DP-B, Ea c [J], by the transport current
pulse. You should derive, by clearly specifying the thermodynamics control
volume, appropriate equations required for loss computation. To simplify
numerical computation, you may use an average Cp of 4.0 J/gK for helium
in the temperature and pressure ranges of interest.

Using the data of Fig. 7.19, compute Eac generated in the DP-B under the
current pulse of Fig. 7.17 and demonstrate that it is within ~10% of Ea c
determined in b). Assume that there are no strand-to-strand coupling losses
in the DP-B conductor. Also assume that the conductor’s critical current at
5T is 100 kA. Hint: To compute E ac from Fig. 7.19 data with the accuracy
required for this problem, it is necessary to divide the DP-B radially into 5
segments and use an appropriate value of Bm (given in Table 7.5) for each
segment to determine its eh y and ecp .

C H A P T E R 7

Fig. 7.19 Total AC losses per cycle for unit strand volume [mJ/cm³], at 4.2K, v s
Bm [T] data of a single DP-B conductor strand subjected to external field pulses
(inset); the strand carried no transport current. The continuous solid curve gives
the coupling loss density per cycle for this strand at =6 s: ec p =0.53 B ² m J / c m ² ,m
with B m in tesla. Based on data presented in [7.46].
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Solution to Problem 7.8

a) The first temperature peak with ∆T = 4.77K – 4.62K = 0.15K occurring
at t = 50s is a result of the current ramp-up that induced the first dose of AC
losses in the coil. The second peak with ∆T = 4.90K – 4.73K = 0.17K occurring
at t = 135s is a result of the current ramp-down that induced the second dose of
AC losses in DP-B. Because each ramp current has the same |dB/dt|, each should
have generated the same heating in the DP-B or the same ∆T. The measured ∆T
from each ramp agrees reasonably well.

b) The control volume encloses the DP-B; helium enters into and leaves from
the control volume, respectively, at the inlet and exit of the DP-B. Within this
control volume, the following power equation for helium is valid during the current
ramping:

(S8.1)

where E cv is the internal energy of the fluid; is the work (actually time rate
of change), except the pdV work, performed by the fluid external to the control
volume; h in ( t) and h ex (t ) are, respectively, the specific helium enthalpies at the
inlet and exit. For this particular case, hin(t ) and h ex(t) may be expressed as:

(S8.2a)

( S8.2b)

where (hin) ss and (h ex) ss are steady-state enthalpies at the inlet and exit; and
ξ ex (t) is the “transient” enthalpy at the exit, resulting from the current pulse.
Integrating Eq. S8.1 with time between t = 0 and t = 250s, and realizing that
Ecv (0) = E cv (250s), we have:

(S 8.3)

Because if any, does not change during the current pulsing, it remains con-
stant at all times and the following equation is valid at all times, including during
the 250-s period of interest:

(S 8.4)

In this particular case, because the fluid has no work interaction (except the pdV
work) external to the control volume, = 0 and (h in ) ss = (hex )ss , which is
identical to the condition for J-T (isenthalpic) expansion.
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Solution to Problem 7.8

[For the range of temperature and pressure for this case, the J-T expansion coef-
ficient, , is negative, making because

However, measured values were = 4.62K and = 4.73 K.
The only reasonable explanation for this discrepancy is inaccuracy in temperature
measurement involving different sensors. That is, differential measurement with
one sensor, e.g. between inlet and exit, is generally accurate; absolute agreement
involving different sensors is generally much more difficult. Because of this con-
fusing discrepancy in temperatures, Tin was not given in the problem statement.]

Combining Eqs. S8.3 and S8.4, and recognizing that ξ ex (t ) is given by
with we have:

(S8.5)

The temperature integral of Fig. 7.18 has a value of about 26 Ks. With   = 13 g/s
and Cp = 4.0J/gK, we obtain Eac  1350 J.

c) As may be inferred from the field data given in Table 7.5, the field is not
uniform over DP-B. Because both ehy  and ecp are field-dependent, it is necessary
to take into account the field nonuniformity in computing these loss densities.
Following the suggestion given in the problem statement, we divide the DP-B into
five radial segments as in Table 7.5. We follow the procedure given below:

• Compute ehy in each radial segment; take an average of r-weighted
and multiply with total strand volume, Vs t, in the DP-B to obtain Ehy ,
the total hysteresis loss.

• Compute ecp in each segment; average r-weighted ecp and obtain ; and
then multiply with Vs t to finally obtain Ecp .

• The total AC dissipation Eac in the DP-B is given by: Eac  = E h y  + E cp .

The total strand volume Vst (Table 7.4):
Vs t = 16050 cm³.

Hysteresis : Because the transport current increases from 0 to 25 kA linearly
with time and 25 kA is 1/4 of Ic  (100 kA), the multiplying factor (1 + i²) has a peak
value of 1.0625 at 25 kA; its average is ~1.02, which is neglected in computation
of

As ehy is independent of dB /dt, at each of the five radial locations may
be estimated by taking the difference between the total losses (the line connecting
data points) and ec  = 0.53B²m mJ/cm³. The results are given in Table 7.6.

With , we have  of 63 mJ/cm³.

The total hysteresis loss:
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Solution to Problem 7.8

Table 7.6: Hysteresis Loss Density Computation

* From Fig. 7.19 data points.
† Based on

Coupling : Because ecp  depends on τm , the solid line given in Fig. 7.19 cannot be
used directly. Its value, corresponding to τm = 6 s, however, can be scaled for our
case (τm = 1.75s). Although pcp , coupling loss power density, scales as
e cp scales as because Table 7.7 presents the appropriate
values needed to compute ecp  with τm = 1.75s.

With ∑ r = 3.5m and ∑ recp = 41 mmJ/cm³, we have  of 12mJ/cm³.

The total coupling loss:

Total AC loss : Combining Ehy  and Ecp , we have: Eac  = E hy + Ecp  = 1204J,
which is ~150J less than that determined in b) based on the Tex (t) trace.

The measured strand AC losses of the DP-B conductor are greater by ~150 J than
those based on the single strand data (Fig. 7.19). This discrepancy, however, is not
due to strand-to-strand coupling losses in the DP-B because they were indepen-
dently measured to be negligible. Because the single-strand AC loss measurements
were performed before the strands were configured into the CIC conductor, the
discrepancy might be due to a slight difference between the test strand and actual
strands contained in the DP-B.

Table 7.7: Coupling Loss Density Computation

* From Fig. 7.19 plot.
† Scaled by 6/1.75.



300 CHAPTER 7

Problem 7.9: Splice dissipation in Hybrid III Nb-Ti coil
This problem uses the Hybrid III Nb-Ti coil to illustrate estimation of splice
dissipation. Splice dissipation is important in magnets operated in a bath of 1.8-
K superfluid helium such as Hybrid III SCM because the cost of refrigeration is
higher at 1.8 K than at 4.2 K.

The Hybrid III Nb-Ti coil consists of 32 double pancakes, each double pancake
is wound with two grades of 9.2-mm wide Nb-Ti composite strip. In each single
pancake, a “shake-hands” splice (Fig. 7.2, p. 266) between the high-field (HF)
grade conductor and low-field (LF) grade conductor occurs at r = 378 mm covering
a 90° arc; in each double pancake there are thus two such splices. In addition,
there are two more splices in each double pancake, at r = 455 mm over a 90° arc,
connecting the pancakes within the double pancake, which in turn is connected to
the next double pancake. Altogether the Hybrid III Nb-Ti coil has a total of 64
splices at r = 378 mm and 64 splices at r = 455 mm.

Compute the total splice dissipation rate in the Hybrid III Nb-Ti coil at
2100A. Each splice was soldered with Sn50-Pb50 solder. Assume that the
splices at r = 378 mm at 3T and those at r = 455 mm are at 1 T.

Mechanical Properties of Tin-Lead Solders

Table 7.8 presents selected properties of tin-lead solders [7.8]. Based on a factor of
3~4 improvement in tensile strength (σU ) in these alloys from room temperature
to cryogenic temperatures, it is reasonable to expect a similar improvement in
shear strength (σ sh ) over the same temperature range; in shake-hand lap joints,
shear strength is a more important property than tensile strength.

Table 7.8: Mechanical Properties of Sn-Pb Solders

* T mb : temperature at which melting begins; Tm l : molten temperature.
† Unless otherwise specified, at room temperature.
‡ Yield strength.
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Solution to Problem 7.9

To make a conservative estimate, we shall use R c t data having the higher values
of R c t for Sn50-Pb50 (Table 7.2, p. 267): Rc t of 3.3 × 10 –12 Ωm² at 1T and
4.1 × 10 –12 Ω m² at 3T.

Splice resistance at 378 mm: By applying Eq. 7.20, we compute resistance
Rhl at r = 378 mm:

( S9.1)

where a is the conductor width and lh l is the splice overlap length. lhl is given
by: lh l  = πrhl /2, where r hl is the winding radius at which the splice takes place.

With R c t = 4.1 × 10–12 Ω m
2
, a = 9.2 × 10–3 m, π/2 = 1.57 (90° arc), and rhl =

0.378 m, we have:

( S9.2)

Splice resistance at 455 mm: Similarly, resistance Rpp at r = 455 mm is given
by:

(S9.3)

where a is the conductor width and lpp is the splice overlap length. lpp is given
by: l pp = πrpp /2, where rpp is the winding radius at which the pancake-pancake
splice takes place.

With R c t = 3.3 × 10
– 1 2 Ωm², a = 9.2 × 10 –3 m, π/2 = 1.57, and rpp = 0.455 m, we

have:

(S9.4)

Total splice resistance: Total splice resistance, Rs l, is given by:

(S9.5)

Total dissipation: Total dissipation at Iop = 2100 A, Ps l, is given by:

(S9.6)

That is, total dissipation at 2100 A is a fraction of a watt. This estimate is con-
sistent with data obtained from Hybrid III runs. When the system is allowed to
reach the lowest possible temperature with no transport current, the bath temper-
ature reaches 1.65 K; the ultimate temperature is unchanged even with a current
of 2100 A, indicating that the amount of extra dissipation by splices is indeed
negligible compared with an estimated quiescent refrigeration load of ~10 W.

3 0 1
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Problem 7.10: A splice for CIC conductors

Here we discuss a “shake-hands” splice for CIC conductors developed at FBNML
[7.10]. It is used to join CIC conductors in a Nb-Ti coil (Coil C), the outermost
coil of the three superconducting coils (Coils A, B, and C), for the NHMFL’s 45-T
hybrid magnet [3.13]. The Nb-Ti coil consists of 29 double pancakes, each wound
with a CIC conductor. (The drawing of a double pancake shown in Fig. 3.6 is based
on this double pancake.) The conductor contains 135 Nb-Ti multifilamentary
strands encased in a steel conduit [7.47]. (Table 8.5 in Chapter 8 gives a more
complete list of the conductor parameters.) Each of the 29 splice-resistances in
the Nb-Ti coil must not exceed 0.33nΩ in a field of 3.5 T; this limits the total
dissipation for the 29 splices to 1W at the design operating current of 10 kA. Note
that because it is difficult to splice CIC conductors within a pancake winding, each
double pancake in this coil is wound with one grade of CIC conductor.

Figure 7.20 shows the cross section of the splice where two “peeled” (from conduit)
bundles of cabled strands are tightly placed within a copper channel, separated
by a septum which extends over the entire overlap length, and filled with solder
(Sn60-Pb40, Table 7.2). As with all shake-hands splices, the overlap length is used
to control the splice resistance. Because the strands in each bundle are transposed
with a twist pitch length shorter than the septum length, each strand contacts the
septum; the distance between strands on one side to those on the other side is thus
defined by the septum thickness—the shortest distance between the bundles. A
stainless steel enclosure (not shown in Fig. 7.20), a part of the CIC helium circuit,
houses each splice.

A top view of a 64-cm long scale model of the splice is shown in Figure 7.21.
The splice occupies nearly the entire loop; current enters the loop from one end
through one bundle and leaves the loop from the other end through the other
bundle. Current commutation takes place within the splice.

Figure 7.22 shows zero-field voltage vs current data obtained for this model splice
with the splice immersed in a bath of liquid helium at 4.2K [7.10].

Fig. 7.20 Schematic drawing of the cross section of Coil C’s shake-hands
splice for CIC conductors, each containing 135 strands [7.10]. The actual void
space filled with solder (dotted) is much less than appears in this drawing.
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Problem 7.10: A splice for CIC conductors

3 0 3

Fig. 7.21 Scale model splice, 64 cm long. For clarity, only one strand from each
bundle is shown within the splice; also the two strands are configured side-by-side
rather than top-to-bottom as is actually the case shown in Fig. 7.20.

Fig. 7.22 Zero field voltage vs current data for the splice immersed in
a bath of liquid helium at 4.2K [7.10].



304

Problem 7.10: A splice for CIC conductors

C H A P T E R 7

a)

b)

c )

d)

e )

Explain the shape of each voltage plot in Fig. 7.22.

What is the overall splice resistance for this scale model?

Make a voltage vs distance plot at 6 kA. Assume the splice to be electrically
symmetric about its midpoint. Does voltage increase linearly with distance
from entrance (tap A in Fig. 7.21) to exit (tap A ') ? If it does not, give a
new way of interpreting the data.

Estimate the septum resistance (Rsp ) and reinterpret the data. The septum
is 3 mm thick, 10 mm wide, and 60 cm long. Assume ρcu  = 1.0 × 10 –10 Ω m
(RRR 173), a value for OFHC (oxygen-free-high-conductivity) copper at
4.2K and zero field.

Estimate Rsl in a background field of 3.5 T, the exposure field for these splices
in actual operation. Also estimate a total Joule dissipation due to 29 of these
splices at 10 kA. Is it less than a maximum limit of 1 W? Use the Kohler plot
(Fig. A4.2, Appendix V) to account for magnetoresistive effect.

Stability of a CIC Splice in a Time-Varying Magnetic Field

As exemplified by Coil C’s splice, whose cross section is shown in Fig. 7.20, a
CIC splice is essentially a solid mass of conductive metal. Under a time-varying
magnetic field, a large amount of AC loss is thus generated in the CIC splice. To
keep the splice superconducting at all times, it must be well cooled.

The most critical event in hybrid systems is an insert burnout. The burnout causes
a sudden drop in the insert’s fringing field to which a splice is exposed, heating
the splice. We may make the most conservative estimate of this heating density,
∆eac , by equating it to the net change in magnetic energy stored in the splice.
Thus:

where is the total fringing magnetic induction at the splice before the burnout
a n d is a decrease in that magnetic induction due to insert burnout. Note
that for Coil C, is a vector sum of the fringing magnetic inductions generated
by the insert and Coils A, B, and C. (Coils A and B are two inner Nb3Sn coils.)

To keep the splice superconducting during an insert burnout, the total heating
generated in the splice must be absorbed by the liquid helium layer ( δhe ) that
surrounds the splice. This assumption of a thin liquid layer soaking up energy is
generally valid for subcooled, 1.8-K liquid. For this splice having rectangular cross
section, asl wide and bs l  high, stability requires that:

For Coil C’s splice located at the magnet midplane,
asl ~16mm, bsl~33mm, and ∆hhe = 0.29 × 10 J/m³, Eq. 7.34  gives: δhe  ≥ 5 mm .6

(7.33)

(7.34)
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Solution to Problem 7.10

a) Each V vs I plot shows that V is essentially zero for currents up to 2~3 kA,
eventually merging to a straight line asymptote (Fig. 7.22). The only reasonable
explanation is to assume that the solder is superconducting up to 2~3 kA—note
that the splice was in zero background field. Either self field or current densities
are sufficient to destroy solder’s superconductivity above these currents.

b) From the slope of the solid straight line (Fig. 7.22), we have: Rsl = 87pΩ as
the overall splice resistance at 4.2 K and in zero field.

c )
entrance A ( VA ) to exit A' (VA' ). The plot shows a steep voltage rise at both
end regions. This “end” effect is not well understood. If it is due to current
commutation from the filaments to the matrix within each strand end, then this
commutation resistance should be evident at currents even below 2~3 kA.

The voltage between B (V B ) and B' (VB' ) increases linearly with distance. We may
divide splice resistance (Rsl ) into two components, one corresponding to the end
effect ( Ree ) and the other corresponding to the main region (Rjt ): R sl  = R ee  + Rjt .
R ee is independent of a splice’s overlap length ( sl ), while Rjt varies inversely with

sl . For this scale model, we have Ree  = 54p Ω and Rjt = 33pΩ .

d ) Using the appropriate values for the septum, we have: Rst = 50p Ω . Since
Rjt  is 33 pΩ , less than the septum’s 50pΩ ,  the septum is apparently “shunted” by
the other three sides, whose combined resistance is ~100pΩ .

e ) At 3.5T and 4.2K, for this copper (RRR = 173), from a
Kohler plot, is ~2, or the splice resistance is 3 times the value at zero field:
Rsl (3.5T) = 261 pΩ .  The total Joule dissipation at 10kA for 29 splices thus
becomes ~0.8 W, still within the maximum limit.

Fig. 7.23 Voltage vs distance plot at 6kA.

Using the same data, we can construct a V vs distance plot (Fig. 7.23), from
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Problem 7.11: Loss due to “index” number

C H A P T E R 7

This problem deals with nonzero resistance in superconductors due to “index”
number, n. This index becomes an important conductor specification parameter
for “persistent-mode” magnets, because these magnets must maintain field decay
rates below a certain level, typically 0.01 ppm (part per million) over 1-hr period.
Field decay rates are directly proportional to the total resistance of the “shorted
loop” of such a magnet. (Figure 8.11 of Problem 8.9 presents a basic circuit for
persistent-mode magnets.) As we shall see, the index can contribute significantly
to the total resistance.

It has been experimentally determined that in “real” conductors, electric field E
vs transport current density J characteristics may be given by:

Here, E c is the critical electric field that defines critical current density Jc . In
practice, Ec ranges from 0.1 to 1 µ V/cm. n is known as the index number and for
an “ideal” superconductor n = ∞ . Equation 7.35 implies that for “real” super-
conductors, i.e. those with n < ∞ , the electric field is not zero even for current
densities below Jc . It should be noted that Eq. 7.35 is based on measurement at
or above Jc ; below Jc , E decreases to a level too small to be measured easily in
practice. [The question is if Eq. 7.35 is valid even at J quite well below (<80%)
Jc where most persistent magnets are operated.]

It is believed that the finiteness of the index number is caused by a nonuniformity
(“sausaging effect”) in the diameter of the filaments [7.48, 7.49]. Figure 7.24 shows
three E vs J plots corresponding to three superconductors having the same Jc

one with n = ∞ and the others with n < ∞ , n1  > n2 .  (The curves are not
to scale, especially below Jc , so that the nonzero aspect of E in this region can
be magnified.) Note that at Jop  < J c , E = 0 for conductor with n = ∞ a n d
0 < E 1  < E2 for conductors with n1  and n 2 (< n1).

(7.35)

,

Fig. 7.24 Superconducting transition at three different index numbers.
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Problem 7.11: Loss due to “index” number

Consider a persistent-mode superconducting magnet wound with a conductor
whose E vs J curve at the magnet’s maximum field region corresponds to n < ∞
of Fig. 7.24. Because field strength decreases away from the maximum field region,
located in the vicinity of the magnet midplane at the innermost winding radius,
the conductor’s Jc also increases and Jop / Jc decreases away from the maximum
field region. Therefore, it is necessary to consider the index voltage only in the
maximum field region. Let mx be the total conductor length in this region.

a) Show that the current decay rate, dIop (t)/dt, because of index-induced resis-
tive voltage, is given by:

b) Suppose the field decay rate must be less than a critical level,
show that the Iop / Ic must satisfy the following equation:

For the following set of magnet parameters, solve Iop / Ic for n = 10,20,25,50.
I op  = 300A; Lm  = 100H; Ec  = 0.1 µV/cm; mx = 10³ m; and
10 – 8 /hr.

(7.36)

(7.37)

c)

Experimental Determination of Index Number

is through the conductor’s V vs I plot, a typical shape of which is shown in
Fig. 7.25. If E (J) is assumed to be given by Eq. 7.35, then it follows immediately
that n may be determined by measured values of V1 , V2 , I 1 , and I 2  (Fig. 7.25):

Typically, E1 = 0.1 µ V/cm and E2 = 1.0 µ V/cm.

(7.38)

Fig. 7.25 Typical E vs I trace from which to determine an index number.

where Lm  is the magnet self inductance.

The technique most widely used to determine index number n of a superconductor
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Solution to Problem 7.11

a) By integrating E field over a conductor length l mx , we obtain a total index-
induced voltage, Vn , at I op given by:

This resistive voltage causes a current decay, given by:

b) Because I op and H o are directly related, we have:

Solving for I op/ I c from Eq. S11.2, we obtain:

(S11.1)

(7.36)

(S11.2)

(7.37)

c) By inserting and other parameter
values into Eq. 7.37, we have:

(S11.3)

From Eq. S11.3, we have: I op /I c = 0.31 for n = 10; I op /I c = 0.56 for n = 20;
I op /I c = 0.68 for n = 30; and I op /I c = 0.79 for n = 50.

These values indicate that for a conductor of n = 10, I o p must be kept below 31%
of I c —rather an inefficient use of the conductor; for n = 50, I op may be increased
to 79% of I c . In most cases, n > 25 is adequate to make I op /I c at least about
70% and n ~30 is not an impossibly high value of n for Nb-Ti multifilamentary
conductors presently available commercially.

Furthermore, results of a recent experimental study [7.50] show that n, determined
from a V vs I plot at and above I c , instead of remaining constant actually increases
for currents below I c . In one test conductor, n is found to increase from ~30 at Ic

to 42 at I/I c = 0.86, 123 at I/I c = 0.81, and 145 at I/I c = 0.75. The results thus
indicate that as long as I op is not chosen too close to I c , even conductors with n
values as low as ~20 at I c may be usable for persistent-mode magnets.
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Problem 7.12: Frictional sliding

This problem covers the basics of frictional sliding. As discussed in the introduc-
tory section, high-performance superconducting magnets are susceptible to quench
because of mechanical disturbances, specifically of frictional motion and epoxy-
resin cracking. Figure 7.26 presents three friction coefficient (µ f ) vs sliding velocity
(v) curves for two surfaces of different material undergoing relative motion; µ f is
defined as the ratio of the force acting normal to the direction of motion to that
acting parallel to the direction of motion.

The solid curve, with both positive slope and negative slope regions,
represents the most general case. The positive slope region results from the inter-
facial creep behavior, while the negative slope region arises from the breakdown
of the creep mechanism. As the sliding speed increases past the maximum point

decreases because of the limited time available for interfacial
contact [7.22, 7.23].

The dotted curve represents sliding characteristics whose maximum µ f occurs so
near the ordinate of zero velocity that only the negative slope region exists in
practice. If the positive slope region is a manifestation of interfacial creep be-
havior, which diminishes with temperature, then this negative-slope-region-only
behavior exhibited at cryogenic temperatures by many magnet winding materials,
e.g. copper/nylon, copper/polyethylene, copper/Teflon [7.19, 7.20], is consistent.
Note that all these pairs have a positive slope region at room temperature.

The dashed curve represents the behavior of creep-resistant materials and is quite
prominently observed at 4.2K with material pairs like copper/G-10, and cop-
per/phenolic.

Fig. 7.26 Three friction coefficient vs sliding velocity curves.
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Problem 12: Frictional sliding

Figure 7.27 shows a mass M on a smooth surface subjected to two forces, F n
acting in the direction normal to the surface and Fx acting parallel to the surface,
in the x-direction. This model can be used to represent, in the simplest degree,
conductor motion taking place inside the magnet winding, in which both F n and
F x are components of the Lorentz force acting over a length of the conductor.

The friction coefficient between the mass and surface may be characterized by the
solid curve of Fig. 7.26. For the positive and negative sloped regions, assume that
F µ ( v ) may be approximated with the following simple expressions:

Positive-sloped region: (7.39a)

Negative-sloped region: (7.39b)

where a and b are both positive constants and vp k is the velocity corresponding to
µ f p k , the peak µ f . In reality, a and b are constant only over a small velocity range.
Generally, µf vs v plots shown in Fig. 7.26 have the v-axis given in a log scale.

a) Show that the sliding motion of the mass in the positive-sloped region is
stable. Specifically, show that an expression of v( t ) in this region in response
to a step force function, is given by:

(7.40a)

Note that v(0) = 0.

b) Show that the sliding motion of the mass in the negative-sloped region is
unstable. Specifically, show that an expression of v( t ) in response to a step
force function, is given by:

(7.40b)

Note that v(0) = 0.

Fig. 7.27 Mass M subjected to lateral force F x and sliding on a smooth surface.
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Solution to Problem 7.12

The equation of motion is given by:

(S12.1)

where F µ , the friction force, has the minus sign because the force acts in the
direction opposite to that of Fx .

a) Combining Eq. S12.1 and 7.39a with we have an expression for
the equation of motion for M given by:

Solving Eq. S12.2 for v(t), we obtain:

(S12.2)

(7.40a)

where the constant of integration is taken to make v = 0 at t = 0. Clearly, the
motion is stable with a steady-state velocity of Fx / a.

b) For the case when the µ f vs v curve is negative-sloped we have:

(S12.3)

We can solve Eq. S12.3 for v(t), obtaining:

(7.40b)

where the constant of integration is again taken to make v = 0 at t = 0. Here,
unlike in the positive-sloped case, the motion is unstable, with v increasing ex-
ponentially with time. In real magnets, the velocity is limited by the physical
arrangement of the windings.

This “stick-slip” type of motion occurring within the winding causes premature
quenches in high-performance adiabatic magnets. Typically, each stick-slip event
covers a distance of ~10 µm and hence it is appropriate to call a stick-slip event
“microslip” [7.12]. Even at this small displacement, a microslip can still cause
a quench in high-performance magnets. Because, as remarked above, positive-
sloped µf vs v behavior is based on an interfacial creep mechanism, which depends
on thermal activation, it ceases at cryogenic temperatures, particularly at 4.2K,
making it virtually impossible to guarantee stable motion with materials most
often used in the magnet winding.
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Problem 7.13: Source location with AE signals

This problem illustrates the usefulness of AE signals in pinpointing the location
of a mechanical event in superconducting magnets.

Figure 7.28 presents an oscillogram showing two traces of AE signals recorded
from an epoxy-impregnated test coil equipped with two AE sensors. The top
trace corresponds to the sensor attached to the top end flange of the test coil
and the bottom trace corresponds to the sensor at the bottom end flange [7.51].
Because the test coil is 0.1m long axially from the top flange to the bottom flange,
we may take the axial distance separating the two sensors to be roughly 0.1m.
Although it is not evident from this oscillogram, the mechanical event responsible
for the AE signals did trigger a quench.

Before the experiment, a support rod holding the test coil in a cryostat was tapped,
sending a mechanical impulse down the support rod and through the test coil.
From these measurements, the acoustic wave propagation velocity in the coil’s
axial direction was determined to be 2000m/s. (A separate set of measurements
determined the acoustic wave propagation velocity along the conductor axis to be
~5000 m/s. This velocity is very close to that given by where E cu
and are, respectively, copper’s Young’s modulus and density. The propagation
along the coil's axis corresponds to the turn-to-turn propagation, in which the
wave must travel from one conductor to the next through a thin layer of epoxy.)

Based on the traces given in Fig. 7.28, show that the mechanical event re-
sponsible for the AE signals occurred very close to the top end of the test coil.
How would the two traces change if the event occurred at the coil midplane?

Fig. 7.28 Oscillogram showing two AE signals recorded with two AE sensors at-
tached to an epoxy-impregnated test coil, 0.1 m long [7.51]. The top and bottom
traces correspond, respectively, to the sensor attached to the top flange and the
other sensor attached to the bottom flange. The arrow in each trace indicates the
arrival instance of the signals. Time scale: 50 µ s/div.
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Solution to Problem 7.13

Fig. 7.29 Crack distribution histogram expressed in terms of signal
arrival time difference between the top and bottom sensors for an
epoxy-impregnated test coil with both ends rigidly clamped [7.51].

Since the wave propagation velocity in the axial (turn-to-turn) direction in the
test coil is 2000m/s, a transit time between the two end flanges, separated by a
distance of 0.1 m, is 50 µs, which is a delay time between the top and bottom trace
shown in Fig. 7.28. Thus, it is reasonable to assume that the mechanical event
responsible for these signals originated near the top flange.

If the start of the bottom trace were ahead of the start of the top trace by 50 µs,
then the disturbance would have originated near the bottom flange. Clearly, if the
disturbance originated at the coil midplane, the start of each trace would coincide.

Figure 7.29 presents crack distribution histogram in terms of signal arrival time
difference between the top and bottom sensors, ∆t tb , for the test coil [7.51]. The
data show that quench-inducing mechanical events occur principally near coil ends,
more or less equally at either top or bottom. In this series of measurements, both
ends of the coil were rigidly clamped. Clamping creates large shear stresses near
the coil ends [7.17], which in turn induce cracking events that are responsible for
quenching. Note that the floating winding technique avoids this clamping.

“Clocks are slow on Sundays.” —Holly Golightly
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Acoustic Emission Sensor for Cryogenic Environment

As discussed in the introductory section of this chapter, AE monitoring has be-
come an almost indispensable technique in elucidating mechanical events occurring
within the winding of high-performance superconducting magnets. AE sensors
commonly available commercially are, however, generally unsuitable, mainly be-
cause they are not designed to withstand the large temperature excursion that
would occur when the superconducting magnet is cooled. To permit reliable AE
monitoring of superconducting magnets, AE sensors specifically designed for use in
cryogenic environment were developed in the early 1980s by Tsukamoto and oth-
ers at FBNML. The sensors have proven to last almost indefinitely, withstanding
many temperature excursion cycles.

Sensor Details: Figure 7.30 shows an exploded view of an FBNML AE sen-
sor. The sensor’s key component is a piezoelectric wafer (lead-zirconate-titanate)
10 mm in diameter and 2 mm thick. As
indicated in the figure, the disk is cut
into two halves, obtainable from a sup-
plier in paired (not random) halves.
The two halves are soldered to a cop-
per foil disk with their polarities re-
versed, making the AE a differential
type. At the input end of a differen-
tial charge amplifier, signals from each
half are subtracted to enhance AE sig-
nals and at the same time reduce noise
signals. The disk assembly is mounted
on a brass shoe and enclosed by a cop-
per cap; the disk, the brass shoe, and
the copper cap are soldered at their
rims. The flexible copper foil allows
the sensor elements to move relative to
the brass shoe and copper cap during
temperature cycling.

Sensor Mounting: The sensor is
housed within a sturdy diecast alu-
minum box and spring-loaded (from
both sides of the box) directly on a flat
surface of the coil form. Spring load-
ing is quite effective in ensuring a good
acoustic coupling between the sensor
and the magnet. An organic com-
pound often used to improve mechan-
ical contact is ineffective at cryogenic
temperatures—it simply becomes an-
other hard layer and does not act as
an adhesive. Fig. 7.30 Exploded view of AE sensor.
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Problem 7.14: Conductor-motion-induced voltage pulse

This problem studies the relationship between a voltage pulse and conductor mo-
tion. In the 1980s voltage pulse signals induced by conductor motion were inves-
tigated in detail to understand the mechanism of motion-induced quench events.

Figure 7.31 illustrates a conductor motion model [7.52] in which length l of a
current-carrying ( I t is deflected like) conductor exposed to a background field Be

a beam under the action of Lorentz force FL, given by:

(7.41)

Deflection involving short lengths of conductor can happen within the winding
particularly if the void space within the winding is not filled with epoxy resin.

From the theory of beams, an expression for the maximum deflection, ∆ y mx
(Fig. 7.31), is given by:

(7.42)

where E cd and I bb are, respectively, the conductor’s Young’s modulus and moment
of inertia. Equation 7.42 is valid for a beam fully clamped at both ends and
subjected to a uniformly distributed force, the sum of which is given by Eq. 7.41.
For a conductor, which is b thick and a(> b) wide (high), we have: Ibb  = b3a/12.

If this deflection occurs rapidly in the presence of a background field, Be , which is
uniform and directed as indicated in Fig. 7.31, the deflecting conductor will induce
voltage V across it, satisfying Faraday’s law:

(7.43)

where A sh is the shaded area indicated in the figure. The theory of beams gives
the shaded area in terms of l df  and ∆ ymx :

(7.44)

Fig. 7.31 Conductor deflection model based on theory of beams [7.52].
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Problem 7.14: Conductor-motion-induced voltage pulse

a) Many voltage pulses are induced by conductor motion during a magnet
charge-up. By accurately monitoring these pulses, we may deduce approxi-
mate sizes of l df for a given operating condition. Show that an expression
relating l df and V dt, based on the deflecting beam model presented here,
is given by:

(7.45)

b) Figure 7.32 presents a set of voltage and AE signals recorded with a super-
conducting dipole magnet (for an MHD facility) as it was energized [7.31].
The pulse, ~100mV in amplitude lasting ~0.5ms shown in the trace, oc-
curred at I t = 1300 A, clearly induced by a conductor motion event, which
also generated AE signals. This particular event did not lead to a quench.
The conductor is a Nb-Ti composite superconductor having rectangular cross
section. For the values of parameters given in Table 7.9, compute ldf.

c) Compute the maximum deflection ∆ y mx for the above parameters.

Table 7.9: Conductor Parameters

Conductor thickness, a [mm] 3

Conductor width, b [mm] 6

Young’s modulus, Ecd [GPa] 110

Transport current, I t [A] 1300

Background magnetic induction, Be [T] 4

Fig. 7.32 Voltage and AE signals recorded during a conductor
motion event in a superconducting dipole [7.31].
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Solution to Problem 7.14

a) To determine the length of the moving conductor segment, we start by com-
bining Eqs. 7.43 and 7.44 to obtain:

(S14.1)

Substituting ∆ y mx given by Eq. 7.42 into Eq. S14.1, we obtain:

(S14.2)

Solving Eq. S 14.2 for l d f, we obtain:

(7.45)

b) From the voltage pulse of Fig. 7.32, we can make a rough estimate of V dt.
With a pulse amplitude of ~100mV lasting ~0.5ms, the area under the triangular
shaped pulse is ~25 × 10–6 Vs. By substituting appropriate values into Eq. 7.45,
we have:

(S14.3)

That is, based on this beam deflection model, a conductor length of ~10 cm must
deflect suddenly in order to produce a voltage of ~100mV lasting ~0.5ms.

c) With and and substituting other appro-
priate values into Eq. 7.42, we obtain:

(S14.4)

A deflection of ~0.2mm over a conductor length of ~10 cm within a dry winding
is plausible for the conductor of this size.
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Problem 7.15: Disturbances in HTS magnets

This problem studies the effects of operating temperature on disturbances as ap-
plied to HTS magnets.

a) Discuss as quantitatively as possible how AC losses, splice losses, and me-
chanical disturbances vary with temperature, particularly over the operating
temperature range of HTS magnets, 20~100K.

b) Give reasons why disturbances are not as important for HTS magnets as
they are for LTS magnets.

Field Orientation Anisotropy in BiPbSrCaCuO (2223) Tapes

In polycrystalline HTS such as silver-sheathed BiPbSrCaCuO (2223) tapes, trans-
port current flows principally along the crystal’s a-b plane; whenever current
crosses the grain boundaries it flows along the c-axis. As discussed briefly in Chap-
ter 1, the superconductor’s critical current density is determined by flux pinning
sites that balance the Lorentz force density. Because HTS have anisotropic flux
pinning sites, their critical currents are also anisotropic; the effect is pronounced
at higher temperatures as seen from representative data shown in Fig. 7.33.

Fig. 7.33 Jc ( B ⊥ ) /J c ( B ||) vs B plots for a silver-sheathed BiPbSrCaCuO (2223) tape
at 4.2 K (circule) and 27 K (squares) [7.53]. Jc ( B ⊥) (perpendicular field) data and
J c ( B ||) (parallel field) data are for two nearly identical tapes. Jc ( B ||) data are shown
in Fig. A5.3; the two tapes have nearly identical Jc (0) values at each temperature.
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Solution to Problem 7.15

a) AC hysteresis loss: If HTS’s Jc is about the same as LTS’s in their re-
spective temperature ranges then ehy would remain the same for the same filament
size.

AC coupling loss: ecp would be affected to the extent τcp is affected, which will 
be through and . Hence for the Same , coupling losses
will be less for HTS magnets than LTS magnets perhaps by a factor of ~10 if HTS’s
operating temperature is ~80 K. To become a magnet-grade superconductor, HTS
must eventually be of twisted multifilaments with twist pitch lengths comparable
to those in LTS; limited success has been achieved recently toward this goal with
silver-sheathed BSCCO tapes [7.54].

AC eddy-current loss: Because eed ∝ 1/ρm , eddy-current losses will also be
~1/10 for HTS than those for LTS, again if HTS magnets are operated near 80K.

Splices: Because resistivities of solders are weakly dependent on temperature,
the solder’s contribution to Rc t , say at ~80K, should only be slightly higher than
that at 4K. However, because the resistivities of copper and silver are ~10 times
greater at 80K than those at 4K, the matrix metal’s contribution to Rc t will not
be negligible. Splice losses may thus increase by a factor as much as ~10.

Mechanical: Because the effect of temperature on friction coefficients over the
range 4~100K is slight—if there is an increase, it is less than a factor of 2
[7.19,7.20]—the amplitude of frictional heating, for example, will increase only
slightly as the temperature is raised from 4 to 80K.

b) We may make the following observations on the magnitude of disturbance-
induced losses as operating temperature is increased from 4 to near 80K:

� Increase by a factor of ~10, e.g. splice;

� Unchanged, e.g. hysteresis loss and mechanical;

� Decrease by a factor of ~10, e.g. coupling and eddy-current.

As seen in Problem 6.14, over this temperature span the energy margin in adi-
abatic magnets, on the other hand, increases by a factor of as much as ~106.
Therefore, disturbances are clearly not pressing design issues for HTS magnets as
they are for LTS magnets. This assessment is valid for HTS magnets operating
at a temperature above ~20K. (Note that because electrical resistivities of both
copper and silver remain roughly constant over the temperature span 4 to ~30K,
the losses by splice, coupling, and eddy-current—each dominated by normal-metal
electrical resistivity—also remain constant over this temperature span.)
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CHAPTER 8
P R O T E C T I O N

8.1 Introductory Remarks

As remarked in Chapter 1, superconducting magnets may be divided into two
classes. Class 1 magnets are large and generally cryostable. Magnets for fusion
reactors belong to Class 1. Class 2 magnets are small and operate at high overall
current densities under adiabatic conditions. Magnets for MRI and NMR systems
are in Class 2. This chapter addresses the protection issue, focusing principally
on Class 2 magnets; more specifically it addresses quench-induced conductor over-
heating, which can cause irreparable damage to magnets. As remarked in Chapter
1, protection against overheating increases in difficulty with operating tempera-
ture and therefore becomes a more important design issue for HTS magnets. At
least for the near future most HTS magnets, chiefly because of their processing
requirements, will be of Class 2.

Montgomery [8.1] and Thome [8.2] give surveys of “failures” in magnets and mag-
net systems. Of the 115 entries that Montgomery classified into six areas of failure
(Table 8.1), the most frequent (29) are insulation related, followed by 25 entries
related to mechanical support. The Table 8.1 data must be viewed with the under-
standing that the data base for this survey may include more Class 1 magnets than
Class 2 magnets. (Although there have been more Class 2 magnets built, mostly
for MRI, failures in these commercial magnets are seldom reported and are thus
generally not included in this kind of survey.) This is probably the reason why
the data tend to show more failures related to insulation (large discharge voltages,
as discussed in Problem 8.1) and mechanical (large forces), both characteristics of
Class 1 magnets, than those related to conductor (high overall current densities),
characteristic of Class 2 magnets.

Before focusing on the problem of overheating, we discuss here briefly two impor-
tant problem areas in superconducting magnets: 1) mechanical and 2) electrical.

8.1.1 Mechanical

There are three kinds of problems in superconducting magnets that are mechanical

Table 8.1: Classification of Failures [8.1]

Area of Failure No. Entry

Insulation 29

Mechanical 25

System Performance 21

Conductor 17

External Systems 16

Coolant 7

323
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in origin: 1) mechanical-disturbance induced quenches; 2) strain-induced conduc-
tor damage; and 3) structural failure. Subject 1 was treated in Chapter 7. Subjects
2 and 3 are only briefly described here. Strain damage is serious in strain-sensitive
conductors such as Nb 3Sn and HTS. Because strain-dependent critical current
density data for Nb-Ti and Nb3Sn are available [3.33,3.34], and because it is now
possible to quantify the stresses to which conductors are subjected accurately in-
cidents of strain damage that render the entire magnet useless are quite rare.

Lorentz forces and fatigue contribute to mechanical failures, particularly the forces
that appear under fault conditions which are generally more difficult to anticipate.
Fortunately, because of the collective experience gained in the magnet community
over the past 30 years, blatant structural failures in superconducting magnets are
now virtually nonexistent. A significant advance in structural analysis through
the use of finite-element techniques has also reduced incidents of failure. Because
there are very few active superconducting magnets that have been operating for
10 years or more, it is difficult to gauge their “fatigue proofness.” The Hybrid II
[3.5], in operation at FBNML since 1981, may qualify as one of these few magnets.

8.1.2 Electrical

The most serious electrical failure in magnets is arcing that either permanently
damages a section of the winding or, if arcing is mild, simply short circuits two
neighboring conductors. Either way, the magnet is no longer a reliable system
component. An arc-inducing high voltage is another problem that may arise in
the protection technique most widely used against overheating. (This is discussed
in Problems 8.9~8.11, and discussion on this subject is deferred until then.)

The voltage taps used to monitor the magnet must not fail because they typically
provide signals to a quench-detection system protecting the magnet. Despite care-
ful and methodical procedures used to mount them to the magnet for permanent
service, some do eventually become open- or short-circuited. The key word for
mounting voltage taps to the magnet is ruggedness.

8 . 2 Protection for Class 2 Magnets

Within the winding of Class 2 superconducting magnets, there are three dangerous
failures that can be induced during a magnet quench: 1) overheating (meltdown);
2) high-voltage arcing; and 3) overstressing. Of these accidents, overheating, par-
ticularly meltdown, must be avoided at all cost; the other two, because they are in
some lucky instances repairable, are not as irreversible as the first one. Arcing and
overstressing are addressed in Problems 8.9~8.11 where a widely used protection
technique against overheating is discussed in detail.

The thermal process that may eventually lead to the meltdown of a section of
the winding in a superconducting magnet is quite complex; protection against
overheating is one of the magnet issues that has received a great deal of attention
since the early days of superconducting magnet technology [8.3~8.5]. Interest in
this subject is unabated, driven by consideration of two types of magnets that
will be of paramount interest and importance in the coming years: 1) high-field
(> 12 T) magnets for NMR spectroscopy and 2) HTS magnets.
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A high-field NMR magnet, typically consisting of as many as a dozen nested
solenoids, is generally operated in persistent mode. The persistent-mode operation
is needed in NMR magnets to satisfy requirements of temporal field stability. To
minimize the system’s refrigeration load, the magnet is physically uncoupled from
the external power source. Ensuring a suitable conversion of magnetic energy into
thermal energy in the event of a quench in such an isolated Class 2 magnet is
generally difficult and challenging.

8.2.1 Meltdown

The meltdown of a section of the winding by overheating is not uncommon. It
results from conversion into thermal energy of the magnetic energy stored by the
entire magnet over a fraction —as small as 1%—of the winding volume. To heat
up copper, a good representative material of the winding, from 4K to its melting
temperature of 1356 K entirely by the adiabatic conversion of the magnetic energy
stored only within its own volume, the intial magnetic induction, B0 , would have
to be ~115T, as demonstrated below:

(8.1)

That even a modest magnet, e.g. a 4-T magnet, is known to have been permanently
damaged by overheating attests that an unfavorable energy concentration can
occur in real magnets. (If a local magnetic energy density is converted locally into
heat, the maximum hot-spot temperature for a 4-T magnet would only be ~40K;
even for a 25-T magnet it is still only ~200K.)

8.2.3 Magnet Quench

The prediction of the time-dependent temperature distribution within the winding
of a quenching coil is difficult, particularly if the coil is part of a magnet comprised
of many coils. It can be quantified only after the coil’s time-dependent current and
voltage are solved, through an analysis of normal zone growth. Thermal-diffusion-
propelled normal zone growth proceeds one dimensionally along the conductor
in unfilled windings that are cooled by liquid helium [8.3,8.6~8.11], while it is
generally three dimensional in epoxy-impregnated adiabatic windings [8.12~8.21].
It has been verified experimentally that in adiabatic windings the transverse (turn-
to-turn) propagation velocity of a normal zone is proportional to the longitudinal
(along conductor axis) propagation velocity [8.17]. The power density equation
appropriate for adiabatic windings may be given by Eq. 6.1 (p. 203) with the
disturbance ( gd ) and cooling (gq ) terms set to zero: g d = g q = 0 .

Quench propagation in an adiabatic winding involves two coupled processes: elec-
trical and thermal. Simply stated, the propelling source of normal zone propa-
gation is Joule heating, which is controlled by the winding’s electric circuit. The
resistances appearing in the electric circuit are in turn controlled by the wind-
ing’s “thermal” circuit. In a magnet comprised of more than one winding, the
complexity increases owing to inductive coupling among windings.
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8.2.4 Self-Protecting Magnet

A superconducting magnet is said to be self-protecting if it can be protected against
overheating by having normal zone spread out quickly over most of its winding
volume. How fast this process takes place may be gauged by the normal-zone
propagation (NZP) velocity. Self-protecting magnets generally have “high” NZP
velocities. Ideally all isolated Class 2 magnets should be self-protecting.

8.3 Computer Simulation

Because of the coupled nature of quench processes in adiabatic magnets, particu-
larly those comprised of more than one coil, quench analysis is best performed with
the aid of a computer. From Wilson’s early attempt in 1968 [8.13] to comprehen-
sive works by Kadambi in 1986 [8.16] and Kuroda in 1989 [8.18], computer-aided
quench simulation work is still in progress. Recently, it has been applied to the
study of a quenching composite HTS tape [8.21].

Here we briefly describe the quench simulation codes for adiabatic, solenoidal
windings that have evolved at FBNML, starting in 1985 with Williams’ work
[8.14]. The basic postulate of the FBNML codes is that the complex thermal
diffusion process that controls normal-zone propagation within the winding may
be expressed by a single parameter U t , the H-, T-, and J -dependent transverse
propagation velocity. The complex effects of the winding’s thermal properties are
incorporated into Ut and the codes are simplified immensely without sacrifice in
accuracy. As discussed in Problem 8.8, Ut is related to longitudinal propagation
velocity, whose functional dependencies on H, T, and J can be derived from
Eq. 6.1 (See Problem 8.7). U t thus depends both on time and space within the
winding.

Fig. 8.1 Quenching in an adiabatic, solenoidal winding.
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Fig. 8.2 Simulation of normal-zone propagation in a composite HTS tape [8.21].

Figure 8.1 pictorially shows quench propagation within an adiabatic solenoidal
winding, which in this case is a close-packed hexagonal arrangement of round
wire, impregnated with epoxy resin. Note that quenching in the figure is initiated
at the innermost radius of the winding midplane. The turn-to-turn transit time by
transverse propagation velocity (Ut) is generally shorter than the circumferential
transit time by longitudinal velocity Ul because of the following condition, valid
in most windings:

(8.2)

where a1 is the innermost winding radius and dcd is the conductor diameter.

Figure 8.2 presents the results of a numerical analysis of the nonlinear partial
differential equation (Eq. 6.1) computed for a propagating normal zone along the
axis of an adiabatic composite HTS tape [8.21]. The temperature profiles are
computed at a time interval of 2 seconds; an equal distance between adjacent
profiles shows that normal zone propagation velocity is constant. This result
indeed confirms our basic postulate that the normal zone does propagate at a
constant velocity when key parameters—field, temperature, and current density—
are constant.

“ACCIDENT, n. An inevitable occurrence due to the
action of immutable natural laws.”—Ambrose Bierce
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Problem 8.1: Active protection

This problem discusses an active protection technique widely used in large magnet
systems. Originally proposed by Maddock and James in 1968 [8.22], its basic
premise is to protect the magnet by dissipating most of the stored energy into
a “dump” resistor connected across the magnet terminals. With most of the
potentially dangerous energy dissipated elsewhere, the hot spot is heated only
during the brief time that the magnet current is decaying to zero. As we shall
see in this problem, the faster the current decay rate, the smaller the hot-spot
temperature. To achieve this fast rate of current discharge, however, the magnet
terminals have to withstand higher voltages. Thus, the magnet designer must
choose a hot-spot temperature on one hand and a terminal discharge voltage on
the other: two conflicting requirements, as is often the case. What all this leads
to is another criterion for current density over the matrix metal cross section at
operating current, [Jop]m.

Figure 8.3 presents the basic circuit for this active protection technique, commonly
known as “detect-and-dump.” The magnet is represented by inductance Lm ;  the
dump resistor, connected across the magnet terminals and usually located outside
the cryostat, is represented by RD . Switch S is opened when a nonrecovering
normal zone, represented by r(t), appears within the magnet. The stored magnet
energy, Em, at the magnet’s operating current Iop is given by L m I²op / 2 .

This active protection technique requires two sequentially executed actions: 1)
detection of a small non-recovering normal zone; and 2) opening of switch S that
forces the magnet to discharge through the dump resistor. The drawback of the
technique is that both actions are subject to failure. Detection of this normal zone
is not easy because of the presence of a large inductive voltage: usually the action
is needed while the magnet is being charged up, rather than after it has been fully
charged to Iop and is in the quiescent state. Problems 8.3 and 8.4 discuss quench
detection techniques useful for this protection scheme.

Fig. 8.3 Magnet circuit for the detect-and-dump active protection.
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Problem 8.1: Active protection

a) With switch S open, a differential equation for magnet current I (t) is given
by:

(8.3)

Show that for the case r(t ) << RD , the magnet current I( t ) after switch S is
opened is given by:

(8.4)

b) Starting with the power energy density given by Eq. 6.1 (p. 203) with gk =
g d = gq = 0, show that an expression for a “protection” criterion on operating
current density in the conductor matrix, is given by:

(8.5)

where Ac d is the overall conductor cross sectional area. VD  = RD Iop is known
as the “dump” voltage. Z(Ti,Tf ) is defined as:

(8.6)

where Ccd (T) is the conductor's heat capacity  and ρ m (T) is the matrix metal
resistivity, both functions of temperature. Ti  and Tf are the initial and final
temperatures of the hot spot—generally the region in the winding originally
driven normal.

From Eq. 8.5 we can derive an expression for VD :

Equation 8.7 states that VD increases linearly with Em and quadratically
with [Jo p]m and decreases inversely with Iop .

c ) Consider a Nb-Ti composite strip, a = 10mm and b = 3mm, with a volu-
metric copper-to-superconductor ratio (γ c / s) of 4. With fp  = 0.5 (fraction of
conductor perimeter exposed to liquid helium) and qf m  = 0.36 W/cm², com-
pute Io p, the operating current that satisfies the Stekly criterion. For this
value of Io p , what must VD be to make Io p satisfy Eq. 8.5 when Em  = 10 MJ?
Take Tf = 100 K. Note that Ac d  = Am  + A s , where As is the superconductor
cross sectional area. Also take RRR of the matrix copper to be 50.

d) Repeat c) for VD when Em  = 100 MJ.
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Solution to Problem 8.1

a) For the case r(t) <<  RD , Eq. 8.3 may be approximated by:

which, for I(0) = Io p, has a solution given by:

CHAPTER 8

(S1.1)

(8.4)

b) Equation 6.1, with gk  = g d = gq  = 0, is given by:

(S1.2)

where Jm  (t) = I(t)/Am . From Eq. 8.4, we have:

(S1.3)

Combining Eqs. S l.2 and S1.3 and placing temperature-dependent parameters on
one side and time-dependent parameters on the other side of the equation, we
have:

(S1.4a)

(S1.4b)

Integrating Eq. S1.4b between initial temperature Ti and final temperature Tf  for
the hot spot in the left-hand side and between t = 0 and t = ∞  in the right-hand
side and noting that Tf is the upper limit to the hot-spot temperature, we obtain:

(S1.5)

By noting that VD  = R D Io p, and thus RD  = V D /Io p , and that E m  = Lm I²op /2
and thus Lm  = 2Em /I²o p , we may rewrite Eq. S1.5:

(S1.6)
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Solution to Problem 8.1

Solving for [Jop]m from Eq. S1.6, we have:

(8.5)

Figure 8.4 presents Z vs T plots for copper, aluminum, and silver for Ti  = 4K.

Fig. 8.4 Z functions: 1. Silver (99.99%); 2. Copper (RRR 200); 3. Copper
(RRR 100); 4. Copper (RRR 50); 5. Aluminum (99.99%).
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Solution to Problem 8.1

c) With a = 10 mm, b = 3 mm, and a volumetric copper-to-superconductor ratio
(γc / s) of 4, we have: Pcd  = 26 × 10–3 m; A m = 24 × 10–6 m² ; and As  = 6 × 10–6  m².
For the conductor satisfying the Stekly stability criterion, we have, modifying
Eq.6.12a (p. 217) for :

(S1.7)

where . With
and we obtain:

(S1.8)

With we have: .
Inserting appropriate values into Eq. 8.7, we obtain:

(8.7)

(S1.9)

= 417V

A discharge voltage of 417V is safe and should not pose any undue difficulties.

d) With E m = 100MJ substituted into Eq. 8.7, we obtain a new value of VD ,
which now must be 4170V, a very dangerous level within the cryostat environment.
One method widely used is to center-tap the dump resistor to ground, reducing the
magnet-to-cryostat discharge voltage to ±2085 V—a significant reduction. This of
course does not reduce the magnet terminal voltage. Under certain conditions,
voltage levels up to ~5000 V are considered manageable. As remarked above,
Eq. 8.7 indicates one way to reduce VD for a given E m  is to increase Iop . (Note
that not much is gained from Z .) This is one of the reasons that for Class 1
magnets, e.g. for fusion reactors, operating currents as high as 50~100kA have
been proposed. Increasing Iop, however, makes other aspects of design difficult,
e.g. bulkier and generally more expensive conductors; higher heat inputs into the
cryostat through gas-cooled leads; greater Lorentz forces acting on bus lines within
the cryostat; higher dissipation rates at joints; and more expensive power supplies.

Comments on Z Functions for Magnet Protection

As evident from plots of Fig. 8.4, silver, included because it is the basic matrix
material for most HTS, is the best material for this protection criterion. This is
the result of good conductivity and “massiveness” as compared with aluminum
which is ~4 times lighter than silver. Copper, almost universally used in LTS, is
almost as good as silver.
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Problem 8.2: Hot-spot temperatures in Hybrid III SCM

This problem deals with protection of the Hybrid III SCM. Table 8.2 lists appropri-
ate conductor parameters. The magnet relies on the detect-and-dump protection
method discussed in Problem 8.1.

The dump resistor RD for Hybrid III is 0.3Ω. The inductance, Lm , of the SCM is
8.0H. At 2230 A (the highest operating current used), the SCM stores a magnetic
energy of 19.9 MJ. (The system’s nominal operating current is 2100 A.)

a) Compute the final temperature, Tf , at each hot spot for each grade of Nb3 Sn
and Nb-Ti composites when the SCM is dumped from 2230 A, assuming
that each conductor remains superconducting during the dump except at
the hot spot in each of the four conductors, and that adiabatic conditions
prevail at each hot spot. Assume further that each hot spot contributes
negligible electrical resistance to the circuit. Use the Z-function curve for
copper (RRR=50) in Fig. 8.4.

What actually happens when the SCM dump is initiated at t = 0 is that the
entire SCM is driven normal essentially at t = 0, primarily because of AC heating
generated by a rapid field change within the winding. The winding is subsequently
heated further by Joule dissipation. It is therefore more realistic to include r( t )
in the analysis of current decay. For the sake of simplicity, let us express r(t) for
this problem by:

(8.8)

where R0 and η are both constants.

b) Show that the SCM current I(t) during the dump (t ≥ 0) may be given by:

(8.9)

Note that I(t = 0) = I op .

c) Using the above model, compute the total energy dissipated in the SCM,
Es c m , for the following set of values: Io p  = 2230 A; Lm  = 8H; RD  = 0.3Ω ;
R0  = 0.3 Ω; η = 0.04 Ω /s.

Table 8.2: Hybrid III SCM Conductor Parameters

Superconductor

Conductor Grade

Overall width, a [mm] 9.49 9.10 9.20 9.20

Overall thickness, b [mm] 4.52 4.47 2.60 2.00

Acu / An c, γ c/s 4.1 5.3 3.0 10

Nb-Ti

H F L F H F L F

Nb3 Sn
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Solution to Problem 8.2

a) In general, when the discharge time constant is determined completely by the
SCM inductance Lm and dump resistor RD , we have, from Eq. S1.5:

(S2.1)

where γc/s is the volumetric copper-to-superconductor ratio. [Jo p] m is given by:

(S2.2)

Nb3Sn Grade 1: We have:

Using Eq. S2.1, we have:

From Fig. 8.4 (copper RRR=50), we find Tƒ ~75K.

Table 8.3 presents a summary for the four conductors. From Table 8.3 we note that
because of excessive hot-spot temperatures both grades of the Nb-Ti conductors
may be damaged severely.

b ) The circuit differential equation for t ≥ 0 is given by:

Equation S2.3 may be solved as:

(S2.3)

(S2.4)

(S2.5)

Table 8.3: Z and T ƒ Values for Hybrid III Conductors

Conductor

Nb3 Sn HF

Nb3 Sn LF

Nb-Ti HF

Nb-T i  LF

A m [J op]m Z ( Tƒ ) Tƒ
[10 - 6 m ²] [MA/m ² ] [1016  A²  s/m4 ] [K]

34.5 64.7 4.5 ~75

34.2 65.2 4.7 ~75

17.4 124.3 15.4 >> 300

16.7 133.3 21.4 >> 300
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Solution to Problem 8.2

Solving Eq. S2.5 for I(t), we obtain:

(8.9)

c) There are two methods to solve this problem.

Method 1: The easiest and quickest way to compute Es c m is to estimate an
average value of r(t) during the current decay, , and use a simple “voltage divider”
method to determine the energy dissipated in the SCM:
where in this case Em = 19.9 MJ.

Without r(t), the circuit time constant, τD , is given by L m /RD , which is ~27s.
From Eq. 8.8 we have: r(0) = 0.3Ω; r (5s) = 0.5Ω; r (10s) = 0.7Ω; r(15s) = 0.9Ω;
r(20s) = 1.1Ω.

The average of r(t) over this time period is 0.7Ω, or a new dump time constant of
This means the time average should be taken between

0 and ~10s, or a new average value of of 0.5Ω. That is, ~63% [= 0.5/(0.3+0.5)]
of 19.9 MJ is dissipated in the SCM: Es c m~12MJ.

Method 2: A more rigorous way to determine Es c m is to integrate r(t)I ² (t).
That is:

(S2.6)

Because Eq. S2.6 cannot be solved in a closed form, it must be integrated graph-
ically. Results are presented in Table 8.4.

Integrating r (t)I² (t) over the period from 0 to 20s, we obtain Es c m : ~11.6MJ,
which is ~60% of the energy initially stored in the SCM.

Incidentally, Z(Tƒ ) for Grade 1 Nb-Ti now becomes
and Z(Tƒ ) for Grade 2 Nb-Ti becomes

Table 8.4: Energy Dissipated in the Nb-Ti Coil

t [s] r(t)  [Ω] I(t) [A] r( t ) I ²(t) [MW]

0 0.3 2200 1.45

5 0.5 1420 1.01

10 0.7 809 0.46

15 0.9 407 0.15

20 1.1 181 0.04
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Problem 8.3: Quench-voltage detection (QVD)
1. Basic technique using a bridge circuit

This problem and the ones to follow discuss bridge circuit based quench-voltage
detection (QVD) techniques particularly useful in “coupled” magnet systems, such
as hybrid magnets consisting of two independently chargeable magnets.

Figure 8.5 shows the basic bridge circuit containing two coils, Coil 1 and Coil 2,
connected in series. The two coils can really be one coil divided into two parts.
L1  is Coil l’s self inductance and L2  is Coil 2’s self inductance. (In this model
when the two coils are connected in series, the mutual inductance between the
two coils can be included in the self inductances.) r represents the resistance of a
small normal zone created in Coil 1. R1  and R2  are the bridge circuit resistors and
Vo u t(t) represents the bridge output. In the following analysis, assume all circuit
elements, including r, are constant; also assume that R1  and R 2  are sufficiently
large so that they do not “load” the bridge circuit.

a) Show that an expression for output voltage Vo u t (t) is given by:

(8.10)

b) Show that when the condition given by Eq. 8.11a is satisfied, Vout (t) becomes
proportional only to rI( t). Namely:

(8.11a)

(8.11b)

Fig. 8.5 Bridge circuit voltage detection technique.



P R O T E C T I O N 337

Solution to Problem 8.3

a) For the case when R1 + R2 are “large,” the total voltage across the two coils,
Vcl(t ), is given by:

(S3.1)

For the same condition, the current through the resistors R1 and R 2, i R(t), is
given by:

(S3.2)

From the circuit shown in Fig. 8.5, we have:

(S3.3)

Combining Eqs. S3.1, S 3.2, and S3.3, we obtain:

( S 3.4)

(8.10)

b) To make Vout (t) proportional only to rI( t), the first two terms in the right-
hand side of Eq. 8.10 must be equal to zero:

(S 3.5)

Equation S3.5 is simplified to give the required condition:

(8.11a)

With the first two terms in the right-hand side of Eq. 8.10 eliminated, Eq. 8.10
becomes:

(8.11b)

As we shall see in the next problem, the condition in real hybrid magnets is far
from ideal: it is generally very difficult to achieve the condition R2 L1 = R 1 L2
independent of I (t ) and dI /dt.
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Problem 8.4: Quench-voltage detection (QVD)

2. An improved technique

Figure 8.6 represents a schematic model for Hybrid II, another hybrid magnet
operating at FBNML [3.5]. The superconducting magnet is a Nb-Ti coil comprised
of 22 double pancakes (DP). In addition to the Nb-Ti coil, the water-cooled insert
and copper radiation plates are included in the figure to emphasize that in a
“real” system, magnetic coupling is not confined just to double pancakes; all three
components are coupled. The magnetic coupling between these components makes
“balancing” the bridge circuit studied in Problem 8.3 not straightforward.

Two QVD techniques are used for the Hybrid II, whose SCM is divided into four
sections: section B' (DP 1 through 7); section A' (DP 8 through 11); section A (DP
12 through 15); and B (DP 16 through 22).

Technique I

In this technique, the magnet is divided into A'+A and B'+B. Although inductive
voltage canceling achieved by this technique is slightly better than that achieved
by a more conventional technique that divides the magnet into B'+A' and A+B,
it is still not entirely satisfactory. The technique cannot completely eliminate all
inductive voltages that are developed whenever either the water-cooled insert or
the Nb-Ti coil is energized.

Fig. 8.6 Schematic arrangement for Hybrid II containing 22 double pancakes [3.5].
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Problem 8.4: 2. An improved technique

Technique II

The second technique, developed by Ishigohka [8.23], divides the magnet into
22 double pancakes, and then combines them into two major components—one
component, V2n - 1 (t), containing odd-numbered double pancakes and the other
component, V 2n(t), containing even-numbered double pancakes. By adjusting the
gain of each of 22 separate amplifiers, we can adjust the voltage from each double
pancake to give minimum Vout( t) in the absence of a resistive voltage. Thus:

(8.12)

where α2 n – 1 is the amplifier gain for the (2n – 1)th double pancake and α2n is the
amplifier gain for the 2nth double pancake.

Discuss why Technique II is more effective than Technique I in eliminating
unwanted inductive voltages.

Voltage Attenuation in Magnet Protection Circuit

In Hybrid III SCM, fifty voltage signals are monitored for protection and control
of the magnet operation. Generally, each voltage signal, coming from one of either
32 Nb-Ti double pancakes or 18 Nb3Sn layers, is brought out with a pair of twisted
voltage leads from inside the cryostat to a data acquisition system located outside
the cryostat. The voltage leads pass through a hermetic connector placed at the
cryostat. The connector sometimes becomes the source of a lead burnout, caused
by the arcing of its pins. Arcing can be induced by a high voltage that appears
during a fast discharge.

A technique often used to limit the current through shorted leads is to insert a
resistor, Rlm , close to each voltage tap on the coil, as schematically shown in
Fig. 8.7. The induced current (ij ) through the shorted circuit, consisting of the
coil (voltage Vj ), two resistors, two lengths of voltage leads, and a short occurring
across pins, is given by Vj /2Rlm ; clearly we can make ij arbitrarily small by
choosing a large value for Rm l . In Hybrid III SCM, a 5-kΩ resistor is used for each
R m l . Note also that the presence of Rm l in each voltage tap lead makes it easier
to attenuate voltage signals reaching amplifiers.

Fig. 8.7 Schematic drawing of the arrangement of voltage leads for Hybrid III SCM.
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Solution to Problem 8.4

How successfully we can eliminate inductive voltages in Technique I (A + A' vs
B + B' ) depends on the closeness of inductive voltages of the two parts irrespective
of current level or current sweep rate. It turns out that in Hybrid II, because the
cryostat housing the Nb-Ti coil is not perfectly symmetric with respect to the coil’s
midplane, voltage balancing cannot be maintained irrespective of current level or
current sweep rate.

Also, more seriously, a bridge circuit setting optimized for charging the Nb-Ti coil
alone is not optimized when the insert is charged, and the optimized setting shifts
with self-field sweep rate as well as with insert sweep rate.

Technique II (odd-numbered pancakes vs even-numbered pancakes) minimizes spa-
tial nonuniformity of the entire system, which includes the coil itself, insert, ra-
diation shields, and other parts of the cryostat. This makes the total unbalanced
inductive voltages significantly smaller than those of the bottom-top case.

Figure 8.8 shows three “balanced” voltages, VA A ' , VBB' , and the odd-even differ-
ence voltage, Vδ for an insert trip from 25 kA [8.23]. Note that the peak value of
V V is about ~100 times greater than the peak value of VB B ' – AA' δ .

V δ is thus a much more sensitive method for monitoring only the operating con-
dition of the superconducting coil. The cost of improved sensitivity is the large
number of differential amplifiers required.

Fig. 8.8 Unbalanced voltages recorded at an insert trip in Hybrid II [8.23].
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Problem 8.5: Quench-induced pressure in CIC conductors

1. Analytical approach

One of the most serious design issues for CIC conductors is the large rise in internal
pressure that results when a CIC-wound magnet is driven normal.

This problem follows the analytical approach developed by Dresner [8.24]. We
consider the case in which a CIC conductor of total length 2l is driven normal
at one instant over its entire length. The following equations are valid for fluid
(helium) inside the CIC conductor:

(8.13a)

(8.13b)

(8.13c)

Equations 8.13a , 8.13b, and 8.13c, respectively, state the mass continuity, force
balance, and energy balance of fluid. ρ, u, and p are, respectively, helium’s density,
velocity, and pressure. fµ is the frictional coefficient for helium flow through the
CIC conductor; D is hydraulic diameter. gj f is Joule power density generated in
the conductor computed in terms of a unit fluid volume.

To derive an expression for the maximum pressure rise at the center (z = 0) of
the normal zone, (∆ p0) mx , it is necessary to proceed in several steps.

a) First, assuming further that du/dt = 0 (a condition nearly satisfied in this
case because the friction forces greatly dominate inertial forces), show that
an expression for the pressure rise at z = 0, ∆p0, is given by:

(8.14)

b) Next, assuming further that u increases linearly with z and u = 0 at z = 0
and u = um at z = l, and that ρ is independent of z, show that an expression
for ∆ p0 is given by:

(8.15)

c) Now, derive the following equation:

(8.16)

from the following thermodynamics equation:

(8.17)
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Problem 8.5: 1. Analytical approach

where c is the velocity of sound, β is the thermal expansion coefficient, and
k is the isothermal compressibility, which is the reciprocal of the isothermal
bulk modulus. c ², β , and k are given by:

(8.18a)

(8.18b)

(8.18c)

d) Next, combine Eqs. 8.13b,  8.13c, 8.15, and the 1st law of thermodynamics to
show that an expression for dρ/dt when du /dt = 0 may be given by:

(8.19)

e) Show that for the present case where u depends linearly on z, the time rate
of change of pressure at the center (z = 0), d p /dt0 , is given by:

(8.20)

f) Finally, when the pressure rise reaches a maximum, we have dp/dt0 = 0.
Show that an expression for (∆ po ) mx is given by:

(8.21)

Using an appropriate dependance of (β ²/ρC p² ) on p, Dresner reduces Eq. 8.21
to the following expression, valid when all the parameters are given in SI
units.

(8.22)

For limited experimental conditions, Eq. 8.22 has been shown to be quite
accurate.
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Solution to Problem 8.5

a) From Eq. 8.13b, with d u/dt = 0, we have:

Integrating Eq. S5.1 between 0 and l, we have:

(S5.1)

Thus:

(8.14)

b) With u = u m ( z / l ) and ρ =constant, we obtain from Eq. 8.14:

c) We start with an equation for dρ in terms of variables p and s :

From Eq. 8.17 we obtain, with dp = 0:

(8.15)

(S5.2)

(S5.3)

Substituting Eq. S5.3 into Eq. S 5.2, we have:

d) From Eq. 8.16, we have:

The 1st law of thermodynamics states:

(8.16)

(S5.4)

Substituting Eq. S5.5 into Eq. S 5.4, we obtain:

(S5.5)

(S5.6)
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Solution to Problem 8.5

From Eq. 8.13c, we have:

(S5.7)

Combining Eqs. S5.7 and S 5.6, we obtain:

(S5.8)

From Eq. 8.13a, we have:

(S5.9)

and when du /dt = 0, we have, from Eq. 8.13b:

Combining Eqs. S5.8, S5.9, and S5.10, we obtain:

(S5.10)

(8.19)

e ) With  u =  (um / l ) z we have, from Eq. 8.13a, dρ / dt  = –ρu m /l. Combining
this and Eq. 8.19, we obtain:

(S5.11)

From Eq. 8.15, we have:

(S5.12)

At z = 0 we have, from symmetry, u = 0 and combining Eqs. S5.11 and S 5.12,
we obtain:

f ) With dp /dt0 = 0, Eq. 8.20 may be written as:

(8.20)

Solving Eq. S5.13 for (∆p 0 ) mx , we have:

(S5.13)

(8.21)
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Problem 8.6: Quench-induced pressure in CIC conductors

2. CIC coil for the NHMFL’s 45-T hybrid

As mentioned in Chapter 3, a 45-T hybrid magnet is presently under construction
for the National High Magnetic Field Laboratory [3.13]. The system consists of
a 24-MW 31-T resistive insert and a 610-mm room-temperature bore supercon-
ducting magnet. The SCM in turn consists of two Nb3 Sn coils and the outermost
Nb-Ti coil, all wound with CIC conductors. FBNML is responsible for the de-
sign and construction of the 31-T resistive insert and the 8-T outermost Nb-Ti
superconducting coil, while NHMFL is responsible for design and construction of
the 6-T inner Nb 3 Sn coils. The CIC coils are cooled by static (no forced flow)
superfluid helium at 1.8 K.

Table 8.5 presents appropriate parameters for the Nb-Ti superconducting coil,
which is composed of 29 double pancakes. Both terminals of each double pancake
are connected to a manifold that supplies superfluid helium.

a)

b)

c)

Nb-Ti Coil Conductor

Winding i.d., 2a1 [ m m ] 1150 # strands 135

Winding o.d., 2 a2 [ m m ] 1680 Stand dia. d s t  [mm] 0.81

Winding length, 2 b [ m m ] 923 Total A n c [ m m ² ] 11

# of double pancakes (DP) 29 Total A c u [ m m ² ] 59

Conductor length/DP [ m ] 156 Total A h e [ m m ² ] 44

Bm x @ I o p = 10kA [ T ] 9 ρ c u @ T o p , B m x [nΩ m ] 0.45

Using Eq. 8.22, make a rough estimate of the maximum internal pressure
expected when one single double pancake in the Nb-Ti coil is driven normal
at the SCM’s normal operating current of 10 kA.

Williams estimates the maximum internal pressure using a completely differ-
ent approach [8.25]. He assumes an isochoric (constant volume) process for
the static  helium inside the CIC  conductor  during which both the strands
and helium are heated to a final temperature of 150 K. What will be the final
pressure inside the CIC conductor under this assumption?

Williams assumes that a particular double pancake “soaks” up energies from
other parts of the coils. If indeed a given double pancake is heated isochori-
cally to 150 K, what will be the total energy deposited in the double pancake?
Note that  the  energy stored in each double  pancake at 10kA is  ~3MJ. Is
there any “soaking” of energy from other parts of the coil by this double
pancake? For thermal energy computation, consider only the conductor and
the helium and neglect the conduit.

Table 8.5: The Nb-Ti Coil and Conductor Parameters
For NHMFL’s 45-T Hybrid SCM
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Solution to Problem 8.6

a) To determine the maximum pressure in the double pancake, let us first cal-
culate g j f (heat generation per unit helium volume). The total heat generation
in the copper matrix per unit conductor length is given by:
[W/m]. In terms of per unit helium volume, we have:
Thus:

(S6.1)

Because both ends of each layer are open to manifolds, l to be inserted into Eq. 8.22
is given by one half of the conductor length for one double pancake: l = 78m.
The hydraulic diameter D is given by: D = 4 Ahe /(135πds t ) = 5.36×10 – 4 m. With
l = 7 8 m , g – 4

j f = 1.66×107 W/m³, and D = 5.36 × 10 m, we have, from Eq. 8.22:

(S6.2)

From Eq. 8.20, we have varies quite a bit, but it never
exceeds a value of 0.1 /K above p ~ 10atm. For supercritical helium we have:
c~200m/s and Cp ~5×10³ J/kgK. Now with g j f ~ 2×10 7 W/m³, we find d p/dto <

Pa/s (= 100 atm/s), or it takes ~4s to reach ~400atm.
Because the effective discharge time for this SCM is ~4s, if there is no energy
transfer from other parts of the system, (∆ po) m a x should be less than ~400atm
[(4s)×(200 atm/s)]. Note that a rate of pressure rise of ~100 atm/s does not include
the negative contribution in Eq. 8.20; a pressure of ~400 atm should therefore be
the upper limit.

b) From isochoric P vs T curves for helium given in Fig. A2.1 (Appendix II), we
find that at 150 K a density of 147 kg/m³ (1.8 K, 1 atm) corresponds to a pressure
of ~800 atm.

c) Copper has an enthalpy of 25.3 kJ/kg at 150K; with a total conductor mass
(assumed to be all copper) in one double pancake of 100kg, the total energy
absorbed by the conductor in one double pancake is 2.5 MJ. Helium has an internal
energy density of ~500 kJ/kg at 150K and 800atm (Fig. A2.2, Appendix II) and
a negligible amount at 1.8K. With a total helium mass of 1 kg in one double
pancake, the total energy absorbed by the helium is ~0.5MJ, bringing the total
energy absorbed by one double pancake to be ~3MJ. Because each double pancake
stores 3MJ to start with, there is no significant soaking of energy by any particular
double pancake when it is assumed to be heated isochorically to a final temperature
of 150K.
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Problem 8.7: Normal-zone propagation (NZP)

1. Velocity in the longitudinal direction

In this problem we derive an expression for normal-zone propagation (NZP) ve-
locity in the longitudinal (along the conductor axis) direction, under adiabatic
conditions. is an important parameter for protection of high-performance adia-
batic magnets, e.g. MRI and NMR, because in these magnets, protection must rely
to a great extent on NZP within each winding; it determines the speed with which
this normal zone spreads out in the winding. In these adiabatic windings, NZP is
not confined only along the conductor axis but spreads out three-dimensionally. It
has been demonstrated experimentally that the “transverse” propagation velocity,
Ut , is proportional to [8.17].

a) Consider a normal-superconducting boundary moving at a constant velocity,
along a current-carrying (I ) superconducting wire in the +x-direction

under adiabatic conditions (gq = 0 in Eq. 6.1, p. 203), as illustrated schemat-
ically in Fig. 8.9. We shall first treat the case for a wire having no matrix
metal. With no cooling term in Eq. 6.1, we can write two one-dimensional
power density equations, one in the normal region (x < 0) and the other in
the superconducting region (x > 0). Here ρn and J are, respectively, the
normal-state resistivity and current density of the superconductor. Using
the coordinate transformation, z = x – show that an expression for the
power density equation in the normal region may be given by:

(8.23a)

and that an expression for the power density equation in the superconducting
region is given by:

(8.23b)

where the subscripts n and s refer to the normal and superconducting states.

Fig. 8.9 One-dimensional normal-to-superconducting boundary
moving at a constant velocity
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Problem 8.7: 1. Velocity in the longitudinal direction

b) Assuming k n , ks , C n , and C s are all constant and also 0 near
z = 0 [8.3], show that an expression for is given by:

(8.24)

are, respectively, the superconductor’s transition and operating
when I = 0.) Although it is rarely necessary

to use an exact expression of for which material properties are temperature
dependent, it is given below for the sake of completeness [8.19]:

where T t and Top

temperatures. (Note that T t = T c

For constant material properties, we may note that Eq. 8.25 reduces to Eq. 8.24.
Also for the case Cn = C s = Co , Eq. 8.24 may be written as:

erties with those of the matrix metal. According to Joshi [8.17], Tt

= (Tcs + T c ) 2, where Tcs

be defined as: Tcs = Tc ( I ).] Thus, Eq. 8.26 becomes:

where Ccd is the volumetric average of the superconductor’s and the matrix’s heat
capacities and Jm is the current density over the matrix metal’s cross sectional
area. Because ρm (the matrix metal’s electrical resistivity) is much smaller than
ρ n , and k m (the matrix metal’s thermal conductivity) is much greater than kn,
they are used in Eq. 8.27.

Note that may be generalized as:

which deals with the propagation velocity in the transverse direction, Ut

propagation velocity in HTS, is another reason why HTS’s
smaller than LTS’s.

(8.25)

(8.26)

Equations 8.24 through 8.26 are valid for superconductors having no matrix metal;
in reality most superconductors are composites and we may replace material prop-

is replaced by
is the current sharing temperature. [In the absence

of cooling, of course, there will be no current sharing. Nevertheless, it may still

(8.27)

(8.28)

Further discussion of Eq. 8.28 will be given in connection with the next problem,
. Also as

will be discussed in Problem 8.12 in connection with the discussion of normal-zone
is much

/
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Solution to Problem 8.7

a) A power density equation in the x-direction for the adiabatic case of NZP in
the normal region is given by:

(S 7.1a)

Similarly, a power density equation in the x-direction for the adiabatic case in the
superconducting region is given by:

(S7.1b)

When the normal-superconducting boundary moves at a constant velocity in
the +x-direction, we may transform the x coordinate to z: z = x – Thus:

(S 7.2a)

(S7.2b)

We also have:

(S7.3)

Substituting Eqs. S7.3 into S 7.2a and S 7.2b, we obtain for the normal region:

(S7.4a)

(S7.4b)

Rearranging Eqs. S7.4a and S 7.4b, we have an expression of the power density
equation in the normal zone given by:

(8.23a)

Similarly, we have an expression of the power density equation in the supercon-
ducting zone given by:

(8.23b)
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Solution to Problem 8.7

b) With k n and k s constant and noting = 0 near z = 0, we can rewrite
Eqs. 8.23a and 8.23b:

Normal (x < 0)

Superconducting (x > 0)

(S7.5a)

(S7.5b)

An expression for Ts (z) is given directly from Eq. S7.5b:

(S7.6)

where Top is the operating temperature far away from the normal-superconducting
boundary and c =

We also know that Ts (0) = T t , the critical temperature. Thus:

Combining Eqs. S7.5a, S7.7, and S7.8, we have:

Solving Eq. S7.9 for we obtain:

Another boundary condition is that the k( dT/dz ) of each region should be equal
at z = 0—heat flow must be continuous across the boundary:

(S7.7)

(S7.8)

(S7.9)

(8.24)

Important points to be noted from Eq. 8.24 (and Eqs. 8.26 and 8.27) are that
is directly proportional to current density J and inversely proportional to heat
capacity. As stated above, Eq. 8.24 is valid for a bare superconductor under
adiabatic conditions.
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Problem 8.8: Normal zone propagation (NZP)

2. Transverse (turn-to-turn) velocity

This problem discusses turn-to-turn normal zone propagation velocity, Ut , for
tape-wound pancakes under adiabatic conditions. Taking an appropriate limit, we
can show that Ut becomes proportional to where k i is the thermal
conductivity of the insulating layer between adjacent tapes and km is the thermal
conductivity of the matrix metal.

Figure 8.10 presents a section of a tape-wound pancake coil consisting of layers
of composite superconducting tape with a turn-to-turn insulating layer between
adjacent tapes. Also shown in the figure is an electrical analog of the lumped
parameter thermal model between tape 1 at temperature T1 and adjacent tape 2
at temperature T2 with the insulating layer at temperature Ti [8.26]. The first
R i /2, with units of m2 K/W, represents thermal resistance between tape 1 and
insulator; the second R i /2 represents thermal resistance between the insulator and
tape 2. Ci , with units of J / m3 K, represents the insulator’s thermal capacitance.

Fig. 8.10 (a) Section of a tape-wound pancake winding, showing
tape-insulator-tape arrangement. (b) Lumped electrical analog for
heat flow from tape 1 to tape 2.
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Problem 8.8: 2. Transverse (turn-to-turn) velocity

The normal zone “transient time” τt may be defined as the time needed to raise
tape 2’s (thickness δ c d and heat capacity Ccd ) temperature from Top to the
“effective” transient temperature for composite conductors under adiabatic condi-
tions. Thus, the following energy density equation may be written for tape 2:

(8.29)

In Eq. 8.29, time t = 0 is taken to be the instant that tape 1 is driven normal and
q 2 (t ) is the heat flux to tape 2 from tape 1 through the insulator.

Using the electrical analog for heat flow between tape 1 and tape 2 shown in
Fig. 8.10b, we can write an equation relating q2(t), T1 , and Ti :

(8.30)

Equation 8.30 states that heat flowing from tape 1 is divided into two parts, one
part to “charge” the capacitor (insulator of thickness δi and heat capacity Ci ) and
the other [q2(t)] to heat tape 2.

a ) Assuming that the rise in T2 is small compared with the source temperature,
Ti , we can make another approximation: For the case
where T1 increases linearly with time, i.e. and where
ki is the insulator thermal conductivity, show that q2(t ) is given by:

(8.31)

where is the thermal time constant of the insulator.

b) Combining Eqs. 8.29 and 8.31, show that an expression containing transit
time τt is given by:

(8.32)

Note that which depends on field and transport current, does influence
τt , though in a complicated manner.

c) Noting that where is the average heat capacity of
the tape over the temperature range of interest, show that Eq. 8.32 can be
expressed by:

(8.33)
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Problem 8.8: 2. Transverse (turn-to-turn) velocity

d) Note for τt >> τi , which is the case in many practical applications, especially
with HTS, show that an expression for τt may be given by:

e) Show that an expression for Ut when δ i << δcd  may be given by:

By further approximating Eq. 8.35 with
an expression for Ut given by:

we have

(8.34)

(8.35)

(8.36)

f ) Combining the expression of Ul given by Eq. 8.27 and recognizing that C cd
appearing in it should really be replaced by as in Eq. 8.36, show that
under the conditions assumed (τt >> τi and δ i << δ cd ) the velocity ratio in the
two directions are proportional to the  square root of the ratio “weighted”
thermal conductivities in the respective directions:

(8.37)

In both directions the driving force is the generation term, g j , and the process
is controlled by thermal diffusion.

“Truth is not always in a well.” —C. Auguste Dupin
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Solution to Problem 8.8

a) Using the approximation and defining
(because , we can derive from Eq. 8.30 a differential equa-

tion for q2 (t):

With and q2 (0) = 0, we obtain:

(S8.1)

(8.31)

b) By combining Eqs. 8.29 and 8.31, we have:

From Eq. S8.2, we have:

(S8.2)

(8.32)

c) Substituting into Eq. 8.32, we immediately obtain:

(8.33)

d) When τ t >> τ i , the right-hand side of Eq. 8.33 becomes , and we have:

(8.34)

e) By noting that we have an expression for Ut when δi << δ cd :

(8.35)

Equation 8.36 (p. 353) was applied by Lim in his investigation of transverse normal
zone propagation through Nb3Sn tape-wound pancakes [8.27]. His values of Ut

based on Eq. 8.36 agreed quite well with experimentally measured values.

f ) By taking the ratio of Ut given by Eq. 8.36 and Ul given by Eq. 8.27, we
obtain:

(8.37)
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Problem 8.9: Passive Protection of “isolated” magnets
1. Basic concepts

This problem deals with the basic concepts of a passive protection technique used
for persistent-mode superconducting magnets such as for MRI and NMR systems.
Unlike the active protection technique discussed in Problem 8.1, passive protection
techniques generally do not or cannot rely on devices located outside the cryostat.
The basic operational procedure for persistent-mode magnets is first described.

Figure 8.11 presents a circuit showing essential elements for operation of persistent-
mode magnets. Here the magnet is represented by two inductors in series to model,
in the simplest way, a real MRI or NMR magnet that is generally comprised
of as many as a dozen coils. We need at least two coils because the technique
relies on coupling of coils within the system. The entire magnet is shunted by a
superconducting switch, SW, in which a heater can make it either in the “normal”
(heater current on) or superconducting (heater current off) state. During the
charging sequence, the switch is “open” (normal state) and current from the power
supply flows chiefly into the magnet. At a designated operating current, the switch
heater current is turned off and the switch is “closed” (superconducting), placing
the magnet in persistent mode. Now the supply current can be reduced to zero
and, in order to minimize heat input through the current leads, they are removed
from the magnet, leaving the magnet “isolated.” As indicated with the dots (• )
in the figure, this particular magnet system requires at least 3 “superconducting
joints” to keep the current passage essentially lossless and thus to ensure persistent
operation. Each coil is shunted with a resistor (R1 or R2 ) and this shunting of
each coil, as we shall study here, protects these isolated magnets.

Fig. 8.11 Circuit for an “isolated,” persistent-mode 2-coil magnet.
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Problem 8.9: 1. Basic concepts

CHAPTER 8

It is noted here that the circuit of Fig. 8.11 is representative of a variety of circuits,
some of which include diodes, used for isolated, persistent-mode magnets.

Regardless of whether the magnet is in persistent mode or being charged, its
terminals are always shorted either by switch SW or by the power supply. When
it is in persistent mode, SW is closed and the terminals are shorted; during charge
up the terminals are “shorted” by the power supply.

For this particular example, for the sake of simplicity, we shall assume that the self
inductance of each coil is identical: L1 = L 2 = L. The mutual inductance between
the two coils is M, where k is the coupling coefficient. Also
each coil is shunted with the same resistor, namely, R1 = R 2 = R. Each coil
is carrying a constant transport current I0 . At time t = 0, a small normal zone
is created in Coil 1; it is represented by a resistor r, which for this analysis is
constant. The total magnetic energy stored by the system, Em , is

Through a laborious process of computation—don’t try it—we have the ratio of
the total energy dissipated in resistor r, Er , to E m , with ζ = r /R, given by:

(8.38)

For r >> R(1 + k)—a condition that can be met in most high-performance coils—
the analysis also gives expressions for I1 (t) and I 2 ( t ) :

a)

b)

energy divided between the two shunt resistors?

(8.39b)

(8.39a)

Equation 8.38 gives Explain this result and comment
on an important protection implication based on this technique.

Equation 8.38 also gives which for k = 1
means E r /E m = 0. Again explain this result. Also, how is the rest of the

c) Equation 8.39b indicates that when the current in
Coil 2 that is still superconducting, initially increases. Explain this increase
in terms of the conditions imposed by the circuit.

d) The increase in I2 (t) is another key phenomenon on which this protection
technique relies. Explain how this increase is used for protection.

e) The increase in I 2(t ) may also spell trouble for Coil 2. Discuss what this
trouble might be and how this trouble might be quantified.
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Solution to Problem 8.9

a) In order to transfer energy into the shunt resistors—the only other elements
capable of absorbing dissipative energy—it is necessary to create a voltage across
each shunt resistor. If the normal zone has a very small value of r, a very small
voltage appears across Coil 1’s shunt resistor, R1 . Note that this voltage is the
algebraic difference between the resistive voltage drop, ~ rI0 , and the inductive
voltage, LdI/dt, which is negative. Thus, for an infinitesimally small r, no voltage
appears across each shunt resistor, and the entire energy, even that stored in Coil
2, is dissipated by the normal zone, giving rise to Er /E m → 1.

The implication of the above result on coil protection is ominous; however, for-
tunately, once a normal zone is created in the adiabatic environment of these
windings, r never remains small; it rapidly increases, providing a sufficient voltage
across each shunt resistor.

b ) Under this condition, a large voltage appears across each shunt resistor and
most of the total energy is dissipated in the shunt resistors. If the two coils are
well coupled (k → 1), the energy stored in Coil 2 is transferred to Coil 1 and then
dissipated through the shunt resistors.

Note that because the total voltage across the two shunt resistors must remain 0
throughout, equal (but opposite-polarity) current always flows through each shunt
resistor, making dissipation through it also identical. That is, each shunt resistor
dissipates an identical amount of energy—this is so because R1 = R 2.

c ) The insertion of r in Coil 1 clearly forces a current to flow through shunt
resistor R1 . Because the change in voltage across the entire magnet terminal must
be zero—the power supply is equivalent to a short—an equal but opposite current
must flow in shunt resistor R2. The current flowing in each shunt resistor ends
up in Coil 2, increasing I 2(t ) and decreasing I1(t ) by the same amount. This also
means flux is preserved.

d ) The increase in I 2( t) can continue until it reaches the critical current of the
conductor at the innermost winding radius of the coil midplane, inducing a quench
in Coil 2 thus contributing to a rapid expansion of the normal zone. This process
is further explored in the next problem in which a real coil situation is studied in
more detail.

e ) A large increase in I2(t ), beneficial in triggering a quench, may spell trouble
because, as mentioned above, the flux remains essentially constant and thus there
will be a large increase in stresses in the winding. This means that in designing coils
that are to be protected by shunt resistors, they must be designed to withstand
stresses that appear during quenching. An important parameter here is I2(t)×B )2 (t
during quenching.

Another important parameter—the internal voltage appearing in each coil—will
be discussed in Problem 8.11.
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Problem 8.10: Passive Protection of “isolated” magnets

2. Two-section test coil

This problem studies normal-zone propagation in an epoxy-impregnated, two-
section test solenoidal coil [8.17]. Each coil is wound with a round insulated Nb-Ti
composite wire in a close-packed hexagonal pattern.

In the analysis, it is assumed that the normal-zone propagation is dominated by
transverse heat conduction. The normal-zone growth is three dimensional—axial
and radial over the entire circumference. Although Ul  >> Ut , because 2πa1 <<1 Ul
d1Ut , where a 1 are, respectively, the inner winding radius and conductor1 and d1
diameter of Section 1, longitudinal propagation along the conductor axis may be
neglected compared with transverse propagation for both sections.

Table 8.6 gives the coil’s appropriate parameters. The total inductance is 1H. As
Section 2 is wound directly over Section 1, the boundaries of the two sections are
in good thermal contact. When considering normal-zone propagation, therefore,
the entire coil may be considered as one homogeneous thermal unit. (Note that,
as indicated in Table 8.6, the conductor diameter is different for the two sections
and thus normal-zone propagation velocities are different in the two sections.)

A Nichrome heater, placed at the midplane of the innermost radius of Section 1, is
used to initiate a quench. We can therefore assume that the normal zone starts as
a ring at the midplane of the innermost radius of Section 1 and spreads as depicted
in Fig. 8.1.

The two sections are connected in series, each shunted with a 0.5- Ω resistor. The
power supply may be modeled as a constant current source for voltages up to 10 V.
Figure 8.12 gives a circuit model for the system.

Figure 8.13 shows current and voltage vs time traces for a heater-driven quench
event in which the solenoid is initially energized at 100 A. Note that the terminal
voltage limit of the power supply is 10V. Both current and voltage plots consist
of four traces. The solid traces are experimental and dashed traces are analytical.
For both current and voltage traces, the curves labeled 1 are for Section 1 and the
curves labeled 2 are for Section 2. In answering the following questions, you may
ignore the analytical curves.

Table 8.6: Coil Parameters
(Coil Inductance: 1 H)

Parameter

winding i.d. [mm]

winding o.d. [mm]

winding length [mm]

wire diameter [mm]

Cu/Nb-Ti ratio

Sec. 1

76

112

71

0.90

3

Sec. 2

112

135

71

0.70

2 Fig. 8.12 Circuit for the coil.
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Problem 8.10: 2. Two-section test coil

a)

b)

c )

d)

e)

359

Fig. 8.13 Current and voltage vs time traces for a heater-driven quench
event with the coil initially at 100 A. Note that both current and voltage
traces labeled 1 and 2 correspond, respectively, to those in Section 1 and
Section 2. Solid curves: experimental; dashed curves: computational.

Describe qualitatively the behaviors of the four experimental traces shown
in Fig. 8.13. Include a discussion of the peaks and valleys of the traces.

Make a rough estimate of the total energy dissipated in the magnet. A value
computed for the time period between t = 0 and t = 2s may be used for this
estimate.

How would the current traces given in Fig. 8.13 be modified if the initial coil
current is 50 A?

The analytical program also computes the average winding temperature at
the end of the event when current has decayed to zero. It predicts an average
temperature of 45K for the entire coil. Is this value reasonable?

Suppose aluminum (99.99% purity) instead of copper is used for both con-
ductors. Estimate a final average temperature for the entire coil.



The following observations may be-made from the traces shown in Fig. 8.13:

I1 decreases initially because Section 1 is where a quench is initiated.

I2 increases initially 1) to satisfy the circuit requirement of zero voltage across
the coil and 2) to keep the flux constant.

The behaviors of I1 and I2 are also reflected in V1 and V2. V1 increases because
∆ I1, not flowing through Section 1, is now flowing through R1.

To keep the terminal voltage zero (at least initially), V2 swings negative. These
initial responses are consistent with results discussed in Problem 8.9. Eventu-
ally V1 + V2 climbs up to 10V, the power supply limit.

At t ~ 0.2s, V2 starts climbing up, a definite indication that the normal zone
is induced in or has reached Section 2.

I2 thus begins to drop, and I 1 increases, trying to keep the flux constant.

At t ~ 0.4s, V1 + V2 reaches 10V and I 1 must start decreasing.

V1  + V2 = 10 V for t > 0.4s.

The total energy dissipated in the magnet, Ed, may be given by:

(S10.1)
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a)

�

�

�

�

�

�

�

�

b)

where Em is the total energy stored in the magnet initially, Es is the energy
supplied by the power supply between t = 0 and t = 2s, and ER1 and ER2
are, respectively, energies dissipated in resistor R1 and R2 . Em is 5000J [=
(0.5)(1 H)(100 A)2]. Es is given by Vs(t)Is( t) integrated for 0 ≤ t ≤ 2s. Vs (t)
and Is ( t ) are, respectively, the power supply voltage and current. The power
supply may be modeled as a constant current supply (100 A) for 0 ≤ t ≤ 0.4s
and a constant voltage supply (10V) for t ≥ 0.4s. We have, for 0 ≤ t ≤ 0.4s,
Vs (t) = V1 (t ) + V2(t ) and, for t  ≥ 0.4s, Is (t ) = I 1(t) – V1(t )/R1 (a proof of a
relationship similar to this involving more coils is a question in Problem 8.11).
Using traces shown in Fig. 8.13, we can compute Es , E R 1 , and ER2:

( S10.2a)

( S10.2b)

( S10.2c)

The total energy dissipated in the magnet is thus about 5500 J.
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c) Both currents start at 50 A. The normal zone should reach Section 2 at ~0.4s
or later because Ut U l It . Also, because It and B are one half the previous
values, Tc is higher, making the arrival time even later than 0.4s. The terminal
voltage should reach 10 V later than 0.4s, perhaps as late as ~0.8s, because Ut is
slower by at least a factor of 2 and also because shunt voltages will be lower by a
factor of 2 and it takes longer for the terminal voltage to reach 10V.

d) The total coil’s winding (conductor and epoxy filler) volume is 694cm3. As-
suming the entire winding heat capacity, Cwd , can be given by that of copper—
volumetrically copper’s and epoxy’s heat capacities are roughly equal—we have:

( S10.3)

where Vcd is winding volume and h cu is copper’s volumetric enthalpy. For Tf >
Top = 4.2K, h cu (Tf ) >> h cu(Top ). From Fig. A3.3, we find Tf = 45K, which
agrees with the value computed from simulation.

e) When aluminum is substituted for copper, Fig. A3.3 gives T f = 57K. A
simulation gives a temperature of 58 K [8.28].

Figure 8.14 shows spatially averaged temperature plots for Section 1 and Section
2 of this magnet. The solid curves correspond to Nb-Ti/copper wires, while the
dotted curves correspond to Nb-Ti/aluminum wires [8.28].

Fig. 8.14 Spatially averaged temperature vs time plots for each section of the coil.
Solid curves: Nb-Ti/copper wires; dotted curves: Nb-Ti/aluminum wires [8.28].
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Problem 8.11: Passive Protection of “isolated” magnets
3. Multi-coil NMR magnet

This problem studies important protection issues for multi-coil magnets such as
those used in MRI and NMR systems. We will use experimental results recorded
for the Nb-Ti coils of a 750-MHz (17.6 T) superconducting magnet developed at
FBNML [8.29] as examples.

The full magnet system is comprised of 12 nested solenoidal coils, of which, count-
ing from the innermost coil, the first 7 coils are wound with Nb3Sn conductors
and the remaining 5 outer coils are wound with Nb-Ti conductors. Each coil is
impregnated with epoxy resin and incorporates the “floating-winding” technique.
Figure 8.15 indicates the locations of the 12 coils.

As may be inferred from Fig. 8.15, Coils 10, 11, and 12 are so-called “correction”
coils, whose primary function is to improve field homogeneity at the magnet center;
they form a variant of notched solenoid studied in Problem 3.6 (p. 67). Note that
Coil 9, wound on one coil form, has two sections, each shunted, and Coils 11 and
12 share one shunt resistor, as shown in Fig. 8.16.

Fig. 8.15 Drawing showing the locations of 12 coils in a 750-MHz (17.6T) magnet
[8.29]. Note that the horizontal scale in this sketch is 4.5 times the axial scale.
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Problem 8.11: 3. Multi-coil NMR magnet

Fig. 8.16 Circuit for the Nb-Ti coils.

Figure 8.16 does not include a persistent switch that shunts the entire system
because discussion here chiefly concerns premature quenching that occurs dur-
ing system charge up when the switch is open. Because of the presence of the
power supply, the entire system is “shorted,” as is the case when the system is in
persistent mode.

The values of the inductance matrix and shunt resistors are given, respectively, in
Tables 8.7 and 8.8. As is evident from Table 8.7, although ideally identical, Coils
11 and 12 actually have slightly different values of inductance.

Our rule of thumb in determining values of shunt resistors in these multi-coil sys-
tem is to first choose a total value of shunt resistance from voltage considerations.
In this particular example, a value of ~1.5Ω was selected because at an operating
current of 310 A, it would translate to a voltage level of ~500 V—a safe level. Each
shunt resistor is then determined to be roughly proportional to each coil’s total
stored energy.

Table 8.7: Inductance Matrices [H] for the Nb-Ti Coils

Coil 8 9a 9b 10 11 12

8 4.413 2.268 2.243 0.715 2.747 2.755

9a 2.268 1.344 1.343 0.427 1.645 1.649

9b 2.243 1.343 1.404 0.450 1.737 1.742

10 0.715 0.427 0.450 0.606 0.378 0.379

11 2.747 1.645 1.737 0.378 5.382 0.368

12 2.755 1.649 1.742 0.379 0.368 5.410

Table 8.8: Shunt Resistors [mΩ ] for the Nb-Ti Coils

S8

288

S 9 a

156

S9 b S10 S11/12

165 58 868
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Figure 8.17 shows a set of voltage traces recorded when the magnet quenched
prematurely at 227 A. As evident from the traces, the quench started in Coil 9a;
signals from AE sensors (not shown here) indicated the premature quench was
caused by a mechanical event occurring in the magnet system. Because a resistive
voltage first appeared in Coil 9a, it is most likely that the mechanical event took
place in Coil 9a. Note that between t = 1.6s and t = 2.25 s, V11/12 , the sum of
recorded voltages from Coils 11 and 12, is saturated.

Figure 8.18 shows a set of computed current traces through the coils based on the
voltage traces shown in Fig. 8.17; Table 8.9 shows a set of dI /dt values at selected
times for the current traces shown in Fig. 8.18.

Fig. 8.17 Voltage traces recorded across Coils 8, 9a, 9b, 10, and 11/12
following a quench at 227 A [8.30].
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Fig. 8.18 Current traces through Coils 8, 9a, 9b, 10, and 11/12 corresponding
to the voltage traces of Fig. 8.17. The dotted curve is the supply current, I 0 .

Table 8.9: Values of dI /dt at Selected Times

Coil 8

Coil9a

Coil 9b

Coil 10

Coils 11/12

t = 0.5s

84.5

–154.1

–107.1

41.3

33.6

dI/dt [A / s ]
t = 1.0s t = 1.5s

147.2 –252.8

–234.7 –62.1

–198.1 –57.8

–44.8 81.5

19.3 113.1

t = 4.0s

–56.1

–48.9

–42.8

–47.4

–48.9
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a)

b)

c)

d)

e)

f)

g)

Show that the current in each coil may be determined from the coil’s V trace
according to the following equations:

where I 0 is the power supply current.

(8.40a)

(8.40b)

(8.40c)

(8.40d)

(8.40e)

Almost immediately after Coil 9a is driven normal, which is evident from its
rising voltage trace (Fig. 8.17), Coil 9b follows, inducing excess currents in
the rest of the coils (Fig. 8.18). Coil 10 is the next to go normal, followed
by Coil 8, whose voltage starts decreasing at t = 0.3s. Compute the sum of
inductive voltages appearing across Coil 8 at t = 0.5s and show that Coil 8
is still completely superconducting at that time.

Show that, although its voltage is still decreasing, Coil 8 already has a normal
zone at t = 1.0s and estimate its resistance. Also discuss how we might
determine the precise moment at which a normal zone appears in Coil 8.

Compute an approximate value of the net Joule heating [W] generated by
the entire magnet (Coils 8~12) at t = 4.0s. Pay attention to the word
approximate.

At t~1s, when Coil 8 is already driven normal, its peak field is ~6T and
the conductor’s critical current (at 4.2 K) is ~900 A, well above the observed
quench current of ~270A (an average of Coil 8 currents at t = 0.5s and
t = 1.0s, from Fig. 8.18). Offer plausible sources of the seemingly improbable
quench initiated in Coil 8 at this low current.

Explain why Coils 11 and 12 are not shunted separately.

Make a general comment about the risk of not shunting the two coils (11 and
12) separately.

“ Half a man’s life is devoted to what he calls improvements, yet the
original had some quality which is lost in the process.” —E.B. White
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a ) From Fig. 8.16, it is clear that I 8 = I 0 – I r 8 . I r 8 is the current flowing in
shunt resistor 8: I r 8 = V8 /S 8 . Thus:

Similarly, we have:

(8.40a)

(8.40b)

(8.40c)

(8.40 d)

(8.40e)

b) Voltage across Coil 8, V 8, is given by:

(S11.1)

where V r 8  is the resistive voltage across Coil 8 due to the presence of a normal
zone. Inserting appropriate values at t = 0.5 s, taken from Tables 8.7 and 8.9, into
the right-hand side of Eq. S11.1, we obtain:

V8  Vr8 + (4.41 H)(84.5 A/s) + (2.27 H)(–154.1 A/s)

+ (2.24 H)(–107.1 A/s) + (0.72 H)(41.3 A/s)

+ (2.75 H)(33.6 A/s) + (2.76 H)(33.6 A/s) (S11.2a)
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V8  = Vr 8 + 372.6 – 349.8 – 239.9 + 29.7 + 92.4 + 92.7

= V r 8  – 2.3V (S11.2b )

From Fig. 8.17, we find V8 –2.3 V at t = 0.5s, which is equal to the net inductive
voltage given by Eq. S11.2b, making V r 8 = 0V at t = 0.5s. Coil 8 thus is still
superconducting at t = 0.5s.

c ) Again, inserting appropriate values into Eq. S11.1, we obtain V8 at t = 1.0s:

V8 = V r 8 + (4.41 H)(147.2 A/s) + (2.27 H)(–234.7 A/s)

+ (2.24 H)(–198.1 A/s) + (0.72 H)(–44.8 A/s)

+ (2.75 H)(19.3 A/s) + (2.74 H)(19.3 A/s) ( Sl l . 3a)

V8  = Vr 8  + 649.2 – 532.8 – 443.7 – 32.3 + 53.1 + 52.9

= V r 8  – 253.6V (S11.3b)

According to the voltage trace of Fig. 8.17, V8  = –23V at t = 1.0s, thus from
Eq. S11.3b, we have V r 8 231 V. From Fig. 8.18, we find I8 306A, and thus
R 8  = 231 V/306 A = 0.75 Ω.

We can determine the precise moment when a normal zone appears in Coil 8 by
finding the time at which Vr 8  just begins to become nonzero.

d) The Joule heating generated by the entire magnet, Pmg , is given by:

(S11.4)

It is thus necessary to compute V r for each coil as in b) or c). However, at
t = 4.0s, we note that each coil has nearly the same values of: 1) voltage,   ~ 0V
(Fig. 8.17); 2) current, ~ 90 A (Fig. 8.18); and 3) time rate of change of current,
d /d t~–50A/s (Table 8.9). Thus, for this particular time Eq. S 11.4 may be
approximated by:

(S11.5)

Note that the term within the parentheses in Eq. S11.5 is equal to the approximate
resistive voltage across the entire magnet. From Table 8.7, we obtain the sum of
the inductances to be 60.25H. With , we have:

Pm g [0 – (60.25 H)(–50 A/s)](90 A) 270,000W (S11.6)

Note that because ~0V, the inductive and resistive voltages are nearly bal-
anced and at this time, the total resistive voltage has an amplitude of ~3000V
(~270,000W/90 A). This also means the total magnet resistance has grown to
~33 Ω (~3000V/90 A).
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Solution to Problem 8.11

e ) According to our criterion, and incorporated in quench codes developed over
the past ~10 years at FBNML and successfully applied [8.17,8.19~8.21], an in-
duced quench in a target coil occurs when the target coil’s transport current [in this
case I 8(t )] reaches the critical current corresponding to temperature To p (4 .2K)
and maximum field within the coil. Based on this criterion, the observed prema-
ture quench should never have taken place at 270A; it is much lower than 900 A,
an estimated critical current of Coil 8’s conductor at the time of the quench.
Apparently, the criterion works well for premature quenches in the source coil oc-
curring at relatively high currents, near designed operating currents, so that they
are closer to the critical currents (at Top ) of the target coils.

A recent study by Yunus [8.30] indicates that the condition of constant conductor
temperature at T o p is not valid, particularly in adiabatic windings subjected to
time-varying magnetic field and current. A new criterion proposed by Yunus
includes AC losses in the computation of real-time local conductor temperature,
which in turn gives rise to a reduced critical current in the target coil. The new
criterion indeed makes it possible to have a target coil quenching at a current close
to the observed value of ~270 A.

That coupling loss is an additional heating source in a quenching adiabatic winding
is quite significant. Because filament twist pitch length (lp ) is a key parameter
in controlling coupling loss, it implies that lp  is another critical design parameter
relating to protection of these high-performance magnets; within a reasonable
extent, l p should be specified to be purposefully long for protection purposes.

f ) Both Coils 11 and 12 are situated off the magnet midplane. There is thus a net
axial force acting on Coil 11 (located below the midplane) towards the midplane
( +z -directed) and a net axial force acting on Coil 12 (located above the midplane)
towards the midplane (– z-directed). As long as the currents through Coil 11 and
Coil 12 are identical, there will be no net unbalancing axial force acting on the
system. This force-balance condition can be achieved only when the two coils are
connected in series with a common shunt resistor across them.

If each coil is shunted independently, the current induced in each coil will be
different, potentially creating a massive net unbalanced force on the system. At
t = 1s, suppose, instead of both coils carrying a current of 250 A as is the case
according to Fig. 8.18, Coil 11 carried 275A and Coil 12 carried 225A. Under
this condition, the force pushing Coil 11 upward would be 581 kN and the force
pushing Coil 12 down would be 525 kN, with a resulting net unbalanced upward
axial force of 56 kN or almost 6 tons!

g) Although not evident from these sets of voltage and current traces, particu-
larly as the voltage trace for Coil 11/12 is saturated between t = 1.3s and t = 2s,
the most critical danger in connecting Coils 11 and 12 in series and having a com-
mon shunt resistor is that in case of a quench in either Coil 11 or Coil 12, very
high inductive voltages can be generated within the combined coil.
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Problem 8.12: NZP velocity in HTS magnets

This problem studies normal-zone propagation velocity in HTS magnets, demon-
strating, as remarked in Chapter 1, that protection is one issue that increases
in difficulty with rising operating temperature. Indeed the slowness of NZP ve-
locity in HTS magnets, verified recently by measurements and simulation study
[8.21], suggests that HTS magnets are unlikely to be self protecting and need to
be protected by some other innovative technique.

Figure 8.19 presents typical schematic I c vs T plots, one for a low-Tc  supercon-
ductor and the other for a high-Tc  superconductor, with the zero abscissa point
being To p for both conductors. For the same transport current It flowing in each
conductor, as indicated in the figure, the temperature difference, Tc – T c s , is signif-
icantly greater for the HTS than that for the LTS. This is valid when the external
field each conductor is exposed to is relatively small, perhaps ~5T or less, and Tc

for the LTS is typically near 10K and that for the HTS is ~80K. Note that as is
the case with low-T c superconductors, the I c (T ) plot for the HTS may be quite
accurately represented by a linearly decreasing function of temperature [5.12].

a) Show that G j ( T ) for the HTS, unlike that for the LTS, which increases lin-
early with T between T c s and Tc  (Eq. 6.5b, p. 212), generally has a component
that increases with T 2. Namely:

(for LTS) (6.5b)

G j (T ) ∝ T 2 (for HTS) (8.41)

b ) Make plots of G j (T ) for both LTS and HTS whose Ic (T ) plots are given in
Fig. 8.19.

c) Using the G j ( T) plots, make general comments on NZP velocity (Ul ) for the
HTS. In discussing this, also consider that an HTS generally has a tempera-
ture span T c – T c s that is much greater than that of an LTS.

Fig. 8.19 I c vs T plots for an LTS and an HTS with the same I t , I c o , and T o p.
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a) The quadratic temperature dependence of G j (T ) HTS occurs because over the
likely operating temperature range of HTS magnets, from ~20K to ~80K, the
matrix metal’s resistivity no longer remains temperature independent, as is the
case for LTS which operate well below 20K. Electrical resistivities of pure metals
such as silver and copper increase roughly linearly with temperature above ~20K.
Combined with this linear dependance and the usual linear dependance of Gj ( T )
on temperature between Tc s and Tc , Gj (T ) has a T 2 component.

b) Figure 8.20 presents G J (T ) plots for the conductors whose Ic ( T ) plots are
shown in Fig. 8.19. As remarked above, Gj (T ) for the HTS increases as T 2 . Note
that because matrix resistivity is constant up to ~30K and increases linearly with
temperature, LTS’s G j (T) in the normal state is constant and smaller than HTS’s
G j (T ), which, unlike LTS’s, does not remain constant.

c) Because of the complex nature of the partial differential power density equa-
tions that govern the propagating normal zone (Eqs. S7.1a and S 7.1 b, Problem
8.7, p. 349), it becomes increasingly difficult (and inaccurate) to use an expression
for U l  such as that given by Eq. 8.24 when covering a large temperature span
as is the case with HTS. Equation 8.28, which states that Ul is proportional to
the square root of generation and inversely proportional to Ccd , suggests, because
HTS’s temperature span between Tc s and Tc is much wider than LTS’s, HTS’s Ul

will be slower than LTS’s by a factor even greater than the ratio of heat capacities.

Table 8.10 presents values of Ul , computed by Bellis [8.21], for two superconduct-
ing tapes of similar dimensions, one copper-sheathed Nb3Sn and the other silver-
sheathed BiPbSrCaCuO(2223), under adiabatic conditions. The matrix current
density, Jm , is kept constant at 159 A/mm2  for the four field-temperature com-
binations studied, results of which are presented in the table. The three field-
temperature combinations—20T and above at 4.2K; 3~6T in the range 25K;
and essentially zero-field at 65K—are considered to be most appropriate combi-
nations for HTS magnets at the present time [8.31]. Progress towards the use of
HTS magnets in the first combination (20T at 4K) is moving well [8.32].

Fig. 8.20 Heat generation vs temperature for the LTS and HTS shown in Fig. 8.19.
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Table 8.10: Computed U l Values for HTS and LTS [8.21]

Material B To p Tc I t Jm Tc s Tc s  – To p Ul

[T] [K] [K] [A] [A/mm 2] [K] [K] [cm/s]

BSCCO 20 4.2 51 70 159 15.3 11.1 10.8

5 25 63 70 159 33.6 8.6 2.8

0 65 93 70 159 65.8 0.8 2.5

Nb 3Sn 12 4.2 7.5 111.4 159 ~5.6 ~1.4 400

Two conclusions may be made from Table 8.10:

• For the Nb3Sn tape, Ul , as expected, is much faster than values for the BiPb-
SrCaCuO tape.

• For the BiPbSrCaCuO tape, Ul decreases with Top and as expected the values
are much smaller than that of the Nb3Sn.

The high-performance magnets such as the one studied in Problem 8.11 depend
to a great extent on high values of Ul (and hence correspondingly high values of
Ut) for protection of their individual coils, and they may be called self-protecting.
Based on values of Ul listed in Table 8.10 for BSCCO tapes, we may conclude that
it is unlikely that HTS coils will be self-protecting. Protection is thus an important
and difficult magnet issue for HTS magnets as was remarked in Chapter 1.

“Dry” High-Field HTS Magnets Operating at 20 K

Design and operational issues of stability and disturbance, as discussed in Chap-
ters 6 and 7, are not as critical in HTS magnets as they are in LTS magnets.
It appears that the time has come to seriously consider building and operating
high-field magnets of substantial parameters, wound entirely of HTS and operat-
ing at or close to 20 K. Also, promising progress has been made towards the goal
of producing long (at least 100m) and high-operating-current HTS magnet-grade
conductors [8.33]. An HTS magnet, if solenoidal, would have a room-temperature
bore of at least 100mm, generate an induction of at least 10T, and, coupled to a
cryocooler and cooled by conduction, operate literally “dry.” Such dry magnets,
demonstrated as early as the mid 1960’s with a Nb-Zr magnet by McEvoy and
others [8.34], have recently become practical options for both Nb-Ti and Nb3Sn
magnets [8.35~8.37]. Protection considerations require that the 10-T HTS magnet
operate at a current in excess of ~1000 A [8.38], thereby challenging the conduc-
tor manufacturers. The crucial design issue, besides protection, will be mechanical
integrity [8.38],  which as pointed out in Chapter 1, is virtually independent of op-
erating temperature. Before the end of this century, “dry” 20-K HTS magnets will
undoubtedly be incorporated in MRI, NMR, hybrid magnets, maglev, generators
and motors, SMES, and perhaps, on an experimental basis, in high energy physics
(dipoles and quadrupoles) and even fusion.
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CHAPTER 9
CONCLUDING REMARKS

This book has presented important design and operational issues for supercon-
ducting magnets. It is hoped that the book will be useful for the designer of both
LTS and HTS magnets. The reader may now understand that a higher operating
temperature doesn’t necessarily make the magnet designer’s task easier. The cost
of running the cryogenic system surely decreases with operating temperature, but
cryogenics should not be an overriding issue in HTS magnets. Equally impor-
tant are mechanical integrity, stability, protection, and conductor specification; on
these, as we have studied, the impact of increased operating temperature is mixed.

9.1 Enabling Technology vs Replacing Technology

A new technology is either enabling or replacing. An enabling technology expands
the technical limit of an existing technology; here competition from the existing
technology is virtually nonexistent and economics is often a secondary issue. If a
product based on this enabling technology is commercially viable, the technology
will succeed. A replacing technology offers an approach different from an existing
technology; here competition from the existing technology is fierce and economics
often dictates the fate of the new technology. Table 9.1 presents principal ap-
plications of superconducting magnet technology, classifying SCM technology for
each application to be either enabling or replacing. Although SCM technology is
enabling for fusion, because fusion itself is replacing technology for energy con-
version, it is still too early to tell how they will fare in the commercial world; by
comparison, MHD, another enabling technology, has not to date fared well.

Table 9.1: Principal Applications of
Superconducting Magnet Technology

Enabling Technology

Fusion

High-field research magnets

MHD

MRI

NMR

Replacing Technology

Generators & motors

Maglev

Separation (ore, recycling)

SMES

Transformers

375
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9.2 Outlook for the HTS

Since its discovery in 1911, superconductivity has fascinated physicists, engineers,
and entrepreneurs alike. But to date, with the exception of MRI, NMR, and
to a limited degree in ore separation, the commercial impact of superconducting
magnet technology during the LTS era has been disappointing. Note that the
commercial success of MRI and NMR owes a great measure to SCM technology,
because SCM technology far exceeds the technical limits possible by conventional
techniques.

The same real-world economic scrutiny awaits SCM technology based on HTS. For
applications such as generators and motors, transformers, and many others that
HTS promises to benefit [9.1], it is necessary to upgrade SCM technology for each
application from replacing to enabling. HTS must offer something else that was
missing in LTS.

It is worth noting that what a superconductor promises to deliver is no more
free or rewarding than oil, rain water, solar power, or anything else that nature
provides. Oil is free as it lies deep beneath the surface of the earth. To utilize it
to power machinery, however, has consumed tremendous resources—technical and
financial; it still does. Rain water can be harnessed to generate electric power, but
it too does so at a price. Likewise, to reap benefits from superconductors requires
much research and development effort. Today (1994), this appreciation of the
need for the continued commitment of resources by all participants is particularly
appropriate as we are about to complete the initial, material-oriented phase of the
HTS era and are poised to surge forward into the 21st century in which principal
large-scale applications will undoubtedly involve magnets [9.2, 9.3].
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APPENDIX I

PHYSICAL CONSTANTS AND CONVERSION FACTORS

Table A1.1: Selected Physical Constants*

Speed of light

Permeability of free space

Permittivity of free space

Avogadro’s number

Electronic charge

Electron rest mass

Proton rest mass

Planck’s constant

Boltzmann’s constant

Gas constant

Molal gas volume

Stefan-Boltzmann constant

Acceleration of gravity

Wiedemann-Franz number

c

µo

∈o

N A

e

m o

M po

h

k B

R

V R

σSB

g

Λ

3.00 × 108 m/s

4π  × 10 – 7 H/m

8.85×10 – 1 2 F/m

6.02 × 1026 particle/kg-mole

1.60 × 10 – l 9  C

9.11 × 10 –31 kg

1.67 × 10 –27  kg

6.63 × 10 –34 J s

1.38 × 10–23 J/K

8.32 × 103 J/kg-mole K

22.4 m3  /kg-mole

5.67 × 10 –8  W/m2 K 4

9.81 m/s2

2.45 × 10 –8  W Ω / K2

* Except for the permeability of free space, values are approximate.
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Table A1.2: Selected Conversion Factors

“Common” Non-SI Units* SI Units*

Electromagnetic

1 oersted 250/ π A / m

1 gauss 10 –4  T

1 emu/cm 3 1000 A/m

Pressure

1 mmHg (1 torr) 133 Pa

1 atm (760 torr) 101 kPa

1 bar ( 750 torr) 0.1 MPa

1 psi (52 torr) 6.9 kPa

Viscosity

1 poise 0.1 Pas (0.1 kg/ms)

Energy Power

1 eV 1.6 ×10 –19 J

1 cal 4.18 J

1 BTU 1055 J

1 hp 746 W

Temperature

0°C 273 K

1 eV 11600 K

Mass

1 lb 0.452 kg

1 metric ton 1000 kg

Dimension

1 in 25.4 mm

1 French league 4 k m

1 liter 0.001 m3

1 ft 3  (28.3 liter) 0.0283 m3

* Values in italics are approximate.
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THERMODYNAMIC PROPERTIES OF CRYOGENS

Table A2.1: Helium at 1 Atm

T ρ* C *p

[K] [kg/m³] [kJ/kg K]

1.6 146.9 1.56

1.7 147.0 2.15

1.8 147.0 2.95

1.9 147.1 4.10

2.0 147.3 5.24

2.18 148.1 123.91

2.2 148.2 2.94

3.0 143.3 2.28

3.5 138.0 2.94

4.0 130.1 4.08

4.22 125.0 4.98
16.9 9.78

10 5.02 5.43

20 2.44 5.25

30 1.62 5.22

40 1.22 5.21

50 0.97 5.20

75 0.65 5.20

100 0.49 5.20

150 0.33 5.19

200 0.24 5.19

250 0.20 5.19

273 0.18 5.19

293 0.17 5.19

300 0.16 5.19

* Italics are for the vapor phase.

h*

[kJ/kg]

1.09

1.28

1.53

2.20

2.32

3.49

3.87

5.64

6.97

8.70

9.71
30.13

64.9

118

170

222

274

404

534

794

1054

1313

1433

1537

1573
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Table A2.2: Helium at Saturation

T p* ρ† h†
[K] [torr] [kg/m 3] [kJ/kg]

1.60 5.59 0.23; 145 23.1; 0.39

1.65 6.90 0.27 ; 145 23.3; 0.48

1.70 8.45 0.33 ; 145 23.6; 0.58

1.75 10.2 0.38 ; 145 23.8; 0.70

1.80 12.3 0.45 ; 145 24.0; 0.84

1.85 14.6 0.52 ; 145 24.2; 1.00

1.90 17.2 0.60 ; 145 24.5; 1.18

1.95 20.2 0.69 ; 145 24.7; 1.38

2.00 23.4 0.78 ; 146 24.9; 1.63

2.05 27.0 0.89 ; 146 25.1; 1.92

2.10 31.0 0.99 ; 146 25.3; 2.23

2.18 38.0 1.18 ; 146 25.4 ;  —

2.40 63.6 1.81 ; 145 26.3; 3.82

2.60 94.0 2.52; 144 27.0; 4.27

2.80 133 3.40 ; 143 27.7; 4.73

3.00 182 4.46 ; 141 28.3; 5.23

3.25 257 6.08 ; 139 20.0 ; 5.93

3.50 352 8.09 ; 136 29.5; 6.72

3.75 470 10.5; 133 29.9 ;  7.62

4.00 615 13.6 ; 129 30.1 ; 8.65

4.22 760 16.9 ; 125 30.1 ; 9.78

4.30 815 18.2; 124 30.1 ; 10.1

4.40 892 20.0; 121 30.0 ; 10.7

4.50 974 22.1 ;  119 29.8 ; 11.3

4.75 1202 28.7 ; 112 29.0 ; 13.0

5.00 1466 39.3 ; 101 27.3 ; 15.4

5.20‡ 1706 69.6 21.36

* Below 4.2 K, there are slight discrepancies in saturation pressure among
data sources listed on p. 384, e.g. 12.26~12.56 torr at 1.80 K.

† Italics are for the vapor phase.
‡ Critical point.
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Fig. A2.1 Isochoric P (T ) curves for helium at two densities. Circles [125 kg/m3

(4.22 K, 1 atm)]; triangles [147 kg/m3  (1.8 K, 1 atm; 4.5 K, 9 atm)].
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Fig. A2.2 Isochoric u (T ) curves for helium at two densities. Circles [125 kg/m³
(4.22 K, 1 atm)]; triangles [147 kg/m³ (1.8K, 1 atm; 4.5 K, 9 atm)].
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Table A2.3: Selected Properties of Cryogens at 1 Atm

Property He H2* Ne N2 O2

Boiling temperature, Ts [K] 4.22 20.39 27.09 77.39 90.18

Triple point† [K] — 13.96 24.56 63.16 54.36

Heat of vaporization [kJ/kg] 20.9 443 85.9 199.3 213
[J/cm³]‡ 2.6 31.3 104 161 243

Density(Ts , liq.) [kg/m³] 125 70.8 1206 807 1141

Density(Ts , vap.) [kg/m³] 16.9 1.33 9.37 4.60 4.47

Density (293 K) [kg/m³] 0.167  0.084  0.840 1.169  1.333

Density(Ts , liq.)/density(293 K) 749 843 1436 690 856

* Normal hydrogen.
† At the triple point pressure.
‡ Unit liquid volume.

Table A2.4: Heat Transfer Properties of Cryogen Gases at 1 Atm

T [K] He H2 *

Viscosity [µ Pas]

10 2.26 —
25 4.13 1.38
30 4.63 1.61
50 6.36 2.49

100 9.78 4.21
200 15.1 6.81
300 19.9 8.96

Thermal Conductivity [mW/mK]

10 17.5 —

25 30.6 19.4
30 34.1 22.9
50 46.8 36.2

100 73.6 68.0
200 118 128
300 155 177

Prandtl Number Pr

Ne

—
—

5.12
8.18
14.4
23.8
31.7

—
—
—

14.1
22.2
36.9
49.2

N2 O2

— —
— —
— —
— —

6.98 7.68
13.0 14.8
17.9 20.7

— —
— —
— —
— —
9.3 9.0
18.0 18.3
25.8 26.6

10 0.699
25 0.706
30 0.708
50 0.707

100 0.690
200 0.665
300 0.667

* Normal hydrogen.

— — — —
0.757 — — —
0.751 0.565 — —
0.722 0.617 — —

0.696 0.666 0.797 0.793
0.719 0.663 0.750 0.737
0.725 0.663 0.722 0.717
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Property Data Sources

Because most sets of property data presented in this Appendix are compiled from many
sources, the sources are grouped together and presented below.

Randall F. Barron, Cryogenic Systems 2nd Ed., (Clarendon Press, Oxford, 1985).

R.D. McCarty, Thermophysical Properties of Helium-4 from 2 to 1500K with Pressures
to 1000 Atmospheres (NBS Technical Note 631, 1972).

Robert D. McCarty, The Thermodynamic Properties of Helium II from 0 K to the
Lambda Transitions (NBS Technical Note 1029, 1980).

Russell B. Scott, Cryogenic Engineering (1963 Edition reprinted in 1988 by Met-Chem
Research, Boulder, CO).

Steven W. Van Sciver, Helium Cryogenics (Plenum Press, New York, 1986).
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PHYSICAL PROPERTIES OF MATERIALS

In using property data presented in this Appendix, we should be well aware that although
most data are given to at least three significant figures, implying these particular data
are quite accurate, they do not necessarily accurately represent the property value of the
specific material for which we seek information. Among property data presented here,
those that are subject to considerable degrees of variation from one material batch to
another include: thermal conductivity data (Fig. A3.1); mechanical property data (Table
A3.1); thermal expansion data (Table A3.2), particularly of non-metals.

Fig. A3.1 Thermal conductivity vs temperature plots. A. Silver; B. Copper; C. Alu-
minum (1100F); D. Aluminum (6063-T5); E. Solder (Sn50-Pb50); F. Brass; G. Teflon; H.
GE varnish; I. Inconel; J. Stainless steel; K. Phenolic; L. G-10; M. Epoxy; N. Alumina.
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Fig. A3.2 Heat capacity vs temperature plots. A. Helium (10 atm);
B. Helium (1 atm); C. GE varnish; D. Stainless steel; E. Nb-Ti; F.
Epoxy; G. Silver; H. Copper; I. Aluminum.
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Fig. A3.3 Volumetric enthalpy vs temperature plots.
1. Silver; 2. Copper; 3. Aluminum.
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Table A3.1: Mechanical Properties of Materials*

Material T σ U σ Y E
[K] [MPa] [MPa] [GPa]

Aluminum 6061 (T6) 295 315 280 70
77 415 380 77

Copper (annealed) 295 160 70 70
77 310 90 100

Copper (1/4 hard) 295 250 240 130
77 350 275 150

Copper (1/2 hard) 295 300 280 130
77 — 13 77

Silver (annealed) 295 — — 71
77 310 90 100

Incoloy 908 295 1500 1280 179
4 1900 1490 182

Inconel 295 900 850 220
77 1160 1040 230

Stainless steel 304 295 550 200 190
(low limit) 77 1450 260 200

Stainless steel 304 295 1030 620 190
(high limit) 77 1860 1050 200

Stainless steel 316LN 295 1290 1100 185
77 1790 1400 195

Epoxy 295 540 — 27
77 890 — 28

G-10 lengthwise 295 280 — 18
crosswise 295 245 — 14

Mylar 295 145 — 7
77 215 — 13

Teflon 295 14 — 0.4
77 105 — 5

Nb3 Sn 4 420 — 162

Nb-Ti 4 2200 — 82

* For Sn-Pb solders, see Table 7.8 (p. 300).
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Table A3.2: Mean Linear Thermal Expansion of Materials

[L (T ) – L(293 K)]/ L(293 K) in 10– 3

Material T [K]

20 80 140 200 973†

Aluminum –4.15* –3.91 –3.12 –2.01 —

Brass (70Cu-30Zn) –3.69 –3.37 –2.60 –1.63 +13.0

Bronze –3.30 –3.04 –2.37 –1.50 +13.3

Copper –3.24 –3.00 –2.34 –1.48 +13

Silver –4.09 –3.60 –2.70 –1.71 +15.0

Incoloy 908 –1.73 –1.54 –1.22 –0.81 +9.23

Inconel 718 –2.38 –2.23 –1.77 –1.44 +15

Stainless steel 304 –3.06 –2.81 –2.22 –1.40 +13.2

Epoxy –11.5 –10.2 –8.99 –5.50 —

G-10‡ –7.06 –6.38 –5.17 –3.46 —

Phenolic‡ –7.30 –6.43 –5.13 –3.41 —

Teflon (TFE) –21.1 –19.3 –16.6 –12.4 —

Nb 3Sn –1.71 –1.41 –1.02 –0.67 +5.5

Nb-45Ti –1.87 –1.67 –1.24 –0.78 —

Solder (Sn50-Pb50) — –4.98 –3.65 –2.29 —

* An aluminum bar 1-m long at 293 K shrinks by 4.15 mm when cooled to 20 K.
† A common Nb 3Sn reaction temperature.
‡ crosswise.
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Property Data Sources
A.F. Clark, “Low temperature thermal expansion of some metallic alloys,” Cryogenics
8, 282 (1968).

Robert J. Corruccini and John J. Gniewek, Specific Heats and Enthalpies of Technical
Solids at Low Temperatures (NBS Monograph 21, 1960).

Cryogenic Materials Data Handbook Volumes 1 and 2 (Martin Marietta Corp. Air
Force Materials Laboratory, 1970).

C.C. Koch and D.S. Easton, “A review of mechanical behavior and stress effects in
hard superconductors,” Cryogenics 17, 391 (1977).

J. H. McTaggart and G.A. Slack, “Thermal conductivity data of General Electric No.
7031 varnish,” Cryogenics 9, 384 (1969).

T. Nishio, Y. Itoh, F. Ogasawara, M. Suganuma, Y. Yamada, U. Mizutani, “Super-
conducting and mechanical properties of YBCO-Ag composite superconductors,” J.
Materials Science 24, 3228 (1989).

Russell B. Scott, Cryogenic Engineering (1963 Edition reprinted in 1988 by Met-Chem
Research, Boulder CO).

N.J. Simon, E.S. Drexler, and R.P. Reed, Properties of Copper and Copper Alloys at
Cryogenic Temperatures (NIST Monograph 177, 1992).

N.J. Simon and R.P. Reed, Structural Materials for Superconducting Magnets (Pre-
liminary Draft, 1982).

L.S. Toma, M.M. Steeves, R.P. Reed, Incoloy Alloy 908 Data Handbook(Plasma Fusion
Center Report PFC/RR-94-2, MIT, Cambridge MA, 1994).

Y.S. Touloukian, R.W. Powell, C.Y. Ho, and P.G. Klemens, Thermophysical Properties
of Matter, Volume 2, (IFI/Pl enum, New York-Washington, 1970).

Y.S. Touloukian and R.K. Kirby, Thermophysical Properties of Matter, Volume 12
(IFI/Plenum, New York-Washington, 1975).
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ELECTRICAL PROPERTIES OF NORMAL METALS

Fig. A4.1 Normalized zero-field electrical resistivity vs temperature plots. 1. Copper
(RRR 50, ρo :  17.14 nΩm); 2. Aluminum (99.99%, ρo :  26.44 n Ω m); 3. Copper (RRR
100, ρo : 17.03 n Ω m); 4. Copper (RRR 200, ρ :  16.93 no Ω m); 5. Silver (99.99%, ρo :
17.00 nΩ m). For each metal, ρ(T) is normalized to ρo , its zero-field resistivity at 293 K.
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Fig. A4.2  Kohler  plots. 1. Silver;  2. Copper;  3.  Aluminum.
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Fig. A4.3 Copper Residual Resistivity Ratio (RRR) vs magnetic induction plots.
[Based on data of Taylor, Woolcock, and Barber.]
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Table A4.1: Electrical Resistivity of Heater Metals

Property Data Sources

A.F. Clark, G.E. Childs, and G.H. Wallace, “Electrical resistivity of some engineering
alloys at low temperatures,” Cryogenics 10, 295 (1970).

F.R. Fickett, “Oxygen-free  copper at 4K: resistance and magnetoresistance,” IEEE
Trans. Magn. MAG-19, 228 (1983).

Y. Iwasa, E.J. McNiff, R.H. Bellis, and K. Sato, “Magnetoresistivity of silver over the
range 4.2~159 K,” Cryogenics 92 (1992).

G.T. Meaden, Electrical Resistance of Metals (Plenum Press, New York 1965).

Materials at low temperatures, Eds. Richard P. Reed and Alan F. Clark (American
Society For Metals, 1983).

M.T. Taylor, A. Woolcock, and A.C. Barber, “Strengthening superconducting com-
posite conductors for large magnet construction,” Cryogenics 8, 317 (1968).

Guy Kendall White, Experimental Techniques in Low-Temperature Physics
(Clarendon Press, Oxford, 1959).
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PROPERTIES OF SUPERCONDUCTORS

Critical properties presented in this Appendix, like properties of materials given in Ap-
pendix III are representative and are to be used for only zeroth or first order estimates.
Critical current data of Nb-Ti, Nb3 Sn, and BiPbSrCaCuO(2223) are given, respectively,
in Figs. A5.1, A5.2, and A5.3. Selected physical, thermal, and electrical properties of
YBCO and BSCCO are given in Table A5.4.

Critical Field vs Critical Temperature Data
Nb-Ti Conductors Bc2  vs Tc  may best be given by an expression of given by Lubell
who derived it from various data:

(A5.1)

Lubell finds B0  = 14.5T, Tc  = 9.2 K, and n = 1.7 give the best fit to the data. Table
A5.1 gives values of Tc  for selected values of Bc 2 ; the temperature ranges are based on
the original data.

Table A5.1: Bc 2 vs Tc  Data for Nb-Ti

Nb3 Sn Conductors B
ductors, appropriate values are: B0  = 27.9T, Tc  = 18.3 K, and n = 0.62 ~ 0.72. Table

c 2  vs Tc  may also best be given by Eq. A 5.1. For Nb3 Sn con-

A5.2 gives values of Tc  for selected values of Bc 2 ; the temperature ranges are bounded
by values corresponding to n = 0.62 and n = 0.72.

Table A5.2: Bc 2  vs Tc  Data for Nb3 Sn
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Fig.  A5.1 Jc  vs B plots for Nb-Ti at 1.8 and 4.2 K.
Only the Nb-Ti area is used to compute Jc .
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Fig. A5.2 Jc  vs B plots for Nb 3 Sn at 1.8, 4.2, 10, and 12K.
Only the non-copper area is used to compute Jc .
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BiPbSrCaCuO (2223) Data

J c( B ||) data presented below are “representative,” measured for a silver-sheathed BiPb-
SrCaCuO tape, comprised of 61 “filamentary” strips, at 4.2 and 27 K (liquid neon) with
field orientation parallel to the tape’s broad surface. Jc ( B⊥ )/J c B(  ||) data at the same
temperatures for a tape nearly identical to Sample E1, are shown in Fig. 7.33 (p. 318).
I c(T, B) data of Fig. 5.26 (p. 200) belong to mono-filament tapes with a Jc value (based
on the superconductor area only) of 299 A/mm2 at 77K and 0T.

Table A5.3: Parameters of BiPbSrCaCuO (2223)
at 77K and 0T

Ic  [A] Jc [A/mm2]*

Sample El 33.1 300

* Based on the BiPbSrCaCuO cross sectional area only.

Fig. A5.3 Jc vs B plots for BiPbSrCaCuO (2223) at 4.2 and 27K, with field directed
parallel to tape’s broad surface. See Fig. 7.33 for Jc(B⊥ )/ Jc(B ||) data.
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Table A5.4 presents selected properties of YBCO and BSCCO; corresponding values for
silver are also included for comparison. The principal purpose of presenting these HTS
properties is to give the magnet engineer, who, at least at the present moment, is generally
much less familiar with these property values than the material scientist engaged in HTS
research, ball-park figures to orient his “feel” for the values. For a specific design purpose,
it is recommended that he consult more up-to-date references.

Table A5.4: Selected Properties of YBCO and BSCCO
– Comparison with Silver –

Property T YBCO BSCCO BSCCO  BPSCCO Silver
[K] (2212) (2223) (2223) (99.99%)

E [GPa] 300 97 39 96 54 76

77 97 54

σU [MPa] 300 50 70 370

σY [MPa] 300 20 55

[kg/m3] 300 6380 5350 4350 10490

cp [J/kgK] 120 245 220 240 192 200

k [W/mK] 200 2.9 6.0 1.1 1.4 400

Tc 3.0 5.5 1.0 1.1

77 3.0 5.6 1.0 1.9 420

ρ [µΩ m] 300 10 60 8 0.017

Tc* 10 60 8 0.004†

* Just above the critical temperature.
† At 77K.
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Property Data Sources

Nb-Ti B c2 vs T Data

M.S. Lubell, “Empirical scaling formulas for critical current and critical field for com-
mercial NbTi,” IEEE Trans. Magn. MAG-19, 754 (1983).

Nb-Ti and Nb3Sn Jc vs B Data

J.E.C. Williams (personal communication, 1993).

BiPbSrCaCuO (2223) Jc vs B Data

J. Fujikami, K. Sato, Y. Iwasa, M. Yunus, H. Lim, and J.B. Kim (preliminary data,
FBNML, 1994).

HTS Property Data (listed chronologically)

M.P. Boiko, V.G. Kantser, L.A. Konopko, A.S. Sidorenko, “Sign-reversal thermopower
in Bi2Sr2Ca 2Cu3Oy ,” Physica C 162–164, 506 (1989).

Y.S. He, J. Xiang, F.G. Chang, J.C. Zhang, A.S. He, H. Wang, B.L. Gu, “Anomalous
structural changes and elastic properties of bismuth oxide superconductors,” Physica
C 162–164, 450 (1989).

T. Nishio, Y. Itoh, F. Ogasawara, M. Suganuma, Y. Yamada, and U. Mizutani, “Su-
perconducting and mechanical properties of YBCO-Ag composite superconductors,” J.
Mat. Science 24, 3228 (1989).

W. Schnelle, E. Braun, H. Broicher, H. Weiss, H. Geus, S. Ruppel, M. Galffy, W.
Braunisch, A. Waldorf, F. Seidler, and D. Wohlleben, “Superconducting fluctuations in
Bi2Sr2Ca2Cu 3Ox ,” Physica C 161, 123 (1989).

Ctirad Uher, “Review: Thermal conductivity of high-Tc  superconductors,” J. Supercon-
duc. 3, 337 (1990).

S. Jin, “Progress in bulk high-temperature superconductors,” Superconductivity and
its Application, (AIP Conference 251, 1991), 241.

S. Ochiai, K. Hayashi, and K. Osamura, “Influence of thermal cycling on critical current
of superconducting silver-sheathed high Tc  oxide wires,” Cryogenics 31, 954 (1991).

N.X. Tan, A.J. Bourdillon, and W.H. Tai, “A precursor method for reacting and aligning
Bi2 Sr2 Ca2Cu 3O10,” Superconductivity and its Application (AIP Conference, 1991),
251.

H. Ledbetter, “Elastic constants of polycrystalline Y1Ba2Cu3Ox,” J. Mat. Sci. Res. 7,
11 (1992).

S. Ochiai, K. Hayashi, and K. Osamura, “Strength and critical density of Bi(Pb)-Sr-Ca-
Cu-O and Y-Ba-Cu-O in silver-sheathed superconducting tapes,” Cryogenics 32, 799
(1992).

W. Schnelle, O. Hoffels, E. Braun, H. Broicher, and D. Wohlleben, “Specific heat and
thermal expansion anomalies of high temperature superconductors,” Physics and Mate-
rials Science of High Temperature Superconductors - II (Kluwer Publishers, Dordrecht,
The Netherlands, 1992), 151.

A. Marino, T. Yasuda, E. Hoguin, and L. Rinderer, “Preparation and electrical prop-
erties of Bi(Pb)-Sr-Ca-Cu-O single phase high Tc films,” Physica C 210, 16 (1993).

J. Tenbrink, M. Wilhelm, K. Heine, H. Krauth, “Development of technical high-Tc
superconductor wires and tapes,” IEEE Trans. Applied Superconduc. 3, 1123 (1993).
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GLOSSARY*

A-15: The cubic crystalline structure of most low-Tc  intermetallic compound super-
conductors, e.g. Nb 3 Al, Nb 3 Sn, V 3 Ga. Also known as the beta-tungsten (β -W) structure.

AC loss: Energy dissipation in a conductor caused by a time-varying magnetic field,
transport current, or both. HYSTERESIS, COUPLING, and EDDY-CURRENT are AC losses.

Active protection: A magnet protection technique that uses devices located outside
the CRYOSTAT; it generally involves two steps: detection of a QUENCH followed by acti-
vation of a DUMP. Drawback: the protection system itself is subject to malfunction.

Active shielding: A technique to minimize a FRINGING FIELD by means of a set of
magnets that generates a field in the direction opposite to that of the main field. It is
used in some MRI systems having a main field 1.5T and above.

Adiabatic magnet: A magnet whose entire winding is not in direct contact with
CRYOGEN. CRYOCOOLER-cooled magnets behave as adiabatic magnets.

AE (Acoustic Emission): Acoustic signals emitted by sudden mechanical events in a
body being loaded or unloaded, e.g. a magnet being charged or discharged; useful for
detection and location of a PREMATURE QUENCH caused by conductor motion or epoxy
fracture event. The KAISER EFFECT is often observed in AE signals.

Anisotropy: Property exhibiting different values in different directions, e.g. magnetic
field orientation effect on superconductor’s CRITICAL CURRENT DENSITIY.

"Baseball" (tennis ball) magnet: A “mirror” magnet for linear fusion machines; its
winding resembles the seam on a baseball (tennis ball). The largest versions, supercon-
ducting, were tested in the early 1980s at the Lawrence Livermore National Laboratory.

Bath-cooled magnet: A superconducting magnet immersed in a bath of CRYOGEN,
e.g. boiling liquid helium, as opposed to a forced-cooled magnet. See CIC CONDUCTOR.

BCS theory: A microscopic theory of superconductivity by J. Bardeen, L. Cooper,
and R. Schrieffer of the University of Illinois published in 1957. The theory explains elec-
tromagnetic and thermodynamic properties of LTS. The theory incorporates a hypothesis
that special pairs of electrons called COOPER PAIRS carry the supercurrent.

Bean slab: A one-dimensional model for a bulk TYPE II SUPERCONDUCTOR introduced
by C. Bean of the General Electric Research Laboratory to study magnetic behavior.

Bitter magnet: A high-field, water-cooled magnet built of BITTER PLATES. Named
for Francis Bitter, who developed the first 10-T electromagnets in the 1930s.

Bitter plate: Annular disc used in BITTER MAGNETS, with either punched holes or
etched radial channels for cooling water. Basically of copper, alloyed for strength with
beryllium, chromium, aluminum oxide, or recently, silver inclusions.

Breakdown voltage: The voltage at which an insulator fails. An important parameter
for magnet operation at DISCHARGE VOLTAGES above ~1kV.

Bronze process: A process for making MULTIFILAMENTARY CONDUCTORS, primarily
Nb 3Sn. Nb rods in bronze (a Cu-Sn alloy) are processed to form Nb filaments, each with
a Nb3 Sn surface layer. Developed by A.R. Kaufman of the Brookhaven National Labo-
ratory in 1970. K. Tachikawa of the National Research Institute for Metals developed a
similar process in 1970 for V3 Ga multifilamentary conductors.

* Includes terms discussed only briefly or not at all in the main text but which are of general in-
terest in superconducting magnet technology and its areas of application. The list of laboratories
and  organizations, however, is limited to those whose acronymns are used in the main text.
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BSCCO: A bismuth-based HTS; its basic chemical formula is Bi2 Sr2 Ca n – 1Cun O 2 n + 4,
with n = 2 resulting in BSCCO (2212) having T c of ~85K and n = 3 in BSCCO (2223)
with T c  of ~110K. A fraction of lead is often substituted for bismuth, giving rise to
BiPbSrCaCuO (2223), which is processed into silver-sheathed COMPOSITE SUPERCON-
DUCTOR tapes. BSCCO appears more promising than YBCO for magnets. H. Maeda of
the National Research Institute for Metals is credited with its discovery.

Bubble chamber: A chamber filled with liquid hydrogen and surrounded by a magnet,
usually superconducting; a tool for the study of high-energy particle interactions.

Carnot cycle: A reversible thermodynamic cycle, composed of two adiabatic and two
isothermal processes, in which a working fluid operates between two thermal reservoirs
to produce work or refrigeration at the most efficient level. N.S. Carnot published it in
1824, “Reflexions sur la Puissance Motrice du Feu" (“On the Motive Power of Fire”).

Chevrel phase: A molybdenum-based LTS phase. PbGd 0.2 Mo6S6 has the highest B c2
among LTS: 54 T at 4.2 K. Chevrel phase materials appear unsuitable for MAGNET-GRADE
SUPERCONDUCTORS. Discovered in 1981 by R. Chevrel of Université de Rennes.

CIC ( Cable-in-conduit ) conductor: A cable of transposed MULTIFILAMENTARY CON-
DUCTORS encased in a conduit that provides strength and rigidity, and through which
cooling fluid is forced. Generally the forced fluid is SUPERCRITICAL HELIUM.

Class 1 magnets: Superconducting magnets for “large-scale” applications, e.g. fusion,
SMES; generally they are CRYOSTABLE or stable against transient disturbances.

Class 2 magnets: Another designation for HIGH-PERFORMANCE MAGNETS.

Coercive force: The magnetic field required to bring the magnetization to zero in a
magnetized material. Materials for PERMANENT MAGNETS have high coercive forces.

Coherence length (ξ): The distance over which the superconducting-normal transi-
tion takes place; introduced by B. Pippard (Cambridge University) in the early 1950s.
In the BCS THEORY, ξ represents the size of the wave function for the COOPER PAIRS.

Composite superconductor: A conductor comprised of strands or tapes of super-
conductor in a matrix of normal metal. Some are MULTIFILAMENTARY CONDUCTORS.

Cooper pair: The paired superelectrons responsible for superconductivity.

Copper-to-superconductor ratio: The volumetric ratio of copper to superconductor
in a COMPOSITE SUPERCONDUCTOR (like Nb-Ti), or the ratio of copper to non-copper in
a composite superconductor (like Nb3 Sn) which contains other metals.

Coupling loss: AC LOSS generated by field-induced currents between filaments in MUL-
TIFILAMENTARY SUPERCONDUCTORS or between strands in CIC CONDUCTORS.

Coupling time constant: The predominant decay time constant of field-induced cur-
rents in MULTIFILAMENTARY SUPERCONDUCTORS or CIC CONDUCTORS.
Critical current (Ic ): The maximum current a conductor can carry and still remain
superconducting at a given temperature and magnetic field.

Critical current density (Jc ): One of the three material-specific parameters that
defines the critical surface for superconductivity. In TYPE II SUPERCONDUCTORS, Jc  is
sensitive to metallurgical processing.

Critical field ( Hc ): One of the three material-specific parameters that defines super-
conductivity; insensitive to metallurgical processing. In TYPE II SUPERCONDUCTORS,
there are two critical fields: LOWER (Hc1 ) and UPPER (Hc 2 ).

Critical state model: A model for BEAN SLAB’s magnetic behavior in the MIXED
STATE; the slab is in the critical state in that every part of the slab is carrying a current
equivalent to the material’s CRITICAL CURRENT DENSITY. The model can be used to
derive a criterion for FLUX JUMP.
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Critical temperature (Tc ): One of the three material-specific parameters that defines
the critical surface for superconductivity. Like Bc , T c  is insensitive to metallurgy. The
parameter that most clearly distinguishes HTS from LTS.

Cryocooler: A device, which generally uses the G-M CYCLE, to provide refrigeration
typically at 80 K and 20 K; it is an indispensable component of an HTS-magnet system.

Cryogen: A liquid that boils at CRYOGENIC TEMPERATURES . Examples include liquid
helium and liquid nitrogen; both are commonly used in superconducting magnet systems.

Cryogenic temperatures: Temperatures below 150~200 K.

Cryopump: A pump that uses a CRYOCOOLER to create and maintain a high vacuum.

Cryostable magnet: A magnet satisfying the STEKLY or “EQUAL-AREA” CRITERION.

Cryostat: An enclosed container that maintains a cryogenic environment; it uses the
basic design principle developed by Dewar. Much more rugged than a DEWAR and made
generally of stainless steel, or for AC applications, of insulating materials.

Cryotribology: The study of friction and wear of materials (tribology) at CRYOGENIC
TEMPERATURES. Applied in the study of conductor-motion disturbances in supercon-
ducting magnets; it is also useful for evaluating components of cryogenic devices.

Current sharing temperature (Tc s): The temperature at which the transport cur-
rent (I t ) in the conductor equals the conductor’s CRITICAL CURRENT. I t = I c (Tc s ).

Cyclotron magnet: A magnet, usually superconducting, in a cyclotron that produces
energetic protons for medical treatment.

Dewar: A double-walled flask with a vacuum between silvered glass walls for storing
CRYOGENS. Developed by J. Dewar in 1892, who was first to liquefy hydrogen in 1898.

Dilution refrigerator: A millikelvin-range refrigerator that makes use of the differ-
ence in entropies of He3 and He 4 ; it typically provides a refrigeration of 100 µW at 50 mK.

Dip stick: A narrow, long tube for measuring liquid helium levels.

Dipole magnet: A magnet that generates a uniform field transverse to its axis over
most of its bore; it deflects charged particles in accelerators and MHD systems.

Discharge voltage: The maximum voltage appearing across the terminals of a super-
conducting magnet during a DUMP. Also called DUMP VOLTAGE.

Double pancake: See PANCAKE WINDING.

DPC (Demonstration Poloidal Coil): A set of experimental coils, including the United
States Demonstration Poloidal Coil (US-DPC) and Japan’s Experimental Demonstration
Poloidal Coil (DPC-EX), developed to demonstrate the feasibility of producing CIC CON-
DUCTORS suitable for superconducting PULSE MAGNETS in TOKAMAK machines. The
coils were tested at JAERI in the late 1980s and early 1990s.

Dry magnet: A magnet wound without epoxy and other filler material in the winding.
The term may also be used for a magnet coupled to a cryocooler and cooled by conduction.

Dump: A forced discharge of the current in a superconducting magnet in an emergency.
A dump often involves opening a switch connecting the power supply and the magnet
and discharging the stored magnetic energy through a DUMP RESISTOR.

Dump resistor: A resistor through which the current in the superconducting magnet
is forced to flow during a DUMP; it speeds up the current decay in the magnet.

Dump voltage: Another name for DISCHARGE VOLTAGE.

Eddy-current loss: A loss generated by eddy currents induced in conductive metal
by a time-varying magnetic field; a nuisance as a source of extraneous heat in high-field,
low-temperature (millikelvin range) experiments.
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FEA (Finite Element Analysis): A computer-based technique for analyzing complex
stress distributions, for example, in a magnet system.

Energy margin: The maximum input pulse energy density to a small region of the
winding without it leading to a QUENCH; it is a useful parameter to quantify stability
against transient disturbances, e.g. conductor motion, occurring in the winding.

Epoxy-impregnated magnet: An ADIABATIC MAGNET having its winding filled with
an epoxy resin to minimize incidents of conductor motion responsible for PREMATURE
QUENCHES. The FLOATING WINDING method applied to these magnets is effective in
reducing epoxy fracture responsible for premature quenches.

“Equal-area” criterion: A design criterion for CRYOSTABLE MAGNETS that incor-
porates thermal conduction along the conductor axis to achieve OVERALL CURRENT
DENSITIES greater than those achieved by magnets meeting STEKLY CRITERION.

Fault mode: A failure of the system, e.g. a PREMATURE QUENCH of a superconducting
magnet at or near the designed operating current. Magnet designers use anticipated fault
modes that result in the most extreme conditions as guides to the system requirements.

FBNML (Francis Bitter National Magnet Laboratory): Founded in 1960, the first na-
tional laboratory devoted to research and development in magnetism and magnet tech-
nology. Located on the MIT campus, Cambridge, MA.

Floating winding: A type of winding used in EPOXY-IMPREGNATED MAGNETS to
allow the windings to separate freely from the coil forms as the magnets are energized
and thereby to minimize PREMATURE QUENCH incidents induced by epoxy fracture.

Flux jump: A thermal instability in a superconductor in which flux motion induces
heat generation, which in turn causes additional magnetic flux motion.

Flux pinning: A mechanism that inhibits FLUXOID motion. The flux pinning force is
thought to be supplied by the crystal structure; it can be increased by material impurities
and inhomogeneities caused by cold working and heat treatment to produce large Jc  i n
materials used in MAGNET-GRADE SUPERCONDUCTORS.

Fluxoid: A quantized flux line ( 2.0 × 10 –15 Wb) having a normal-state core whose
radius is on the order of the COHERENCE LENGTH; it is the basic unit for field measuring
sensors based on a SQUID.

Formvar: Trade name for polyvinylformal, a venerable (over 100 years old) insulator
material for conductors; it is particularly effective for low temperature applications.

Fringing field: An unwanted magnetic field outside a magnet system.

G-10: A laminated, thermosetting composite with glass fibers as base materials, used
in magnets and CRYOSTATS as a high-strength material where metals are unsuitable.

G-M (Gifford-McMahon ) cycle: A variant of the STIRLING CYCLE suitable for minia-
ture refrigerators. Developed by W. Gifford and H. McMahon in the early 1960s.

Gas-cooled lead: A current lead connecting the magnet inside the CRYOSTAT to the
power source outside; cold vapor rising from the boiling helium is funneled through the
lead, reducing the heat load (by conduction and Joule heating) on the cryostat.

GGG (Gadolinium-Gallium-Garnet ): A PARAMAGNETIC SALT (Gd 3 Ga5 O12 ) for M A G -
NETIC REFRIGERATORS operating below ~10K.

GLAG theory: A phenomenological theory developed in the 1950s by V. Ginzburg,
L. Landau, A. Abrikosov, and L. Gorkov that explains the magnetic behavior of TYPE
II SUPERCONDUCTORS; it describes the relationship between COHERENCE LENGTH and
PENETRATION DEPTH, as well as the MIXED STATE and UPPER CRITICAL FIELD.

Gradient coil: A solenoid that generates a linearly varying axial magnetic field. A
pulse gradient coil used in MRI generates a field gradient typically of ~10mT/m.
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Hot spot: The small region in the winding that attains the highest temperature after
a QUENCH ; generally it is at a quench initiation point.

Hall probe: A sensor for measuring magnetic field. Based on the principle of the Hall
effect, its output voltage, for a given supply current, is proportional to field strength.

He I: Another name for the non-superfluid liquid of ordinary helium (He4 ) .

He II: Another name for SUPERFLUID HELIUM.

He³: A helium isotope with atomic weight 3; it boils at 3.2K at 1 atm. Naturally,
~1/10 7 as abundant as He4 . A key element in a DILUTION REFRIGERATOR.

He4 : A natural isotope of helium with atomic weight 4; it boils at 4.2 K at 1 atm.

HF (High Field): The winding section of a magnet exposed to a high-field. See LF.

High-performance magnets: Magnets having high OVERALL CURRENT DENSITIES,
usually ADIABATIC ; they are required for NMR and MRI magnets.

Hot-spot temperature: The highest temperature reached at the HOT SPOT in a
quenching magnet; hot-spot temperatures below 150 K are considered safe.

HTS [High-Tc Superconductor (s)]: A new class of superconductors having Tc  higher
than ~25 K. All HTS discovered to date are PEROVSKITE oxides, the first of which was
La1.85 Ba0.15 CuO4 with T c of 35K, discovered in 1986 by K.A. Müller and J.G. Bednorz
of the IBM Zürich Research Laboratory.

Hybrid (magnet): A magnet comprised of both WATER-COOLED and superconduct-
ing magnets to enhance the net magnetic field in the center.

Hybrid shielding: A MAGNETIC SHIELDING technique which combines both the AC-
TIVE SHIELDING and PASSIVE SHIELDING techniques; it is used in some MRI magnets.

Hysteresis loss: An energy loss due to the hysteretic effect of a material property,
e.g. magnetization of TYPE II SUPERCONDUCTORS.

Incoloy 908: Trade name for a nickel-iron based superalloy with low thermal expan-
sion coefficient; it has been specifically developed by the U.S. Department of Energy’s
Magnetic Fusion Program for the conduit of Nb3 Sn-based ITER CIC CONDUCTORS.

Inconel: Trade name for a family of nickel based superalloys.

Index number(n): An exponent appearing in the voltage vs current relationship for a
superconductor; n = ∞  for ideal superconductors. It is an important conductor param-
eter for PERSISTENT-MODE magnets; n values as low as 20 are considered acceptable.

Induction heating: Heating generated in conductive metal by a time-varying mag-
netic field—called induction heating when such heating is beneficial and EDDY-CURRENT
LOSS when it is not.

Insert: A coil or a set of coils placed in the bore of another coil or set of coils.

Internal diffusion process: A modified BRONZE PROCESS for Nb3 Sn developed in
1974 by Y. Hashimoto of the Mitsubishi Electric Corp.

Irreversible field: A magnetic field above which a superconductor carries no transport
current of significance to magnet operation. It is smaller than UPPER CRITICAL FIELD;
an important parameter for magnet design.

Isolated magnet: Generally refers to a PERSISTENT-MODE superconducting magnet
whose connection (through current leads) to the environment outside the CRYOSTAT is
removed to minimize refrigeration load. MRI and NMR systems use these magnets.

ITER ( International Thermonuclear Experimental Reactor): An international project
involving the European Union, Japan, Russia, and the United States to construct a
break-even TOKAMAK , which will be equipped with CIC CONDUCTOR magnets.
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JAERI (Japan Atomic Energy Research Institute): Japan’s principal research and de-
velopment center for superconducting magnet technology, at Naka-machi, Ibaraki.

“Jelly-roll” process: A process for making Nb-Ti, Nb3 Sn, and other LTS , in which
“foiled” conductor ingredients are rolled to form the basic ingot. Developed in 1976 by
W.K. McDonald of Teledyne Wah Chang; the process is also used to manufacture HTS.

Josephson effect: A quantum effect characterized by the tunnelling of superelectrons
through the insulator of a JOSEPHSON JUNCTION, and observable as current flow without
a driving potential. Based on the theoretical work (1964) of B. Josephson.

Josephson junction: A device with two superconducting plates separated by an oxide
layer. Josephson junctions are used in SQUID and other micro-scale electronic devices.

J-T (Joule-Thomson ) valve: A valve, usually a needle valve, across which the working
fluid expands adiabatically and isenthalpically; the expansion process is irreversible.

Kaiser effect: A mechanical behavior under cyclic loading in which events, e.g. con-
ductor motion and epoxy fracture in a magnet, appear only when the loading exceeds
the level achieved in the previous cycle. Discovered by J. Kaiser in the early 1950s.

Kapitza resistance: The thermal boundary resistance which occurs at the interface
when heat flows from a solid to liquid helium. Discovered by P. Kapitza in 1941.

Kapton: Trade name for a polyimide. An insulating material having a high BREAK-
DOWN VOLTAGE in the range of 100 kV/mm.

Kohler plot: A plot that combines the effects of magnetic field, material purity, and
temperature on electrical resistivity of conductive metal.

Lambda point (Tλ ) : The temperature below which ordinary liquid helium (He4 ) be-
comes SUPERFLUID HELIUM; it is 2.18 K at a pressure of 38 torr (0.050 atm).

Layer winding: A winding technique to create a solenoid. A conductor is wound along
the length of a mandrel, one layer at a time.

LCT (Large Coil Test Project): A multinational project involving Euro-Atom, Japan,
Switzerland, and the U.S. in which a TOROIDAL MAGNET consisting of 6 superconducting
coils was tested in the mid 1980s at the Oak Ridge National Laboratory.

Level indicator: A sensor for measuring the liquid helium level in a CRYOSTAT or
S T O R A G E  D E W A R; often the sensor element is a “heated” superconducting wire.

LF (Low Field): The winding section of a magnet exposed to a low field, usually the
magnet’s outer region. Conductors for the HF and LF regions are often graded.

LHD (Large Helical Device): A Stellarator-like experimental plasma machine near com-
pletion at the National Institute for Fusion Science, Toki-shi, Japan. The MAGNETIC
CONFINEMENT is achieved by superconducting magnets.

Lorentz force: A force arising from the interaction of current and magnetic field; it is
the most important force in magnets. Named for H. Lorentz.

Lorenz number: A conductive metal property equal to the ratio of thermal conduc-
tivity times electrical resistivity, to temperature. See WIEDEMANN-FRANZ-LORENZ LAW.

Lower critical field (Hc 1): The magnetic field at which a superconductor’s magnetic
behavior departs from perfect diamagnetism.

L T S [Low-Tc  Superconductor(s)]: Mostly metallic superconductors, all with Tc < 25 K;
the first LTS, mercury (Tc  = 4.152 K), was discovered in 1911 by H. Kamerlingh Onnes
(Leiden University). During the 1950s, B.T. Matthias and his group at the Bell Telephone
Laboratories discovered many LTS important for magnet applications, e.g. Nb3 Sn, Nb3 Al,
and V3 Ga; J.K. Hulm and R.D. Blaugher at the Westinghouse Research Laboratories
are credited with basic studies (1961) of alloys of Nb-Ti and Nb-Zr.
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Maglev (Magnetic levitation): A levitation phenomenon created by opposing magnetic
fluxes. Commonly it refers to levitated high-speed trains equipped with superconducting
magnets, proposed by J. Powell and G. Danby of the Brookhaven National Laboratory in
the late 1960s. Pursued since 1970 by the Japan Railway Technical Research Institute,
which is presently building a second maglev test track 40-km long.

Magnet-grade superconductor: A superconductor meeting rigorous specifications
required for use in a magnet and readily available commercially; presently (1994) only
Nb-Ti and Nb 3 Sn qualify as magnet-grade superconductors.

Magnetic confinement: A fusion technique that uses magnetic fields to confine hot
plasma, best exemplified by the TOKAMAK.

Magnetic cycle: A thermodynamic cycle that uses a material, e.g. a PARAMAGNETIC
SALT, whose entropy depends on magnetic field and temperature; it is a viable refriger-
ation cycle particularly for temperatures below 20 K. There are magnetic equivalents to
the conventional CARNOT and STIRLING cycles. See MAGNETIC REFRIGERATION.

Magnetic drag force: A drag force that arises from the EDDY-CURRENT LOSS, an
important force for MAGLEV vehicles.

Magnetic pressure: A pressure equal to the magnetic energy density.

Magnetic refrigeration: Refrigeration based on a MAGNETIC CYCLE, generally uses
helium as a working fluid for heat transport between the two reservoirs. The magnet
system required to provide the field is often superconducting.

Magnetic shielding: Shielding of space occupied by persons or field-sensitive equip-
ment from a FRINGING FIELD. See ACTIVE SHIELDING and PASSIVE SHIELDING.

Meissner effect: A phenomenon of complete expulsion of magnetic flux from the in-
terior of a superconductor. This perfect diamagnetism is the most important property
of a superconductor. Discovered in 1933 by W. Meissner and R. Ochsenfeld.

“Melt” process: Short for the melt-powder-melt-growth (MPMG) process that yields
uniform high-quality YBCO. Developed in 1991 by M. Murakami of the International
Superconductivity Technology Center (ISTEC), Tokyo.

MHD (Magnetohydrodynamic ): The study of the motion of an electrically conducting
fluid in the presence of a magnetic field. For magnet applications, important quanti-
ties are an electric potential and a LORENTZ FORCE, both developed in the direction
transverse to the fluid flow direction.

MHD generation: Conversion of the thermal energy of hot ionized gas into DC electric
power by MHD. For large-scale systems, superconducting magnets are required.

MHD ship propulsion: Ship propulsion achieved by the acceleration of sea water
through a magnetic field. In 1992 the experimental ship Yamato, equipped with a set of
six superconducting DIPOLE MAGNETS, cruised in Kobe harbor, Japan.

Microslip: A STICK-SLIP of ~10 µ m; a microslip in the winding of a magnet may cause
a PREMATURE QUENCH. The KAISER EFFECT is observed in microslips.

Mixed state: The state consisting of many hexagonally-arranged normal-state “is-
lands” (vortices) in a superconducting sea. A TYPE II SUPERCONDUCTOR is in the
mixed state over most of its magnetic field range. See FLUXOID and GLAG THEORY.

MPZ (Minimum Propagating Zone ): The largest stationary volume in a magnet that
can generate Joule heating, while the rest of the winding remains superconducting. An
important concept for analyzing the stability of ADIABATIC MAGNETS.

MRI (Magnetic Resonance Imaging ): A large-scale application in which superconduct-
ing magnets are used to help create visual images of the brain and other body parts for
diagnostic purposes; it is based on the phenomenon of NMR.
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Multifilamentary conductor: A COMPOSITE SUPERCONDUCTOR in which the su-
perconductor is in the form of many filaments that are twisted to eliminate FLUX JUMPS.
Strands in CIC CONDUCTORS are multifilamentary conductors.

Mylar: A polyester, used in the form of thin sheets (25~150 µm thickness) in magnets
as an insulating material. Less suitable than KAPTON for high voltage applications.

Nb 3 Al: An intermetallic compound of niobium and aluminum, a promising alternative
to N b 3 Sn principally because of its tolerance to higher strains than Nb 3Sn; still under
development. The JELLY-ROLL process has proven effective in making the conductor.

N b 3Sn: An intermetallic compound of niobium and tin. Aside from Nb-Ti, it is the
only other MAGNET-GRADE SUPERCONDUCTOR.

Nb-Ti: Alloys of niobium and titanium, typically ~50wt.%Ti: exact compositions vary
among manufacturers; it is the MAGNET-GRADE SUPERCONDUCTOR most widely used.

Nb-Zr: Alloys of niobium and zirconium, the first MAGNET-GRADE SUPERCONDUC-
TORS. Replaced by Nb-Ti, which is easier to co-process with copper.

NET (Next European Torus): A large TOKAMAK machine being developed by the
European Union, with headquarters in Garching, Germany; it has a team dedicated to
research and development of superconducting magnet technology.

NHMFL (National High Magnetic Field Laboratory): A national magnet laboratory
founded in 1990; most of its user facilities are at Florida State University, Tallahassee.

NMR (Nuclear Magnetic Resonance ): A quantum effect characterized by the absorp-
tion of radio waves by nuclei in the presence of a magnetic field. NMR spectroscopy is
used to study the molecular structures of chemical compounds including proteins. The
higher the field, the higher will be the resolution and signal-to-noise ratio. Supercon-
ducting magnets are best suited for creating “NMR-quality” fields above 2T.

Nusselt number: A dimensionless heat transfer coefficient equal to the ratio of the
convective heat transfer coefficient to the thermal conductivity, times a characteristic
length. An important number for convective heat transfer. Named for W. Nusselt.

NZP (Normal Zone Propagation ) velocity: The velocity of the normal-superconducting
boundary propagation; it decreases precipitously with increasing temperature. SELF-
PROTECTING MAGNETS generally have high NZP velocities.

OFHC ( Oxygen-Free-High-Conductivity ) copper: A high-purity copper used widely
in normal-metal conductors, particularly for low-temperature applications.

Ohmic heating magnet: A PULSE MAGNET situated in a TOKAMAK bore that heats
as well as stabilizes the plasma.

Overall current density (Jov): Total ampere-turns divided by the winding cross sec-
tional area. An important design parameter for magnets. See SPACE FACTOR.

Pancake winding: A winding technique in which a conductor is wound from the center
outward, each turn lying further away radially but in the same plane as the previous turn;
the finished coil resembles a pancake. A DOUBLE-PANCAKE is wound with a conductor
that spirals in from the outside of one pancake and then spirals back out in the other.
The transition turn at the inside diameter is continuous.

Paper magnet: A magnet available only on paper (or in a computer); when elaborate
or large-scale, it is often the only version ever completed. Useful for parametric study.

Paramagnetic salt: A paramagnetic material for MAGNETIC REFRIGERATION. Most
are rare-earth based compounds, e.g. GGG, DAG (Dy3 Al5 O12 ), ErNi 2, EuS, Gd 5 Si4.

Passive protection: A magnet protection technique that does not use devices located
outside the CRYOSTAT; a key parameter, NZP VELOCITY, must be high to expand the
energy absorbing normal zone fast, and keep HOT-SPOT TEMPERATURES below 150 K.
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Passive shielding: MAGNETIC SHIELDING that generally uses ferromagnetic materials
such as steel; HTS is considered a viable material. For shielding a time-varying field,
conductive metal is effective (SKIN EFFECT).

Peak field: The maximum field for a given field distribution in a magnet.

Penetration depth: The depth within which a surface supercurrent flows to exclude
a magnetic field from the interior of a TYPE I SUPERCONDUCTOR. The concept was
introduced by F. London and H. London (brothers) in the 1930s.

Permanent magnet: A magnet made of magnetized ferromagnetic material with a
high COERCIVE FORCE; it can provide inductions up to ~2 T over a small volume.

Perovskite: The cubic structure of all known HTS, also of ferroelectric, ferromagnetic,
and antiferromagnetic materials. Named for Count L.A. von Perovski, a crystallographer.

Persistent-mode: Operation of a superconducting magnet where the generated mag-
netic field remains virtually constant with time. Usually achieved by means of a SUPER-
CONDUCTING SWITCH which shunts the magnet, allowing it to become ISOLATED.

Phenolic: A laminated composite consisting of woven linen (sometimes cotton or even
paper) layers bonded in a thermosetting adhesive.

Piezoelectric effect: The coupling of mechanical and electric effects in which a strain
in a certain class of crystals, e.g. quartz, induces an electric potential and vice versa. A
piezoelectric crystal is the key element in an AE sensor. Discovered by P. Curie in 1880.

Poloidal magnet: A PULSE MAGNET that generates a field in the axial (vertical)
direction for plasma stabilization in a MAGNETIC CONFINEMENT fusion machine.

Polyhelix: A high-field, WATER-COOLED MAGNET consisting of nested single-layer
coils, each wound with a conductor matched to its stress requirement.

ppm: Parts per million.

Prandtl number: A dimensionless property coefficient equal to the ratio of kinematic
viscosity to thermal diffusivity, a measure of the relative diffusion rates of momentum
and heat, and an important number in convective heat transfer. Named for L. Prandtl.

Premature quench: A QUENCH of a superconducting magnet below the designed
operating current. A premature quench usually disappoints magnet engineers.

Pulse magnet: A magnet that generates a magnetic field of a short duration, ranging
from microseconds to a fraction of a second, presently the only type capable of generating
fields above ~40 T. Also used as an OHMIC HEATING MAGNET and POLOIDAL MAGNET.
Large superconducting versions are generally wound with CIC CONDUCTORS.

QA (Quasi-Adiabatic) magnet: A magnet that is nearly adiabatic; a small amount of
coolant in the winding keeps it superconducting in the presence of transient disturbances.
Its OVERALL CURRENT DENSITY ranges between those of CRYOSTABLE MAGNETS and
those of ADIABATIC MAGNETS; the HYBRID III SCM is an example.

Quadrupole magnet: A magnet that generates a linear gradient field transverse to
its axis over the central region of its bore; it focuses particles in particle accelerators.

Quench: The  superconducting-to-normal transition, specifically, the rapid irreversible
process in which a magnet is driven fully normal.

Racetrack magnet: A magnet resembling a racetrack, wound in a plane with each
turn consisting of two parallel sides and two semi-circles at each end; used by MAGLEV
vehicles. Two magnets may be assembled to approximate the field of a DIPOLE MAGNET.

React-and-wind: The term used for a coil winding technique for a “reacted” conduc-
tor such as A-15 LTS and HTS that is wound with the conductor already reacted, applicable
only when strains induced in the conductor during the winding process can be kept low.
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Regenerator: A key element in STIRLING and G-M cycles, storing and releasing heat
during isochoric processes; its effectiveness diminishes as 0K is approached. For operation
below ~10K, rare-earth based compounds, e.g. Er3Ni, have proven quite effective.

Reynolds number: The dimensionless ratio of inertial effects to viscous effects; it
characterizes the viscous flow of fluids. Named for O. Reynolds.

RRR (Residual Resistivity Ratio): The ratio of a metal’s electrical resistivity at 273 K
to that at 4.2 K, a parameter to express the metal’s purity. OFHC COPPER has an RRR
of ~200; it can reach 10,000 and higher in pure aluminum.

"Saddle" magnet: A magnet with a winding that resembles a saddle, generally with
a long winding length. Two saddle magnets can be assembled to produce a DIPOLE
MAGNET field, four saddles a QUADRUPOLE field, and six saddles a sextuple field.

Saturation magnetization: The maximum magnetization of a ferromagnetic mate-
rial. An important material property for PASSIVE SHIELDING.

SCM: Superconducting magnet(s).

Search coil: A coil for measuring a magnetic field; it requires a very stable integrator
to convert the search coil output voltage to field.

Self-field loss: A hysteresis AC LOSS in a superconductor due to the magnetic field
generated by a transport current.

Ideally all ISOLATED MAGNETS should be self-protecting.
Self-protecting magnet: A magnet with the built-in PASSIVE PROTECTION features.

Skin depth: The distance from the metal surface at which the amplitude of a sinu-
soidally time-varying magnetic field, due to the SKIN EFFECT, is 0.37 the applied field’s.

Skin effect: A phenomenon in which the amplitude of a sinusoidally time-varying
magnetic field decreases exponentially with distance from the surface of a conductive
metal into its interior. See SKIN DEPTH. 
SMES (Superconducting Magnetic Energy Storage): Generally refers to the magnetic
storage of electrical energy for future use by an electric utility. Because energy must
be stored until needed, SMES must use PERSISTENT-MODE magnets. Other non-utility
applications of SMES have also been proposed, especially for HTS magnets.

S O R ( Synchrotron
erating electrons in the presence of a magnetic field; SOR magnets are superconducting.

Orbital Radiation): A device to produce x-rays by means of accel-

Space factor: The fraction of the winding cross sectional area occupied by the current-
carrying conductor. An important design parameter for magnets.
SQUID (Superconducting Quantum Interference Device): A device using the JOSEPH-

SON EFFECT to measure the smallest possible change in magnetic flux. See FLUXOID.

SSC (Superconducting Supercollider): Terminated in 1993, it was to have been the
largest (super) “atom smasher” (collider) for high-energy physics research; the prefix
superconducting was used because its nearly 10,000 DIPOLE and QUADRUPOLE MAG- 
NETS were to be superconducting. SSC would have been the largest single consumer of
superconductor in history—nearly 1000 tons of Nb-Ti MULTIFILAMENTARY CONDUCTOR. 
Stekly criterion: A design criterion for CRYOSTABLE MAGNETS; the cooling flux at
the conductor surface must match the conductor’s full normal-state Joule heating flux.

Stick-slip: A sudden motion induced by a frictional force that decreases with sliding
velocity; it may cause a PREMATURE QUENCH. See KAISER EFFECT and MICROSLIP .

Stirling cycle: A cycle used in CRYOCOOLERS, consisting of two isothermal and two
isochoric processes; it incorporates a REGENERATOR. Invented by a Scottish minister, R.
Stirling, in the late 1810s, before Carnot published his paper.
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Storage dewar: An insulated container, sometimes portable, of CRYOGENS.

Subcooled superfluid helium: SUPERFLUID HELIUM at atmospheric pressure. Most
superconducting magnets operating in this mode, e.g. HYBRID III, use the ingenious
cryostat design principle developed by G. Claudet, P. Roubeau, and J. Verdier.

Submicron conductor: A MULTIFILAMENTARY CONDUCTOR having filaments of di-
ameter 0.1~0.5 µm to keep HYSTERESIS LOSSES manageable in 60-Hz applications.

Superconducting generator: A generator having a rotor which is superconducting.
The basic engineering adopted in today’s machines was developed and demonstrated in
the late 1960s with a 45-kVA model by J.L. Smith and others at MIT.

Superconducting motor: A motor having a rotor which is superconducting. An im-
portant application of HTS magnets; prototype 100-hp motors incorporating HTS mag-
nets (77K) are being developed in the U.S.

Superconducting power transmission: A superconductive transmission of electrical
power, AC or DC, for an electric utility. A 1000-MVA AC prototype based on Nb3 Sn
tape was demonstrated in the early 1980s by E.B. Forsyth and others at the Brookhaven
National Laboratory. Potentially an important application for HTS.

Superconducting switch: A switch that shunts a PERSISTENT-MODE MAGNET; it
has an open (normal state) position activated by a heater in the switch. Switch super-
conductors are matrixed in an alloy (Cu-Ni) to make their normal-state resistance large
so that the current through the switch can be limited during magnet charging.

Supercritical helium: Helium above the critical point (2.26 atm and 5.20K); often
helium is called supercritical even below 5.20K if the pressure is above 2.26 atm.

Superfluid helium: A liquid helium state with extraordinary properties that exists
below 2.18 K, the LAMBDA POINT (Tλ ). See SUBCOOLED SUPERFLUID HELIUM.

Superinsulation: Aluminized MYLAR sheets; it is placed in the vacuum space of a
CRYOSTAT to reduce radiation heat input.

TBCCO: Thallium-based HTS discovered in 1988 by Z.Z. Sheng and A.M. Hermann of
the University of Arkansas. Tl2 Ba 2 Ca n – 1 C un O2n + 4 form is structurally similar to BSCCO
system, with a (2223) material having Tc of ~125 K; it appears to be more promising
than BSCCO for high-field applications at 77 K.

Teflon: Trade name for polytetraflouroethylene (TFE), consisting of [C-F2] n chains
with strong C-F bonds. A common material used, both as a bulk and a coating material,
in cryogenic systems for its insulating properties and low coefficient of friction.

Tokamak (Toroidal Coil Magnetic Confinement): A toroidal-shaped thermonuclear fu-
sion machine that incorporates MAGNETIC CONFINEMENT to contain hot plasma; it was
conceived in the 1950s by L.A. Artsimovich and A.D. Sakharov of the Kurchatov In-
stitute of Atomic Energy, Moscow. Power-generating fusion reactors will likely use the
Tokamak configuration with magnets that will all be superconducting. See ITER.

TORE SUPRA: A TOKAMAK with superconducting magnets operated in a bath of
SUBCOOLED SUPERFLUID HELIUM; it is located at Cadarache, France.

Toroidal magnet: A magnet that generates a field in the toroidal (azimuthal) direction
to confine hot plasma; the superconducting version is DC.

Transfer line: A double-walled vacuum insulated line used to transfer liquid helium
from a STORAGE DEWAR to a CRYOSTAT.

Training: Behavior of a HIGH-PERFORMANCE MAGNET that quenches prematurely
but improves its performance towards the design operating current after each quench.
Because most of these PREMATURE QUENCHES are caused by mechanical disturbances,
training is considered as a manifestation of the KAISER EFFECT.
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Transpos i t i on : A configuration of strands in a C I C  C O N D U C T O R . In a transposed
cable, every strand spirals to occupy every radial location in the cable’s overall diameter
along its TWIST PITCH LENGTH; by contrast, in a simply twisted cable the center strand
remains at the center. Transposition minimizes flux linkage and thus the COUPLING

L O S S. In MULTIFILAMENTARY CONDUCTORS, because filaments are arranged in fixed
radial locations in the matrix at the billet-making stage, transposition is not possible;
the conductor is simply twisted during the production stage.

Triple point: The equilibrium state for solid, liquid, and vapor phases. Triple points of
hydrogen (13.8033 K), neon (24.5561 K), oxygen (54.3584 K), argon (83.8058 K), mercury
(234.3156 K), and water (273.16 K) are fixed points in the International Temperature
Scale of 1990 (ITS-90). Helium does not have a triple point.

Triplet: A set of three transposed strands. A standard building block for CIC CON-

DUCTORS containing hundreds of strands.

Twis t  p i t ch  length: The linear distance over which a strand (or filament) of trans-
posed cables (or twisted multifilamentary conductor) makes one complete revolution. An
important  parameter  for  CIC CONDUCTORS and M U L T I F I L A M E N T A R Y  C O N D U C T O R S.

Type I superconductors: Superconductors exhibiting the MEISSNER EFFECT up to
their critical fields. Also called “soft” superconductors because most are mechanically
soft, e.g. lead, mercury, indium. Unsuitable for MAGNET-GRADE SUPERCONDUCTORS.

Type II superconductors: Superconductors possessing a MIXED STATE. Also called
“hard superconductors,” they include Nb-Ti and Nb3Sn, and have critical properties suit-
able for magnet applications. An alloy of lead-bismuth was the first Type II supercon-
ductor, discovered in 1930 by W. de Haas and J. Voogd.

Upper cri t ical  f ield [Hc 2 (or B c 2 =  µ o H c 2 )]: The field at which a TYPE II SUPER-

CONDUCTOR loses its superconductivity completely.

Void fraction: The fraction of the space bounded by the interior wall of a CIC CON-

DUCTOR that is occupied by coolant; it ranges from 33 to 40%.

Water-cooled magnet: A magnet, usually made of copper or copper alloys, that is
cooled by water forced through the winding.

Wiedemann-Franz-Lorenz law: A relationship stating that for conductive metals,
the product of thermal conductivity and electrical resistivity is proportional to temper-
ature with the proportionality constant being the LORENZ NUMBER.

Wind-and- reac t : A coil preparation technique consisting of two stages: winding of a
coil with an “unreacted” conductor, followed by heat treatment of the wound coil. It is
used for a conductor such as A-15 LTS and HTS that must be reacted at a high tempera-
ture (700~900°C). Required when strains induced in the conductor during the winding
process could exceed the superconductor’s strain limit. It is a more difficult process than
the REACT-AND-WIND process, primarily because of the high reaction temperature that
precludes the use of many materials in the pre-reacted coil.

YBCO: An yttrium-based HTS (YBa 2 Cu 3 O 7 – δ ) with a T c of 93 K discovered in 1987
by groups led by P.W. Chu at the University of Alabama and the University of Houston.

Yin-Yang  magne t : A magnet consisting of two (Yin and Yang) coils that produces a
“mirror” field for fusion devices; a relative of the “BASEBALL” (TENNIS BALL) MAGNET.
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QUOTATION SOURCES AND CHARACTER IDENTIFICATION

Jonathan Livingston Seagull (Preface, p. vi):

A seagull in Richard Bach’s Jonathan Livingston Seagull, A Story (Avon Books, 1970).

Michael Faraday (p. 10):
P.E. Andrew, Michael Faraday (Wheaton & Co., 1937).

Victor F. Weisskopf (p. 18):
American J. Phys. 45, 422 (1977).

Ty Ty Walden (p. 32):
A religious Georgia farmer who has set aside one acre of his farm for digging gold for his
church in Erskine Caldwell’s God’s Little Acre (A Penguin Books Edition, 1946).

Mathias J. Leupold (p. 60):
Personal communication (1991).

Lady Bracknell (p. 66):
A guardian in Oscar Wilde’s trivial comedy for serious people The Importance of Being
Earnest (Avon Books, 1965).

Obi Wan Kenobi (p. 79):
A Jedi master, mentor to Luke Skywalker, and later an outlaw in the Tatooine mountains
in George Lucas’s Star Wars (A Del Rey Book, 1976).

Anonymous (p. 102):
Posted in a paint shop in Boston; a universally apt reminder to the sponsor of a major
project, particularly a superconducting one.

Owen Warland (p. 118):
A youthful watchmaker in Nathaniel Hawthorne’s allegorical tale The Artist of the Beau-
tiful (A Fawcett Premier Book, 1966).

An exasperated cryogenic engineer (p. 144):
Look around, there are quite a few like him.

Henry D. Thoreau (p. 154):
Walden (A Signet Classic, 1960).

Heike Kamerlingh Onnes (p. 171):
K. Mendelssohn, The Quest for Absolute Zero, The Meaning of Low Temperature Physics
(World University Library, 1966). In the original Dutch: “Door meten tot weten.”

Imanuel Kant, Jean-Paul Sartre, Frank Sinatra (p. 176):
A 5-word epitome of each philosopher’s work.
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Bertrand Russell (p. 209):
Great Essays in Science, edited by Martin Gardner (A Washington Square Press Book,
1957).

Robert Jordan (p. 236):
A Montanan mercenary in the Spanish Civil War in Ernest Hemingway’s For Whom the
Bell Tolls (Penguin Books, 1966).

Captain Nemo (p. 244):
The captain of the Nautilus in Jules Verne’s science fiction 20,000 Leagues Under the Sea
(Translated from the French by Anthony Bonner, A Bantam Pathfinder Edition, 1962).

Arthur C. Clarke (p. 244):
Profiles of the Future, An Inquiry into the Limits of the Possible (Popular Library, 1977).

Lewis Thomas (p. 253):
The Lives of a Cell, Notes of a Biology Watcher (A Bantam Book, 1975).

O’Hara (p. 273):
Played by Peter Lorre, a member of the sophisticated beachcombers headed by Billy
Dannreuther (Humphrey Bogart) in John Huston’s whimsical thriller Beat the Devil
(Santana-Romulus Production; released by United Artists, 1954).

Ada (p. 273):
Adelaida Durmanov Veen, the cousin of the protagonist in Vladimir Nabokov’s poetic,
antiworld novel Ada or Ardor: A Family Chronicle (A Fawcett Crest Book, 1969).

Ned Land (p. 292):
A Canadian harpooner on board the Abraham Lincoln and later a crew member of the
Nautilus in 20,000 Leagues Under the Sea, ibid.

Holly Golightly (p. 313):
A rural Texan turned New York’s amoral playgirl in Truman Capote’s Breakfast at
Tiffany’s (A Signet Book, 1959).

Ambrose Bierce (p. 327):
The Devil’s Dictionary (Dover Publications, 1958).

C. Auguste Dupin (p. 353):
An eccentric genius in Edgar Allan Poe’s The Murders in the Rue Morgue (An Airmont
Classic, 1962).

E.B. White (p. 366):
One Man’s Meat (Perennial Library, 1966).

Figaro (p. 376):
An original and witty liar, a valet in W.A. Mozart’s comic opera Le Nozze di Figaro
(Libretto by Lorenzo da Ponte). A rough translation: “The rest I need not say, . . .”
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A page number is italicized when that page contains a definition, numerical examples,
or data. For HTS and Hybrid III only, most subjects are cross-indexed. Note that not
every entry in the Glossary is indexed.

A-15 4 0 1 burst disk and diffuser (Hybrid III cryo-
AC loss(es) 4, 36, 145, 163, 216, 261, 262, s t a t ) 2 8 9

263, 268, 285, 369, 401
energy loss density formulas 264 carbon resistors 147, 159~161
in CIC conductor 207, 209, 304 Carnot
in HTS magnets 318, 319 cycle, refrigerator 119, 120, 402
in Hybrid III SCM 263, 288~292 Chevrel phase 4 0 2
in US-DPC coil 293~299 CIC conductors 206, 207~209, 240, 241,
power densities 2 6 3 245, 247, 248, 302~304, 341, 402

accelerators 2, 9, 69, 74, 89, 268 Class 1 magnets 9, 207, 216, 323, 332, 402
accommodation coefficient 148 Class 2 magnets 9, 207, 323, 324, 402
acoustic emission (AE) 262, 268, 2 7 0 , HTS 9, 323

271, 401 close-packed hexagonal 103, 104, 326, 358
mechanical contact 314 coherence length 5, 402
sensors 312, 314, 364 H T S  5
signals 271, 272, 312, 314, 316 cold trap 149
technique 2 7 0 Collins liquefiers 1, 2

active protection 328, 401 composite superconductor(s) 2, 125, 144,
active shielding 401 193, 199, 210, 212~214, 216, 217,
adiabatic magnet 204, 206, 231, 256, 268, 232, 265, 316, 402

272, 311, 319, 326, 347, 401 “built-up” 2 1 7
HTS 256, 258, (tape) 327 “monolithic” 2 1 7

aluminum 118, 139, 152, 153, 289, 314, conductor  motion 227,  268~271,  310,
330~332, 359, 385~389, 391, 392 315, 316

Ampere’s law 12, 47, 163, 220 model 315
anisotropic cylinder 103 conductor splices See splice.
anisotropy 318, 401 contact resistance heating (HTS) 183

field orientation, HTS tapes 3 1 8 cooldown 105, 122, 147, 155, 157
argon 111, 112 “dunk” mode 122, 123, 124
as-cast iron 30, 31, 87, 88, 94 “perfect” mode 122, 123, 124

copper 385~389, 391~393
bath-cooled magnet 401 copper-sheathed Nb3 Sn tape 371
BCS theory 2, 4, 4 0 1 copper-to-superconductor ratio 216, 238,
Bean slab 172, 182, 186, 189, 195, 262, 291, 329, 332, 402

263, 274, 277, 284, 285, 401 correction coil(s) 103, 362
Bean’s (critical state) model 163, 1 6 8 , coupling loss 197, 262, 264, 284, 296, 299,

182, 402 369, 402
BiPbSrCaCuO 10,  200, 318, 371, 372, in HTS magnets 319

395, 398 coupling time constant 262, 284, 402
Bitter magnet 1, 2, 44, 53, 54, 56, 57, 60, crack distribution histogram 313

61, 261, 401 critical current 4 0 2
Bitter plate 53, 57, 95, 4 0 1 density 3, 5, 8, 25, 163, 182, 187, 189,
Bon Mardoin-Claudet-Seyfert plot 1 1 7 , 197, 216, 222, 253, 286, 318, 324, 402

144 density data (BiPbSrCaCuO) 200, 201,
brass 385, 389, 394 318, 398; (Nb 3 Sn) 397; (Nb-Ti) 184,
breakdown voltage 401 241, 288, 396; (YBCO) 183
bridge circuit 336, 338, 340 measurement 182, 183
bronze 105, 106, 107, 108, 389 critical field 3, 6, 165, 274, 395, 402

process 4 0 1 d a t a  ( N b 3 Sn) 395; (Nb-Ti) 395
BSCCO 319, 372, 395, 399, 402 critical frequency 42
bubble chamber 2, 216, 402 critical state model See Bean’s model.
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critical temperature 8, 144, 189, 228, 253,
350, 395, 402

d a t a  ( N b 3 Sn) 395; (Nb-Ti) 395
HTS 8, 403

cryocooler 112, 137, 223, 372, 403
-cooled magnets 266, 372
-coupled, HTS magnets 205, 372

cryogen(s) 1, 7, 8, 10, 111~113, 119, 125,
141, 142, 144, 159, 223, 257, 258, 383,
403

HTS magnets 111, 112, 155
cryogenic temperatures 270, 300, 309,

403
cryogenics 7~10, 59, 111, 203, 261, 375

for HTS 111, 375
cryopump 4 0 3
cryostability 2, 205, 206, 210, 212, 214,

215~218, 235, 240, 261 See also
stability.

circuit model 2 1 0
discussion of Stekly’s criterion 216
nonlinear cooling curves 217
Stekly cri ter ion 2 1 4 ( H T S  2 1 6 )
temperature dependence 2 1 2

cryostable magnet(s) 1, 113, 206, 217,
256, 258, 403

HTS 256, 257, 258
cryostat 58~60, 98~101, 111, 112, 122,

123, 142~144, 147~155, 157, 161,
186, 289, 312, 328, 332, 339, 340, 355,
403

Hybrid III 98~101, 142~144, 147~155,
289, 339

cryotribology 123, 270, 403
current decay 307, 308, 328, 333, 335
current distribution 47, 54, 57, 78, 79,

100, 166, 167, 265
current leads (HTS) 137, 138
current  sharing temperature 208,  2 1 2 ,

237, 240, 242, 246, 249, 348, 403
cyclotron (magnet) 89, (403)

detect-and-dump 328, 333
Hybrid III 333

d e w a r 4 0 3
differential thermal expansions 8
differential (µ / µ o ) di f 30, 31, 88, 94
diffusion equations 219, 220
diffusion pump 149
diffusion time constant 197, 219, 284
dilution refrigerator 4 0 3
dipole

field 17, 71, 9 1
magnet 69, 70, 72, 77, 89, 90, 271, 316,

403
shell 69, 72

discharge voltage 323, 328, 332, 403
disturbances 36, 209, 210, 227, 239, 261,

262, 268, 271, 309, 318, 319 Also
see mechanical disturbances.

in HTS magnets 318, 319, 324, 372
double pancake 59, 101, 235, 239, 289,

291, 293, 294, 300, 302, 338, 339, 345,
346, 403

Hybrid III 59, 101, 236, 300, 339
DPC 245, 248, 285, 293, 295, 403

DP-B 293~299
“dry” high-field HTS magnets 372
dry magnet, winding 270, 403
dual stability regime 2 0 8
dump 403 Also see detect-and-dump.

resistor 328, 332~334, 403
voltage 4 0 3

dynamic model for Hybrid III 9 8
dynamic stability 205, 219, 222, 223

HTS magnets 205, 222, 223

eddy current(s) 42, 43
loss (heating) 36, 43, 44, 188, 263, 403
loss in HTS (magnets) 319

edge-cooled tapes 222
effective discharge time 346
effective matrix resistivities 263, 265, 284
electric generators 69
electrical (matrix) resistivity 3, 4, 11, 13,

43, 135, 139, 153, 196, 204, 214, 219,
222, 223, 228, 252, 257, 319, 348, 391

emissivity 151, 152, 153
energy margin (density) 208, 209, 228,

231, 240~242, 253, 255, 257, 319, 404
epoxy 385, 386, 388, 389

-impregnated 103, 206, 228, 270, 312,
313, 325, 358

-impregnated magnet 404
-resin cracking (fracture) 269, 272, 273,

309
“equal-area” criterion 206, 224, 225, 238,

404
evaporator (Hybrid III) 142, 144~146
external field pulses 295, 296

Faraday’s law 11, 12, 14, 169, 190, 195,
197, 220, 315

fatigue 150, 324
fault (Hybrid III)

condition 95, 98, 100, 289, 324
force transmission 100~102
mode 61, 4 0 4
scenario 95

FBNML 44, 54~58, 95, 101, 103, 155,
158, 203, 236, 302, 314, 324, 326, 338,
345, 362, 369, 404
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fe r r i t e s  274
ferromagnetic 19, 21, 91~94
field efficiency 52, 57, 61
field factor 48
field homogeneity 56, 63
field nonuniformity 64, 298
field orientation anisotropy 318
filament twisting 1 9 5

in composite conductor 199
filamentary conductors 44, 195, 199, 265,

308
film boiling heat transfer (flux) 113, 257
floating winding 269, 313, 404
flow stoppage meltdown 131, 136
flux jump 2, 4, 163, 168, 184, 189,

193~196, 197, 198, 200, 203~205,
217, 404

criterion for HTS 200, 201
flux pinning 4 0 4

sites for HTS 318
force See Lorentz force.
Formvar 4 0 4
friction(al) Also see sliding velocity.

coefficient (µƒ ) 270, 309, 310, 319
hinge 58, 98
sliding 270, 309, 310
-velocity stabilization techniques 270
µƒ over the 4~100K range 319

fringing field (magnetic induction) 19, 26,
32, 87, 88, 150, 289, 304, 404

Hybrid III 87, 8 8
fusion reactors 86, 207, 261, 323, 332
future outlook for HTS 376

G factor  4 9
G-10 100, 102, 140, 385, 388, 389, 404
gas-cooled

lead 125~127, 130~132, 138, 141, 332,
404

support rods 140, 1 4 1
Gaume coils, distribution 5 7
Gauss’s law 11, 1 2
GLAG (theory) 2, 5, 4 0 4
gradient coil, field 62, 63, 404

Hall probe 168, 4 0 4
hard superconductor  5,  163~165,  168,

221, 261, 285
He I (He 4 ) 115, 116, 405
He II 115~118, 405 See also superfluid

helium.
heat input to Hybrid III cryostat 148, 150
heat treatment temperature 5, 207
heater 146, 150, 355, 358, 359

metals 3 9 4
helium 112, 113, 379~383, 386

Helmholtz coil 45, 62, 6 7
HF 59, 102, 239, 300, 334, 405
high-field insert 103
high-performance magnets 262, 268, 270,

high-temperature superconductivity 1

high-voltage arcing 324
homogeneous fields 64
homogeneous thermal unit 358
hoop stress 103, 104, 239
hot spot 328, 329, 330, 333, 405
hot-spot temperature(s) 325, 328, 330,

Hybrid III (Nb-Ti coil) 333~335
HTS (composites, tapes, magnets)

AC losses 318, 319
adiabatic magnet 256, 258, (tape) 327
anisotropy, field orientation 318
BiPbSrCaCuO 10, 200, 318, 371, 372,

309, 311, 369, 372, 405

See HTS for subject listing.

333~335, 405

395, 398
BSCCO 319, 372, 395, 399, 402
Class 2 magnets 9, 323
coherence length 5
contact resistance heating 183
coupled to cryocooler 205, 372
coupling loss 319
critical current density data 200, 201,

318, 398
critical temperature 8, 4 0 3
cryocooler-cooled magnet 205, 372
cryogen 111, 112, 155
cryogenics 111,  375
cryostable magnets 256, 257, 258
current leads 137, 138
disturbances 318, 319, 324, 372
“dry” high-field magnets 372
dynamic stability 205, 222, 223
eddy-current loss 319
flux jumping criterion 200, 201
flux pinning sites 318
future outlook 376
hysteresis loss 319
jelly-roll process 406
magnetization measurement 182, 183
magnets 112, 318, 319, 372
“melt” process 4 0 7
MPZ volume and energy 256, 258
NZP propagation 326, 327

longitudinal 348
velocity 370, 371, 372
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H T S  ( continued )
operating temperature 8, 112, 318, 319,

372
passive shielding 409
perovskite 1, 4 0 9
power transmission 411
property data 200, 201, 318, 398, 399
protection 323, 324, 332, 372
quenching 326
si lver-sheathed tapes 183,  201,  223,

318, 319, 371, 398, 402
S M E S  4 1 0
stability 2 5 6 ~ 2 5 8
strain sensitivity 324
T B S C C O 4 1 1
thermal instability 201
wind-and-react 412
YBCO 182, 200, 395, 399, 402

Hybrid (magnet) 2, 58, 60, 4 0 5
30+ -T, at Grenoble, Nijmegen, and To-

hoku 58
40-T, at Tsukuba 5 8
45-T, NHMFL 58, 302, 345

Hybrid III
AC losses in SCM 263, 288, 289, 290,

291, 292
burst disk and diffuser 289
cross sectional view 5 8
cryostat See subcooled 1.8-K cryostat.
detect-and-dump 333
dynamic model 98, 99
fault force transmission 100~102
fault-mode forces 95, 9 6
fault scenario 9 5
fringing field 87, 8 8
heat input to cryostat 148, 150
hot-spot temperatures 333, 334, 335
hysteresis loss 2 9 0
insert burnout 97, 98, 289
J-T valve 146
magnet protection circuit 339
magnetic force on an iron sphere 91,

92, 94
magnetization measurement 184, 186,

187
mechanical support 98, 9 9
N b3 Sn coil 5 9
N b3 Sn conductors 3 3 4
Nb-Ti coil 59, 101, 236, 300, 339
Nb-Ti conductors 184, 334
parameters of SCM 5 9
piping system 146
quasi-adiabatic (QA) magnets 239, 270
radiation heat transfer 151, 153, 154
residual gas heat transfer 148, 1 5 0
SCM 59, 87, 184, 235, 236, 270, 288,

INDEX

Hybrid III ( continued )
SCM (continued) 289, 300, 333, 339
splice dissipation in Nb-Ti coil 300, 301
stability analyses 235~239
subcooled 1.8-K cryostat 142~147
superinsulation 154
suspension See mechanical support.
vertical magnetic force during insert

bu rnou t  97
voltage attenuation 339

hybrid shielding 405
hydraulic communication 143, 146
hydrogen 111, 112, 113, 383

condenser 155, 156
hysteresis

dissipation rate 291
energy density 279
loss 196, 262 ~264, 274~287, 290, 298,

299, 319, 405
loss in HTS 319
loss in Hybrid III SCM 2 9 0

ill-cooled regime 208
Incoloy 908 207, 388, 389, 405
Inconel 385, 388, 389, 405
index number 306, 307, 405
induced-current heating 44
induction heating 10, 3 6~39, 40~42, 4 3 ,

44, 405
insert 4 0 5

burnout in Hybrid III 97, 98, 289
instability 4, 61, 168, 189, 204, 221
intermetallic compound 5, 408

superconductors 401
internal diffusion process 405
internally-cooled conductors 2
ionization gauge 149, 150
iron sphere 9 1 ~ 9 4
iron yoke 44, 70, 73
iron-free electromagnets 53
irreversible field 405
isentropic 119, 120, 121, 144, 146
isolated magnet(s) 355, 358, 362, 405
isothermal compressibility ( κ) 342
isothermal processes 119, 410
ITER 86, 209, 4 0 5

JAERI 245, 285, 293, 406
jelly-roll process 406
Josephson effect 176, 406
Joule dissipation (density) 59, 212, 213,

215, 261, 267, 304, 305, 333
Joule heating (density) 49, 125, 134, 147,

204, 208, 220, 224, 227~231, 233,
242, 245, 246, 249, 251, 253, 255, 261,
262, 268, 368
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Joule-Thomson (J-T)
expansion 121, 298
heat exchanger 142
process 1 2 1
valve 142, 146, 406

Kaiser effect 268, 406
Kapitza resistance 118, 236, 406
Kelvin coil, distribution 5 7
Kohler plot 304, 305, 392, 406
krypton 111

lambda (λ) point 115, 406
lamination 44
lap splice 266, 267 Also see splice.
(latent) heat of vaporization 112, 123,

157, 383
layer winding (wound) 59, 406
L C T 4 0 6
Legendre functions 18, 6 4
LF 59, 102, 239, 300, 334, 406
L H D 4 0 6
linear accelerator 89
liquefaction by the J-T process 121
liquefaction of hydrogen (neon) 155
London theory 4, 23, 25
long (thin-walled) solenoid 4 7

maglev 2, 9, 26, 77, 372, 375, 407
magnet vessel 101, 102, 112, 142, 144,

145~148, 150, 153, 289
magnet-grade superconductor(s) 1, 2, 3,

5, 6, 193, 217, 407, 408, 412
magnetic

confinement 9, 86, 407
coupling 61, 338
cycle 4 0 7
diffusion (equation) 219, 220
drag force 4 0 7
energy 15, 47, 72, 73, 93, 189, 191, 194,

204, 276, 278, 279, 304, 325, 356
force 7, 45, 46, 76, 83, 91~94, 97, 98

on an iron sphere (Hybrid III) 91~94
pressure 1, 46, 47, 86, 4 0 7
refrigeration 4 0 7
shielding 10, 26, 32, 407
(magnetized) sphere 19
spring (constant) 74, 76, 99

magnetization (curve) 163, 164, 165~201,
274, 279, 285

HTS critical current density 182, 183
Hybrid III  184
measurement 165, 170, 176, 182, 184,

185, 186, 187
measurement technique 169
with transport current 172, 176, 179

magnetoresistance effect 159
Maxwell’s equations 10, 11, 14, 220
mechanical

disturbances 261, 262, 268, 271, 309,
(HTS) 318

event(s) 268, 270, 272, 312~314
integrity 7~9, 258, 372, 375
losses 261, 268
support requirements 9 8

Meissner effect 2, 4, 21, 23, 407
“melt” process 4 0 7
MHD 2, 69, 77, 216, 316, 375, 407

generation (generator) 69, 407
ship propulsion 4 0 7

microslip 269, 311, 407
MPZ 205, 206, 227, 228, 231, 407

composite tape 252, 253~255
energy 228, 231, 254, 255, 258
volume and energy (for HTS) 257, 258

MRI 2, 9, 26, 63, 67, 266, 323, 347, 355,
362, 372, 375, 407

multifilamentary ( also filamentary)
composite conductor 284
conductor 7, 89, 103, 171, 196, 408
strands 293, 302

multivalued stability (energy) margins 208
Mylar 151, 388, 408

Nb3 Al 4 0 8
Nb3 Sn 59, 388, 389, 395, 397, 408

Hybrid III coil 59, 236
Hybrid III conductors 334

Nb-Ti 59, 193, 408
composite 184, 198, 235, 291, 300, 329,

333, 358
Hybrid III coil 59, 101, 236, 300
Hybrid III conductors 184, 334

Nb-Zr 193, 372, 408
neon 111, 112, 113, 257, 398

condenser 155, 157, 158
for HTS 112, 155

nested solenoidal coils 64, 96, 362
NET 240~242, 4 0 8
NHMFL 58, 302, 345, 408
nitrogen 111, 112, 113, 383
NMR 2, 9, 67, 103, 266, 268, 323~325,

347, 355, 362~366, 372, 375, 408
500-MHz 103
750-MHz 268, 362

normal-zone propagation (NZP) 327, 347,
348, 358, 370 Also see NZP velocity.

notched solenoid 67, 68, 362
nuclear fusion 86, 203
nucleate boiling heat transfer 113, 217

data for liquid helium 114
narrow channels 211
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Nusselt number 157, 408
NZP velocity 4 0 8

in HTS magnets 348, 353, 370~372
longitudinal direction 347~350
transverse (turn-to-turn) 351~353

OFHC copper 304, 4 0 8
Ohmic heating magnet 4 0 8
operating temperature for HTS 8, 112,

318, 319, 372
overall current density 4 0 8
overheating 183, 323, 324, 325
overstressing 324
oxygen 111, 112, 113, 383

pancake
coil 51, 59, 60, 235, 236, 351
w i n d i n g 4 0 8

paper  magnet  4 0 8
parallel-plates approximation 150
passive protection 355, 358, 362, 408
passive shielding 26, 409
peak field 366, 4 0 9
penetration depth 4, 23, 25, 4 0 9
perfect conductor 21, 40, 41
perfect insulator 40, 41
permanent magnet 31, 4 0 9
perovskite 1, 405, 4 0 9
persistent-(mode) 325, 356, 363, 409

magne t s  306
switch 363

perturbation approach 26, 28, 30, 32
phase diagram of ordinary helium 115
phenolic 385, 389, 409
Philips gauge 1 5 0
piezoelectric effect 409
piezoelectric wafer 314
piping system for Hybrid III 146
poloidal magnet 4 0 9
polyhelix (coil) 57, 409
poppet valve 143, 1 4 7
potentiometer 169, 170, 184
power dissipation (density) 15, 36, 40, 43,

44, 212
Poynting

energy 189, 191, 194, 274, 276~279
vector 15, 41, 274, 276

Prandtl number 158, 383, 409
premature quench 203, 245, 262, 268,

269~271, 311, 363, 364, 369, 409
protection

circuit for Hybrid III 339
criterion 332
detect-and-dump 328, 333
for HTS 323, 324, 332, 372
technique 324, 355, 356

INDEX

pulse(d) magnet 63, 285, 409

quadrupole (magnets) 9, 17, 45, 7 4~76,
89, 268, 271, 372, 409

quasi-adiabatic (QA) magnet(s) 239, 270,
409

quasi-static approximation 14, 37, 39
Hybrid III SCM 339

quench 4 0 9
currents 245
propagation 325, 326
voltage detection (QVD) 336, 338

quenching composite HTS tapes 326

racetrack(s) (magnets) 7 7~79, 82, 272,
273, 409

radiation heat transfer 151, 152~154
Hybrid III cryostat 153, 154
shielding 101

ramp-rate limitation 245, 246~251
react-and-wind 4 0 9
regenerator 4 1 0
reliability 7, 8, 111, 203, 216
residual gas heat transfer 148~150

Hybrid III cryostat 148, 150
residual helium gas 148
residual strains 105, 106
residual stress 105
Reynolds number 158, 410
RRR 139, 256, 304, 305, 331, 333, 334,

391, 393, 395, 410

“saddle” magnet 4 1 0
saturation flux (magnetization) 26, 30,

31, 32, 70, 410
sausaging effect 306
scalar potentials 16, 2 0
search coil 169, 184~188, 410
self-field loss 410
self-protecting magnet 326, 372, 410
septum 302, 304, 305
“shake-hands” splice See splice.
shielding current 166
shunt resistor 356, 357, 362, 363, 367, 369
silver 139, 387~389, 391, 392, 399

-sheathed HTS tapes 183,  201,  223,
318, 319, 371, 398, 402

skin depth, effect 410
sliding velocity 309, 410

positive slope(d) 309, 310
negative slope(d) 309, 310

SMES 9, 372, 375, 410
solenoidal magnet 10, 17, 45, 64, 91, 269
S O R 4 1 0
space factor 48, 216, 410
spatially homogeneous fields 64
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spherical dipole 34, 87
splice

contact resistance 2 6 7
dissipations in Hybrid III Nb-Ti coil

300, 301
for CIC conductors 302, 303, 304, 305
HTS 318, 319
losses 145, 268, 318, 319
overlap 301
resistance 266, 267, 301, 302, 304, 305
“shake-hands” 266, 300, 302

SQUID 176,  4 1 0
SSC 89, 90, 4 1 0
stability Also see cryostability.

analyses for Hybrid III SCM 235~239
CIC conductors 207, 240~244
of HTS magnets 256~258
theories and criteria 203

stainless steel 384~386, 388, 389
steel  conduit  302
Stefan-Boltzmann equation 151
Stekly criterion 214, 215, 4 1 0
stick-slip 311, 407, 4 1 0
storage dewar 123, 142, 155, 410
structural

failure 324
materials 10, 113, 1 4 0
support 72, 95, 140, 141, 145

subcooled 1.8-K cryostat for Hybrid III
142, 143, 144, 147, 289

submicron
conductor (strand) 197, 4 1 1
multifilamentary conductor 196

superconducting generators 2, 9, 375, 411
superconducting joints 355
superconducting motors 9, 375, 411
superconducting power transmission 411
superconducting switch 355, 411
supercritical helium 206, 293, 346, 402,

411
superfluid helium 115~117, 142, 289, 345,

411
subcooled (1-atm, 1.8-K) 142, 144, 146,

236, 289, 345, 411
superinsulation 151, 153, 154, 411

Hybrid III  99

thermal diffusion 2 1 9
thermal expansion of materials 389
thermocouple gauge 150
thermometers 147, 159, 161
tin-lead (Sn-Pb) solders 267, 300
tokamak 86, 411
TORE SUPRA 4 1 1
toroidal magnet 84, 86, 4 1 1
training (magnet) 203, 268, 4 1 1
transfer line 123, 4 1 1
transformers 44, 375, 376
transposition 199, 411
transverse

heat conduction 358
(turn-to-turn) velocity 351~353

trapezoid (excitations) 262, 264, 280, 282,
283

triple point 383, 412
tr iplet 4 1 2
twist(ing) 195, 196, 198, 199

pitch length 184, 197~199, 263, 284,
288, 302, 319, 412

Type I superconducting rod 2 3
Type I superconductors 4, 412
Type II superconductors 4, 412

uniform-current-density solenoids 48~52
upper critical field 4 1 2
US-DPC Coil 2 9 3~299, 4 0 3

vacuum
gauges 1 5 0
pump system 149

vertical magnetic force (Hybrid III) 9 7
void fraction 240, 241, 412
voltage attenuation (Hybrid III SCM) 335

water-cooled 1, 261
insert 58, 61, 338
magnet(s) 57, 58, 61, 412

well-cooled regime (region) 208, 240
Wiedemann-Franz-Lorenz Law (number)

139, 377, 412
wind-and-react 4 1 2

xenon 111

T B C C O 4 1 1 YBCO 182, 200, 395, 399, 412
Teflon 309, 385, 388, 389, 411 Yin-Yang magnet 412




